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Abstract

Training graph neural networks (GNNs) is ex-
tremely time-consuming because sparse graph-
based operations are hard to be accelerated by
community hardware. Prior art successfully
reduces the computation cost of dense matrix
based operations (e.g., convolution and linear) via
sampling-based approximation. However, unlike
dense matrices, sparse matrices are stored in an
irregular data format such that each row/column
may have a different number of non-zero entries.
Thus, compared to the dense counterpart, approx-
imating sparse operations has two unique chal-
lenges (1) we cannot directly control the effi-
ciency of approximated sparse operation since the
computation is only executed on non-zero entries;
(2) sampling sparse matrices is much more ineffi-
cient due to the irregular data format. To address
the issues, our key idea is to control the accuracy-
efficiency trade-off by optimizing computation re-
source allocation layer-wisely and epoch-wisely.
For the first challenge, we customize the com-
putation resource to different sparse operations,
while limiting the total used resource below a cer-
tain budget. For the second challenge, we cache
previously sampled sparse matrices to reduce the
epoch-wise sampling overhead. To this end, we
propose Randomized Sparse Computation. In
practice, RSC can achieve up to 11.6× speedup
for a single sparse operation and 1.6× end-to-
end wall-clock time speedup with almost no ac-
curacy drop. Codes are available at https://
github.com/warai-0toko/RSC-ICML.
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1. Introductions
Graph Neural Networks (GNNs) have achieved great suc-
cess across different graph-related tasks (Hamilton et al.,
2017; Hu et al., 2020; Ying et al., 2018; Jiang et al., 2022;
Zhou et al., 2022; 2023). However, despite its effective-
ness, the training of GNNs is very time-consuming. Specifi-
cally, GNNs are characterized by an interleaved execution
that switches between the aggregation and update phases.
Namely, in the aggregation phase, every node aggregates
messages from its neighborhoods at each layer, which is
implemented based on sparse matrix-based operations (Fey
& Lenssen, 2019; Wang et al., 2019). In the update phase,
each node will update its embedding based on the aggre-
gated messages, where the update function is implemented
with dense matrix-based operations (Fey & Lenssen, 2019;
Wang et al., 2019). In Figure 1, SpMM and MatMul are the
sparse and dense operations in the aggregation and update
phases, respectively. Through profiling, we found that the
aggregation phase may take more than 90% running time
for GNN training. This is because the sparse matrix opera-
tions in the aggregation phase have many random memory
accesses and limited data reuse, which is hard to be acceler-
ated by community hardwares (e.g., CPUs and GPUs) (Duan
et al., 2022b; Han et al., 2016; Duan et al., 2022a). Thus,
training GNNs with large graphs is often time-inefficient.
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Figure 1: The time profiling of a two-layer GCNs on dif-
ferent datasets. SpMM may take 70% ∼ 90% of the total
time. We measure the time on a single NVIDIA RTX3090
(24GB). The detailed software and hardware information
can be found in Appendix D.

Existing works towards this problem can be roughly divided
into three categories. First, some works propose distributed
GNNs training systems, which focus on minimizing the
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communication cost among hardware (Zheng et al., 2020;
Ramezani et al., 2022; Wan et al., 2022b; Md et al., 2021;
Wan et al., 2022a). Second, another research line optimizes
the memory access pattern of sparse operations via coalesc-
ing the memory access and fusing consecutive operations
(Zhang et al., 2022; Huang et al., 2020a; Rahman et al.,
2021; Wang et al., 2021). Third, some other works try to
accelerate the training process from the optimization aspect,
i.e., using fewer iterations to converge (Narayanan et al.,
2022; Cong et al., 2020; Xu et al., 2021; Cai et al., 2021).

In parallel, an orthogonal direction is to replace the ex-
pensive operations with their faster-approximated versions
(Adelman et al., 2021; Drineas et al., 2006b). The key idea
is to sub-sample tensors onto low dimensional spaces and
perform the original operations here. For example, for the
linear operation between two matrices A ∈ Rn×m and
B ∈ Rm×q, we first obtain A′ ∈ Rn×k and B′ ∈ Rk×q

(k < m) by picking k representative columns of A and the
corresponding rows of B (Drineas et al., 2006b). Then we
approximate AB ≈ A′B′. With this procedure, the number
of floating-point operations (FLOPs) and memory access
are both reduced. Based on the idea, previous work success-
fully accelerates the dense matrix based operations, such as
convolution and linear operations (Adelman et al., 2021).
The approximated operation can plug-and-play replace the
exact operation to improve per-operation efficiency, and thus
is compatible with most of the efficient training methods.
Despite the potential, this perspective however has not been
explored for the sparse operations in GNNs.

The approximation method reduces the computational com-
plexity at the cost of giving noisy outputs. Thus, there
naturally exists an accuracy-efficiency trade-off. Com-
pared to approximating dense matrix operations, there are
two unique challenges to optimizing the trade-off for ap-
proximated sparse operations. First, unlike the previous
example of approximating linear operation, k cannot di-
rectly control the efficiency (FLOPs) for sparse operations.
This is because, for dense matrices, each row/column has
the same amount of parameters. Thus the reduction of
FLOPs in approximated dense operations is determined by
the dimensions of the sub-sampled matrices (i.e., k). How-
ever, in sparse operations, each row/column in the sparse
adjacency matrix has different numbers of non-zero en-
tries, and the computation is only executed on non-zero
entries (i.e., irregular data format). Thus, the reduction of
FLOPs in the sparse operations is decided by the selection
of representative rows/columns. It lacks a mechanism to
directly control the efficiency-accuracy trade-off for each
sparse operation. Second, compared to the dense counter-
part, sub-sampling (i.e., slicing) the sparse matrix is much
more time-consuming due to its irregular data format (Han
et al., 2016; Fey & Lenssen, 2019), which counteracts the
acceleration from the FLOPs reduction.

To this end, we propose Randomized Sparse Computation,
dubbed RSC , the first approximation framework tailored
for efficient GNN training. Our core idea is to control the
trade-off by optimizing the computation resource alloca-
tion at the “global” level. Specifically, to tackle the first
challenge, at the layer-wise level, we propose to customize
the FLOPs of each sparse operation while limiting the total
FLOPs under a certain budget. The rationale behind this
strategy is that each operation may have a different contribu-
tion to the model accuracy. Thus, we could to assign more
computational resources to “important” operations under a
certain budget. More concretely, we frame it as a constraint
optimization problem. Then we propose a greedy algorithm
to solve it efficiently. To tackle the second challenge, at the
epoch-wise level, we found that the selection of represen-
tative row/columns tends to remain similar across nearby
iterations. Based on this finding, we develop a caching
mechanism to reuse the previously sampled sparse matrix
across nearby iterations to reduce per-epoch sampling time.
Finally, inspired by the recent finding that the final stage of
training usually needs smaller noise to help convergence (Li
et al., 2019; Dao et al., 2022), we propose to use approxi-
mated sparse operation during most of the training process,
while switching back to the original sparse operation at the
final stage. This switching mechanism significantly reduces
the accuracy drop, at the cost of slightly less speedup. We
summarize our contributions as follows:

• We accelerate the training of GNNs from a new perspec-
tive, namely, replacing the expensive sparse operations
with their faster-approximated versions.

• Instead of focusing on balancing the efficiency-accuracy
trade-off at the operation level, we control the trade-off
through optimizing resource allocation at the layer-wise
and epoch-wise levels.

• We propose a caching mechanism to reduce the cost of
sampling sparse matrices by reusing previous results.

• Extensive experiments have demonstrated the effective-
ness of the proposed method. Particularly, RSC can
achieve up to 11.6× speedup for a single sparse opera-
tion and a 1.6× end-to-end wall-clock time speedup with
negligible (≈ 0.3%) accuracy drop.

2. Background and Preliminary
2.1. Graph Neural Networks

Let G = (V, E) be an undirected graph with V =
(v1, · · · , v|V|) and E = (e1, · · · , e|E|) being the set of
nodes and edges, respectively. Let X ∈ R|V|×d be the
node feature matrix. A ∈ R|V|×|V| is the graph adjacency
matrix, where Ai,j = 1 if (vi, vj) ∈ E else Ai,j = 0.
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Ã = D̃− 1
2 (A+ I)D̃− 1

2 is the normalized adjacency ma-
trix, where D̃ is the degree matrix of A + I . GNNs re-
cursively update the embedding of a node by aggregating
embeddings of its neighbors. For example, the forward pass
of the lth Graph Convolutional Network (GCN) layer (Kipf
& Welling, 2017) can be defined as:

H(l+1) = ReLU(ÃH(l)Θ(l)), (1)

where H(l) is the node embedding matrix at the lth layer
and H(0) = X . Θ(l) is the weight matrix of the lth layer.

In practice, Ã is often stored in the sparse matrix format,
e.g., compressed sparse row (CSR) (Fey & Lenssen, 2019).
From the implementation aspect, the computation of Equa-
tion (1) can be described as:

H(l+1) = ReLU

(
SpMM

(
Ã,MatMul(H(l),Θ(l))

))
,

where SpMM(·, ·) is the Sparse-Dense Matrix Multiplica-
tion and MatMul(·, ·) is the Dense Matrix Multiplication.
Sparse operations, such as SpMM , have many random mem-
ory accesses and limited data reuse. Thus they are much
slower than the dense counterpart (Han et al., 2016; Duan
et al., 2022b). To get a sense of the scale, we show in Figure
1 that for GCNs, SpMM may take roughly 70% ∼ 90% of
the total training time.

2.2. Fast Approximated MatMul with Sampling

Let X ∈ Rn×m, Y ∈ Rm×q . The goal is to efficiently esti-
mate the matrix production XY . Truncated Singular Value
Decomposition (SVD) outputs provably optimal low-rank
estimation of XY (Adelman et al., 2021). However, SVD is
almost as expensive as matrix production itself. Instead, the
sampling algorithm is proposed to approximate the matrix
product XY by sampling k columns of X and correspond-
ing rows of Y to form smaller matrices, which are then
multiplied as usual (Drineas et al., 2006b). This algorithm
reduces the computational complexity from O(mnq) to
O(knq). Specifically,

XY =

m∑
i=1

X:,iYi,: ≈
k∑

t=1

1

st
X:,itYit,:

= approx(XY ), (2)

where X:,i ∈ Rn×1 and Yi,: ∈ R1×q are the ith column
and row of X and Y , respectively. In this paper, we call
(X:,i,Yi,:) the ith column-row pair. k is the number of sam-
ples (1 ≤ k ≤ m). {pi}mi=1 is a probability distribution over
the column-row pairs. it ∈ {1, · · ·m} is the index of the
sampled column-row pair at the tth trial. st is the scale fac-
tor. Theoretically, (Drineas et al., 2006b) shows that if we set
st =

1
kpit

, then we have E[approx(XY )] = XY . Fur-
ther, the approximation error E[||XY −approx(XY )||F ]

is minimized when the sampling probabilities {pi}mi=1 are
proportional to the product of the column-row Euclidean
norms (Drineas et al., 2006b):

pi =
||X:,i||2 ||Yi,:||2∑m
j=1 ||X:,j ||2 ||Yj,:||2

. (3)

2.2.1. TOP-k SAMPLING

The above sampling-based method is originally developed
for accelerating the general application of MatMul (Drineas
et al., 2006b). Directly applying it to neural networks may
be sub-optimal since it does not consider the characteristic of
neural network weights. Based on the empirical observation
that the distribution of weights remains centered around
zero during training (Glorot & Bengio, 2010; Han et al.,
2015), (Adelman et al., 2021) proposes a top-k sampling
algorithm: Picking k column-row pairs with the largest

||X:,i||2 ||Yi,:||2∑m
j=1 ||X:,j ||2 ||Yj,:||2 deterministically without scaling.

Equivalently, it means pi of column-row pairs with the k-
largest value in Equation (3) equals 1, otherwise it equals
0. And sit is a constant 1. Albeit without the scaling while
sampling column-row pairs deterministically, under on the
assumption of zero-centered weight distribution, (Adelman
et al., 2021) theoretically show that top-k sampling still
yields an unbiased estimation of XY with minimal approx-
imation error. Consequently, the top-k sampling algorithm
empirically shows a significantly lower accuracy drop when
approximating the convolution and linear operations in the
neural networks (Adelman et al., 2021).

In the next section, we explore how to approximate the
expensive sparse operation via the top-k sampling.

3. The Proposed Framework
The overview of RSC is shown in Figure 2, where we use
the computation graph of GCN as an example. We first
explore which SpMM in the computation graph can be re-
placed with its approximated version (Section 3.1). Then
since GNNs have multiple SpMM and each of them may
have different importance to the model performance, we
then automatically allocate computation resources to dif-
ferent SpMM (Section 3.2). Finally, we explore two simple
and effective tricks for improving RSC , including a caching
mechanism to reduce the overhead of sampling sparse ma-
trices (Section 3.3.1) and a switching mechanism to reduce
the accuracy drop (Section 3.3.2).

3.1. Where to Apply the Approximation

3.1.1. EXPERIMENTAL ANALYSIS

Each sparse operation is executed twice at each train-
ing step, i.e., one in the forward pass and the other one

3



RSC: Accelerate Graph Neural Networks Training via Randomized Sparse Computations

SPMM

MatMul

Approx
SpMM

MatMul

Forward Pass Backward Pass

Down
Sampling

Cache

Caching (Sec 3.3.1)

Down
Sampling

Constraint 
Optimization Eq. 5

𝑘! 

Resource Allocation (Sec 3.2)

Θ(!)

𝑯(!$%) 𝛁𝑯(!$%)

𝛁Θ(!)

𝛁𝑯(!)𝑯(!)

𝑱(!) 𝛁𝑱(!)

𝑨'

Figure 2: Overview of RSC . For convenience, ReLU is
ignored. RSC only replace the SpMM in the backward pass
with its approximated version using top-k sampling (Section
3.1). kl is the number of samples for top-k sampling at the
lth layer, which is automatically allocated (Section 3.2). To
reduce the overhead of sampling, we also cache the sampled
graph and reuse it across nearby iterations (Section 3.3).

in the backward pass. As shown in Figure 2, here we
take SpMM in the lth GCN layer as an example, the for-
ward one is H(l+1) = ReLU(SpMM(Ã,J (l))), where
J (l) = MatMul(H(l),Θ(l)) is the intermediate node
representations. And the backward one is ∇J (l) =
SpMM(Ã⊤,∇H(l+1)). ∇J (l) and ∇H(l) are the gradient
with respect to J (l) and H(l), respectively.

Even though the approximation method itself is statisti-
cally unbiased, replacing the exact sparse operation with
their faster-approximated versions still injects noise to the
computation graph. As we analyzed above, each SpMM is
executed twice in the training step. Below we first exper-
imentally analyze the impact of the injected noise in the
forward pass and the backward pass. As shown in Table 1,
we apply top-k sampling to approximate the SpMM in the
forward pass, backward pass, or both, respectively.

Table 1: Preliminary results on approximating SpMM via top-
k sampling. The model is a two-layer GCN, and the dataset
is Reddit. Here we set the k as 0.1|V| across different layers.

Method Reddit
without approximation 95.39±0.04

only forward 16.45±0.39
only backward 95.25±0.03

forward and backward 80.74±1.00

From Table 1, the accuracy drop is negligible if we only
replace SpMM in the backward pass. Notably, if we apply ap-
proximation in both the forward and backward pass, the re-
sult is significantly better than only applying top-k sampling
in the forward pass. The reason is that when only apply-
ing approximation in the forward pass, some row/columns

are not included in the computation graph, so intuitively
these row/columns should be excluded in the backward pass.
“forward and backward” result in Table 1 is built based on
this intuition such that in the backward pass, we use the
column-row pairs sampled in the forward pass to compute
the gradient (Adelman et al., 2021). However, it is still not
comparable to the result of applying approximation only in
the backward pass. Below we mathematically analyze the
reason behind the results in Table 1.

3.1.2. THEORETICAL ANALYSIS

We first analyze the case of approximating the sparse opera-
tions in the forward pass. Namely, replacing SpMM(Ã,J (l))
with approx(ÃJ (l)). We note that we have E[f(x)] ̸=
f(E[x]) for any non-linear function f(·), e.g., E[x2] ̸=
E2[x]. Thus, even when the approximation method gives
an unbiased estimation, i.e., E[approx(ÃJ (l))] = ÃJ (l),
the node embeddings H(l+1) are still biased since the acti-
vation function is non-linear. To see this,

E[H(l+1)] = E[ReLU(approx(ÃJ (l))])

̸= ReLU(E[approx(ÃJ (l))]) = H(l+1).

Thus, if we apply the approximation for the SpMM in the
forward pass, the bias will be propagated layer-by-layer
and cause significantly worse results. For the case of only
approximating the sparse operation in the backward pass,
we have the following proposition:
Proposition 3.1 (Proof in Appendix A). If the approxima-
tion method is itself unbiased, and we only replace the SpMM
in the backward pass with its approximated version, while
leaving the forward one unchanged, then the calculated
gradient is provably unbiased.

The high-level idea is that the gradient of the activation
function in the backward pass is only related to the pre-
activations in the forward pass, and thus is independent of
the approximation error introduced in the backward pass.
Due to the page limit, we also discuss why sampling-based
approximation is suitable for accelerating GNNs in Ap-
pendix A. As suggested by our theoretical and empirical
analysis, as shown in Figure 2, we only approximate the
sparse operations in the backward pass, while leaving all
other operations unchanged.

3.2. How to Apply the Approximation

As we mentioned, for sparse operations, the acceleration
is decided by the selection of sampled column-row pairs.
To see this, as shown in Figure 3, suppose we use top-
k sampling to approximate SpMM(Ã⊤,∇H). Since the
computations are only executed on the non-zero entries, so
selecting the orange pairs (i.e., pair 1 and 3) will result in
3
7× less computational cost (FLOPs) compared to selecting
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Figure 3: For approximated sparse operations, the accelera-
tion is decided by the selection of column-row pairs.

the blue pair (i.e., pair 0 and 2). For both the orange and
blue cases, we have k = 2. Thus, the number of samples
k cannot directly constrain the FLOPs for each individual
operation. Moreover, a GNN has multiple operations (or
layers), and the model accuracy has a different sensitivity to
the approximation error at different layers. To optimize the
accuracy-efficiency trade-off, our key idea is to customize
the computation resources (i.e., FLOPs) for each layer by
adjusting the number of samples kl in the l-th layer. In
this way, we minimize the impact of approximation, while
limiting the overall FLOPs under a certain budget. Based
on the idea, we frame the resource allocation problem as the
following constrained optimization problem:

min
{kl}
−

L∑
l=1

∑
i∈Topkl

∥Ã⊤
:,i∥2∥∇H

(l+1)
i,: ∥2

∥Ã∥F ∥∇H(l+1)∥F
, (4a)

s.t.

L∑
l=1

∑
i∈Topkl

#nnzi ∗ dl ≤ C

L∑
i=1

|E|dl, (4b)

where C is the budget (0 < C < 1) that controls the overall
reduced FLOPs. kl is the number of samples for the top-k
sampling at the l-th layer. dl is the hidden dimensions of l-th
layer, and #nnzi is the number of non-zero entries at the
i-th column of Ã⊤. Topkl

is the set of indices associated
with the kl largest ∥Ã⊤

:,i∥2∥∇H
(l+1)
i,: ∥2.

Equation (4a) is equivalent to minimizing the relative ap-
proximation error E[ ||Ã

⊤∇H(l+1)−approx(Ã⊤∇H(l+1))||F
∥Ã∥F ∥∇H(l+1)||F

]

summarized over all layers (Adelman et al., 2021). Also,
different sparse operations are weighted summation by the
magnitude of gradient ∥∇H(l+1)∥2, which implicitly en-
codes the importance of different operations.

Equation (4b) is the constraint that controls the overall
FLOPs. Specifically, the FLOPs of SpMM between Ã and
the gradient∇H ∈ RN×d isO(|E|d) and

∑
j∈V #nnzj =

|E|. We note that Equation (4b) also bounds the number of
memory access of SpMM .

3.2.1. GREEDY SOLUTION

The above combination optimization objective is NP-hard,
albeit it can be solved by dynamic programming. However,
dynamic programming is very slow, which somehow con-
tradicts our purpose of being efficient. Thus, we propose to
use a greedy algorithm to solve it. Specifically, it starts with
the highest kl = |V| for all layers. In each move, it chooses
a kl among {kl}Ll=1 to reduce by a step size (e.g., 0.02|V|),
such that the increment of errors in Equation (4a) is mini-
mal. The greedy algorithm will stop when the current total
FLOPs fits in the budget in Equation (4b). This algorithm
runs super fast, and we found that it has minimal impact
on efficiency. We provide the pseudo-code of our greedy
algorithm in Algorithm 1 of Appendix B.

3.3. When to Apply the Approximation

3.3.1. CACHE THE SAMPLED SPARSE MATRICES

We first give the details about the Compressed Sparse Row
(CSR) format for representing the sparse matrix here. CSR
stores nonzero values in a matrix and their position in three
arrays: index array Rowptr, column array Col, and value
array Val. The elements in Rowptr act as the starting
indices of the elements in Col and Val that correspond
to each row. Specifically, the elements of row i are stored
in indices Rowptr[i] to Rowptr[i+ 1] − 1 of Col and
Val . The elements in Col and Val are the column index
and value in that column, respectively. Figure 5 shows the
CSR format of the matrix shown in Figure 3. We ignore the
Val array here for illustration convenience.

Executing the top-k sampling contains two steps: First,
it decides the indices corresponding to the top-k largest
column row norms in Equation (3). Second, slicing the
matrices according to the indices. In practice, the overhead
of the first step can be ignored. However, unlike dense
matrices, slicing the adjacency matrix is much slower due
to its irregular data format. To see this, suppose the top-k
indices of the sparse matrix in Figure 3 correspond to the
orange column-row pairs. Figure 5 shows the process of
slicing the adjacency matrix in CSR format by reserving
only the orange columns. Slicing sparse matrices requires
to re-process the graph to build the new Rowptr and Col
(Fey & Lenssen, 2019), which introduces significant time
overhead, especially for large graphs.

For the full graph training, we use the same adjacency matrix
across different epochs1. We made a crucial observation that
the top-k indices in the adjacency matrix tend to be the same
across iterations. In Figure 4, we plot the AUC score of top-
k indices between every iteration t and iteration t+ 10 for

1For sub-graph based training, we can first sample all of the
sub-graphs offline. Then during the training, we apply the caching
mechanism to each sampled graph.
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Figure 4: For each layer, the selected column-row pairs tend to be very similar across iterations. Models here are two-layer
GCN and GraphSAGE. Here we show the matching scores (AUC) of top-k indices between every 10 steps.

Figure 5: The process of slicing the sparse matrix in Figure
3 by only reserving orange columns (in CSR format).

each layer throughout the whole training process. Here we
note that AUC score is a commonly used ranking measure
and a 1.0 AUC score means the ranking of column-row pairs
is identical across iterations. The results in Figure 4 indicate
that the top-k indices won’t change significantly within a
few iterations. Thus, as shown in Figure 2, we propose to
reuse the sampled adjacency matrix for each layer across
nearby iterations.

Discussion. The rationale behind the success of caching is
the slow rate of change in the learned embeddings within
GNNs (Fey et al., 2021; Wan et al., 2022a). Prior research
has leveraged this “staleness” of embeddings to enhance the
efficiency of GNN training [1, 2]. The success of caching
can also be explained by the staleness: if embeddings (and
their gradients) across consecutive steps remain nearly iden-
tical, the sampled sparse matrix will also exhibit minimal
variation. Later we experimentally show that the caching
mechanism does not impact the model performance a lot,
but leads to a significant speedup.

3.3.2. SWITCH BACK AT THE END

When training neural networks, the common practice is to
use a large learning rate for exploration and anneal to a
small one for final convergence (Li et al., 2019). The ratio-
nale behind this strategy is that, at the end of the training
process, we need to fine-tune our model with small noise
for convergence. Since our approximation sparse operations
will bring extra noise to the gradient, intuitively, we can
switch back to the original sparse operations to help con-
vergence. More formally, we propose to use approximated
sparse operation during most of the training process, while

switching back to the original sparse operation at the final
stage. We experimentally show that this switching mecha-
nism significantly reduces the accuracy drop at the cost of
slightly less acceleration effect.

We note that the switching mechanism is not proposed
in this paper. The switching mechanism takes inspiration
from previous work Dao et al. (2022), and both our work
and Dao et al. (2022) utilize the switching mechanism to
minimize the impact of approximation.

4. Related work and Discussion
Due to the page limit, we first discuss the related work on
approximated matrix multiplication. Other related topics,
i.e., subgraph-based training, randomized GNN training,
and non-approximated GNN acceleration, can be found in
Appendix C.

Approximated Matrix Multiplication. The approximated
matrix production can be roughly divided into three cat-
egories. However, only a few of them can be used for
accelerating GNN training. Specifically, (1) Random walk-
based methods (Cohen & Lewis, 1999) performs random
walks on a graph representation of the dense matrices, but
is only applicable to non-negative matrices; (2) Butterfly-
based methods (Chen et al., 2021; Dao et al., 2022) replace
dense matrices with butterfly matrices. It is not applicable to
SpMM in GNNs because the adjacency matrix often cannot
be reduced to a butterfly matrix. (3) Column-row sampling
methods(Drineas et al., 2006a; Drineas & Kannan, 2001)
sample the input matrices with important rows and columns,
then perform the production on the sampled matrix as usual.

5. Limitations
First, to guarantee the model accuracy, we only replace
the sparse operation in the backward pass. Thus the upper
bound of RSC ’s speedup is limited. However, we note that
the backward pass usually is more time-consuming than the
forward pass, which is also empirically shown in Table 2.
Second, some GNNs rely on the scatter-and-gather instead
of SpMM (and its variant) to perform the aggregation, such as
GAT (Veličković et al., 2017). They are not covered in this
paper. However, scatter-and-gather based GNNs can also
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be accelerated by RSC because the column-row sampling
is also applicable to scatter and gather operation. Similarly,
the caching and switching mechanisms are also applicable
to them. However, for the resource allocation Algorithm
1, the scatter and gather operations require tailored error
bound and the computation cost modeling in Equation (4).
We leave it as future work.

6. Experiments
We verify the effectiveness of our proposed framework via
answering the following research questions: Q1: How ef-
fective is RSC in terms of accuracy with reduced training
time? Q2: How effective is our proposed allocation strategy
compared to the uniform allocation strategy? Q3: What
is the layer-wise ratio assigned by RSC ? Q4: How effec-
tive is the caching and switching mechanism in terms of
the trade-off between efficiency and accuracy? If without
explicitly mentioned, all reported results are averaged over
ten random trials

6.1. Experimental Settings

Datasets and Baselines. To evaluate RSC , we adopt four
common large-scale graph benchmarks from different do-
mains, i.e., Reddit (Hamilton et al., 2017), Yelp (Zeng
et al., 2020), ogbn-proteins (Hu et al., 2020), and ogbn-
products (Hu et al., 2020). We evaluate RSC under both the
mini-batch training and full-batch training settings. For the
mini-batch training setting, we integrate RSC with one of
the state-of-the-art sampling methods, GraphSAINT (Zeng
et al., 2020). For the full-batch training setting, we inte-
grate RSC with three popular models: two commonly used
shallow models, namely, GCN (Kipf & Welling, 2017) and
GraphSAGE (Hamilton et al., 2017), and one deep model
GCNII (Chen et al., 2020). To avoid creating confusion,
GCN, GraphSAGE, and GCNII are all trained with the
whole graph at each step. For a fair comparison, we use
the MEAN aggregator for GraphSAGE and GraphSAINT
throughout the paper. Details about the hyperparameters
and datasets are in Appendix D.

Hyperparameter settings. RSC contains three parts. First,
the allocation strategy. We choose the overall budget C
in Equation (4b) from {0.1, 0.3, 0.5}. We run the resource
allocation strategy every ten steps. The step size α in Algo-
rithm 1 is set as 0.02|V|. Second, the caching mechanism.
According to Figure 4, we sample the adjacency matrix
every ten steps and reuse the sampled matrices for nearby
steps. Third, the switching mechanism, where we apply
RSC for 80% of the total epochs, while switching back
to the original operations for the rest of the 20% epochs.
Due to the page limit, We present a detailed hyperparameter
study in Appendix E Figure 11 and Figure 12.

Evaluation metrics. To evaluate the practical usage of
RSC , we report the wall clock time speedup measured on
GPUs. Specifically, the speedup equals Tbaseline/Trsc, where
Tbaseline and Trsc are the wall clock training time of baseline
and RSC , respectively. We note that the Trsc includes the
running time of the greedy algorithm, and the effects of
caching and switching.

6.2. Performance Analysis

6.2.1. ACCURACY-EFFICIENCY TRADE-OFF

To answer Q1, we summarize the speedup and the test
accuracy/F1-micro/AUC of different methods in Table 3.
Since RSC accelerates the sparse operation in the backward
pass, we also provide the detailed efficiency analysis in
Table 2. In summary, we observe:

❶ At the operation level, RSC can accelerate the sparse
operation in the backward pass by up to 11.6×. For end-
to-end training, the accuracy drop of applying RSC over
baselines is negligible (0.3%) across different models and
datasets, while achieving up to 1.6× end-to-end wall clock
time speedup. The gap between the operation speedup and
the end-to-end speedup is due to the following two reasons.
First, we focus on accelerating the sparse computations
in GNNs, which is the unique bottleneck to GNNs. The
other dense computations can certainly be accelerated by
approximation methods, but this is beyond the scope of this
paper. Second, we only accelerate the sparse computation
in the backward pass instead of the forward one to guaran-
tee performance. We note that for approximation methods
that accelerate the training process at operation level, a
1.2 ≈ 1.3× wall-clock speedup with negligible accuracy
drop can be regarded as non-trivial (for details, please see
Table 1 in (Adelman et al., 2021)), especially considering
that these approximation methods are orthogonal to most of
the existing efficient training methods. For GraphSAINT,
the speedup of RSC is around 1.1×, which is smaller than
the full graph training. This is because for subgraph-based
training, the equivalent “batch size” is much smaller than the
full graph counterparts. As a result, the GPU utility is low
since it does not assign each processor a sufficient amount
of work and the bottleneck is the mini-batch transfer time
(Kaler et al., 2022). We note that the mini-batch sampling
and transfer time can be optimized from the system perspec-
tive (Kaler et al., 2022), which is orthogonal to our work.
The speedup is expected to be larger when the mini-batch
sampling time is optimized.

6.2.2. ABLATION ON RESOURCE ALLOCATION.

Due to the page limit, we first show the running time of the
greedy algorithm in Appendix E Table 11. We conclude
that the overhead of the greedy algorithm is negligible com-
pared to the acceleration effect of RSC . To answer Q2, we
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Table 2: Comparison on the efficiency at the operation level. fwd/bwd is the wall-clock time for a single forward/backward
pass (ms). SpMM MEAN corresponds to the MEAN aggregator used in GraphSAGE (Appendix A.3).

Reddit Yelp
ogbn-

proteins
ogbn-

products
fwd bwd fwd bwd fwd bwd fwd bwd

SpMM
Baseline 36.28 44.23 26.88 34.38 31.72 42.99 261.03 316.80

+RSC - 3.81 (11.6×) - 9.86 (3.49×) - 14.87 (2.89×) - 35.28 (8.98×)
SpMM MEAN

(Appendix A.3)
Baseline 36.21 44.27 26.78 34.38 31.80 43.11 261.03 316.84

+RSC - 7.47 (5.92×) - 19.62 (1.75×) - 5.22 (8.26×) - 71.59 (4.43×)

Table 3: Comparison on the test accuracy/F1-micro/AUC and speedup on four datasets. Bold faces indicate the accuracy
drop is negligible (≈ 0.3%) or the result is better compared to the baseline.The hardware here is a RTX3090 (24GB).

# nodes
# edges

230K
11.6M

717K
7.9M

132K
39.5M

2.4M
61.9M

Model Methods Reddit Yelp
ogbn-

proteins
ogbn-

products

Acc.
Budget

C
Speedup F1-micro

Budget
C

Speedup AUC
Budget

C
Speedup Acc.

Budget
C

Speedup

Graph-
SAINT

Baseline 96.40±0.03 1 1× 63.30±0.14 1 1× — — — 79.01±0.21 1 1×
+RSC 96.24±0.03 0.1 1.11× 63.34±0.18 0.1 1.09× — — — 78.99±0.32 0.3 1.04×

GCN Baseline 95.33±0.03 1 1× 44.28±1.04 1 1× 71.99±0.66 1 1× 75.74±0.11 1 1×
+RSC 95.13±0.05 0.1 1.47× 46.09±0.54 0.1 1.17× 71.60±0.45 0.3 1.51× 75.44±0.21 0.3 1.35×

GraphSAGE
(full batch)

Baseline 96.61±0.05 1 1× 63.06±0.18 1 1× 76.09±0.77 1 1× 78.73 ± 0.12 1 1×
+RSC 96.52±0.04 0.1 1.32× 62.89±0.19 0.1 1.13× 76.30±0.42 0.3 1.60× 78.50± 0.09 0.1 1.53×

GCNII Baseline 96.71±0.07 1 1× 63.45±0.17 1 1× 73.79±1.32 1 1× — — —
+RSC 96.50±0.12 0.3 1.45× 63.57±0.21 0.1 1.19× 75.20±0.54 0.5 1.41× — — —
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Figure 6: The Pareto frontier of the accuracy-efficiency trade-off for RSC and the uniform allocation. Here we disabled the
caching and switch mechanism for a fair comparison. More results can be found in Appendix E

Table 4: Ablation on the caching and switching mechanism.
Experiments are conducted on ogbn-proteins. All results
are averaged over five random trials.

Ablation on Caching Switching AUC Speedup

GCN

✗ ✗ 71.60 ± 0.66 1.19×
✗ ✓ 72.19 ± 0.79 1.14×
✓ ✗ 69.80 ± 0.60 1.60×
✓ ✓ 71.60 ± 0.45 1.51×

GraphSAGE

✗ ✗ 75.23 ± 0.79 1.37×
✗ ✓ 76.39 ± 0.39 1.32×
✓ ✗ 75.53 ± 0.60 1.78×
✓ ✓ 76.30 ± 0.42 1.60×

GCNII

✗ ✗ 74.07 ± 0.83 1.10×
✗ ✓ 74.50 ± 0.52 1.04×
✓ ✗ 72.47 ± 0.75 1.46×
✓ ✓ 75.20 ± 0.54 1.41×

compare RSC with the uniform allocation strategy, i.e., set-
ting kl = C|V| for all sparse operations in the backward
pass. As shown in Figure 6, we plot the Pareto frontier
of the accuracy-efficiency trade-off on the Reddit dataset
for RSC and the uniform strategy with different C. For
a fair comparison, we disabled the caching and switching
mechanism. Due to page limit, more results are shown
in Appendix E. We observe that: ❷ RSC exhibits a supe-

rior trade-off between accuracy and efficiency compared
to the uniform allocation, especially under high speedup
regime. Namely, compared to the uniform allocation, RSC
can achieve higher model accuracy under the same speedup.
This can be explained by the fact that each operation has a
different importance to the model performance. RSC can au-
tomatically allocate more resources to important operations
under a given total budget.

To answer Q3, due to the page limit, we visualize the al-
located kl for each layer across iterations in Appendix E
Figure 7, and the degree of picked nodes in Appendix E
Figure 8. We observe: ❸ The kl assigned by RSC evolves
along with the training.

6.2.3. ABLATION ON CACHING AND SWITCHING.

In section 6.2.2, we have shown the superior results of the
proposed resource allocation strategy. As we mentioned
in Section 3.3, we also introduce two simple tricks to for
improving RSC , i.e., the caching and switching mechanism.
To verify the effect of each of them (Q4), we conduct incre-
mental evaluations on GCN, GraphSAGE and GCNII with
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ogbn-proteins, which are summarized in Table 4. The row
without caching and switching in Table 4 corresponds to the
results with the proposed resource allocation strategy. We
observe: ❹ Switching mechanism significantly improves the
model performance, at the cost of slightly less acceleration
effect. As we analyzed in Section 3.3.2, the improvement
can be explained by the fact that the final training stage
requires smaller gradient noise to help convergence. ❺
Caching mechanism significantly improves the wall-clock
time speedup, at the cost of worse model performance. Al-
though caching mechanism can reduce the overhead of sam-
pling, the performance drop is too large (> 1%). Intuitively,
the accuracy drop of caching also implies that we could not
use a “static” down-sampled graph throughout the training
process. ❻ Surprisingly, jointly applying the caching and
switching, the performance drop can be minimized.
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8. Conclusions and Future work
We propose RSC , which replaces the sparse computations
in GNNs with their fast approximated versions. RSC can
be plugged into most of the existing training frameworks
to improve their efficiency. Future work includes exploring
RSC for GNNs that rely on scatter-and-gather operations.
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A. Mathematical Analysis
A.1. Why Sampling-based Approximation for GNN?

In the main text, we mentioned SpMM is the main speed bottleneck for GNNs. Below we illustrate why the column-
row sampling is suitable for accelerating SpMM in GNNs, from the approximation error perspective. Here we analyze
ÃJ (l) = SpMM(Ã,J (l)) for illustration convenience. For the backward pass of SpMM , the analysis is similar, except that
we are approximating∇J (l) = SpMM(Ã⊤,∇H(l+1)).

Column-row sampling approximates the matrix production by excluding some “unimportant” columns and rows in the
original matrix. So intuitively, the approximation error E[||ÃJ (l) − approx(ÃJ (l))||F ] is low if the “unimportant”
columns/rows are correlated in the selected one. Namely, Ã and J (l) are low-rank. Formally, we have the following
theorem:

Theorem A.1 ((Martinsson & Tropp, 2020)). Suppose we approximate ÃJ (l) using column-row sampling, and pi is
obtained by Equation (3). Then for any positive number ϵ, if the number of samples k satisfies k ≥ ϵ−2(srank(Ã) +
srank(J (l))) log(|V|+ d), we have E[||ÃJ (l) − approx(ÃJ (l))||F ] ≤ 2ϵ,

where srank in Theorem A.1 is called the stable rank, which is the continuous surrogate measure for the rank that is largely
unaffected by tiny singular values. Formally for any matrix Y , srank(Y ) =

||Y ||2F
||Y ||2 ≤ rank(Y ).

Fortunately, most real-world graphs are cluster-structured, which means the adjacency matrix Ã is low-rank (Qiu et al.,
2021; Savas & Dhillon, 2011). The low-rank property of real-world graphs is also wildly reported in previous work (Jin
et al., 2020; Qiu et al., 2021). Moreover, the intermediate activations J (l) and the activation gradients are also low-rank,
due to the aggregation. Namely, low-rank means “correlation” in the row/column space. The embedding (i.e., rows in the
activation matrix) of connected nodes tend to close due to the graph propagation, which resulting in the low-rank property of
the activation matrix. Thus for GNNs, the approximation error is low with a relatively small number of sample k. This
perspective is also experimentally verified in the experiment section.

A.2. Proof of Proposition 1

Proposition A.2 (Proof in Appendix A). If the approximation method is itself unbiased, and we only replace the SpMM in
the backward pass with its approximated version, while leaving the forward one unchanged, then the calculated gradient is
provably unbiased.

Here we note that in the main text, for the notation convenience, we ignore the backward pass of ReLU. However, the
proof here will consider the non-linear activation function to prove the unbiasedness. Let H(l+1)

pre = SpMM(Ã,J (l)) be the
pre-activation. The backward pass of ReLU is:

E[∇H(l+1)
pre ] = E[1

H
(l+1)
pre >0

⊙∇H(l+1)]

= 1
H

(l+1)
pre >0

⊙ E[∇H(l+1)], (5)

where ⊙ is the element-wise product and 1 is the indicator function. The element-wise product is linear operation and
1
H

(l+1)
pre >0

is only related to the pre-activation in the forward pass, we only apply the approximation during the backward

pass so 1
H

(l+1)
pre >0

can be extracted from the expectation. We know that for the last layer, we have E[∇H(L)] = H(L)

since we do not apply ReLU at the output layer. We then can prove by induction that E[∇H(l+1)] = H(l+1) and
E[∇J (l)] = E[approx(Ã⊤∇H(l+1)

pre )] = ∇J (l) for any layer l.

A.3. Analysis of MEAN aggregator

For GraphSAGE, one commonly used aggregator is the MEAN aggregator, which can be expressed as follows:

H(l+1) = W1H
(l) +W2SpMM MEAN(A,H(l)), (6)
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where SpMM MEAN is one variant of the vanilla SpMM , which replace the reducer function from sum(·) to mean(·). We
note that in popular GNN packages, the MEAN aggregator usually is implemented based on SpMM MEAN (Fey & Lenssen,
2019; Wang et al., 2019) to reduce the memory usage. Here we give an example of SpMM MEAN to illustrate how it works:

SpMM MEAN(

1 0
0 4
5 6

 ,

[
7 8
9 10

]
) =

[ 1
2
(1× 7 + 0× 9) 1

2
(1× 8 + 0× 10)

1
2
(0× 7 + 4× 9) 1

2
(0× 8 + 4× 10)

1
2
(5× 7 + 6× 9) 1

2
(5× 8 + 6× 10)

]
,

Equivalently, the SpMM MEAN can also be expressed as:

SpMM MEAN(A,H(l)) = D−1AH(l),

where D is the degree matrix of A. Thus, although we did not normalize the adjacency matrix in GraphSAGE, when applying
the top-k sampling to approximate SpMM MEAN, the column norm of A:,ji is actually 1√

Degji

due to the normalization.

Also, for GraphSAGE, the inputs to the first SpMM MEAN operation are A and X . They do not require gradient since they
are not trainable. Thus, the first SAGE layer is not presented in Figure 8 and Figure 7.

B. Pseudo code of the greedy algorithm

Algorithm 1 The greedy algorithm

Inputs: Gradients of node embeddings {∇H(1), · · · ∇H(L)}, adjacency matrix A, graph G = (V, E), hidden dimensions
{d1, · · · dL}.
Parameters: The step size α, the overall budget C.
Outputs: The layer-wise {k1, · · · kL} associated with the top-k sampling.
B ←

∑L
l=1 |E|dl.

∀i, kl ← |V|,Topkl
← {1, · · · |V|}.

while B ≥ C
∑L

l=1 |E|dl do

m← argminl∈{1,···L}(
∑

i∈Topkl

∥A⊤
:,i∥2∥∇H

(l+1)
i,: ∥2

∥A∥F ∥∇H(l+1)∥F
−
∑

i∈Topkl−α|V|

∥A⊤
:,i∥2∥∇H

(l+1)
i,: ∥2)

∥A∥F ∥∇H(l+1)∥F
/* Choose the layer m to

reduce by a step size α|V|, such that the increment of errors is minimal. */
B ← B − dm

∑
i∈Topkm

∩i/∈Topkm−α|V|
#nnzi /*Since we exclude some column-row pairs for layer m, here we

reduce the budget B accordingly. */
km ← km − α|V| /* Update km accordingly. */

Topkm
← the set of indices i associated with km largest

∥A⊤
:,i∥2∥∇H

(l+1)
i,: ∥2

∥A∥F ∥∇H(l+1)∥F
/* Update Topkm

accordingly. */
end while
Return {k1, · · · , kL}

In algorithm 1, here we provide the pseudo code of our greedy algorithm for solving the constrained optimization problem.
In Table 11, we show the run time of the greedy algorithm, which is negligible compared to the acceleration effect.

C. Extended Related works
Connections to Graph Data Augmentation Data augmentation (Liu et al., 2021; Han et al., 2022) is wildly adopted in the
graph learning for improving model generalization, including dropping nodes (Feng et al., 2020), dropping edges (Rong
et al., 2019), and graph mixup (Han et al., 2022). As shown in Figure 5, the top-k sampling drops the entire columns in
the adjacency matrix, while keeping the number of rows unchanged. That means RSC drops all of the out edges for a
set of nodes. This can be viewed as the “structural dropedge” for improving the efficiency. Since we only apply the top-k
sampling in the backward pass and top-k indices are different for each operation, RSC essentially forward pass with
the whole graph, backward pass with different subgraphs at each layer. This structural dropedge and heterogeneous
backward propagation introduce the regularization effect. Thus as shown in the experiment section, RSC may also improve
the model accuracy over the baseline.
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Subgraph-based GNN training. The key idea of this line of work is to improve the scalability of GNNs by separating the
graph into overlapped small batches, then training models with sampled subgraphs (Hamilton et al., 2017; Huang et al.,
2018; Zou et al., 2019; Chiang et al., 2019; Zeng et al., 2020). Based on this idea, various sampling techniques have been
proposed, including the node-wise sampling (Hamilton et al., 2017; Chen et al., 2017), layer-wise sampling (Huang et al.,
2018; Zou et al., 2019), and subgraph sampling (Chiang et al., 2019; Zeng et al., 2020). However, this approach reduces the
memory footprint but results in extra time cost to compute the overlapping nodes between batches. Generally, methods in
this category are orthogonal to RSC , and they can be combined.

Graph precomputation. The graph precomputation methods decouple the message passing from the model training, either
as a preprocessing step (Wu et al., 2019; Klicpera et al., 2018; Yu et al., 2020) or post-processing step (Huang et al., 2020b),
where the model is simplified as the Multi-Layer Perceptron (MLP). We did consider this line of work in this paper since the
backbone model is not GNN anymore.

Distributed GNN training. The distributed training leverages extra hardwares to increase the memory capacity and training
efficiency (Zha et al., 2023; 2022; Yuan et al., 2022; Wang et al., 2022; Wang et al.). However, the graph data cannot be
trivially divided into independent partitions due to the node connectivity. Thus, the graph distributed training frameworks
propose to split graph into related partitions and minimize the communication overhead (Wan et al., 2021; 2022b; Ramezani
et al., 2022). Our methods are orthogonal to this line of work.

Other randomized GNN training. Dropedge (Rong et al., 2019) randomly drops edges to avoid the over-smoothing
problem. Graph Random Neural Networks (Grand) (Feng et al., 2020) randomly drop nodes to generate data augmentation
for improving model generalization. Grand+ improves the scalability over Grand by pre-computing a general propagation
matrix and employ it to perform data augmentation (Feng et al., 2022). As shown in Section C, the key difference between
GRAND(+) and RSC is that RSC does not drop any node. Instead RSC drops all of the out edges for a set of nodes only
during backward pass. Moreover, the drop pattern are evolving during the training process. This can be viewed as the
“structural dropedge”. However, unlike Dropedge (Rong et al., 2019), RSC drop the column-row pairs according to the
euclidean norm instead of uniformly dropping.

D. Experimental Settings
D.1. Software and Hardware Descriptions

All experiments are conducted on a server with four NVIDIA 3090 GPUs, four AMD EPYC 7282 CPUs, and 252GB host
memory. We implement all models based on Pytorch and Pytorch Geometric. During our experiments, we found that the
version of Pytorch, Pytorch Sparse, and Pytorch Scatter can significantly impact the running speed of the baseline. Here we
list the details of our used packages in all experiments in Table 5.

Table 5: Package configurations of our experiments.

Package Version
CUDA 11.1

pytorch sparse 0.6.12
pytorch scatter 2.0.8

pytorch geometric 1.7.2
pytorch 1.9.0
OGB 1.3.2

D.2. Statistics of benchmark datasets

The statistics for all used datasets are shown in Table 6. We follow the standard data splits and all datasets are directly
downloaded from Pytorch Geometric or the protocol of OGB (Hu et al., 2020).

D.3. Hyperparameter Settings

Regarding Reddit and Yelp dataset, we follow the hyperparameter reported in the respective papers as closely as possible.
Regarding ogbn-proteins and ogbn-products dataset, we follow the hyperparameter configurations and codebases provided
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Table 6: Dataset Statistics.

Dataset Task Nodes Edges Classes Label Rates
Reddit multi-class 232,965 11,606,919 41 65.86%
Yelp multi-label 716,847 6,977,409 100 75.00%

ogbn-proteins binary-Class 132,534 39,561,252 2 65.00%
ogbn-products multi-class 2,449,029 61,859,076 47 8.03%

on the OGB (Hu et al., 2020) leader-board. Please refer to the OGB website for more details. The optimizer is Adam for
all these models. All methods terminate after a fixed number of epochs. We report the test accuracy associated with the
highest validation score. Table 10 summarize the hyperparameter configuration of GraphSAINT. Table 7, Table 8, and Table
9 summarize the hyperparameter configuration of full-Batch GCN, GraphSAGE, and GCNII, respectively.

Table 7: Configuration of Full-Batch GCN.

Dataset Training Archtecture
Learning

Rates Epochs Dropout BatchNorm Layers
Hidden

Dimension
Reddit 0.01 400 0.5 Yes 3 256
Yelp 0.01 500 0.1 Yes 3 512
ogbn-

proteins 0.01 1000 0.5 No 3 256

ogbn-
products 0.001 500 0.5 No 3 256

Table 8: Configuration of Full-Batch GraphSAGE.

Dataset Training Archtecture
Learning

Rates Epochs Dropout BatchNorm Layers
Hidden

Dimension
Reddit 0.01 400 0.5 Yes 3 256
Yelp 0.01 500 0.1 Yes 3 512
ogbn-

proteins 0.01 1000 0.5 No 3 256

ogbn-
products 0.001 500 0.5 No 3 256

Table 9: Configuration of Full-Batch GCNII.

Dataset Training Archtecture
Learning

Rates Epochs Dropout BatchNorm Layers
Hidden

Dimension
Reddit 0.01 400 0.5 Yes 4 256
Yelp 0.01 500 0.1 Yes 4 256
ogbn-

proteins 0.01 1000 0.5 No 4 256

E. More experiment results
The running time of the greedy algorithm is shown in 11. We also visualize the allocated kl for each layer across iterations
in Figure 7, and the degree of picked nodes in Figure 8. Here we use Reddit dataset for the case study. We observe that the
kl assigned by RSC evolves along with the training.
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Table 10: Training configuration of GraphSAINT.

Dataset
RandomWalk

Sampler Training Archtecture

Walk length Roots
Learning

Rates Epochs Dropout BatchNorm Layers
Hidden

Dimension
Reddit 4 8000 0.01 40 0.1 Yes 3 128
Yelp 2 8000 0.01 75 0.1 Yes 3 512
ogbn-

products 3 60000 0.01 20 0.5 No 3 256

Table 11: The running time (second) of the greedy algorithm.

Reddit Yelp
ogbn-

proteins
ogbn-

products
GCN 0.03 0.03 0.03 0.03

GraphSAGE 0.02 0.02 0.03 0.03
GCNII 0.05 0.05 0.06 -
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Figure 7: The allocated layer-wise kl for GCN, GraphSAGE and GCNII on Reddit, where budget C is set as 0.1. The input
of the SpMM in the first GraphSAGE layer does not require gradient and thus absent in the Figure (Appendix A.3).
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Figure 8: The averaged degrees of nodes picked by top-k sampling along the whole training process, where the applied
dataset is Reddit and overall budget C is set as 0.1.

E.1. Additional Ablation Results to the Resource Allocation Algorithm (Figure 6)

Due to the page limit, we present more ablation study on the resource allocation algorithm here. Specifically, in Figure 9,
we compare RSC to the uniform allocation on ogbn-proteins dataset with GCN, GraphSAGE, and GCNII, respectively. In
Figure 10, we compare RSC to the uniform allocation on Yelp dataset with GCN, GraphSAGE, and GCNII, respectively.
We conclude that RSC generally outperforms the uniform allocation strategy.

E.2. Hyperparameter Sensitivity Analysis

Here we analyze the impacts of the main hyperparameters of RSC : (1) the budget C, which controls the efficiency-accuracy
trade-off; (2) the step size α in the greedy Algorithm 1; (3) when switching back to the original sparse operations. In Figure
12, we vary only one of them with the others fixed. We conclude (1) larger budget C leads to better accuracy with smaller
speedup, since we are using more computational resources to approximate the full operation. (2) larger step size α leads
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Figure 9: The Pareto frontier of the accuracy-efficiency trade-off for RSC and the uniform allocation. The dataset is
ogbn-proteins. Here we disabled the caching and switch mechanism for a fair comparison.
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Figure 10: The Pareto frontier of the accuracy-efficiency trade-off for RSC and the uniform allocation. The dataset is Yelp.
Here we disabled the caching and switch mechanism for a fair comparison.

to marginally larger speedup since the greedy algorithm will terminate earlier. Also the step size α does not affect the
model accuracy a lot. In practice, we set α = 0.02|V|. (3) The later we switch back to the original operation, the larger
the accuracy drop and the smaller the speedup, it is equivalent to using less resources to approximate the full operation
epoch-wisely. Thus, we apply RSC for 80% of the total epochs to balance the trade-off.
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Figure 11: Learning curves for validation accuracy under different overall budget C on Reddit dataset. Here we disabled the
caching and switching mechanism for ablating the effect of C.
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Figure 12: Hyperparameter analysis w.r.t. the budget C, the step size α in Algorithm 1, and when switching back to the
original operations. The model is GraphSAGE and the applied dataset is ogbn-proteins.
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