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Abstract

We propose Image-to-Image Schrödinger Bridge

(I2SB), a new class of conditional diffusion mod-

els that directly learn the nonlinear diffusion pro-

cesses between two given distributions. These

diffusion bridges are particularly useful for im-

age restoration, as the degraded images are struc-

turally informative priors for reconstructing the

clean images. I2SB belongs to a tractable class

of Schrödinger bridge, the nonlinear extension

to score-based models, whose marginal distribu-

tions can be computed analytically given bound-

ary pairs. This results in a simulation-free frame-

work for nonlinear diffusions, where the I2SB

training becomes scalable by adopting practical

techniques used in standard diffusion models. We

validate I2SB in solving various image restora-

tion tasks, including inpainting, super-resolution,

deblurring, and JPEG restoration on ImageNet

256×256 and show that I2SB surpasses standard

conditional diffusion models with more inter-

pretable generative processes. Moreover, I2SB

matches the performance of inverse methods that

additionally require the knowledge of the corrup-

tion operators. Our work opens up new algorith-

mic opportunities for developing efficient nonlin-

ear diffusion models on a large scale. Project page

and codes: https://i2sb.github.io/.

1. Introduction

Image restoration is a crucial problem in vision and image

processing with applications in optimal filtering (Motwani

et al., 2004), data compression (Wallace, 1991), adversar-

ial defense (Nie et al., 2022), and safety-critical systems

such as medicine and robotics (Song et al., 2021b; Li et al.,

2021). Common image restoration tasks are known to be
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Figure 1. Outputs of our proposed Image-to-Image Schrödinger

Bridge (I2SB) on ImageNet 256×256 validation set for various

image restoration tasks.

ill-posed (Banham & Katsaggelos, 1997; Richardson, 1972)

and typically solved by modern data-driven approaches with

conditional generation (Mirza & Osindero, 2014; Khan et al.,

2022), i.e., by learning to sample the underlying (clean) data

distribution given the degraded distribution.

Diffusion and score-based generative models (SGMs; Sohl-

Dickstein et al. (2015); Song et al. (2020b)) have emerged as

powerful conditional generative models with their remark-

able successes in synthesizing high-fidelity data (Dhariwal

& Nichol, 2021; Rombach et al., 2022; Vahdat et al., 2021).

These models rely on progressively diffusing data to noise,

and learning the score functions (often parameterized by

neural networks) to reverse the processes (Anderson, 1982);

the reversed processes enable generation from noise to data.
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Figure 2. Complexity of SGM and SB (Chen et al., 2021a) On

256×256 resolution, SB is 6× slower and consumes 3× memory.
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Figure 3. I2SB belongs to a tractable class of SB that shares the

same computational framework of SGM and rebases the terminal

distribution beyond simple Gaussian priors.

Saharia et al. (2021; 2022) show that these generative pro-

cesses can be adopted for image restoration by feeding de-

graded images as extra inputs to the score network so that

the processes are biased toward the corresponding intact

images. Alternatively, when the mapping between clean and

degraded images is known, the tasks can be reformulated

as inverse problems that restore the underlying clean sig-

nal from the degraded measurement, based on the diffusion

priors (Kawar et al., 2022a;b; Wang et al., 2022b).

Notably, all of the aforementioned diffusion models for im-

age restoration begin their generative denoising processes

with Gaussian white noise, which has little or no structural

information of the clean data distribution. Despite arising

naturally from unconditional generation, it remains unclear

whether this default setup best suits image-to-image transla-

tion problems especially like image restoration, where the

degraded images are much more structurally informative

compared to random noise.

An alternative that better leverages the problem structure

is to directly start the generative processes from degraded

images, and build diffusion bridges between clean and de-

graded data distributions. This shares similarity with image-

to-image translation GANs (Zhu et al., 2017; Huang et al.,

2018). Constructing these diffusion bridges often neces-

sitates a new computational framework for reversing gen-

eral diffusion processes. It has been recently explored in

Schrödinger bridge (SB; De Bortoli et al. (2021); Chen et al.

(2021a)), a generalized nonlinear score-based model which

defines optimal transport between two arbitrary distributions

and generalizes beyond Gaussian priors.

Despite the mathematical generalization, computational

frameworks for solving SB (Chen et al., 2021b) have been

developed independently (hence distinctly) from how diffu-

sion models are typically trained. This makes SB compu-

tationally unfavorable compared to its score-based counter-

part especially in high-dimensional regimes (see Figure 2),

where SB is known to suffer from, e.g., discretization error
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image

Prior Image-to-Image Diffusion Models

feed degraded image via conditioning or inverse guidance

directly bridge from degraded to clean image

Image-to-Image Schrödinger Bridge 

Figure 4. Illustration of I2SB. Rather than generating images from

random noise as in prior diffusion models, I2SB directly learns the

diffusion bridges between degraded and clean distributions, yield-

ing more interpretable generation effective for image restoration.

(De Bortoli et al., 2021), high variance (Chen et al., 2021a),

or even divergence (Fernandes et al., 2021). It remains an

open question whether SB can be made practical for learning

complex nonlinear diffusions on a large scale.

In this work, we propose Image-to-Image Schrödinger

Bridge (I2SB), a sub-class of SB with nonlinear diffu-

sion models that share the same computational framework

used in standard score-based models. Consequently, prac-

tical techniques from diffusion models for learning high-

dimensional data distributions (Karras et al., 2022; Song &

Ermon, 2020) can be adopted to train nonlinear diffusions.

This is achieved by exploiting the linear structure hidden

in the nonlinear coupling of SB to construct tractable SBs

for transporting between individual clean images and their

corresponding degraded distributions, i.e., I2SB. We show

that the marginal distributions of I2SB admit analytic solu-

tions given boundary pairs (i.e., clean and degraded image

pairs), thereby yielding a simulation-free framework that

avoids unfavorable complexity (Chen et al., 2021a). Fur-

thermore, we demonstrate that I2SB can be simulated at test

time using DDPM (Ho et al., 2020). Finally, we characterize

in how I2SB reduces to an optimal transport ODE (Peyré

et al., 2019) when the diffusion vanishes, strengthening the

algorithmic connection among dynamic generative models.

We validate our method in many image restoration tasks in-

cluding super-resolution, deblurring, inpainting, and JPEG

restoration on ImageNet 256×256 (Deng et al., 2009); see

Figure 1. Through extensive experiments, we show that

I2SB surpasses standard conditional diffusion models (Sa-

haria et al., 2022) and matches diffusion-based inverse mod-

els (Kawar et al., 2022a;b) without exploiting the corruption

operators. With these more interpretable generative pro-

cesses, I2SB enjoys little or no performance drops as the
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number of function evaluation (NFE) decreases.

In summary, we present the following contributions.

• We introduce I2SB, a new class of conditional diffusion

models that learns fully nonlinear diffusion bridges be-

tween two domain distributions.

• We build I2SB on a simulation-free computational frame-

work that adopts scalable techniques from standard diffu-

sion models to train nonlinear diffusion processes.

• I2SB sets new records in many restoration tasks, includ-

ing super-resolution, deblurring, inpainting, and JPEG

restoration. It yields more interpretable generation and

enjoys little performance drops as the NFE decreases.

2. Preliminaries

Notation: Let Xt ∈ Rd be a d-dimensional stochastic pro-

cess indexed by t ∈ [0, 1] and denote the discrete time step

by 0 = t0 < · · · tn · · · < tN = 1, we shorthand Xn ≡ Xtn .

The Wiener process and its reversed counterpart (Anderson,

1982) are denoted by Wt,W t ∈ Rd. The identity matrix is

denoted by I ∈ Rd×d.

2.1. Score-based Generative Model (SGM)

SGM (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song

et al., 2020b) is an emerging class of dynamic generative

models that, given data X0 sampled from some domain pA,

constructs stochastic differential equations (SDEs),

dXt = ft(Xt)dt+
√

βtdWt, (1)

whose terminal distributions at t = 1 approach an approx-

imate Gaussian, i.e., X1 ∼ N (0, I). This is achieved by

properly choosing the diffusion βt ∈ R and setting the base

drift ft linear in Xt. It is known that reversing (1) yields

another SDE traversing backward in time (Anderson, 1982):

dXt = [ft − βt∇ log p(Xt, t)]dt+
√
βtdW t, (2)

where p(·, t) is the marginal density of (1) at time t and

∇ log p is its score function. The SDE (2) is known as

the “reversed process of (1)” in the sense that its path-wise

measure equals almost surely to the one induced by (1);

thus, the two SDEs also share the same marginal densities.

In practice, given a tuple (X0, t,Xt) where X0 ∼ pA,

t ∼ U([0, 1]), and Xt sampled analytically from (1), one

can parameterize ǫ(Xt, t; θ) with, e.g., U-Net (Ronneberger

et al., 2015), and regress its output w.r.t. the rescaled version

of denoising score-matching objective (Vincent, 2011),

‖ǫ(Xt, t; θ)− σt∇ log p(Xt, t|X0)‖, (3)

where ∇ log p(Xt, t|X0) can be computed analytically and

σ2
t is the variance of Xt|X0, induced by (1), that rescales

the regression target to unit variance (Ho et al., 2020).

Other advanced parameterizations that better account for

practical training (Karras et al., 2022) have also been ex-

plored recently. Importantly, they all produce some ways

to predict intact data at t = 0 from the network outputs.

In other words, the mapping ǫ(Xt, t; θ) 7→ Xǫ
0 is readily

available once ǫ is trained.1 With this, popular samplers

like DDPM (Ho et al., 2020) can be written compactly as

recursive posterior sampling:

Xn ∼ p(Xn|Xǫ
0, Xn+1), XN ∼ N (0, I). (4)

2.2. Schrödinger Bridge (SB)

SB (Schrödinger, 1932; Léonard, 2013) is an entropy-

regularized optimal transport model that considers the fol-

lowing forward and backward SDEs:

dXt = [ft + βt ∇ logΨ(Xt, t)]dt+
√
βtdWt, (5a)

dXt = [ft − βt ∇ logΨ̂(Xt, t)]dt+
√
βtdW t, (5b)

where X0 ∼ pA and X1 ∼ pB are drawn from bound-

ary distributions in two distinct domains. The functions

Ψ, Ψ̂ ∈ C2,1(Rd, [0, 1]) are time-varying energy potentials

that solve the following coupled PDEs,





∂Ψ(x,t)
∂t

= −∇Ψ⊤f − 1
2β∆Ψ

∂Ψ̂(x,t)
∂t

= −∇ · (Ψ̂f) + 1
2β∆Ψ̂

(6a)

s.t. Ψ(x, 0)Ψ̂(x, 0)=pA(x),Ψ(x, 1)Ψ̂(x, 1)=pB(x) (6b)

In this case, the path measure induced by SDE (5a) equals

almost surely to the one induced by SDE (5b), similar to

SDEs (1,2). Hence, their marginal densities, denoted by

q(·, t) hereafter, are also equivalent.

SGM as a Special Case of SB It is known that SB gen-

eralizes SGM to nonlinear structure (Chen et al., 2021a).

Indeed, the SDEs between SGM (1,2) and SB (5) differ only

by the additional nonlinear forward drift ∇ logΨ, which

allows the processes to transport samples beyond Gaussian

priors. In such cases, the backward drift ∇ logΨ̂ is no longer

the score function of (5a), yet they relate to each other via

the Nelson’s duality (Nelson, 1967)

Ψ(x, t)Ψ̂(x, t) = q(x, t)

⇒∇ logΨ(x, t)−∇ log q(x, t) = −∇ logΨ̂(x, t).
(7)

One can verify that reversing (5a) yields

dXt=[ft + βt ∇ logΨ− βt∇ log q]dt+
√
βtdW t, (8)

which indeed equals (5b) after substituting (7). Hence, (5b)

reverses the nonlinear forward SDE (5a), and vice versa.

1In all cases, we can write Xt = atX0 + btǫ for some at, bt ∈
R depending on (1) so that the mapping can be defined as Xǫ

0 :=
(Xt − btǫθ)/at given any trained ǫθ .
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3. Image-to-Image Schrödinger Bridge (I2SB)

We propose a tractable class of SB that directly constructs

diffusion bridges between two domains, making it suitable

for image-to-image translation such as image restoration.

All proofs are left to Appendix A due to space constraint.

3.1. Mathematical Framework

Solving SB using SGM Framework Despite the fact

that SB generalizes SGM in theory, numerical methods

for SB and SGM have been developed independently on

distinct computational frameworks. Due to the coupling

constraints in (6b), modern SB models often adopt iterative

projection methods (Kullback, 1968; Chen et al., 2021b),

which have unfavorable complexity as the dimension grows

(see Figure 2). It is unclear whether practical techniques in

the SGM computational framework can be transferred to

efficiently learn nonlinear diffusions.

Let us reexamine the SB theory in detail, but this time

through the computational framework of SGM. Notice that

• The nonlinear drifts in (5) resemble the score function in

(2) when we view Ψ(·, t) and Ψ̂(·, t) as the densities.

• Equation (6a) gives the solution to the Fokker-Plank equa-

tion (Risken, 1996) that characterizes the marginal density

induced by the linear SDE in (1).

With these, we can reformulate PDEs (6) in a manner that

makes SB more compatible with the SGM framework:

Theorem 3.1 (Reformulating SB drifts as score functions).

When the Schrödinger systems (6) hold, ∇ logΨ̂(Xt, t) and

∇ logΨ(Xt, t) are the score functions of the following lin-

ear SDEs, respectively:

dXt = ft(Xt)dt+
√
βt dWt, X0 ∼ Ψ̂(·, 0), (9a)

dXt = ft(Xt)dt+
√
βt dW t, X1 ∼ Ψ(·, 1). (9b)

Theorem 3.1 suggests that the backward drift ∇ logΨ̂ in

SDE (5b) that transports samples from pB to pA can also

be used to reverse the forward SDE (9a). Crucially, the

above linear SDEs (9) have different boundary distributions

from nonlinear SDEs (5). Essentially, the nonlinearity of

∇ logΨ̂—as the combination of the nonlinear forward drift

and its score function (c.f. (7))—is absorbed into the initial

condition Ψ̂(·, 0), leaving it compactly as the score function

of another linear SDE. Hence, if we can draw samples from

X0 ∼ Ψ̂(·, 0), we can parameterize ∇ logΨ̂ with the score

network and apply practical techniques from SGM to learn

∇ logΨ̂. Similar reasoning applies to ∇ logΨ.

A Tractable Class of SB Theorem 3.1 is encouraging yet

not immediately useful as the boundaries Ψ̂(·, 0) and Ψ(·, 1)
remain intractable due to the couplings in (6b). Below, we

present a tractable case that eliminates one of the couplings.

lo
g

(X
t,t

|X
0)

t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

q(
X t

|X
0,
X 1

)

Figure 5. Top: The backward drift ∇ logΨ̂(Xt, t|X0=a) trans-

porting pB toward a (denoted ×) corresponds to the score function

of a tractable Gaussian (density marked green). Bottom: Simu-

lating the backward SDE (5b) with this ∇ logΨ̂ yields a diffusion

bridge (density marked blue) between X0 = a and X1 ∼ pB,

whose mean corresponds to the optimal transport path.

Corollary 3.2 (Tractable SB with the Dirac delta boundary).

Let pA(·) := δa(·) be the Dirac delta distribution centered

at a ∈ Rd. Then, the initial distributions in (9) are given by

Ψ̂(·, 0) = δa(·), Ψ(·, 1) = pB

Ψ̂(·,1)
. (10)

Comparing (10) to (6b), it is clear that Corollary 3.2 breaks

the dependency on Ψ for solving Ψ̂(x, 0). Intuitively, the

optimal2 backward drift driving the reverse process of (9a)

to the Dirac delta δa(·) always flows toward a, regardless of

pB; see Figure 5. The Dirac delta assumption also implicitly

appears in the denoising objective (3), which first computes

the target ∇ log p(Xt, t|X0=a) for each data point a, as

the score between δa(·) and Gaussian, then averages over

X0∼pA. In this vein, Corollary 3.2 adopts the same bound-

ary δa(·) on one side and generalizes the other side from

Gaussian to arbitrary pB. Indeed, we show in Appendix A

that when pB = Ψ̂(·, 1) ≈ N (0, I), the forward drift van-

ishes with Ψ(·, t) = 1, reducing the framework to SGM.

Although the singularity of δa(·) may hinder generalization

beyond training samples, in practice, the score network gen-

eralizes well to unseen samples from the same distributions,

for both SGM and our I2SB, partly due to the strong gener-

alization ability of neural networks (Zhang et al., 2021).

To summarize, our theories suggest an efficient pipeline

for training ∇ logΨ̂ without dealing with the intractability

of reversing the nonlinear forward drift. By formulating a

tractable SB compatible with the SGM framework, we get

both mathematical soundness and computational efficiency.

3.2. Algorithmic Design

In this subsection, we discuss practical designs for applying

Corollary 3.2 to image restoration. We will adopt similar

setups from prior diffusion models (Saharia et al., 2022)

and assume pair information is available during training, i.e.,

p(X0, X1) = pA(X0)pB(X1|X0). From which, we can

2The optimality is w.r.t. minimum energy; see Appendix B.
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Algorithm 1 Training

1: Input: clean pA(·) and degraded pB(·|X0) datasets

2: repeat

3: t ∼ U([0, 1]), X0 ∼ pA(X0), X1 ∼ pB(X1|X0)
4: Xt ∼ q(Xt|X0, X1) according to (11)

5: Take gradient descent step on ǫ(Xt, t; θ) using (12)

6: until converges

construct tractable SBs between individual data points X0

and their corresponding degraded distributions pB(X1|X0).
As rebasing the terminal distribution from Gaussian to

pB(·|X0) makes f unnecessary, we will drop f := 0 and let

I2SB learn the full nonlinear drift by itself.

Sampling Proposal for Training and Generation Train-

ing scalable diffusion models requires efficient computation

of Xt. The computation is intractable for I2SB, if directly

from the nonlinear SDE (5a), since its forward drift ∇ logΨ
is not only generally nonlinear but never explicitly con-

structed. Computing Xt from the linear SDE (9a) whose

score function corresponds to ∇ logΨ̂ will not work either.

Since the diffusion process in (9a) does not converge to

the terminal distribution (i.e., pB(X1|X0)) of I2SB, high-

probability regions induced by (9a) can be far away from

regions where the generative processes actually traverse; see

Figure 5. We address the difficulty in the following result.

Proposition 3.3 (Analytic posterior given boundary pair).

The posterior of (5) given some boundary pair (X0, X1),
provided f := 0, admits an analytic form:

q(Xt|X0, X1) = N (Xt;µt(X0, X1),Σt), (11)

µt =
σ̄2
t

σ̄2
t + σ2

t

X0 +
σ2
t

σ̄2
t + σ2

t

X1, Σt =
σ2
t σ̄

2
t

σ̄2
t + σ2

t

· I,

where σ2
t :=

∫ t

0
βτdτ and σ̄2

t :=
∫ 1

t
βτdτ are variances accu-

mulated from either sides. Further, this posterior marginal-

izes the recursive posterior sampling in DDPM (4):

q(Xn|X0, XN )=

∫
ΠN−1

k=n p(Xk|X0, Xk+1)dXk+1.

Proposition 3.3 suggests that the analytic posterior of SB

given a boundary pair (X0, X1) is the marginal density in-

duced by DDPM, p(Xk|Xǫ
0, Xk+1), when Xǫ

0 := X0 and

XN ∼ pB. Practically, this suggests that (i) during training

when (X0, X1) are available from pA(X0) and pB(X1|X0),
we can sample Xt directly from (11) without solving any

nonlinear diffusion as in prior SB models (Vargas et al.,

2021), and (ii) during generation when only X1 ∼ pB is

given, running standard DDPM starting from X1 induces

the same marginal density of SB paths so long as the pre-

dicted Xǫ
0 is close to X0. Therefore, the proposed sampling

proposal in (11) is both tractable and able to cover regions

traversed by generative processes.

Algorithm 2 Generation

1: Input: XN ∼ pB(XN ), trained ǫ(·, ·; θ)
2: for n = N to 1 do

3: Predict Xǫ
0 using ǫ(Xn, tn; θ)

4: Xn−1 ∼ p(Xn−1|Xǫ
0, Xn) according to DDPM (4)

5: end for

6: return X0

Parameterization & Objective Since I2SB requires no

conditioning modules, we adopt the same network parame-

terization ǫ(Xt, t; θ) from SGM (Dhariwal & Nichol, 2021).

Similar to the objective (3), we can compute the score func-

tion for ∇ logΨ̂(Xt, t|X0) ≡ ∇ log p(9a)(Xt, t|X0), except

Xt being drawn from (11). This leads to

‖ǫ(Xt, t; θ)−
Xt−X0

σt

‖ (12)

as we adopt f := 0. Algorithms 1 and 2 summarize the

training and generation procedures of I2SB, respectively.

3.3. Connection to Flow-based Optimal Transport (OT)

It is known that the solution to SB, as an entropic optimal

transport model, converges weakly to the optimal transport

plan (Mikami, 2004) as the diffusion degenerates. The

following result characterizes this infinitesimal limit.

Proposition 3.4 (Optimal Transport ODE; OT-ODE). When

βt → 0, the SDE between (X0, X1) reduces to an ODE:

dXt = vt(Xt|X0)dt, vt(Xt|X0) =
βt

σ2
t

(Xt −X0), (13)

whose solution µt(X0, X1) is the posterior mean of (11).

Note that the OT-ODE (13) is not a probability flow ODE,

which has the same marginal as the corresponding SDE, in

the SGM literature (Chen et al., 2018; Song et al., 2021a).

Instead, the OT-ODE (13) simulates an OT plan (Peyré et al.,

2019) only when the stochasticity of the SDE vanishes.

Proposition 3.4 suggests that the mean of the posterior q
represents the OT-ODE paths. Hence, I2SB can also be

instantiated as a simulation-free OT by replacing the poste-

riors with their means, i.e., by removing the noise injected

into Xt in both training and generation (the lines 4 in Al-

gorithms 1 and 2). The ratio βt

σ2
t

characterizes how fast

the OT-ODE approaches X0, in a similar vein to the noise

scheduler in SGM (Nichol & Dhariwal, 2021). With this

interpretation in mind, we introduce our final result, which

complements recent advances in flow-matching (Lipman

et al., 2022) except for image-to-image problem setups.

Corollary 3.5. For sufficiently small βt := β that remains

constant over t, we have vt =
Xt−X0

t
and µt = (1−t)X0+

tX1, which recover the OT displacement (McCann, 1997).

5
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Table 1. Comparison of different diffusion models in boundary

distributions and tractability of forward and backward drifts. Note

that I2SB requires pair information compared to standard SB.

Model p(X0) p(X1) ∇ logΨ ∇ logΨ̂

(C)SGM pA N (0, I) 0 tractable

I2SB pA pB(·|X0) intractable tractable

SB pA pB(·) intractable intractable

3.4. Comparison to Standard Conditional Diffusion Model

I2SB can be thought of as a new class of conditional diffu-

sion models that better leverages the degraded images as the

structurally informative priors. It differs from the standard

conditional SGM (CSGM; Rombach et al. (2022); Saharia

et al. (2022)), which simply constructs a conditional score

function with the newly available information (in this case,

the degraded images) as an additional input. The generative

denoising process in CSGM remains the same as the SDE

(2) in SGM that starts from a Gaussian prior. Intuitively, it

is more efficient to learn the direct mappings between clean

and degraded images given that they are already close to

each other. We summarize the comparison of I2SB with

other diffusion models in Table 1.

4. Related Work

Conditional SGMs (CSGMs) for image restoration refers

to a class of diffusion models that bias the generative pro-

cesses (Song et al., 2020b) toward the underlying intact

image of some degraded measurements. This is typically

achieved by conditioning the network with the degraded

images via, e.g., concatenation or attention (Rombach et al.,

2022). CSGMs have demonstrated impressive results in

many restoration tasks such as deblurring (Whang et al.,

2022), super-resolution (Saharia et al., 2021), and inpaint-

ing (Saharia et al., 2022); yet, all of them start the generative

processes from noise, which has little structural information

of the clean data distribution. Pandey et al. (2022) explored

a new reparametrization of the linear forward SDE to refine

a VAE’s output. In contrast, our I2SB is built on a tractable

SB framework and is the first to directly bridge clean and

degraded image distributions for image restoration.

Diffusion-based inverse model (DIM) combines inverse

problem techniques (Song et al., 2021b) with the diffusion

priors (Ramesh et al., 2022; Wang et al., 2022a) and aims to

restore the underlying clean image signal from the (noisy)

measurement given by the degraded image. DIM typically

performs projection at each generative step via, e.g., Baye’s

rule (Chung et al., 2022b; Song et al., 2022) so that the

generation best aligns with the observed measurement. This,

however, requires knowing the degraded operators, whether

linear (Kawar et al., 2022a; Wang et al., 2022b) or nonlinear

(Kawar et al., 2022b; Chung et al., 2022a), in both training

and test time. In contrast, our I2SB, similar to other CS-

GMs, does not require knowing these operators, making it

generally applicable without task-specific manipulations.

5. Experiment

5.1. Experimental Setup

0.0 0.5 1.0
time t

0.6
1.2
×10 4 t

Figure 6. Symmetric

noise scheduling.

Model We parameterize ǫ(Xt, t; θ)
with U-Net (Ronneberger et al., 2015)

and initialize the network with the un-

conditional ADM checkpoint (Dhari-

wal & Nichol, 2021) trained on Ima-

geNet 256×256. Other parameteriza-

tion, e.g., preconditioning (Karras et al., 2022), is also ap-

plicable upon proper adaptation (see Appendix C.3), yet we

observed little performance difference. We set f := 0 and

consider a symmetric scheduling of βt where the diffusion

shrinks at both boundaries; see Figure 6. This is suggested

by prior SB models (De Bortoli et al., 2021; Chen et al.,

2021a). By default, we use 1000 sampling time steps for all

tasks with quadratic discretization (Song et al., 2020a).

Baselines We compare I2SB with three classes of diffu-

sion models for image restoration, namely CSGM and DIM

discussed in Section 4 and standard SB models. Specifically,

we consider Palette (Saharia et al., 2022) and ADM (Dhari-

wal & Nichol, 2021) for CSGM baselines. For DIM models,

we consider DDRM (Kawar et al., 2022a;b), DDNM (Wang

et al., 2022b), and ΠGDM (Song et al., 2022), but stress that

they require additionally knowing the corruption operators

at both training and generation. This is in contrast to CSGM

models—including Palette and I2SB. We report the results

of DIM models for completeness. Finally, for the SB base-

line, we consider CDSB (Shi et al., 2022) which extends the

work of De Bortoli et al. (2021) to conditional generation.

Evaluation We showcase the performance of I2SB in

solving various image restoration problems, including in-

painting, JPEG restoration, deblurring, and 4× super-

resolution (64×64 to 256×256), on ImageNet 256×256.

For each restoration problem, we consider 2-3 tasks by vary-

ing, e.g., the quality factors, filtering kernels, and mask

types. We keep the implementation and setup of each

restoration task the same as the baselines (Kawar et al.,

2022a;b; Saharia et al., 2022) for a fair comparison; see

Appendix C for details. For quantitative metrics, we choose

the Frechet Inception Distance (FID; Heusel et al. (2017))

and Classifier Accuracy (CA) of a pre-trained ResNet50 (He

et al., 2016). Similar to the baselines (Saharia et al., 2022;

Song et al., 2022), we report super-resolution results on the

full ImageNet validation set and report the remaining results

on a 10k validation subset.3

3https://bit.ly/eval-pix2pix
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Table 2. 4× super-resolution results w.r.t different filters. We

report FID and Classifier Accuracy (CA, unit:%) on a pre-trained

ResNet50. In all Tables 2 to 5, dark-colored rows denote methods

requiring additional information such as corruption operators, as

opposed to conditional diffusion models like Palette and our I2SB.

Filter Method FID ↓ CA↑

Pool

DDRM (Kawar et al., 2022a) 14.8 64.6

DDNM (Wang et al., 2022b) 9.9 67.1

ΠGDM (Song et al., 2022) 3.8 72.3

ADM (Dhariwal & Nichol, 2021) 3.1 73.4

CDSB (Shi et al., 2022) 13.0 61.3

I2SB (Ours) 2.7 71.0

Bicubic

DDRM (Kawar et al., 2022a) 21.3 63.2

DDNM (Wang et al., 2022b) 13.6 65.5

ΠGDM (Song et al., 2022) 3.6 72.1

ADM (Dhariwal & Nichol, 2021) 14.8 66.7

CDSB (Shi et al., 2022) 13.6 61.0

I2SB (Ours) 2.8 70.7

Table 3. JPEG restoration w.r.t different quality factors (QF).

QF Method FID-10k ↓ CA↑

DDRM (Kawar et al., 2022b) 28.2 53.9

ΠGDM (Song et al., 2022) 8.6 64.1

5 Palette (Saharia et al., 2022) 8.3 64.2

CDSB (Shi et al., 2022) 38.7 45.7

I2SB (Ours) 4.6 67.9

DDRM (Kawar et al., 2022b) 16.7 64.7

ΠGDM (Song et al., 2022) 6.0 71.0

10 Palette (Saharia et al., 2022) 5.4 70.7

CDSB (Shi et al., 2022) 18.6 60.0

I2SB (Ours) 3.6 72.1

5.2. Experimental Results

I2SB surpasses standard CSGM on many tasks Ta-

bles 2 to 5 summarize the quantitative results on each restora-

tion task. We use the official values reported by each base-

line and, if not available, compute them using the official

implementations with default hyperparameters, except for

Palette on deblurring and inpainting tasks which we im-

plemented by ourselves. I2SB clearly surpasses standard

CSGMs such as Palette and ADM on six out of nine tasks,

including super-resolution (Bicubic), JPEG restoration (for

both QFs), and inpainting (for all masks). Despite that ADM

and Palette obtain higher CA on super-resolution (Pool) and

both deblurring tasks, I2SB yields lower, hence better, FID.

I2SB matches DIM without knowing corrupted opera-

tors and outperforms standard SB on all tasks Com-

pared to DIM models, I2SB provides a competitive alter-

native with similar performance yet without knowing the

corrupted operators during either training or generation. In

fact, I2SB achieves state-of-the-art FID on seven out of nine

tasks and set new records for CA on JPEG restoration (both

Table 4. Inpainting results w.r.t different masks.

Mask Method FID-10k ↓ CA↑

DDRM (Kawar et al., 2022a) 24.4 62.1

ΠGDM (Song et al., 2022) 7.3 72.6

Center DDNM (Wang et al., 2022b) 15.1 55.9

128×128 Palette (Saharia et al., 2022) 6.1 63.0

CDSB (Shi et al., 2022) 50.5 49.6

I2SB (Ours) 4.9 66.1

Freeform
10%-20%

DDRM (Kawar et al., 2022a) 9.7 67.6

DDNM (Wang et al., 2022b) 3.2 73.6

Palette (Saharia et al., 2022) 4.0 73.7

CDSB (Shi et al., 2022) 8.5 71.2

I2SB (Ours) 2.9 74.9

DDRM (Kawar et al., 2022a) 8.6 71.9

ΠGDM (Song et al., 2022) 5.3 75.3

Freeform DDNM (Wang et al., 2022b) 4.2 70.8

20%-30% Palette (Saharia et al., 2022) 4.1 71.8

CDSB (Shi et al., 2022) 16.5 64.5

I2SB (Ours) 3.2 73.4

Table 5. Deblurring results w.r.t different kernels.

Kernel Method FID-10k ↓ CA↑

DDRM (Kawar et al., 2022a) 9.9 68.0

DDNM (Wang et al., 2022b) 3.0 75.5

Uniform Palette (Saharia et al., 2022) 4.1 74.0

CDSB (Shi et al., 2022) 15.5 65.1

I2SB (Ours) 3.9 73.7

DDRM (Kawar et al., 2022a) 6.1 72.5

DDNM (Wang et al., 2022b) 2.9 75.6

Gaussian Palette (Saharia et al., 2022) 3.1 75.4

CDSB (Shi et al., 2022) 7.7 71.1

I2SB (Ours) 3.0 75.0

QFs) and inpainting (Freeform 10-20%). Finally, I2SB out-

performs CDSB on all restoration tasks by a large margin.

These results highlight I2SB as the first nonlinear diffusion

model that scales to high-dimensional applications.

I2SB yields interpretable & efficient generation As

I2SB directly constructs diffusion bridges between two do-

mains, it generates more interpretable processes that progres-

sively restore the intact images from the degradations; see

Figure 7. More interpretable generation also implies sam-

pling efficiency. Since the clean and degraded images are

typically close to each other, the generation of I2SB starts

from a much more structurally informative prior compared

to random noise. We validate these concepts in Figures 8

and 9 by tracking how the performance of I2SB and Palette

changes as the number of function evaluation (NFE) de-

creases in sampling. For a fair comparison, we train both

models with 1000 discrete steps and sample with DDPM (4)

so that they differ mainly in the boundary distributions, i.e.,

pB(·|X0) vs. N (0, I). From Figure 8, we see that across

7
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t=1 (input) t = 2/3 t = 1/3 t = 0 (output) Reference

Figure 7. I2SB features more natural and interpretable generative

diffusion processes from degraded to clean images. Top: JPEG

restoration (QF=5). Bottom: 4× super-resolution (Bicubic).
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Figure 8. Quantitative comparison between Palette (Saharia et al.,

2022) and our I2SB across different NFEs in sampling. I2SB

enjoys much smaller performance drops as NFE decreases.

Table 6. How the performance of I2SB improves or degrades with

OT-ODE, i.e., by sampling Xt from the mean of q(Xt|X0, X1).

JPEG restoration Deblurring

QF=5 10 Uniform Gaussian

FID difference +5.3 +4.2 -0.3 -0.6

CA difference -4.7 -3.8 +6.0 +4.1

various tasks, I2SB enjoys much smaller performance drops

as NFE decreases. On inpainting (Freeform 20-30%), for

example, I2SB needs only 2∼10 NFEs while Palette needs

at least 100 NFEs to achieve the similar best performance.

Qualitatively, Figure 9 also demonstrates that I2SB clearly

outperforms Palette in the small NFE regime. Particularly

for inpainting, I2SB is able to repaint the masked region

with semantic structures with only two NFEs (and further

fills in textural details as the NFE increases). On the con-

trary, Palette tends to generate unnatural images with noisy

repainting or contrast shift when the NFE is small.

5.3. Discussions

Sampling proposals I2SB shares much algorithmic sim-

ilarity with SGM except drawing Xt from an interpo-

lation between clean and degraded images according to

q(Xt|X0, X1). This posterior differs from the distribution

induced by the forward SDE (9a) and, according to Propo-

sition 3.3, better covers regions traversed by the generative

processes. To verify this, Figure 10 shows how the perfor-
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Figure 9. Qualitative comparison between Palette (Saharia et al.,

2022) and our I2SB w.r.t. different NFE on (top) inpainting

(Freeform 20%-30%) and (bottom) deblurring (Uniform).
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50
75 corrupt images
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Figure 10. Effect of sampling proposal of Xt on JPEG restoration

(QF=5). The x-axis is the mixing ratio between (left) the distri-

bution induced by (9a) and (right) the posterior q(Xt|X0, X1).
Both metrics improve as the proposal approaches q(Xt|X0, X1).

mance changes when Xt is sampled by mixing these two dis-

tributions with different ratios during training. Clearly, both

metrics deteriorate as the sampling proposal deviates from

q(Xt|X0, X1) towards the distribution induced by (9a).

Diffusion vs. OT-ODE Table 6 reports the performance

difference when we adopt the OT-ODE in Proposition 3.4,

i.e., by sampling Xt with the mean of q(Xt|X0, X1) in both

training and generation. Our result suggests that OT-ODE

favors restoration tasks where deterministic mapping is pos-

sible (e.g., deblurring) yet is biased against those with large

uncertainties (e.g., JPEG restoration). It reexamines the role

of stochasticity in modern dynamic generative models.

General image-to-image translation Since our frame-

work does not impose any assumptions or restrictions on

the underlying prior distributions, I2SB can be applied to

general image-to-image translation by adopting the same

training and sampling procedures (Algorithms 1 and 2), ex-

cept conditioning the network additionally on the inputs,

i.e., ǫ(Xt, t,X1|θ). Aligned with the discussions in Ap-

pendix C.3, we found it beneficial when the priors have

8



Image-to-Image Schrödinger Bridge
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Figure 11. Application of our I2SB to four general image-to-image translation tasks from Pix2pix (Isola et al., 2017). We consider

ImageNet dataset for the colorization task (BW → Color) and adopt the datasets proposed by Isola et al. (2017) for the remaining three

tasks, namely edges2shoes, day2night, and edges2handbags. All images are in 256×256 resolution.

Table 7. Quantitative (FID) results on two general image-to-image

translation tasks. Our I2SB matches Pix2pix with only one NFE

and quickly outperforms it by refining the generation processes.

Pix2pix
I2SB

NFE=1 NFE=5 NFE=1000

edges→shoes 73.9 73.9 54.2 37.8

day→night 196.4 196.3 185.8 153.6

large information loss. Figure 11 demonstrates the qualita-

tive results, and Table 7 reports the FID w.r.t. the statistics

of each validation set. It is clear that our I2SB achieves

similar performance to Pix2pix (Isola et al., 2017) with one

NFE and quickly outperforms it by refining the generation

processes. These results highlight the applicability of I2SB

to general image-to-image translation tasks.

Comparison to inpainting GANs Table 8 reports the

generation quality and efficiency between two inpainting

GANs, i.e., DeepFillv2 (Yu et al., 2019) and HiFill (Yi et al.,

2020), Palette, and our I2SB. For a fair comparison, we

reduce the sampling step of all diffusion models to 1. In

other words, “I2SB (NFE=1)” generates images with one

network call. It is clear that I2SB achieves best generation

quality among all models on both tasks. Note that since all

models generate images in one network call, the difference

in their inference times is mainly due to the network size.

Limitation Despite these encouraging results, the

tractability of I2SB requires knowing paired data (e.g., clean

and degraded image pairs) during training. While paired

data is typically available at nearly no cost, especially for

image restoration tasks, it nevertheless limits the application

of I2SB to unpaired image translation tasks like CycleGAN

Table 8. Comparison between GANs (DFill and HiFill) and our

I2SB with one NFE on two inpainting tasks. We include Palette

for comparison. The inference time is measured on a V100 16G.

Mask Method
FID ↓ CA ↑ Inference time
(10k) (%) (sec/image)

DeepFillv2 6.7 71.6 0.01

Freeform HiFill 7.5 70.1 0.03

10%-20% I2SB (NFE=1) 4.1 73.4 0.14

Palette (NFE=1) 9.6 69.9 0.14

DeepFillv2 9.4 68.8 0.01

Freeform HiFill 12.4 65.7 0.03

20%-30% I2SB (NFE=1) 6.7 69.9 0.14

Palette (NFE=1) 19.8 61.8 0.14

(Zhu et al., 2017) or DDIB (Su et al., 2022). Constructing

simulation-free diffusion bridges (like our I2SB) under more

flexible setups will be an interesting future direction.

6. Conclusion

We developed I2SB, a new conditional diffusion model that

transport between clean and degraded image distributions

based on a tractable class of Schrödinger bridge. I2SB yields

interpretable generation, enjoys sampling efficiency, and

sets new records on image restoration. It will be interesting

to combine I2SB with inverse problem techniques.
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l’institut Henri Poincaré, volume 2, pp. 269–310, 1932.

Shi, Y., De Bortoli, V., Deligiannidis, G., and Doucet,

A. Conditional simulation using diffusion schrödinger

bridges. In Uncertainty in Artificial Intelligence, pp.

1792–1802. PMLR, 2022.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and

Ganguli, S. Deep unsupervised learning using nonequi-

librium thermodynamics. In International Conference on

Machine Learning, pp. 2256–2265. PMLR, 2015.

11



Image-to-Image Schrödinger Bridge

Song, J., Meng, C., and Ermon, S. Denoising diffusion im-

plicit models. arXiv preprint arXiv:2010.02502, 2020a.

Song, J., Vahdat, A., Mardani, M., and Kautz, J.

Pseudoinverse-guided diffusion models for inverse prob-

lems. In International Conference on Learning Represen-

tations, 2022.

Song, Y. and Ermon, S. Improved techniques for train-

ing score-based generative models. arXiv preprint

arXiv:2006.09011, 2020.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-

mon, S., and Poole, B. Score-based generative modeling

through stochastic differential equations. arXiv preprint

arXiv:2011.13456, 2020b.

Song, Y., Durkan, C., Murray, I., and Ermon, S. Maximum

likelihood training of score-based diffusion models. arXiv

e-prints, pp. arXiv–2101, 2021a.

Song, Y., Shen, L., Xing, L., and Ermon, S. Solving inverse

problems in medical imaging with score-based generative

models. arXiv preprint arXiv:2111.08005, 2021b.

Su, X., Song, J., Meng, C., and Ermon, S. Dual diffusion

implicit bridges for image-to-image translation. arXiv

preprint arXiv:2203.08382, 2022.

Vahdat, A., Kreis, K., and Kautz, J. Score-based

generative modeling in latent space. arXiv preprint

arXiv:2106.05931, 2021.

Vargas, F., Thodoroff, P., Lawrence, N. D., and Lamacraft,

A. Solving schrödinger bridges via maximum likelihood.

arXiv preprint arXiv:2106.02081, 2021.

Vincent, P. A connection between score matching and de-

noising autoencoders. Neural computation, 23(7):1661–

1674, 2011.

Wallace, G. K. The jpeg still picture compression standard.

Communications of the ACM, 34(4):30–44, 1991.

Wang, T., Zhang, T., Zhang, B., Ouyang, H., Chen, D., Chen,

Q., and Wen, F. Pretraining is all you need for image-

to-image translation. arXiv preprint arXiv:2205.12952,

2022a.

Wang, Y., Yu, J., and Zhang, J. Zero-shot image restora-

tion using denoising diffusion null-space model. arXiv

preprint arXiv:2212.00490, 2022b.

Whang, J., Delbracio, M., Talebi, H., Saharia, C., Dimakis,

A. G., and Milanfar, P. Deblurring via stochastic refine-

ment. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pp. 16293–

16303, 2022.

Yi, Z., Tang, Q., Azizi, S., Jang, D., and Xu, Z. Contextual

residual aggregation for ultra high-resolution image in-

painting. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pp. 7508–7517,

2020.

Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., and Huang, T. S.

Free-form image inpainting with gated convolution. In

Proceedings of the IEEE/CVF international conference

on computer vision, pp. 4471–4480, 2019.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.

Understanding deep learning (still) requires rethinking

generalization. Communications of the ACM, 64(3):107–

115, 2021.

Zhang, Q. and Chen, Y. Path integral sampler: a stochas-

tic control approach for sampling. arXiv preprint

arXiv:2111.15141, 2021.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. Unpaired

image-to-image translation using cycle-consistent adver-

sarial networks. In Proceedings of the IEEE international

conference on computer vision, pp. 2223–2232, 2017.

12



Image-to-Image Schrödinger Bridge

A. Proof

Proof of Theorem 3.1. Recall that the density evolution of

an Itô process,

dXt = ft(Xt)dt+
√

βtdWt, X0 ∼ p0 (14)

can be characterized by the Fokker Plank equation (Risken,

1996),

∂p(x, t)

∂t
=−∇ · (ft p) +

1

2
βt∆p, p(x, 0) = p0(x). (15)

Comparing (14, 15) to (9a, 6a) readily suggests that the

PDE
∂Ψ̂(x,t)

∂t
in (6a) can be viewed as the Fokker Plank

of the SDE in (9a). The equivalence Ψ̂ ≡ p(9a) holds up

to some constant which vanishes upon taking the operator

“∇ log” or in the Fokker Plank equation (since all operators

are linear). Similar interpretation can be drawn between

the PDE
∂Ψ(x,t)

∂t
and the SDE in (9b) by noticing that (6a)

can be read equivalently from the reversed time coordinate

(Chen et al., 2021a; Liu et al., 2022):




∂Ψ(x,s)
∂s

= ∇ · (Ψ̂fs) +
1
2βs∆Ψ

∂Ψ̂(x,s)
∂s

= ∇Ψ⊤fs − 1
2βs∆Ψ̂

, (16)

where s := 1− t. This suggests that Ψ(x, s) can be seen as

the density (up to some constant) of the SDE

dXs = −fs(Xs)ds+
√

βsdWs, X0 ∼ Ψ(·, 0),
which equals (9b) after substituting back t = 1− s.

Proof of Corollary 3.2. It suffices to show that the solu-

tions (10) are consistent with the necessary conditions in

(6a), i.e., they are the solutions to the two PDEs with the

coupled boundary constraints. Notice that the second PDE
∂Ψ̂(x,t)

∂t
and the constraint Ψ(·, 1)Ψ̂(·, 1) = pB(x) are sat-

isfied by construction since Ψ̂(·, 1) is the Fokker-Plank so-

lution w.r.t. the initial condition Ψ̂(·, 0) = δa(·). Hence,

it remains to be shown that the solution to the following

backward PDE

∂Ψ(x, t)

∂t
= −∇Ψ⊤ft −

1

2
βt∆Ψ, Ψ(x, 1) =

pB(x)

Ψ̂(x, 1)
(17)

satisfies the remaining boundary constraint w.r.t. pA. Pre-

cisely, since pA(x) = Ψ̂(x, 0) = δa(x), it suffices to show

the solution to (17) being Ψ(a, 0) = 1, which is indeed the

case (Zhang & Chen, 2021). For completeness, Zhang &

Chen (2021, Theorem 1) identified that the solution to the

Hamilton-Jacobi-Bellman (HJB) equation (Evans, 2010),

which relates to (17) via exponential transform (Hopf, 1950;

Caluya & Halder, 2021), with the terminal cost log pB(x)

Ψ̂(x,1)

is simply 0. Hence, we know that the solution to (17) is

Ψ(a, 0) = exp(0) = 1, which concludes the proof.

How Corollary 3.2 reduces to SGM. When pB := Ψ̂(·, 1)
and f is chosen such that the terminal distribution of the for-

ward SDE converges to a Gaussian, i.e., Ψ̂(·, 1) ≈ N (0, I),
we have Ψ(·, 1) = 1 from (10). In fact, we will have

Ψ(·, t) = 1 for all t ∈ [0, 1] since
∂Ψ(x,t)

∂t
= 0. In

this case, one can verify that the remaining boundary con-

straint holds, i.e., pA(·) = Ψ(·, 0)Ψ̂(·, 0), since we set

pA(·) = Ψ̂(·, 0) = δa(·).

Proof of Proposition 3.3. Equation (11) arises naturally by

first conditioning the Nelson’s duality (Nelson, 2020), i.e.,

q(·, t) = Ψ(·, t)Ψ̂(·, t), on a boundary pair (X0, X1),

q(Xt|X0, X1) = Ψ(Xt, t|X0)Ψ̂(Xt, t|X1).

Since Ψ(Xt, t|X0) and Ψ̂(Xt, t|X1) are solutions to

Fokker-Plank equations (see the proof of Theorem 3.1), we

can rewrite the posterior as the product of two Gaussians:

Ψ(Xt, t|X0)Ψ̂(Xt, t|X1)

= exp

(
−1

2

(‖Xt −X0‖2
σ2
t

+
‖Xt −X1‖2

σ̄2
t

))

=N (Xt;
σ̄2
t

σ̄2
t + σ2

t

X0 +
σ2
t

σ̄2
t + σ2

t

X1,
σ2
t σ̄

2
t

σ̄2
t + σ2

t

· I),

where σ2
t :=

∫ t

0
βτdτ and σ̄2

t :=
∫ 1

t
βτdτ are analytic

marginal variances (Särkkä & Solin, 2019) of the SDEs (9)

when f := 0.

We now prove (by induction) that q(Xt|X0, X1) is the

marginal density of DDPM posterior p(Xn|X0, Xn+1).
First, notice that when f := 0, p(Xn|X0, Xn+1) has an

analytic Gaussian form

p(Xn|X0, Xn+1)

= N (Xn;
α2
n

α2
n + σ2

n

X0 +
σ2
n

α2
n + σ2

n

Xn+1,
σ2
nα

2
n

α2
n + σ2

n

· I),

where we denote α2
n :=

∫ tn+1

tn
βτdτ as the accumulated

variance between two consecutive time steps (tn, tn+1). It

is clear that at the boundary tn := tN−1, we have

q(XN−1|X0, XN ) = p(XN−1|X0, XN )

since αN−1 =
∫ tN

tN−1
βτdτ = σ̄2

N−1. Suppose the relation

also holds at tn+1, it suffices to show that

q(Xn|X0, XN ) (18)

?
=

∫
p(Xn|X0, Xn+1)q(Xn+1|X0, XN )dXn+1.

Since both p and q are Gaussians, the RHS of (18) is a

Gaussian with the mean (Bishop, 2006)

α2
n

α2
n+σ2

n︸ ︷︷ ︸
σ2
n+1

X0+
σ2
n

α2
n+σ2

n︸ ︷︷ ︸
σ2
n+1

(
σ̄2
n+1 X0

σ̄2
n+1 + σ2

n+1︸ ︷︷ ︸
σ̄2
n
+σ2

n

+
σ2
n+1 XN

σ̄2
n+1 + σ2

n+1︸ ︷︷ ︸
σ̄2
n
+σ2

n

)
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=
α2
n(σ̄

2
n+1 + σ2

n+1) + σ2
nσ̄

2
n+1

σ2
n+1(σ̄

2
n + σ2

n)
X0 +

σ2
n

σ̄2
n + σ2

n

XN

=
α2
nσ

2
n+1 + σ̄2

n+1(α
2
n + σ2

n)

σ2
n+1(σ̄

2
n + σ2

n)
X0 +

σ2
n

σ̄2
n + σ2

n

XN

=
σ̄2
n

σ̄2
n + σ2

n

X0 +
σ2
n

σ̄2
n + σ2

n

XN , (19)

where we utilize that σ̄2
n + σ2

n remains constant for all n
and that α2

n = σ2
n+1 − σ2

n = σ̄2
n − σ̄2

n+1 by construction.

Similarly, the RHS of (18) has the covariance

α2
nσ

2
n

α2
n + σ2

n

+
σ̄2
n+1σ

2
n+1

σ̄2
n+1 + σ2

n+1

(
σ2
n

α2
n + σ2

n

)2

=
α2
nσ

2
n(σ̄

2
n + σ2

n) + σ̄2
n+1σ

4
n

σ2
n+1(σ̄

2
n + σ2

n)

=

σ2
n

[
α2
n(σ̄

2
n +��σ

2
n) + (σ̄2

n −��α
2
n)σ

2
n

]

σ2
n+1(σ̄

2
n + σ2

n)
=

σ2
nσ̄

2
n

σ̄2
n + σ2

n

. (20)

Equations (19) and (20) validate the equality in (18), and

we conclude the proof by induction.

Proof of Proposition 3.4. At the infinitesimal limit when

βt → 0, the variance of q, i.e.,
σ2
t
σ̄2
t

σ̄2
t
+σ2

t

, vanishes as the

numerator converges faster than the denominator toward

zero. On the contrary, its mean remains unchanged as

both ratios (
σ̄2
t

σ̄2
t
+σ2

t

,
σ2
t

σ̄2
t
+σ2

t

) preserve. Hence we know the

deterministic solution at the infinitesimal limit is simply

Xt = µt(X0, X1). In this case, the diffusion of the SDE,

i.e., “
√
βttdWt”, vanishes while its drift approaches a vector

field of the form:

βt∇ logΨ̂(Xt|X0) =
βt

σ2
t

(Xt −X0) := vt(Xt|X0).

Hence, we have the OT-ODE in (13).

Proof of Corollary 3.5. When βt := β is a sufficiently

small constant, the ratio βt

σ2
t

decays in the order of O(1/t)

since σ2
t =

∫ t

0
βτdτ = β · t. With this, Proposition 3.4

yields µt = (1− t)X0 + tX1 and vt =
Xt−X0

t
. Intuitively,

the OT-ODE trajectories move with a constant velocity from

X1 toward X0.

B. Introduction to Schrödinger Bridge

The Schrödinger bridge problem was originally introduced

quantum mechanics (Schrödinger, 1931; 1932) and later

draws broader interests with its connection to optimal

transport (Léonard, 2013; Dai Pra, 1991). The dynamic

Schrödinger bridge (Pavon & Wakolbinger, 1991; Léonard,

2012) is typically defined as

min
Q∈Π(pA,pB)

DKL(Q||P),

where Π(pA, pB) is a set of path measure with the marginal

densities pA and pB at the boundaries. Relating the path

measures Q and P respectively to some controlled and un-

controlled diffusion processes leads to the following stochas-

tic optimal control (SOC) formulation:

min
u(Xt,t)

E

[∫ 1

0

1

2
‖u(Xt, t)‖dt

]

s.t. dXt = [ft(Xt) + u(Xt, t)]dt+
√

βtdWt

X0 ∼ pA, X1 ∼ pB

(21)

The programming (21) seeks an optimal control process

u(Xt, t) such that the energy cost accumulated over the time

horizon [0, 1] is minimized while obeying the distributional

boundary constraints. The coupled PDEs in (6a) result di-

rectly from applying the Hopf-Cole transform (Hopf, 1950;

Cole, 1951) to the necessary conditions to (21). This yields

u⋆(Xt, t) = βt∇ logΨ(Xt, t) and hence the SDE in (5a).

Similar reasoning applies to (5b), where βt∇ logΨ̂(Xt, t)
serves as the optimal control process to a SOC similar to

(21) except running backward in time.

C. Experiment Details

Official Pytorch implementation of our I2SB can be found

in https://github.com/NVlabs/I2SB.

C.1. Additional Experimental Setup

Deblurring and JPEG restoration We adopt the imple-

mentation of blurring kernels from Kawar et al. (2022a) and

the implementation of JPEG quality factor from Kawar et al.

(2022b). Following the baselines (Saharia et al., 2022; Song

et al., 2022), the FID is evaluated over the reconstruction re-

sults on the 10k ImageNet validation subset,4 and compared

against the statistics of the entire ImageNet validation set.

4× super-resolution We adopt the same implementation

of filters from DDRM (Kawar et al., 2022a). We first gener-

ate 64×64 images then upsample them to 256×256 before

passing into I2SB, since the model transports between clean

and degraded images of the same size. Following the base-

lines (Saharia et al., 2022; Song et al., 2022), the FID is

evaluated over the reconstruction results on the entire Ima-

geNet validation set, and compared against the statistics of

the entire ImageNet training set.

Inpainting We use the same freeform masks provided by

Palette (Saharia et al., 2022),4 which contains 10000 masks

for both 10%-20% and 20%-30% ratios. We randomly se-

lect these masks during training and iterate them through

the 10k ImageNet validation subst4 for reproducible eval-

uation. We follow the same instructions from Palette and

4https://bit.ly/eval-pix2pix
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Table 9. Additional ablation study on the effect of stochasticity

on inpainting tasks. OT-ODE exhibits severe degradation with

noiseless masks but yields slightly better results after injecting

additional noise to the masked regions of degraded inputs.

mask mask + noise

Center Ff. 20-30% Center Ff. 20-30%

FID diff. +50.9 +13.0 -0.1 -0.1

CA diff. -14.1 -7.3 0.0 +0.7

set up I2SB such that (i) the training loss is restricted to

only the masked regions, (ii) the masked regions are filled

with Gaussian noise as inputs (see Figure 13), and (iii) the

model predicts only the masked regions during generation.

The FID is evaluated over the reconstruction results on the

10k ImageNet validation subset and compared against the

statistics of the entire ImageNet validation set.

Evaluation We use cleanfid package5 with the op-

tion “legacy pytorch” to compute FID values. For the

reference statistics, we take the ones provided by ADM

(Dhariwal & Nichol, 2021) for the ImageNet training set

and compute the ones for the ImageNet validation set by re-

sizing and center-cropping the images to 256×256, similar

to ADM. The Classifier Accuracy is based on a pre-trained

ResNet50 (He et al., 2016). Following the suggestions from

Saharia et al. (2022), we avoid pixel-level metrics like PSNR

and SSIM as they tend to prefer blurry regression outputs

(Menon et al., 2020; Ledig et al., 2017).

Palette implementation We implement our own Palette

for the results in Tables 4, 5 and 8 and Figures 8 and 9. For

all the other tasks, we use the official values reported in

their paper. For a fair comparison, we initialize its network

of Palette with the same checkpoint from unconditional

ADM (Dhariwal & Nichol, 2021) on ImageNet 256×256

and concatenate the first layer with conditional inputs, fol-

lowing Rombach et al. (2022). The SDE uses the same 1000

time steps with quadratic discretization similar to I2SB.

C.2. Additional Qualitative Results

Figures 13 to 16 provide additional qualitative results on

each restoration tasks, and Figures 17 to 19 provide addi-

tional examples comparing between Palette and I2SB w.r.t.

various NFE sampling. Finally, Figure 20 demonstrates that

I2SB is able to generate diverse samples.

C.3. Additional Discussions

More Ablation Study on OT-ODE Table 6 shows how

OT-ODE seems to disfavor restoration tasks with large un-

5https://github.com/GaParmar/clean-fid

0.0 0.5 1.0
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cint

0.0 0.5 1.0
time t

1.0

1.2

cskipt

Eq. (12)
Eq. (23)

0.0 0.5 1.0
0.0

0.2

coutt

Figure 12. The numerical values of the coefficients cin
t , cskip

t , cout
t

adopted in (12, 23) for training ǫ(Xt, t; θ), where Xt interpolates

between clean and corrupted image pair (X0, X1).

certainties. We conjecture that it is due to the severe informa-

tion lost in degraded inputs that hinders the reconstruction of

deterministic mapping. This is validated in Table 9, where

we compare the performance difference on inpainting tasks

with or without injecting Gaussian noise to the masked re-

gions. OT-ODE exhibits severe degradation without any

stochasticity but yields comparable results after injecting

additional noise to the masked regions of degraded inputs.

Other Parameterization In additional to the standard

rescaled score function in (12), we may follow Karras et al.

(2022) by considering

‖ǫ(cin
t ·Xt, t; θ)−

cskip
t ·Xt −X0

cout
t

‖, (22)

where cin
t , c

skip
t , cout

t ∈ R are time-varying coefficients such

that (i) the inputs and outputs of ǫ have unit variance and

(ii) the approximation error induced from ǫ are minimized.

In our cases, since Xt now interpolates between clean and

corrupted image pairs (rather than images with i.i.d. noises),

we re-derive these coefficients in a more general form given

estimated Var[Xt] and Cov[X0, Xt]:

cin
t = 1√

Var[Xt]
, cskip

t = Cov[X0,Xt]
Var[Xt]

,

cout
t =

√
Var[X0]− Cov[X0,Xt]

2

Var[Xt]
.

(23)

These coefficients can be obtained by Var[cinXt] = 1 and

Var

[
cskipXt −X0

cout

]
= 1

⇒ c2skipVar[Xt] + Var[X0]− 2cskipCov[Xt, X0] = c2out.

Choosing cskip such that c2out is minimized yields (23). Fig-

ure 12 summarizes the difference between (12) and (23). In

practice, we find their empirical differences negligible.

Remark C.1 (How (23) recovers Karras et al. (2022)). In

the specific case when Xt := X0 + ǫ, X0 has variance σ2
data,

and ǫ is i.i.d. noise with variance σ2, we have

Var[Xt] = σ2
data + σ2

Cov[X0, Xt] = Var[X0] + Cov[X0, ǫ] = σ2
data.

(24)

Substituting (24) into (23) yields the coefficients suggested

in Karras et al. (2022).

15

https://github.com/GaParmar/clean-fid


Image-to-Image Schrödinger Bridge

Degraded Image t=1 (input) t = 0.75 t = 0.50 t = 0.25 t = 0 (output) Reference

Figure 13. Generative processes of I2SB on inpainting tasks. Top 3 rows: Center 128×128 mask. Middle 3 rows: Freeform 10%-20%

mask. Bottom 3 rows: Freeform 20%-30% mask.
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Degraded Image t=1 (input) t = 0.75 t = 0.50 t = 0.25 t = 0 (output) Reference

Figure 14. Generative processes of I2SB on JPEG restoration tasks. Top 5 rows: QF=5. Bottom 3 rows: QF=10.
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Degraded Image t=1 (input) t = 0.75 t = 0.50 t = 0.25 t = 0 (output) Reference

Figure 15. Generative processes of I2SB on deblurring tasks. Top 5 rows: Uniform kernel. Bottom 3 rows: Gaussian kernel.
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Degraded Image t=1 (input) t = 0.75 t = 0.50 t = 0.25 t = 0 (output) Reference

Figure 16. Generative processes of I2SB on 4× super-resolution tasks. Top 5 rows: Pool filter. Bottom 3 rows: Bicubic filter.
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Figure 17. Additional qualitative comparison between I2SB and Palette on inpainting (Center 128×128).
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Figure 18. Additional qualitative comparison between I2SB and Palette on inpainting (Freeform 20%-30%).
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Figure 19. Additional qualitative comparison between I2SB and Palette on deblurring (Uniform).

Masked Input Sample 1 Sample 2 Sample 3 Sample 4 Reference

Figure 20. Diversity of I2SB outputs on inpainting tasks.
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