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Abstract

We study the problem of histogram estimation
under user-level differential privacy, where the
goal is to preserve the privacy of all entries of
any single user. We consider the heterogeneous
scenario where the quantity of data can be differ-
ent for each user. In this scenario, the amount
of noise injected into the histogram to obtain dif-
ferential privacy is proportional to the maximum
user contribution, which can be amplified by few
outliers. One approach to circumvent this would
be to bound (or limit) the contribution of each user
to the histogram. However, if users are limited to
small contributions, a significant amount of data
will be discarded. In this work, we propose algo-
rithms to choose the best user contribution bound
for histogram estimation under both bounded and
unbounded domain settings. When the size of
the domain is bounded, we propose a user contri-
bution bounding strategy that almost achieves a
two-approximation with respect to the best contri-
bution bound in hindsight. For unbounded domain
histogram estimation, we propose an algorithm
that is logarithmic-approximation with respect to
the best contribution bound in hindsight. This
result holds without any distribution assumptions
on the data. Experiments on both real and syn-
thetic datasets verify our theoretical findings and
demonstrate the effectiveness of our algorithms.
We also show that clipping bias introduced by
bounding user contribution may be reduced under
mild distribution assumptions, which can be of
independent interest.
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1. Introduction
Differential privacy (DP) (Dwork et al., 2006) provides a
rigorous formulation of privacy and has been applied to
many algorithmic and learning tasks that involve the access
to private and sensitive information. Notable applications
include private data release (Hardt et al., 2012), learning
histograms (Dwork et al., 2006), statistical estimation (Di-
akonikolas et al., 2015; Kamath et al., 2019; Acharya et al.,
2021; Kamath et al., 2020; Acharya et al., 2019a;b), and
machine learning (Chaudhuri et al., 2011; Bassily et al.,
2014; McMahan et al., 2018b; Dwork et al., 2014; Abadi
et al., 2016).

In several applications, each user may contribute many data
samples to a dataset. For example, one may have multiple
health records in a hospital, or may type many words on
their phone’s virtual keyboard. Naturally, users would hope
that all of their private data is protected. To achieve this,
private algorithms should guarantee user-level differential
privacy.

However, many existing works assume that each user only
contributes one data sample. Thus, an algorithm designed
under this assumption can only be used to protect the privacy
of each data sample but not the user. In other words, such al-
gorithms achieve item-level privacy, but they cannot protect
privacy at the user level and may not meet the increasing
privacy concerns in most applications where users may con-
tribute a lot of data. Therefore, there has been a growing
interest in revisiting differential privacy in the user-level
setting.

User-level privacy is much more stringent than the item-
level counterpart. Under user-level privacy, the amount of
noise added is dependent on the sensitivity of the differen-
tial privacy mechanism, which is typically the maximum
number of items contributed by any single user. Hence,
even if a majority of users contribute little data and very few
outliers contribute a large amount of data, then the amount
of noise added will be significantly large. This begs an
important question: should we limit the user contribution
while providing differential privacy? This question was
initiated by Amin et al. (2019) in the context of empirical
risk minimization. They showed that not restricting user
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contribution results in a large amount of noise injection and
restricting user contribution to achieve low sensitivity, may
result in loss of a large amount of useful data and suffer from
bias. With this observation, they provided an algorithm that
determines near-optimal user contribution bound. In this
work, we study the problem of bounding user contribution
for general differentially private histogram estimation.

Histogram estimation is a fundamental problem that arises
in many real-world applications such as demographic data
and user preferences. For example, Chen et al. (2019) used
histogram estimation to compute unigram language models
via federated learning (McMahan et al., 2017; Kairouz et al.,
2019). Beyond machine learning, federated analytics uses
histogram estimation to support the Now Playing feature on
Google’s Pixel phones, a tool that shows users what song
is playing in the room around them (Ramage & Mazzocchi,
2020).

Histogram estimation can be broadly divided into two cate-
gories: estimation over bounded domains and unbounded
domains. In some examples such as estimating unigram
language models over finite known vocabulary, the size of
the domain is finite and can be counted. We refer to this
scenario as bounded domain histogram estimation. In some
examples such as finding all possible words used in English,
the size of the domain is the set of all strings and hence
unbounded or extremely large. We refer to this scenario as
unbounded histogram estimation.

There is abundant literature on histogram estimation in the
context of item-level privacy, such as (Hay et al., 2010;
Suresh, 2019; Xu et al., 2013). Little has been known,
however, under user-level privacy. Recently, (Liu et al.,
2020; Levy et al., 2021), studied the problem of histogram
estimation under user-level privacy when data from users
are generated from near-identical distributions. Since users’
data may come from diverse distributions in practice, we
cannot leverage techniques from these works. Motivated by
the need for algorithms that work well with heterogenous
user data, we ask the following question:

Can we design private algorithms to find a (nearly) optimal
bound of user contributions for histogram estimation?

Somewhat surprisingly, despite many recent works in the
area, the above question has not been extensively studied.
We take a step towards answering the above question by
designing algorithms that perform well in the heterogeneous
setting where both the number of samples and data distribu-
tion can be unknown and different across users (hence both
need to be viewed as private information).

Our contributions are as follows. We first study the prob-
lem of bounded domain histogram estimation, where the
domain size is finite and can be enumerated efficiently. In
this setting, we propose private user contribution bounding

algorithms that obtain a factor two approximation compared
to the best contribution bound in hindsight. We then study
the problem of unbounded domain histogram estimation,
where the domain size is very large and cannot be enumer-
ated efficiently. In this setting, we propose a private user
contribution bounding algorithm that achieves a logarithmic
approximation compared to the best algorithm in hindsight1.
Finally, we investigate if the bias introduced by these user
contribution bounding algorithms can be reduced by post-
processing techniques and show that under mild non i.i.d.
distribution assumptions, the amount of bias can be reduced
by simple post processing techniques. We also provide a
complete proof of the gap between the debiased and the
non-debiased algorithms. We evaluate these algorithms on
standard federated datasets and demonstrate the practicality
of the algorithms.

The paper is organized as follows. In Section 2, we discuss
related work. In Section 3, we introduce the definition
and problem formulation. In Section 4 we introduce our
algorithms for the bounded domain setting with no i.i.d.
assumptions. In Section 5 we describe our algorithms for
unbounded domain histogram estimation. In Section 6 we
briefly introduce our debiasing algorithm and its guarantees.
In Section 7 we show the experiment results. In Section 8,
we conclude with a discussion about how to extend our
methods to federated settings.

2. Related work
Given its importance, user-level privacy has been studied by
several works in the last decade. One of the primary motiva-
tions for user-level privacy is federated learning, where the
goal is to learn a model at the server while keeping the raw
data on edge devices such as cell phones (McMahan et al.,
2017; Kairouz et al., 2019). Ensuring privacy at the user
level is a crucial concern in federated learning. Even though
users do not send their original data, various works (Phong
et al., 2017; Wang et al., 2019) have shown it is still possible
to reconstruct user’s data if additional privacy-preserving
mechanisms are not used. Therefore, user-level privacy has
been studied under various machine learning tasks in the
federated learning setup (McMahan et al., 2018b;a; Augen-
stein et al., 2019). Indeed, understanding the fundamental
privacy-utility trade-offs under user-level privacy is one of
the main challenges in federated learning (Kairouz et al.,
2019, Section 4.3.2).

Several works studied fundamental theoretical problems in
user-level private learning. Ghazi et al. (2021) studied PAC
learnability under user-level privacy. Levy et al. (2021) stud-

1We emphasize that our near-optimality results are relative to a
specific family of DP algorithms, i.e. those that follow the clipping
and additive noise recipe. We do not claim optimality over all
possible DP mechanisms.
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ied high-dimensional distribution estimation and optimiza-
tion and designed efficient algorithms. Both works require
i.i.d. data and assume a fixed number of samples across
users. There are several recent works closely related to
user-level private histogram estimation. Amin et al. (2019)
studied the inherent bias and variance trade-off in bounding
user contributions under user-level privacy for empirical risk
minimization. Their analysis applies to estimating the total
count of one symbol in the aggregate histogram. We extend
their work to the setting of d > 1 symbols.

Liu et al. (2020) and Levy et al. (2021) studied a closely
related problem of discrete distribution estimation and de-
signed optimal algorithms in terms of user complexity (the
minimum number of users required to learn an unknown
distribution with given accuracy) up to logarithmic factors.
However, their analysis assumes that all users’ data are
drawn from nearly identical distributions. Furthermore, the
algorithms algorithms in Liu et al. (2020) may be imprac-
tical due to time inefficiency and large constants in user
complexity.

Narayanan et al. (2022) studied robust high dimensional
mean estimation under user-level privacy, assuming i.i.d.
and fixed number of samples across users. While their algo-
rithm is robust to at most 49% of the samples being arbitrar-
ily adversarial, their result still requires that the remaining
samples are independent and identically distributed. Cum-
mings et al. (2022) studied mean estimation of Bernoulli
random variables, allowing different distributions and num-
ber of samples for different users. Their setup can be viewed
as a special case of histogram estimation when the domain
size is 2. However, no theoretical guarantee is provided
when the domain size is larger than 2. Wilson et al. (2020)
proposed differentially private SQL with bounded user con-
tributions.

Huang et al. (2021) provides an instance optimal algorithm
for bounded-domain histogram estimation. However, it
is unclear how their algorithm extends to the case of un-
bounded domains. In addition, we prove optimality against
the best contribution bound in hindsight for any fixed dataset,
which is orthognonal to their formulation of neighborhood
instance optimality. We discuss the differences and contri-
butions compared to their work in more detail in subsequent
sections.

3. Problem formulation
Differential privacy (DP) is studied in the central and local
settings (Dwork et al., 2006; Kasiviswanathan et al., 2011;
Duchi et al., 2013). In this paper, we study the problem
under the lens of central differential privacy, where the
goal is ensure the algorithm’s outcomes do not reveal too
much information about any user’s data. We now define

differential privacy, starting with the basic definition of
neighboring datasets. Here, we assume the number of users
is known and fixed and hence we use the replacement notion
of neighboring datasets.

Definition 3.1. Let D = {X1, . . . , Xn} respresent a dataset
of n users. Each Xi consists of mi samples {Xi,j}mi

j=1. Let
D′ = {X ′

i}ni=1 be another dataset. We say D and D′ are
neighboring (or adjacent) datasets if for some j ∈ [n],

Xi = X ′
i, for all i ̸= j.

Definition 3.2 (Differential privacy). A randomized mecha-
nism M with range R satisfies (ε, δ)-differential privacy if
for any two adjacent datasets D,D′ and for any subset of
output S ⊆ R, it holds that

Pr[M(D) ∈ S] ≤ eεPr[M(D′) ∈ S] + δ.

If δ = 0, then the privacy is also referred to as pure DP, and
for simplicity we say that the algorithm satisfies ε-DP. If
δ > 0, we refer to it as approximate DP.

We consider the following problem. There are n users and
user i has a histogram Ni = (Ni,1, . . . , Ni,d) ∈ Zd

≥0 over a
discrete domain of size d ∈ N. Without loss of generality,
we can assume the domain to be [d] := {1, . . . , d}. Let
mi = ∥Ni∥1 be the size of histogram Ni. The dataset
D is the collection of users’ histograms. The goal is to
estimate the population-level histogram, i.e., the sum of the
histograms

N(D) =

n∑
i=1

Ni.

We make no assumptions about the distribution and size of
each user’s histogram. Given an (ε, δ)-differentially private
algorithm whose output histogram is N̂ , we characterize
its performance by the expected ℓ1 distance between the
algorithm output and the true population-level histogram

E∥N − N̂∥1 =

d∑
j=1

E|N j − N̂j |,

where the expectation is over the randomization in the dif-
ferential privacy algorithm.

4. Optimal user contribution for histograms
over bounded domains

We first consider the problem of estimating the population-
level histogram when the size of the domain d is small
enough to be enumerated. Let ∥ · ∥q denote the ℓq norm.
For a vector x ∈ Rd and C ∈ R+, define the ℓq clipping
function,

clipq(x,C) =
C · x

max(C, ∥x∥q)
.
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A standard strategy is to clip each user contribution either in
ℓ1 (when δ = 0) or ℓ2 norm (when δ > 0) and add a suitable
amount of Laplace or Gaussian noise respectively (Dwork
et al., 2006; Balle & Wang, 2018). For completeness, the
details are shown in Algorithm 1. In the rest of the paper,
we use the term clipping and bounding user contribution in-
terchangeably. When δ > 0, choosing an appropriate noise
level σ = σ(ε, δ) guarantees (ε, δ)-differential privacy.

Algorithm 1 Bounded domain histogram estimation
1: Input: histograms N1, . . . , Nn, clip threshold C, pri-

vacy parameter ε, δ, noise level σ = σ(ε, δ).
2: Clipping: for each user i, do

Ñ1
i = clip1(Ni, C) and Ñ2

i = clip2(Ni, C)

3: If δ = 0, return N̂L =
∑n

i=1 Ñ
1
i + Lap(C/ε).

4: If δ > 0, return N̂G =
∑n

i=1 Ñ
2
i + N(0, C2σ2I).

Lemma 4.1. [(Dwork et al., 2006; Balle & Wang, 2018)]
When δ = 0, Algorithm 1 guarantees ε-DP. When δ > 0.
When ε ≤ 1, choosing σ2 = 2 log(1.32/δ)/ε2 guaran-
tees (ε, δ)-DP for Algorithm 1. When ε > 1, choosing
σ = α/

√
2ε where α is defined in Balle & Wang (2018,

Algorithm 1) guarantees (ε, δ)-DP.

For δ > 0, it is noted that the expression for ε > 1 is much
more complicated that ε ≤ 1, thus for simplicity we mainly
focus on ε ≤ 1.

4.1. Selecting the optimal threshold non-privately

There is a bias-variance trade-off in choosing the clipping
threshold C. If C is small, then the noise magnitude (or vari-
ance) is small, but the clipped histogram would have large
error (or bias). On the other hand, if C is large, the clipped
histogram would be more accurate (less bias), but the added
noise would be large (high variance). For any dataset D, we
provide an accurate characterization of the best threshold
that balances the bias and variance for both the Laplace and
Gaussian estimator. For the Laplace estimator, the proof is
similar to that of Amin et al. (2019) and is omitted.

Lemma 4.2. Let LL(C,D) = E[∥N̂L − N(D)∥1]. For
any dataset D, choosing C∗ as the top ⌈d/ε⌉ element in
{mi}ni=1 yields 2-approximation

LL(C
∗, D) ≤ 2 inf

C≥0
LL(C,D),

where the expectation is over the Laplace mechanism.

We now state the result for the Gaussian mechanism in
Theorem 4.3. The complete proof is in Appendix A.1.

Theorem 4.3. Let LG(C,D) = E[∥N̂G − N(D)∥1]. Let

ε ≤ 1 and M = dσ
√

2
π . For any dataset D, choosing C∗

such that

C∗ = argmin
C≥0

 ∑
i:∥Ni∥2>C

∥Ni∥1
∥Ni∥2

≤ M


yields 2-approximation,

LG(C
∗, D) ≤ 2 inf

C≥0
LG(C,D).

4.2. Choosing the optimal threshold privately

We now discuss how to find C∗ privately using an addi-
tional privacy budget of (ε′, δ′), and further provide com-
plete guarantees in terms of excess error compared to
2 infC≥0 LG(C,D). We emphasize that it only requires
a very small extra privacy budget compared to the original
(ε, δ) to achieve good performance, as we will later show in
the experiments. For δ = 0, one can levarage many existing
algorithms to privately find the d/ε quantile in Lemma 4.2
(Dick et al., 2023, Theorem 2). Thus we mainly focus on
the δ > 0 case.

Note that computing the optimal C in a differentially pri-
vate way is possible though difficult because the sensitivity
of
∑

i:∥Ni∥2>C
∥Ni∥1

∥Ni∥2
can be very large for some datasets.

However, observe that by Cauchy-Schwarz inequality,

∥Ni∥1/∥Ni∥2 ≤
√

∥Ni∥0.

Hence, if each user’s histogram has very few non-zero en-
tries, then the sensitivity would be low.

We observe this to be the case in practice. To illustrate, we
plot the unique number of symbols contributed by each user
in Sentiment140 (Go et al., 2009) and SNAP datasets in
Figure 1. Observe that even though d is large, most users
have fewer than 200 samples. Hence, we assume that each
user’s histogram is at most s sparse. Under this assumption,
the sensitivity is upper bounded by

√
s. Note that we can

simply set s = d if the bound is not known.

We first note that C∗ can be written as a minimizer to a
convex function,

G(C) =

n∑
i=1

fi(C) + CM,

where fi(C) = max
{
1− C

∥Ni∥2
, 0
}
∥Ni∥1. Hence we

can use techniques from differentially private convex opti-
mization algorithms. We consider two such algorithms and
provide their corresponding guarantees.

Estimating C∗ with DP-SGD. We first consider the DP-
SGD algorithm (Bassily et al., 2014, Algorithm 1) to esti-
mate C by minimizing G(C). Using Bassily et al. (2014,
Theorem 2.4), we have the following guarantee.
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Figure 1. Number of distinct words in each client. The x-axis is
the rank of clients ordered from the highest count of distinct words
to the lowest.

Corollary 4.4. Let Cm be an upper bound on C∗ and let
CDPSGD be the output of Bassily et al. (2014, Algorithm
1). Assume that n ≥ d. Then, E[LG(CDPSGD, D)] −
2 infC≥0 LG(C,D) is upper bounded by

O

Cm

(√
s+

√
log(1/δ)

ε

)
ε′

log3/2(n/δ′)
√

log(1/δ′)

 .

Proof. The proof directly follows by noting that G(C) =∑n
i=1(fi(C) + MC

n ). Hence the Lipschitz constant for
fi(C) + MC/n w.r.t. C is L =

√
s + M/n =

√
s +

O

(√
log(1/δ)

ε

)
. Since Cm ≥ C∗, setting the domain di-

ameter ∥C∥2 = Cm in Bassily et al. (2014, Theorem 2.4)
completes the proof.

Estimating C∗ with output perturbation. We consider
the second algorithm based on output perturbation (Chaud-
huri et al., 2011), which ensures (ε′, 0)-DP and is good
for small n and ε′. Here, we solve a regularized convex
optimization problem and perturb the output to provide dif-
ferential privacy. The algorithm is outlined in Algorithm 2.

Algorithm 2 Clipping threshold estimation with output per-
turbation

1: Input: histograms N1, . . . , Nn, an upper bound of C∗

denoted by Cm, sparsity parameter s, privacy parameter
ε′.

2: Let λ = 2
√
2s

Cm
√
nε

and ∆ = 4
√
s

λn Compute C ′, the mini-

mizer of F (C) = 1
nG(C) + λ

2C
2.

3: Return Coutput = C ′ + Lap(∆/ε′).

With appropriate parameters, the combined algorithm al-
most achieves a 2-approximation with respect to the best
clipping threshold.

Corollary 4.5. Algorithm 2 is (ε′, 0) differentially private.
If Cm is an upper bound on C∗, setting λ = 2

√
2s

Cm

√
nε′

yields
an error

E[LG(Coutput, D)] ≤ 2 inf
C≥0

LG(C,D) + 2
√
2Cm

√
ns

ε′
.

Comparing DP-SGD and Algorithm 2, we can see that
DP-SGD has a better asymptotic dependence on n, and
Algorithm 2 has a better dependence on ε′. Furthermore,
DP-SGD provides an approximate DP guarantee and Al-
gorithm 2 gives a pure DP guarantee. Finally, the time
complexity of DP-SGD is typically O(n2), however it has
been improved recently to O(n) with similar guarantees
(Feldman et al., 2020).

Remark on the sparsity s. We emphasize that Lemma 4.2
and Theorem 4.3 are general results that do not require
bounded ℓ0 norms of histograms. Moreover, the conver-
gence results in Corollary 4.4 and 4.5 follow directly by
replacing with s with d if the ℓ0 bound is not satisfied.
Hence as long as n is sufficiently larger than d, the ex-
cess error is still small. Empirically, we show that even
setting s = d yields a performance close to the true 2-
approximation threshold, and is much better than choosing
the threshold according to (Amin et al., 2019). See Ap-
pendix D.2 for details.

Comparison with Huang et al. (2021) (Huang et al.,
2021) proposed a clipping-based algorithm to very similar
to ours to minimize ℓ2 estimation error. Their algorithm
first applies ℓ2 clipping and then adds suitable amount of
Gaussian noise. They further proved instance optimality
over a neighborhood of D. However there are several key
differences.

Huang et al. (2021) proved instance optimality against all
differentially private algorithms over some neighborhood of
D, while our results indicate the optimality of all clipping
algorithms for any fixed dataset. Therefore, the results in
Huang et al. (2021) and our work are orthogonal to each
other (in that neither result implies the other) and take dif-
ferent perspectives on the same problem.

The technical difference is that they focused on minimiz-
ing the ℓ2 norm instead of the ℓ1 norm. As a result, their
threshold is a quantile of the ℓ2 norms of all users’ his-
tograms, which is very different from the optimal threshold
in Theorem 4.3. Not surprisingly, as we will demonstrate in
Section 7, their algorithm does not perform well when the
error metric is ℓ1.
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Algorithm 3 Unbounded domain histogram estimation
1: Input: privacy parameters ε, δ, histograms N1, . . . , Nn,

threshold C.
2: N =

∑n
i=1 Ni.

3: t = C + C
ε log C

2δ .
4: For each user i, hi = rand-clip(Ni, C).
5: Ñ =

∑n
i=1 hi + Z where Z = [Zj1Nj>0]

d
j=1 and

Zj ∼ Lap(C/ε).
6: Return N̂ where for each item j ∈ [d] such that N j >

0,
N̂j = Ñj1Ñj>t.

5. Optimal contribution for histograms over
unbounded domains

In the unbounded domain setting, the domain size can be
prohibitively large or even infinite, so it is not practical
to add noise to all items in the domain. We describe an
algorithm for unbounded domain histogram estimation in
Algorithm 3 based on the sparse vector technique (Dwork
et al., 2009). Even though d is very large, the run time of
the algorithm depends only on the number of items with
non-zero counts. However, in this approach, the privacy
guarantee not only depends on the ℓ1 norm of the user
contribution but also on the ℓ∞ and ℓ0 norms.

While the standard ℓ1 clipping defined in the previous sec-
tion reduces the ℓ1 norm, it does not reduce the ℓ0 norm
of the histogram. Hence, we use the following randomized
clipping strategy: for a histogram N and integer C > 0,
let rand-clip(N,C) be the histogram obtained by sampling
min{∥N∥1, C} items without replacement. Since all his-
tograms are integer-valued, the ℓ∞ norm of the clipped
histogram is upper bounded by the ℓ1 norm.

In this technique, each user first uses rand-clip to clip their
histogram to ensure ℓ1 and ℓ∞ norm to be less than C. Then
an appropriate amount of Laplace noise is added to each
non-zero count. Finally, we delete all items with counts less
than a threshold t and output the histogram of the remaining
symbols and their noisy counts. The privacy guarantee is
stated in Lemma 5.1.
Lemma 5.1. Algorithm 3 is (ε, δ)-diffentially private.

Proof. Note that by random clipping, each ∥h̄i∥r ≤ C for
r = 0, 1, 2,∞. By the guarantee of the Laplace mechanism,
Ñ is (ε, 0)-DP. Recall that the CDF of Z is given by Φ(x) =
1− 1

2e
−εx/C for x > 0. Thus,

Φ

(
C

ε
log

C

2δ

)
= 1− δ

C
≥ (1− δ)1/C .

The final inequality is due to Bernoulli’s inequality (1 +
x)r ≤ 1 + rx for x ≥ −1 and r ∈ [0, 1]. Instantiating

Google (2020, Theorem 1) proves the differential privacy
guarantees.

Assume that Cm is an upper bound on ∥Ni∥1, i ∈ [n] which
could potentially be very large. Then, we only need to focus
on C ≤ Cm (we are minimizing the error with respect to C,
and it is common to assume some bound on optimization
variables). In the next theorem we provide a tight char-
acterization of the expected ℓ1 error of Algorithm 3 up to
logarithmic factors.

Theorem 5.2. Assume that 1 ≤ C ≤ Cm ≤ eε/(3δ), δ ≤
1/8, where Cm is the maximum contribution of any user
before clipping.

1

2

n∑
i=1

max {∥Ni∥1 − C, 0}

+
1

12 log Cm

2δ

∑
j:Nj>0

E[min(h̄j , t)] ≤ E[∥N̂ −N∥1] ≤

2

n∑
i=1

max {∥Ni∥1 − C, 0}+
∑

j:Nj>0

E[min(h̄j , t)]. (1)

Details of the proof is in Appendix B. We argue that the
assumption on C, ε, and δ is very mild. δ is set as O(1/n)
and ε is chosen to be a constant near 1 (say 0.5 to 5), which
implies that the upper bound on C is exponential in n.

If C∗ minimizes the upper bound in Theorem 5.2, then
C∗ yields a logarithmic approximation. However, the
upper bound in (1) depends on C directly via the∑n

i=1 max {∥Ni∥1 − C, 0} and indirectly via randomly
clipped histogram h̄j and the threshold t. Furthermore,
the expression is non-convex in C, thus convex optimiza-
tion approaches may not yield provable guarantees. Hence,
to privately estimate C∗, one can obtain the function values
for all integers 0 < C ≤ Cm and apply the exponential
mechanism with an additional small privacy budget ε′.

Corollary 5.3. Let LO(C,D) be the expected ℓ1 error of
Algorithm 3 on dataset D given threshold C. Let Ĉ be the
output of the exponential mechanism with additional privacy
budget ε′. Then, LO(Ĉ,D) is upper bounded by

12 log
Cm

2δ
inf
C≥1

LO(C,D) +
6Cm logCm

ε′
.

Proof. Let Copt be the threshold that minimizes the ℓ1 error.
Write the lower and upper bounds in Theorem 5.2 as L(C)
and U(C) respectively. Using the fact that C∗ minimizes
(1) and applying Theorem 5.2,

U(C∗) ≤ 12 log
Cm

2δ
L(C∗) ≤ 12 log

Cm

2δ
L(Copt)

≤ 12 log
Cm

2δ
LO(Copt, D).
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Note that changing the data of one user changes (1) by at
most 3Cm. By the utility of the exponential mechanism,

LO(Ĉ,D) ≤ U(Ĉ) ≤ U(C∗) +
6Cm logCm

ε′

≤ 12 log
Cm

2δ
LO(Copt, D) +

6Cm logCm

ε′
.

In practice, the expectation in (1) can be hard to compute.
By Jensen’s inequality,

E[min(h̄j , t)] ≤ min(E[h̄j ], t).

Hence, we propose to replace the former with min(E[h̄j ], t).
Observe that

E[h̄j ] = E

[
n∑

i=1

hi,j

]
=

n∑
i=1

E[hi,j ] =

n∑
i=1

CNij

max(C, ∥N∥1)
.

Hence,

V (C) = 2

n∑
i=1

max {∥Ni∥1 − C, 0}

+
∑

j:Nj>0

min

(∑
i

CNij

max(C, ∥N∥1)
, C +

C

ϵ
log

C

2δ

)
.

Searching over all possible (integer) values of C can also be
inefficient. We can instead search over a subset C ⊆ [Cm].
We describe the procedure to privately find the best threshold
C in Algorithm 4.

Algorithm 4 Private threshold selection for histograms over
unbounded domain

1: Input: privacy parameters ε, δ for Algorithm 3, privacy
parameters ε′, δ′ for estimating the optimal threshold,
user histograms N1, . . . , Nn, Cm.

2: Select a subset C of {1, . . . , Cm}.
3: For each C ∈ C, compute V (C)
4: Return Ĉ, the output of the exponential algorithm

with privacy parameter ε′ and sensitivity 5Cm/2 over
{V (C) : C ∈ C}.

In Section 7, we empirically demonstrate that Algorithm 4
can also achieve an error very close to the true optimal
threshold.

6. Bias reduction
We prove that the bias from clipping can be significantly re-
duced when Ni’s satisfy some mild distribution assumptions
and show that the debiasing method provides improvements

even on real datasets where these assumptions may not nec-
essarily hold. Consider the special case of d = 1, which we
refer to as count estimation. Let D be a family of distribu-
tions over Z≥0. For each user i, Ni is drawn independently
from some distribution in D with mean λi > 0. λi’s can be
arbitrary and do not need to be equal.

In addition to the absolute error of counts |N̂ −N |, we also
want to characterize the accuracy for estimating the mean
λ̄ = 1

n

∑n
i=1 λi. Let λ̂ = N̂/n be an estimate of λ̄. We are

interested in the expected square error

E[(λ̄− λ̂)2],

where the expectation is over the randomness of the algo-
rithm and the dataset.

In this work we set D to be the family of Poisson distribu-
tions since they arise in many applications. For example,
they can be used to model the occurrences of a memoryless
event in a fixed time window. Also, they are good approx-
imations of the binomial distribution Bin(m, p) when mp
is a constant (Le Cam, 1960), and can be very useful when
estimating the count of one element in a histogram over a
very large domain (e.g. the count of a particular word).

It is easy to see that clipping inevitably induces bias. In
many practical situations, it is often reasonable to make mild
distribution assumptions on user data. In this section, we ask
if the clipping bias can be reduced with such assumptions.
We answer affirmatively for bounded domain with d = 1
under non-i.i.d. Poisson assumptions on each user’s count.

Our algorithm is shown in Algorithm 5. It essentially adds
a post-processing procedure on the output of Algorithm 1 to
reduce the clipping bias. Since this is a post-processing step,
it does not affect the privacy guarantees. We show a detailed
analysis of the performance of Algorithm 5 and discuss two
possible extensions to high dimensions in the appendix.

Algorithm 5 Debiasing algorithm for Poisson distribution
1: Input: N1, . . . , Nn, C ∈ N.
2: h(λ) = EX∼Poi(λ)[clip(X,C)]
3: Yi = clip(Ni, C)

4: Return N̂ = g (
∑n

i=1 Yi + Lap(C/ε)), where g(y) =
nh−1(y/n)

7. Experiments
We run experiments on two real-world datasets: Senti-
ment140 (Go et al., 2009), a twitter dataset that contains
user tweets, and SNAP (Cho et al., 2011), a social network
dataset that contains the location information of check-ins
by users. For Sentiment140, we parse each user’s tweets
to words, and treat each word as an element. For SNAP,
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Figure 2. Histogram estimation over bounded domains. Left: Sentiment140 Right: SNAP.

Table 1. Relative loss of the best threshold and Algorithm 4 for unbounded domains.
Dataset Support size d (unknown) Best C Private C∗ Median 90% quantile

i.i.d. 50 0.001 0.0015 0.0397 0.0049
i.i.d. 100 0.0026 0.0026 0.0394 0.0053
i.i.d. 200 0.0048 0.0048 0.0397 0.0068

non-i.i.d. 50 0.0094 0.0124 0.6957 0.1645
non-i.i.d. 100 0.0175 0.0224 0.6957 0.1685
non-i.i.d. 200 0.0461 0.0462 0.7016 0.1713
Sent. 140 100 0.0076 0.0285 0.6027 0.2742
Sent. 140 1000 0.1250 0.1483 0.5912 0.2699

each element is a location, and each user has check-ins to
multiple locations in the dataset.

Since running on all elements (an order of 106) is costly and
and the error is ususally prohibitively large, we choose the
top d elements in the datasets and only run experiments on
those. We measure the relative loss of N̂ ,∑d

j=1 |N j − N̂j |
∥N∥1

. (2)

7.1. Bounded domain

In all experiments, the privacy budget for estimating C is
ε = 0.1, δ = 1/2n, and the budget for Algorithm 1 is
ε = 1, δ = 1/2n. For DP-SGD with sparsity assumptions,
we set s = 0.1d2 and clip each ∥Ni∥1/∥Ni∥2 to

√
s when

estimating C∗. This introduces bias when the assumption is
not satisfied for some users. However if the percentage of
such users is small, this effect can be negligible.

We evaluate different algorithms for estimating the clipping
threshold C for the Gaussian mechanism given in Algo-
rithm 1. We compare the performance of the following
methods: (i) C∗: The non-private clipping threshold given
in Theorem 4.3. (ii) DP-M -quantile: inspired by the 2-

2The choice s = 0.1d is arbitrary (i.e. not a function of the
underlying datasets) and has not been tuned.

approximation quantile in (Amin et al., 2019), we set C
to be the M th largest value of ∥Ni∥2, where M is given
in Theorem 4.3. We estimate it by gradient descent with
differential privacy, e.g. Andrew et al. (2021, Section 2).
This corresponds to a slightly different private version of
the clipped-mean estimator in Huang et al. (2021, Section
3). (iii) CDPSGD: estimation of C∗ with DPSGD algorithm
(Corollary 4.4). and (iv) Coutput: estimation of C∗ with
output pertubation (Algorithm 2).

In Figure 2, we show the comparison of these threshold esti-
mation algorithms with different choices of d in [100, 5000].
The results with both datasets are similar, but SNAP has
much higher errors, possibly because of the location infor-
mation in SNAP is more non-i.i.d compared to the words
in Sentiment140. Setting C to DP-M -quantile accord-
ing to (Amin et al., 2019) and (Huang et al., 2021) does
not have any theoretical support, and the errors are rela-
tively high. For Algorithm 2, we run experiments with
Cm = DP-M -quantile and Cm = 150 (see Appendix D).
Of all the algorithms, CDPSGD has similar performance to
the true C∗ without differential privacy.

7.2. Unbounded domain

In this section, we run experiments for Algorithm 3 with
threshold C chosen by Algorithm 4. We tested on both

8
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Figure 3. Error plots for different datasets for unbounded domains. Top: synthetic non-i.i.d data with d = 50 (unknown). Bottom:
Sentiment 140 with d = 1000 (unknown). Left column: comparison of true error and predicted error upper bound. Right column: the
orange/blue ratio in the left plots.

real and synthetic datasets. We set ε = 1, ε′ = 0.1 and
δ = 1/(2n) where n is the number of users in the respective
datasets. We compared our algorithms to two non-private
baselines where C is the median and the 90% quantile of
the ℓ1 norms. In this section d should be interpreted as the
actual support size of the aggregate histogram that is not
known beforehand. Our algorithm does not require prior
knowledge of d.

For Sentiment 140 we choose d = 100 and 1000 words and
treat those as the support of the histograms. We generated
synthetic datasets with n = 5 × 105 users with both i.i.d.
and non-i.i.d. data over support sizes d = 50, 100, or 200.
Let p be a discrete distribution over [d] with probability
mass proportional to 1/(j + 50) for j ∈ [d]. In the i.i.d.
setting, each user draws Poi(100) samples from p. In the
non-i.i.d. setting, let λ1, . . . , λi ∼ 100Dir(2), user i draws
Poi(λi) samples from pi ∼ Dir(p/2).

We search for the best C over [10, 20, . . . , 1500]. Figure 3
compares the average error of Algorithm 3 over 3 indepen-
dent runs (blue) and the error upper bound in Algorithm 4
(orange) on the non-i.i.d. synthetic dataset with d = 50. We
can see that (1) indeed upper bounds the expected error, and
their ratio is within O(log(Cm/2δ)).

Table 1 compares the performance of the best C (obtained
non-privately) and the private estimate obtained by Algo-
rithm 4. The performance is measured by relative loss

defined by (2). We can see that for all datasets, the private
estimate is close to the performance achieved by the best
threshold, and significantly outperforms the non-privately
chosen median and 90% quantiles. This further suggests
the need to threshold according to the dataset instead of
choosing a fixed threshold or quantile. Furthermore, fo-
cusing on the results for Sentiment 140 with d = 1000
(i.e. the bottom row of Figure 3 and Table 1), we observe
that our algorithm yields good performance even when Cm

significantly overshoots the true optimal threshold, which
demonstrates robustness against the choice of Cm.

8. Conclusion
We studied histogram estimation under user-level differen-
tial privacy in the heterogeneous scenario for bounded and
unbounded domains. We proposed algorithms to choose the
best user contribution bound that achieve 2-approximation
and logarithmic approximation for bounded and unbounded
domains respectively. We also showed that clipping bias
introduced by bounding user contribution may be reduced
under distribution assumptions. Finally, we empirically
demonstrated the practicality of the proposed methods.
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A. Detailed proof for bounded domain algorithms
A.1. Proof of Theorem 4.3

Proof. Recall that σ is a function of ε, δ and M = dσ
√

2
π . We can upper bound the error as follows.

E[∥N̂ −N∥1] = E

[∥∥∥∥∥
n∑

i=1

clip2(Ni, C) +N (0, IC2σ2)−
n∑

i=1

Ni

∥∥∥∥∥
1

]

≤ E

[∥∥∥∥∥∑
i

clip2(Ni, C)−
n∑

i=1

Ni

∥∥∥∥∥
1

]
+ E[∥N (0, IC2σ2)∥1]

=
∑

i:||Ni||2>C

(
1− C

||Ni||2

)
||Ni||1 + C ·M

=

n∑
i=1

max

{
1− C

||Ni||2
, 0

}
||Ni||1 + C ·M = G(C). (3)

Equation 3 is convex with respect to C. To optimize the upper bound on the error, we will take the sub-derivative with
respect to C and set it to zero. This gives us the following equation∑

i:||Ni||2>C

||Ni||1
||Ni||2

= M. (4)

Roughly we want to choose C that satisfies the above equality. The precise value of C∗ is

C∗ = argmin
C≥0

 ∑
i:∥Ni∥2>C

∥Ni∥1
∥Ni∥2

≤ M


C∗ minimizes the right hand side of (3), and it also makes the expected ℓ1 loss at most twice the loss of the optimal loss
with this algorithm. Formally, suppose Q is the ℓ2-norm that minimizes E[∥N̂ −N∥1]. Let Z = [Z1, . . . , Zd] ∼ N (0, Iσ2)
and clip2(Ni, Q)j be the j the coordinate of clip2(Ni, Q), then:

E

[∥∥∥∥∥∑
i

clip2(Ni, Q) + Z −
∑
i

Ni

∥∥∥∥∥
1

]
=

d∑
j=1

E [|clip2(Ni, Q)j −Ni,j + Zj |]

=

d∑
j=1

E

[∣∣∣∣∣∑
i

clip2(Ni, Q)j + Zj −
∑
i

Ni,j

∣∣∣∣∣
∣∣∣∣Zj < 0

]
· Pr(Zj < 0)

+

d∑
j=1

E

[∣∣∣∣∣∑
i

clip2(Ni, Q)j + Zj −
∑
i

Ni,j

∣∣∣∣∣
∣∣∣∣Zj ≥ 0

]
· Pr(Zj ≥ 0)

≥
d∑

j=1

E

[∣∣∣∣∣∑
i

clip2(Ni, Q)j + Zj −
∑
i

Ni,j

∣∣∣∣∣
∣∣∣∣Zj < 0

]
· Pr(Zj < 0)

=
1

2

d∑
j=1

E

[∣∣∣∣∣∑
i

clip2(Ni, Q)j + Zj −
∑
i

Ni,j

∣∣∣∣∣
∣∣∣∣Zj < 0

]

=
1

2

Q ·M +
∑

i:||Ni||2>Q

(
1− Q

||Ni||2

)
||Ni||1


≥1

2

C∗ ·M +
∑

i:||Ni||2>C∗

(
1− C∗

||Ni||2

)
||Ni||1

 =
1

2
G(C∗).

This shows that C∗ yields a 2-approximation.
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A.2. Proof of Corollary 4.5

To estimate C∗ privately, one can use the output perturbation algorithm. For ease of analysis we consider the regularized
problem. More precisely, let

fi(C) = max{1− C/∥Ni∥2, 0}∥Ni∥1.

Note that fi is L-Lipschitz where L =
√
d. The goal is to minimize the following function

F1(C) =
1

n

n∑
i=1

fi(C) +
CM

n
+

λ

2
C2. (5)

Let C∗
1 = argminC≥0 F1(C). We first compute the sensitivity of C∗

1 as a function of the dataset.

We first compute the sensitivity of C ′. Consider a pair of neighboring datasets D and D′ which only differ by the nth user.

Lemma A.1. Let N ′
n be a histogram and f ′

n(C) defined similarly as fn(C) with Nn replaced by N ′
n. Let F1(C) =

1
n

∑n
i=1 fi(C) + CM

n + λ
2C

2 and F2(C) = 1
n

∑n−1
i=1 fi(C) + 1

nf
′
n(C) + CM

n + λ
2C

2. Let C∗
1 = argminC≥0 F2(C) and

C∗
2 = argminC≥0 F2(C). Then,

|C∗
1 − C∗

2 | ≤ ∆ :=
4
√
s

λn
,

Proof. Observe that fi(C) is
√
s Lipschitz. Let L =

√
s.

n(F1(C
∗
2 )− F1(C

∗
1 ))

=

n∑
i=1

fi(C
∗
2 )−

n∑
i=1

fi(C
∗
1 ) +M(C∗

2 − C∗
1 ) +

nλ

2
((C∗

2 )
2 − (C∗

1 )
2)

=

n−1∑
i=1

fi(C
∗
2 )−

n−1∑
i=1

fi(C
∗
1 ) +M(C∗

2 − C∗
1 ) +

nλ

2
((C∗

2 )
2 − (C∗

1 )
2) + fn(C

∗
2 )− fn(C

∗
1 )

= n(F2(C
∗
2 )− F2(C

∗
1 )) + fn(C

∗
2 )− fn(C

∗
1 )− (f ′

n(C
∗
2 )− f ′

n(C
∗
1 ))

≤ |fn(C∗
2 )− fn(C

∗
1 )|+ |f ′

n(C
∗
2 )− f ′

n(C
∗
1 )|

≤ 2L|C∗
2 − C∗

1 |

Since F1 is λ-strongly convex, we have

F1(C
∗
2 )− F1(C1∗) ≥

λ

2
|C∗

2 − C∗
1 |2

Combining the two parts,

|C∗
2 − C∗

1 | ≤
4L

λn

Now we can characterize performance of the combined algorithm which uses the output of Algorithm 2, Ĉ, as the clipping
threshold in Algorithm 1.

Lemma A.2. Let Cm be an upper bound on C∗. Then

E[LG(Ĉ,D)]− 2 inf
C≥0

LG(C,D) ≤ nλC2
m

2
+

4s

λε′
.

14
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Proof. Recall the definition of C∗
1 from Lemma A.1. First we write the expression,

E[LG(Ĉ,D)]− 2 inf
C>0

LG(C,D)

≤ E[G(Ĉ)]−G(C∗)

≤ E[MĈ] + E

[
n∑

i=1

fi(Ĉ)

]
−G(C∗)

= C∗
1M + E

[
n∑

i=1

fi(Ĉ)−
n∑

i=1

fi(C
∗
1 )

]
+

n∑
i=1

fi(C
∗
1 )− C∗M −

n∑
i=1

fi(C
∗).

The first inequality comes from the proof of Lemma 4.3. We bound the terms separately,

E

[
n∑

i=1

fi(Ĉ)−
n∑

i=1

fi(C
∗
1 )

]
≤ E

∣∣∣∣∣
n∑

i=1

fi(Ĉ)−
n∑

i=1

fi(C
∗
1 )

∣∣∣∣∣
≤ n

√
sE[|Ĉ − C∗

1 |]

≤ n
√
s
∆

ε′
=

4
√
s(
√
s)

λε′
. (6)

The remaining terms are bounded using the following fact
n∑

i=1

fi(C
∗
1 ) + C∗

1M + n
λ

2
(C∗

1 )
2 ≤

n∑
i=1

fi(C∗) + C∗M + n
λC2

∗
2

.

Hence,
n∑

i=1

fi(C
∗
1 ) + C∗

1M −
n∑

i=1

fi(C∗)− C∗M ≤ nλC2
∗

2
≤ nλC2

m

2
. (7)

Combining equation 6 and 7 yields the desired result.

The proof of differential privacy follows from Lemma A.1 and the definition of Laplace mechanism. Setting λ = 2
√
2s

Cm

√
nε′

in
Lemma A.2 yields the error.

B. Unbounded domain histograms

Recall that N̂ is the output of Algorithm 3 and the expected error is characterized by

E[∥N̂ −N∥1] =
∑

j:Nj>0

E

[∣∣∣∣∣Ñj1Ñj>t −
∑
i

Nij

∣∣∣∣∣
]

(8)

Obviously (8) depends on the choice of the threshold C. The error can be large if C is too small or too large, so the goal of
our work is to find the best choice of C.

B.1. Approximation of estimation error

Theorem B.1. Let N be the true aggregate histogram and N̂ be the private estimate obtained by the unbounded-domain
algorithm.

E[∥N̂ −N∥1 | h̄j ] = Θ

( ∑
j:h̄j>t

(
C

ε
+ e−

ε
C (h̄j−t)

(
t− C

ε

))

+
∑

j:h̄j≤t

(
h̄j +N j + e−

ε
C (t−h̄j)

(
|N j − t| −N j +

C

ε

))

+

n∑
i=1

max {∥Ni∥1 − C, 0}

)
(9)
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Proof. First, we state a fact about exponential distributions.

Lemma B.2. Let X be an exponential distribution with rate ν (i.e., X ≥ 0 and Pr[X ≥ t] = e−νx) and a ≥ 0, then

E[X|0 ≤ X ≤ a] Pr[0 ≤ X ≤ a] =
1

ν
− e−νa

(
a+

1

ν

)
.

Proof. Recall that E[X] = 1
ν . Due to the memoryless property of X , we have E[X|X > a] = a+ 1

ν . Thus,

E[X] = E[X|0 ≤ X ≤ a] Pr[0 ≤ X ≤ a] + E[X|X > a] Pr[X > a]

= E[X|0 ≤ X ≤ a] Pr[0 ≤ X ≤ a] + e−νa

(
a+

1

ν

)
=

1

ν
.

Rearranging the terms proves the lemma.

We first divide the summation into two parts based on if Zj ≥ 0 or Zj < 0. For notational simplicity, all expectations in this
section contain an implicit condition on h̄j .

E[∥N̂ −N∥1 | h̄j ]

=
∑

j:Nj>0

E

[∣∣∣∣∣(h̄j + Zj

)
1h̄j+Zj>t −

∑
i

Nij

∣∣∣∣∣
]

=
1

2

 ∑
j:Nj>0

E
[
|
(
h̄j + Zj

)
1h̄j+Zj>t − h̄j |

∣∣Zj < 0
]
+

∑
i:||Ni||1>C

(||Ni||1 − C)

 (∗∗)

+
1

2

 ∑
j:Nj>0

E
[
|
(
h̄j + Zj

)
1h̄j+Zj>t −N j |

∣∣Zj ≥ 0
] , (∗)

where to prove (∗∗), we use the fact that if Zj < 0, then h̄j + Zj < h̄j < N j and furthermore

∑
j

N j − h̄j =
∑
j

∑
i

Ni,j − hi,j

=
∑
i

∑
j

Ni,j − hi,j

=
∑
i

||Ni||1 − ||hi||1

=
∑

i:||Ni||1>C

(||Ni||1 − C) .

We now bound the middle term. We use the fact that conditioned on Zj < 0, |Zj | = −Zj is an exponential distribution with

16
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mean C/ε.∑
j:Nj>0

E
[
|
(
h̄j + Zj

)
1h̄j+Zj>t − h̄j |

∣∣Zj < 0
]

=
∑

j:h̄j>t

E
[
|
(
h̄j + Zj

)
1h̄j+Zj>t − h̄j |

∣∣Zj < 0
]
+
∑

j:h̄j≤t

E
[
|
(
h̄j + Zj

)
1h̄j+Zj>t − h̄j |

∣∣Zj < 0
]

=
∑

j:h̄j>t

E
[
|
(
h̄j + Zj

)
1h̄j+Zj>t − h̄j |

∣∣Zj < 0
]
+
∑

j:h̄j≤t

h̄j

=
∑

j:h̄j>t

(
h̄j Pr[Zj ≤ t− h̄j |Zj < 0] + E[|Zj | | t− h̄j < Zj < 0] Pr[Zj > t− h̄j |Zj < 0]

)
+
∑

j:h̄j≤t

h̄j (10)

=
∑

j:h̄j>t

(
h̄je

− ε
C (h̄j−t) +

C

ε
−
(
h̄j − t+

C

ε

)
e−

ε
C (h̄j−t)

)
+
∑

j:h̄j≤t

h̄j

=
∑

j:h̄j>t

(
C

ε
+

(
t− C

ε

)
e−

ε
C (h̄j−t)

)
+
∑

j:h̄j≤t

h̄j (11)

From (10) we used Lemma B.2.

(∗) =
∑

j:Nj>0

E
[
|
(
h̄j + Zj

)
1h̄j+Zj>t −N j |

∣∣Zj ≥ 0
]

=
∑

j:h̄j≥t

E
[
|
(
h̄j + Zj

)
1h̄j+Zj>t −N j |

∣∣Zj ≥ 0
]
+
∑

j:h̄j<t

E
[
|
(
h̄j + Zj

)
1h̄j+Zj>t −N j |

∣∣Zj ≥ 0
]

=
∑

j:h̄j≥t

E
[
|h̄j + Zj −N j |

∣∣Zj ≥ 0
]
+
∑

j:h̄j<t

E
[
|
(
h̄j + Zj

)
1h̄j+Zj>t −N j |

∣∣Zj ≥ 0
]

=
∑

j:h̄j≥t

E
[
|h̄j + Zj −N j |

∣∣Zj ≥ 0
]

+
∑

j:h̄j<t

E
[
|
(
h̄j + Zj

)
−N j |

∣∣Zj ≥ t− h̄j

]
Pr[Zj ≥ t− h̄j | Zj ≥ 0] + Pr(Zj < t− h̄j | Zj ≥ 0)N j

=
∑

j;h̄j>t

(
N j − h̄j +

C

ε
(2e−

ε
C (Nj−h̄j) − 1)

)
(12)

+
∑

j:h̄j<t

(
N j(1− e−

ε
C (t−h̄j)) + e−

ε
C (t−h̄j)E[|hj + Zj −Nj ||hj + Zj > t]

)
(13)

=
∑

j:h̄j>t

Θ(N j − h̄j +
C

ε
) +

∑
j:h̄j<t

(
N j(1− e−

ε
C (t−h̄j)) + e−

ε
C (t−h̄j)Θ(|Nj − t|+ C

ε
)

)
(14)

(12) is due to when h̄j > t,

E
[
|h̄j + Zj −N j |

∣∣Zj ≥ 0
]

= Pr[Zj > N j − h̄j | Zj ≥ 0]E
[
h̄j + Zj −N j

∣∣Zj > N j − h̄j

]
+ Pr[Zj ≤ N j − h̄j | Zj ≥ 0]E

[
N j − h̄j − Zj

∣∣0 ≤ Zj ≤ N j − h̄j

]
=

C

ε
e−

ε
C (Nj−h̄j) + (N j − h̄j)(1− e−

ε
C (Nj−h̄j))−

(
C

ε
− e−

ε
C (Nj−h̄j)

(
N j − h̄j +

C

ε

))
=

C

ε

(
2e−

ε
C (Nj−h̄j) − 1

)
+N j − h̄j

17
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The conditional expectation in (13) is evaluated as,

E[|hj + Zj −Nj ||hj + Zj > t]

= E[|hj + Zj −Nj + t− hj ||Zj > 0]

= E[|t+ Zj −Nj ||Zj > 0] =

{
(N j − t+ C

ε (2e
− ε

C (Nj−t) − 1), t < N j

t−Nj +
C
ε , t ≥ N j

= Θ(|Nj − t|+ C

ε
),

The final equality is due to Lemma B.3. Combining all the parts leads to (14).

Lemma B.3. Let a > 0 be constant. The function g(x) = x+ 1
a (2e

−ax − 1) = Θ(x+ 1
a ) for x ≥ 0.

Proof. It is obvious that g(x) ≤ x+ 1
a since 2e−ax − 1 ≤ 1. It remains to prove g(x) ≥ c(x+ 1/a) for some constant c.

Consider the function h(x) = g(x)/(x+ 1/a). Then,

h′(x) = 2
1
a − e−ax(x+ 2/a)

(x+ 1/a)2

Since the numerator ϕ(x) = 1
a − e−ax(x+ 2/a) is monotonically increasing for x ≥ 0, and ϕ(0) = −1/a, ϕ(∞) = 1/a,

there must be a unique ξ > 0 such that ϕ(ξ) = 0. Thus h(x) is decreasing in (0, ξ) and increasing in (ξ,∞). The minimum
of h is reached when x = ξ, with a minimum value of

h(ξ) = 1− 2

aξ + 2
> 0

Rearranging the terms in equation ϕ(x) = 0, we easily note that aξ is the unique solution to the equation e−x(x+2)−1 = 0.
Note that

e−1(1 + 2) > 1, e−2(2 + 2) < 1

Therefore, we must have aξ > 1. Note that 1− 2/(aξ + 2) increases with ξ, thus,

h(ξ) ≥ 1− 2

1 + 2
=

1

3
.

This implies g(x) ≥ 1
3 (x+ 1/a).

Now we can combine (11), (14) to prove the theorem.
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E[∥N̂ −N∥1]

=
∑

j:Nj>0

E

[∣∣∣∣∣(h̄j + Zj

)
1h̄j+Zj>t −

∑
i

Nij

∣∣∣∣∣
]

=
1

2

∑
j:h̄j>t

(
C

ε
+

(
t− C

ε

)
e−

ε
C (h̄j−t)

)
+

1

2

∑
j:h̄j≤t

h̄j +
1

2

∑
i:||Ni||1>C

(||Ni||1 − C)

+
1

2

∑
j:h̄j>t

(
C

ε

(
2e−

ε
C (Nj−h̄j) − 1

)
+N j − h̄j

)
+

1

2

∑
j:h̄j≤t

(
N j(1− e−

ε
C (t−h̄j)) + e−

ε
C (t−h̄j)Θ(|Nj − t|+ C

ε
)

)

=
1

2

∑
j:h̄j>t

(
C

ε
+

(
t− C

ε

)
e−

ε
C (h̄j−t) +Θ(N j − h̄j +

C

ε
)

)
+

1

2

∑
i:||Ni||1>C

(||Ni||1 − C)

+
1

2

∑
j:h̄j≤t

(
h̄j +N j(1− e−

ε
C (t−h̄j)) + e−

ε
C (t−h̄j)Θ

(
|N j − t|+ C

ε

))

From Lemma B.3, the Θ expressions are upper bounded by a factor of 1 and lower bounded by a factor of 1/3. Therefore,

1

2

n∑
i=1

max {∥Ni∥1 − C, 0}+ 1

2

∑
j:h̄j>t

(
C

ε
+ e−

ε
C (h̄j−t)

(
t− C

ε

))

+
1

6

∑
j:h̄j≤t

(
h̄j +N j + e−

ε
C (t−h̄j)

(
|N j − t| −N j +

C

ε

))

≤ E[∥N̂ −N∥1] ≤
n∑

i=1

max {∥Ni∥1 − C, 0}+
∑

j:h̄j>t

(
C

ε
+ e−

ε
C (h̄j−t)

(
t− C

ε

))

+
1

2

∑
j:h̄j≤t

(
h̄j +N j + e−

ε
C (t−h̄j)

(
|N j − t| −N j +

C

ε

))

Corollary B.4. Assume that δ ≤ 1/8, C ≥ 1 and C ≤ eε/3δ . Then

1

2

n∑
i=1

max {∥Ni∥1 − C, 0}+ 1

12

∑
j:h̄j<t

N j +
1

2

∑
j:h̄j>t

C

ϵ

≤ E[∥N̂ −N∥1 | h̄j ] ≤
n∑

i=1

max {∥Ni∥1 − C, 0}+
∑

j:h̄j<t

N j +
∑

j:h̄j>t

t

Proof. For terms with h̄j > t,
C

ϵ
≤ C

ε
+ e−

ε
C (h̄j−t)

(
t− C

ε

)
≤ t =

C

ϵ
log

C

2δ
.

For the terms with h̄j ≤ t,

N j

2
≤ W := h̄j +N j + e−

ε
C (t−h̄j)

(
|N j − t| −N j +

C

ε

)
≤ 2N j .

To prove this, we consider N j ≥ t and N j < t separately.
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1. N j ≥ t Since t ≥ C/ε and 0 ≤ h̄j ≤ N j ,

W = h̄j +N j + e−
ε
C (t−h̄j)

(
C

ε
− t

)
≤ 2N j .

W is concave with respect to h̄j , thus the minimum of W must occur at either h̄j = 0 or h̄j = t. When h̄j = 0,

W = N j +
2δ

eε

(
t− C

ε

)
≥ N j

2
. (15)

as long as N j ≥ 4δ
Ceε (t−

C
ε ). Since δ ≤ 1/4 and C ≥ 1, we must have N j ≥ t ≥ 4δ

Ceε (t−
C
ε ), so the condition is satisfied.

When h̄j = t,

N j ≤ W = N j +
C

ε
≤ 2N j .

The final inequality is due to C/ε ≤ t ≤ N j .

2. N j < t

W = h̄j +N j + e−
ε
C (t−h̄j)

(
t− 2N j +

C

ε

)
If N j > (t+ C/ε)/2, then

N j

2
≤ h̄j +N j + e−

ε
C (t−h̄j)

(
C

ε
− t

)
≤ W ≤ h̄j +N j ≤ 2N j

The first inequality is proved similarly as (15).

If N j ≤ (t+ C/ε)/2, then
W ≥ h̄j +N j ≥ N j .

It remains to prove that W ≤ (1 + log C
2δ )N j . We consider the following function

f(x) = x+ βeax(γ − x), a =
ε

C
, γ =

1

2

(
t+

C

ε

)
, β =

2δ

Ceε
.

Note that since h̄j ≤ N j , we have W ≤ 2f(N j). We just need to upper bound g(x) = f(x)/x when x ∈ [1, γ]. Taking the
derivative,

g′(x) = −βeax
ax2 − aγx+ γ

x2
.

When aγ ≤ 4, g′(x) ≤ 0, thus

g(x) ≤ g(1) = 1 +
δ

eε(1−1/C)

(
1

ε

(
1 + log

C

2δ

)
+ 1− 1

C

)
,

which is at most 2 given the assumption that C ≤ eε/3δ .

When aγ > 4, then consider the root of g′(x) = 0,

x1 =
γ

2

(
1−

√
1− 4

αγ

)
, x2 =

γ

2

(
1 +

√
1− 4

αγ

)
.

x1 is a local minimum, and x2 is a local maximum of g(x). Thus the maximum of g(x) on [1, γ] must be either x = 1 or
x = x2. Note that x1 < γ/2 and x2 < γ. We evaluate and upper bound g(x2),

g(x2) = 1 + βeax2 (ax1 − 1)

≤ 1 + βeaγ
aγ

2

= 1 +
2δ

Ceε
1

4

(
1 + ε+ log

C

2δ

)√
e
eεC

2δ

= 1 +

√
2δ

Ceε
1

4

(
1 + ε+ log

C

2δ

)
≤ 2
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Combining with the upper bound for g(1) completes the proof.

We simplify the above proof further to prove Theorem 5.2.

Corollary B.5. Let Cm be an upper bound on C.

1

2

n∑
i=1

max {∥Ni∥1 − C, 0}+ 1

12 log Cm

2δ

∑
j

min(hj , t)

≤ E[∥N̂ −N∥1 | h̄j ] ≤

2

n∑
i=1

max {∥Ni∥1 − C, 0}+
∑
j

min(h̄j , t).

Proof. First observe that ∑
j:h̄j<t

N j +
∑

j:h̄j>t

t =
∑

j:h̄j<t

h̄j +
∑

j:h̄j>t

t+
∑

j:h̄j<t

(N j − h̄j)

≤
∑

j:h̄j<t

h̄j +
∑

j:h̄j>t

t+
∑

j:Nj>0

(N j − h̄j)

=
∑

j:h̄j<t

h̄j +
∑

j:h̄j>t

t+
∑
i

max(∥Ni∥1 − C, 0)

=
∑
j

min(h̄j , t) +
∑
i

max(∥Ni∥1 − C, 0)

Similarly, for the lower bound, observe that

1

12

∑
j:h̄j<t

N j +
1

2

∑
j:h̄j>t

C

ϵ
≥ 1

12

∑
j:h̄j<t

N j +
∑

j:h̄j>t

t

2 log Cm

2δ

≥ 1

12 log Cm

2δ

∑
j

min(h̄j , t).

C. Bias reduction
We first note that in many datasets, counts of most symbols appear very few times. For example, in the Sentiment140 dataset,
which contains counts for a total of roughly 6 · 105 words distributed across 6 · 105 users, the average counts of all words
among the users are no more than two. Therefore we analyze the debiasing step when the λi’s are small and prove the
following result for our desbiasing algorithm given in Algorithm 5.

Theorem C.1. Suppose Ni ∼ Poi(λi). Let λ̄ = 1
n

∑
i λi, Σ = 1

n

∑n
i=1(λi − λ̄)2 and λ̂ = min{1,max{0, N̂/n}}, where

N̂ is the output of Algorithm 5. If λ̄ ≤ 1, then

E[(λ̄− λ̂)2] ≤ γ2
C

(
C2

n2ε2
+

λ̄

n
+min

{
1,

1

8π(C − 1)

}
Σ2

)
. (16)

where γC = Pr[Poi(1) < C]−1 ≤ max
{
e, 1

1−e−(C−1)2/2C

}
. If we further assume that λi ≤ 1, then

E[(λ̄− λ̂)2] ≤ γ2
C

(
C2

n2ε2
+

λ̄

n
+

1

4((C − 1)!)2
· Σ2

)
. (17)

The error consists of three terms. The first term is the error due to added noise, which is proportional to the clipping
threshold C. The second term is essentially the variance of the random variable 1

n

∑
i Ni, which is an inherent error due
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to the randomness in the counts Ni’s. The third term is a bias term which depends on the closeness of user distributions,
characterized by Σ, the variance of λi’s. If the users’ distributions are similar, then we can expect the estimation error to be
small. Note that the bias term has a 1/C rate. The detailed proof is provided in Appendix C.1 We provide a bound with a
better dependence on C in Appendix C.2.

Next we analyze the the optimal choice of threshold C after the debiasing step. Observe that to minimize the error upper
bound in (16), roughly we want to choose

C ∝ (nΣ)
2/3

+ 1.

Therefore, when user’s distribution are similar, we can use a smaller clipping threshold. This implies that as long as

Σ = O(n−1/4),

we can find a C that ensures a squared error of O(1/n), which matches the error for the i.i.d. case.

From (17), when λi ≤ 1 for any user i, we can choose

C ∝ 1 + log (1 + nΣ) .

This choice of C always guarantees O(1/n) error since when λi ≤ 1 for all i, Σ ≤ 1.

In practice, we can also privately choose C as the top ⌈1/ε⌉ count as suggested by Lemma 4.2.

So far we have characterized the effect of debiasing under heterogeneous data. We next show that under mild assumptions
debiasing helps even if data is non i.i.d.. The formal result is stated in Theorem C.2. The proof is in Appendix C.3.

Theorem C.2. Let h̄ = 1
n

∑n
i=1 h(λi). Let λ̂L = N̂L/n be the average count obtained by Algorithm 1 with Laplace noise.

Assume that h̄ ≥ hmin := h(λ̄)− λ̄−h(λ̄)
γC−1 . Write h̄ = hmin +α λ̄−h(λ̄)

γC−1 where α ∈ (0, 1]. Then the gap between Algorithm 1
and Algorithm 5 is

E[(λ̄− λ̂L)
2]− E[(λ̄− λ̂)2]

≥ α(2γC − (γC + 1)α)

γC − 1
(λ̄− h(λ̄))2 −OC

(
1

n

)
. (18)

This implies that for any fixed C, under the assumptions stated in the theorem, with n sufficiently large, there is always a
constant gap between the two algorithms and debiasing helps even if the data is not i.i.d.. This result justifies the choice of
C as the optimal quantile suggested by Lemma 4.2.

We argue that the assumption of h̄ ≥ hmin is not too restrictive. It essentially requires that either λi’s are sufficiently similar,
or C is sufficiently larger than λ̄. Indeed, if λi = λ̄ for all user i, then h(λ̄) = h̄; if C is sufficiently large, then h is almost
linear near λ̄ and hence h̄ is close to h(λ̄).

As a specific example, set C = 2, λ̄ = 1. If all λi ∈ [0, 2], due to concavity of h, we have h̄ ≥ h(2)/2 ≥ 0.729. With some
arithmetic, hmin ≤ 0.61, and the first term in (18) is at least 0.0217. Note that this is the difference between squared errors.
The gap between absolute errors could well be of order 0.1, which is significant considering that λ̄ = 1. This example shows
that Algorithm 5 can achieve significant improvement even when the variance of λis is constant.

C.1. Proof of Theorem C.1

Proof. Let Y = 1
nYi. Then, when Ni ∼ Poi(λi),
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E[Y ] =
1

n

n∑
i=1

h(λi)

=
1

n

n∑
i=1

C−1∑
j=0

j · Pr[Ni = j] +

∞∑
j=C

C · Pr[Ni = j]


=

1

n

n∑
i=1

C −
C−1∑
j=0

(C − j) Pr[Ni = j]


= C − 1

n

n∑
i=1

C−1∑
j=0

(C − j) e−λi
λj
i

j!

Let Z = Lap(C/nε), then we have λ̂ = h−1(Y + Z). We first bound the error for estimating h(λ),

E
[
(h(λ̄)− h(λ̂))2

]
= E

[
(h(λ̄)− E[Y ] + E[Y ]− h(λ̂))2

]
= E[(h(λ̂)− E[Y ])2] + (E[Y ]− h(λ̄))2

= E[Z2] + E[(Y − EY )2] + (E[Y ]− h(λ̄))2

≤ C2

n2ε2
+ E[(Y − EY )2] + (E[Y ]− h(λ̄))2. (19)

We first bound E[(Y − E[Y ])2].

E[(Y − E[Y ])2] =
1

n2
E

( n∑
i=1

(Yi − E[Yi])

)2


=
1

n2

n∑
i=1

Var[Yi] (20)

≤ 1

n2

n∑
i=1

Var[Ni] =
1

n2

n∑
i=1

λi.

The final inequality is due to Var[Yi] ≤ Var[Ni]. To see this we use the symmetrization trick. Let N ′
i be an independent

copy of Ni and Y ′
i = clip(N ′

i , C). Then by definition |Yi − Y ′
i | ≤ |Ni −N ′

i |. Hence,

Var[Yi] = E[(Yi − Y ′
i )

2/2] ≤ E[(Ni −N ′
i)

2/2] = Var[Ni].

We then bound |E[Y ]− h(λ̄)|. We compute Taylor expansion of E[Y ] at λ̄ with the Lagrangian remainder,

E[Y ] =
1

n

n∑
i=1

(
h(λ̄) + h′(λ̄)(λi − λ̄) +

h′′(ξi)

2
(λ̄− λi)

2

)

= h(λ̄) +
1

n

n∑
i=1

h′′(ξi)

2
(λ̄− λi)

2,

where ξi ∈ (min{λ̄, λi},max{λ̄, λi}) . We move on to compute h′′(λ),

h′′(λ) = e−λ

(
−

C−1∑
j=0

C − j

j!
λj + 2

C−2∑
j=0

C − (j + 1)

j!
λj −

C−3∑
j=0

C − (j + 2)

j!
λj

)

= −e−λ λC−1

(C − 1)!
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We can verify that for C ≥ 1, |h′′(λ)| increases when λ ≤ C − 1 and decreases when λ ≥ C − 1. Therefore by Sterling’s
approximation,

|h′′(ξi))| ≤
(C − 1)C−1

eC−1(C − 1)!
≤ 1√

2π(C − 1)
.

Thus,

|E[Y ]− h(λ̄)| ≤ 1

2
√

2π(C − 1)
· 1
n

n∑
i=1

(λi − λ̄)2.

Combining all the parts we have

E[|h(λ̂)− h(λ̄)|] ≤ C

nε
+

1

n

√√√√ n∑
i=1

λi +
1

2
√
2π(C − 1)

· 1
n

n∑
i=1

(λi − λ̄)2.

To bound the estimation error E[|λ̄− λ̂|], we first compute h′(λ),

h′(λ) = −e−λ

C−2∑
j=0

C − (j + 1)

j!
λj −

C−1∑
j=0

C − j

j!
λj


= e−λ

C−1∑
j=0

λj

j!

Let X ∼ Poi(1). We note that for λ ∈ [0, 1],

|h′(λ)| ≥ |h′(1)| = 1− Pr[X ≥ C] =
1

γC
≥ 1− e−

(C−1)2

2C .

Hence, we can proceed to bound the error for estimating λ̄,

E[(λ̄− λ̂)2]

≤ sup
λ∈[0,1]

1

|h′(λ)|2
E[(h(λ̄)− h(λ̂))2] (21)

≤ γ2
C

(
C2

n2ε2
+

1

n2

n∑
i=1

λi +
1

8π(C − 1)
·

(
1

n

n∑
i=1

(λi − λ̄)2

)2)
. (22)

If we assume that λi ≤ 1 for all i we can bound |h′′(ξi)| as

|h′′(ξi))| ≤ max
λ∈[0,1]

|h′′(λ)| ≤ 1

(C − 1)!
.

Hence the last term can be bounded as

|E[Y ]− h(λ)| ≤ 1

2(C − 1)!
· 1
n

n∑
i=1

(λi − λ)2.
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C.2. Improved bound of Theorem C.1

Theorem C.3. Suppose λi are i.i.d. drawn from a distribution F with mean λ̄ and variance Σ. Then for C ≥ 3, Algorithm 5
yields an error of

E[(λ̄− λ̂)2] ≤ γ2
C

(
C2

n2ε2
+

λ̄

n
+

1

8π(C − 1)

(
0.83C−1Σ+ Pr

λ∼F

(
λ ≥ C − 1

2

))2
)

The theorem shows that if the distribution of user’s average counts are concentrated and has small tail probability, then we
can obtain small estimation error.

Suppose that C ≥ 3. Let η = 1/2. We bound |E[Y ]− h(λ̄)| by analyzing λi close to C − 1 and far from C − 1 separately.

|E[Y ]− h(λ̄)|

=
1

n

n∑
i=1

|h′′(ξi)|
2

(λ̄− λi)
2

=
1

n

∑
i:

λi
C−1∈(η,1/η)

|h′′(ξi)|
2

(λ̄− λi)
2 +

1

n

∑
i:

λi
C−1 /∈(η,1/η)

|h′′(ξi)|
2

(λ̄− λi)
2

If λi ≤ η(C − 1) and C ≥ 3, then we also have ξi ≤ η(C − 1). In this case,

|h′′(ξi)| ≤ |h′′(η(C − 1))| = (η(C − 1))C−1

eη(C−1)(C − 1)!

≤ 1√
2π(C − 1)

(ηe
eη

)C−1

≤ 1√
2π(C − 1)

· 0.83C−1

The last inequality follows by ex/ex is increasing for x ∈ [0, 1]. Using a similar argument, we can verify that the above
inequality also holds when λi ≥ (C − 1)/η. Therefore,

|E[Y ]− h(λ̄)| ≤ 1

2
√
2π(C − 1)

· 1
n

( ∑
i:

λi
C−1 /∈(1/2,2)

0.83C−1(λi − λ̄)2 +
∑

i:
λi

C−1∈(1/2,2)

(λi − λ̄)2

)
.

For convenience let Σ = 1
n

∑n
i=1(λi − λ̄)2. We can further bound the bias by

|E[Y ]− h(λ̄)| ≤ 0.83C−1Σ+

√
2(C − 1)3/2√

π

1

n

n∑
i=1

1λi>(C−1)/2. (23)

We can see that the bias term depends on C, Σ, and
∑n

i=1 1λi>2(C−1) (which depends on the distribution of {λi}ni=1). To
ensure an O(1/n) rate, the two terms should be at most O(1/

√
n),

0.83C−1Σ ≤ 1√
n

4(C − 1)3/2

2
√
2π

1

n

n∑
i=1

1λi>(C−1)/2 ≤ 1√
n
.

Note that in the worst case
1

n

n∑
i=1

1λi>(C−1)/2 ≤ O

(
Σ

(C − 1)2

)
,

which recovers (16). The bound could have a better dependence on C if λis are more concentrated. For example, if λi ≤ 1,
then the above quantity is 0 as long as C > 3, and we can choose C = 3 + O(log(1 + nΣ)) to achieve O(1/n) mean
squared error.
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More generally, if λis are from a distribution with exponential tail, i.e. Pr[λi ≥ x] = O(exp(−Ω(x))), then

1

n

n∑
i=1

1λi>2(C−1) ≃ Pr[λi ≥ (C − 1)/2] = O(exp(−Ω(C − 1))).

Choosing C = 3 +O(log n) gives O(1/n) mean squared error.

C.3. Proof of Theorem C.2

Before we proceed to the proof, we first characterize the error of Algorithm 1 with Laplace noise.

Lemma C.4. Let λ̂L = N̂L/n where N̂L is the output of Algorithm 1 with Laplace noise. Then

E
[
(λ̄− λ̂L)

2
]
=

(
λ̄− 1

n

n∑
i=1

h(λi)

)2

+
1

n2

n∑
i=1

Var(Yi) +
C2

n2ε2
.

Proof.

E
[
(λ̄− λ̂L)

2
]
= E

[
(λ̄− E[λ̂L] + E[λ̂L]− λ̂L)

2
]

= E
[
(λ̄− E[λ̂L])

2
]
+ E

[
(E[λ̂L]− λ̂L)

2
]

=

(
λ̄− 1

n

n∑
i=1

h(λi)

)2

+
1

n2

n∑
i=1

Var(Yi) +
C2

n2ε2
.

Now we have all the ingredients to complete Theorem C.2

Proof. Combining (19), (20), and (21) we have

E[(λ̄− λ̂)2] ≤ γ2
C

 C2

n2ε2
+

1

n2

n∑
i=1

Var[Yi] +

(
h(λ̄)− 1

n

n∑
i=1

h(λi)

)2
 .

Let h̄ = − 1
n

∑n
i=1 h(λi).Therefore,

E[(λ̄− λ̂L)
2]− E[(λ̄− λ̂)2]

= −(γ2
C − 1)

(
C2

n2ε2
+

1

n2

n∑
i=1

Var[Yi]

)
+
(
λ̄− h̄

)2 − γ2
C

(
h(λ̄)− h̄

)2

We bound the terms separately. Note that Var[Yi] ≤ Var[Ni] = λi. Hence,

(γ2
C − 1)

(
C2

n2ε2
+

1

n2

n∑
i=1

Var[Yi]

)
≤ (γ2

C − 1)

(
C2

n2ε2
+

1

n

)
.

Recall the assumption that h̄ ≥ hmin := h(λ̄)− λ̄−h(λ̄)
γC−1 , and write h̄ = hmin + α λ̄−h(λ̄)

γC−1 . The remaining part simplifies to

(λ̄− h̄)2 − γ2
C(h(λ̄)− h̄)2 =

(γC − α)2 − γ2
C(1− α)2

(γC − 1)2
(λ̄− h(λ̄))2

=
α(2γC − (γC + 1)α)

γC − 1
(λ̄− h(λ̄))2

Combining the two parts completes the proof.
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Figure 4. Total counts estimation for single item on synthetic Poisson datasets. Larger α means that user data distributions are more
similar.

Table 2. Single word in Sentiment140. The “debiasing” columns are results of clipping + debiasing.

clipping debiasing
word avg loss±std avg loss±std

the 0.0289 0.0257
±2.40 · 10−5 ±2.48 · 10−5

today 0.0381 0.0155
±4.34 · 10−5 ±3.34 · 10−5

you 0.0745 0.0671
±2.83 · 10−5 ±7.26 · 10−5

C.4. Experiments

In this section, we run experiments for Algorithm 5 with both synthetic datasets and words in Sentiment140. For the
synthetic part, we generate n = 106 users with λ1, . . . , λn from a Dirichlet distribution with parameter α. Larger α means
that the λis are closer. In this experiment, we set C to the privately estimated top 1/ε count among users, as discussed
in Amin et al. (2019). Figure 4 shows that the debiased output of Algorithm 5 greatly reduces the error compared to the
original output of Algorithm 1, especially for large α (meaning the dataset is more i.i.d. like).

We also run experiments on three population words in Sentiment140: “the”, “today” and “you”. Table 2 shows that
Algorithm 5 performs better than Algorithm 1, but the gain is not as much as synthetic datasets that are close to i.i.d.
distributions.

C.5. Extension to d > 1

We now discuss two possible extensions to the general d.

1. A natural extension to the entire histogram is to apply Algorithm 5 to each symbol in the histogram separately. To ensure
(ε, δ) differential privacy, we assign each symbol a privacy budget of O(ε/

√
d log(1/δ)) by strong composition (Kairouz

et al., 2017). The main disadvantage is that when d is large, clipping each coordinate separately may perform poorly
compared to clipping the ℓ1 or ℓ2 norm of the entire histogram.

2. We can generalize Algorithm 5 to d > 1 by replacing 1-d clipping with the high dimensional clipping functions as defined
in Algorithm 1. Then choose a suitable function g that essentially inverts the expectation of the clipped vector Yi. However
finding such inverse may be difficult in high dimensions as it likely involves non-convex optimization.
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D. Additional experiments
D.1. Algorithm 2 with fixed Cm = 150

Fixing Cm performs better than Cm = DP-M -quantile, because in the latter case, we need to split half of the privacy budget
to estimate DP-M -quantile. We note that the output perturbation method has a large variance for the SNAP dataset and
investigating the reason behind is an interesting future direction.

Figure 5. Histogram estimation over bounded domains. Left: Sentiment140 dataset. Right: SNAP dataset.

D.2. Setting s = d

In this section, we demonstrate the performance of the bounded domain algorithm in Section 4 when s = d, i.e., bound on
sparsity is not known. We can see that setting s = d still yields a performance close to the true 2-approximation threshold,
and much better than the quantile suggested by (Amin et al., 2019).

Figure 6. Bounded domain histogram estimation with d = 1000 (left) and d = 10000 (right).
TQ is the true (non-private) quantile suggested by (Amin et al., 2019). PQ is the private estimate of the quantile. P2-Opt is
the result of DP-SGD with s = d. PS2-Opt is DP-SGD with s = 0.1d. T2-Opt is the true 2-approximation threshold. Min

is the best threshold (computed by a linear search).
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