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Abstract
To deal with the challenge of high cost of annotat-
ing all relevant labels for each example in multi-
label learning, single-positive multi-label learning
(SPMLL) has been studied in recent years, where
each example is annotated with only one positive
label. By adopting pseudo-label generation, i.e.,
assigning pseudo-label to each example by vari-
ous strategies, existing methods have empirically
validated that SPMLL would significantly reduce
the amount of supervision with a tolerable dam-
age in classification performance. However, there
is no existing method that can provide a theoreti-
cal guarantee for learning from pseudo-label on
SPMLL. In this paper, the conditions of the effec-
tiveness of learning from pseudo-label for SPMLL
are shown and the learnability of pseudo-label-
based methods is proven. Furthermore, based
on the theoretical guarantee of pseudo-label for
SPMLL, we propose a novel SPMLL method
named MIME, i.e., Mutual label enhancement for
sIngle-positive Multi-label lEarning and prove
that the generated pseudo-label by MIME approx-
imately converges to the fully-supervised case.
Experiments on four image datasets and five MLL
datasets show the effectiveness of our methods
over several existing SPMLL approaches.

1. Introduction
Multi-label learning (MLL) aims to train a model on the
examples that are associated with multiple labels and obtain
a predictive model that is able to predict the relevant labels
for an unknown instance accurately (Zhang & Zhou, 2013;
Liu et al., 2021). Multi-label learning has been successfully
applied to a variety of real-world applications during the
past decade, such as image annotation (Wang et al., 2009),
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text classification (Liu et al., 2017) and facial expression
recognition (Chen et al., 2020).

Comparing with multi-class-single-label learning, where an
example is associated with only one positive label, multi-
label learning requires a complete positive label set for each
example. However, it is extremely difficult to accurately
annotate each label of an example when the number of
examples or categories is large. To deal with the challenge
of high annotation cost, single-positive multi-label learning
(SPMLL) (Cole et al., 2021; Xu et al., 2022) is proposed,
where each example is annotated with only one positive
label. Additionally, as many examples contain multiple
categories but the annotation is a single label in multi-class
datasets such as ImageNet (Yun et al., 2021), SPMLL would
obtain multi-label predictors on existing numerous multi-
class datasets, which could enhance the application of MLL.

Comparing with the fully labeled case, SPMLL is a more
challenging problem, where a model trained with the single
positive labels would collapse to a trivial solution, i.e., the
model tends to predict every label as a positive one. To alle-
viate the problem, pseudo-label generation, i.e., assigning
pseudo-label to each example by various strategies, has been
extensively utilized in previous SPMLL methods. (Cole
et al., 2021) initializes all unannotated labels as negative
ones and updates the pseudo-labels as learnable parameters
with a regularization to constrain the number of expected
positive labels. (Xu et al., 2022) employs variational la-
bel enhancement (Xu et al., 2023; 2021) to recover latent
soft pseudo-labels. (Zhou et al., 2022) adopts asymmetric-
tolerance strategies for pseudo-labels cooperating with an
entropy-maximization loss. (Xie et al., 2022) recovers the
pseudo-labels leveraging the manifold structure information
learned by contrastive learning.

By adopting pseudo-label generation, existing methods have
empirically validated that SPMLL would significantly re-
duce the amount of supervision with a tolerable damage in
classification performance. However, there is no existing
method that can provide a theoretical guarantee for learn-
ing from pseudo-label on SPMLL. In this paper, the con-
ditions of the effectiveness of learning from pseudo-labels
for SPMLL are shown and the learnability of pseudo-label-
based methods is proven. Firstly, for any pseudo-label of an
instance, it must not always be mislabeled. Secondly, from
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a data-generative perspective, for any positive label of an
instance, there should be a non-zero probability of being
selected as the only single positive label.

Based on the theoretical guarantee of pseudo-label for
SPMLL, we propose a novel SPMLL method named Mutual
label enhancement for sIngle-positive Multi-label lEarning
(MIME). Specifically, label-specific features are learned
from the perspective of mutual information for reducing the
complexity of original features and preserving their essential
characteristics for a certain label. In addition, we prove that
the generated pseudo-labels by MIME will approximately
converge to the fully-supervised case. The contributions are
summarized as follows:

• Theoretically, we for the first time provide the condi-
tions of the effectiveness on pseudo-label for SPMLL
and demonstrate the learnability of pseudo-label-based
methods.

• Practically, we propose a novel pseudo-label gener-
ation method named MIME for SPMLL, which is
theoretically-guaranteed that the generated pseudo-
labels by MIME will approximately converge to the
fully-supervised case.

Experiments on four multi-label image classification
(MLIC) datasets and five MLL datasets show the effec-
tiveness of our methods over several existing SPMLL ap-
proaches.

2. Related Work
Multi-label learning is a type of supervised machine learning
technique where an instance can be assigned multiple labels
simultaneously. To learn from MLL examples, label corre-
lations have been extensively studied, which can be divided
into first-order, second-order, and high-order correlations.
First-order focuses on extending binary classification algo-
rithms to multi-label learning, such as treating each label
as a separate binary classification problem (Boutell et al.,
2004; Read et al., 2011). Second-order models label cor-
relations through pairwise label correlations (Elisseeff &
Weston, 2001; Fürnkranz et al., 2008). High-order considers
the correlations between multiple labels, such as utilizing
graph convolutional neural networks to mine the correla-
tions information between all label nodes (Chen et al., 2019).
In addition, there has been a growing interest in the use of
label-specific features. Label-specific features are features
specifically designed to capture the characteristics of a par-
ticular label and improve the performance of the models (Yu
& Zhang, 2022; Hang & Zhang, 2022).

In reality, it is intractable to accurately annotate each label of
each instance for multi-label learning due to the high volume

of the output space. Then multi-label learning with miss-
ing labels (MLML) is proposed (Sun et al., 2010). MLML
methods are mainly based on low-rank, embedding, and
graph-based models. The presence of label correlations
suggests that the output space is of low-rank (Liu et al.,
2021), which has been widely used to complement the miss-
ing entries of a label matrix (Xu et al., 2013; Yu et al.,
2014; Xu et al., 2016). Another prevalent approach is to
follow the paradigm of embedding techniques that map the
label vectors to a low-dimensional space where the features
and labels are usually jointly embedded in to explore the
complementary between feature space and label space (Yeh
et al., 2017; Wang, 2019). Furthermore, the graph-based
model is a popular solution for MLML, which constructs a
label-specific graph for each label from a feature-induced
similarity graph and adds a manifold regularization to the
empirical risk minimization framework (Sun et al., 2010;
Wu et al., 2014).

As an extreme case of multi-label learning with missing
labels, only one of the multiple positive labels can be ob-
served in SPMLL. In the earliest work, all unannotated
labels are initialized as negative ones and the pseudo-labels
are updated as learnable parameters with a regularization
to constrain the number of expected positive labels (Cole
et al., 2021). Besides, the latent soft labels are recovered in a
label enhancement process to train the multi-label classifier
(Xu et al., 2022). Additionally, asymmetric pseudo-label is
proposed which adopts asymmetric-tolerance strategies for
pseudo-labels cooperating with an entropy-maximization
loss (Zhou et al., 2022). Furthermore, (Xie et al., 2022)
designs a label-aware global consistency regularization to
recover the pseudo-labels leveraging the manifold structure
information learned by contrastive learning.

3. Preliminaries
3.1. Multi-Label Learning

Multi-label learning (MLL) aims to train a model on the
examples that are associated with multiple labels and obtain
a predictive model that is able to predict the relevant labels
for an unknown instance accurately. Let X = Rq denote the
instance space and Y = {0, 1}c denote the label space with
c classes. Given the MLL training set D = {(xi,yi)|1 ≤
i ≤ n} where xi ∈ X is a q -dimensional instance and yi ∈
Y is its corresponding labels. Here, yi = [y1i , y

2
i , . . . , y

c
i ]

where yji = 1 indicates that the j-th label is a relevant
label associated with xi and yji = 0 indicates that the j-th
label is irrelevant to xi. Multi-label learning is intended
to produce a multi-label classifier in the hypothesis space
h ∈ H : X 7→ Y that minimizes the following classification
risk:

R(h) = E(x,y)∼p(x,y) [L(h(x),y)] , (1)
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where L : X × Y 7→ R+ is a multi-label loss function that
measures the accuracy of the model in fitting the data.

The hamming loss is a widely used loss function for multi-
label learning which concerns how many instance-label
pairs are misclassified (Gao & Zhou, 2011; Wu & Zhou,
2017). For a given classifier h : X 7→ Y , the hamming loss
is given by:

Rham(h) = E(x,y)∼p(x,y)[
1

c

c∑
j=1

1(hj(x) ̸= yj)], (2)

where 1(·) is an indicator function and hj is the j-th output
label of the multi-label classifier.

3.2. Single-Positive Multi-Label Learning

For single-positive multi-label learning (SPMLL), each in-
stance is annotated with only one positive label. Given the
SPMLL training set D̃ = {(xi, γi)|1 ≤ i ≤ n} where
γi ∈ {1, 2, . . . , c} denotes the only observed single positive
label of xi. The task of SPMLL is to induce a multi-label
classifier h ∈ H : X 7→ Y from D̃, which can assign the
unknown instance with a set of relevant labels.

Pseudo-label generation, which aims to assign pseudo-
label to each example by various strategies, has been ex-
tensively utilized in previous SPMLL methods. Let l =
[l1, l2, . . . , lc] denote the pseudo-labels generated by some
methods where lj = 1 indicates that j-th label is a relevant
label and vice versa. Here, lγ is usually fixed as 1 where
γ is the label index of the only single positive label of x.
Add the generated pseudo-labels to the dataset D̃, a dataset
with pseudo-labels D̄ = {(xi, γi, li)|1 ≤ i ≤ n} is ob-
tained. For a given classifier h : X 7→ Y , the hamming
loss of the classifier trained by the SPMLL training set with
pseudo-labels D̄ is given by:

R̂ham(h) =
1

nc

n∑
i=1

c∑
j=1

1(hj(xi) ̸= lji ). (3)

An Empirical Risk Minimizing (ERM) learner A for H is
a function A : ∪∞

n=0(X × Y)n 7→ H. The ERM learner
for hypothesis space H returns a hypothesis h ∈ H with
minimizing the hamming loss of the classifier trained by
pseudo-labels on the SPMLL training set D̄.

A(D̄) = argmin
h∈H

R̂ham(h). (4)

It is noticed that in the implementation, the hamming loss is
often replaced by binary cross entropy loss (BCE) for con-
venience of derivation in previous SPMLL methods (Cole
et al., 2021; Xu et al., 2022; Xie et al., 2022).

4. Pseudo-Label Generation for SPMLL
Existing methods have empirically demonstrated that
SPMLL can reduce supervision with a tolerable reduction
in classification performance by utilizing pseudo-label gen-
eration. Nevertheless, no existing method is able to provide
a theoretical guarantee for pseudo-label on SPMLL. In this
section, two conditions under which pseudo-label-based
methods is effective for SPMLL is discussed. Firstly, any
pseudo-label of an instance should not always be misanno-
tated; In addition, any positive label assigned to an instance
should have a non-zero probability of being selected as the
only positive label.

4.1. Small Unreliability Degree Condition

We define the unreliability degree of pseudo-labels as:

ξ = sup
(x,y,l)∼p(x,y,l),

j∈{1,2,...,c}

Pr(lj ̸= yj). (5)

The unreliability degree describes how much the pseudo-
labels generated by some pseudo-label-based methods are
different from the ground-truth labels. If ξ = 0, then with
probability one there are no mislabeled pseudo-labels. Intu-
itively, a model trained with pseudo-labels is more effective
if the generated pseudo-labels method is more accurate. The
following is a theoretical explanation of this intuition.

Theorem 4.1. Suppose a SPMLL pseudo-label-based
method has an unreliability degree of pseudo-label ξ, 0 ≤
ξ < 1, Let θ1 = c log 2

1+ξ , and suppose the Natarajan
dimension of the hypothesis space H is dH, define

n0(H, ϵ, δ) =
4

θ1ϵ

(
dH

(
log (4dH) + 2c log c

+ log
1

θ1ϵ

)
+ log

1

δ
+ 1

)
.

Then when n > n0(H, ϵ, δ), Rham(A(D̄)) < ϵ with proba-
bility 1− δ.

The proof is provided in Appendix A.1. The unreliability
degree of the generated pseudo-labels should satisfy the
small unreliability degree condition, i.e., ξ < 1. If ξ = 1,
there exists at least one pseudo-label that always differs
from its ground-truth label. Then the always mislabeled
pseudo-label is unlearnable for the ERM learner.

4.2. Non-Zero Minimum Positive Label Sampling
Probability Condition

The small unreliability degree is a condition focusing on
the pseudo-label methods. In this section, we will give a
condition from a data-generative perspective and demon-
strate the learnability of SPMLL. The minimum positive
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label sampling probability is defined as:

τ = inf
(x,y,γ)∼p(x,y,γ),
yj=1,j∈{1,2,...,c}

Pr (j = γ) . (6)

The minimum positive label sampling probability describes
the minimum probability of the positive labels to be sampled
as the only single positive label of an instance.

Theorem 4.2. Suppose a SPMLL problem has τ > 0, Let
θ2 = c log 2

2−τ , and suppose the Natarajan dimension of
the hypothesis space H is dH, define

n0(H, ϵ, δ) =
4

θ2ϵ

(
dH

(
log (4dH) + 2c log c

+ log
1

θ2ϵ

)
+ log

1

δ
+ 1

)
.

Then when n > n0(H, ϵ, δ), R(A(D̄)) < ϵ with probability
1− δ.

The proof is provided in Appendix A.2. Under the condition
that each positive label of each instance is capable of being
sampled as the single positive label (τ > 0), although the
pseudo-labels are randomly labeled, i.e., ξ = 1, the ERM
learner can still return an ideal hypothesis. If τ = 0, there
exists at least one positive label that is not possible to be
sampled as the single positive label. Then this label is
unlearnable for the ERM learner.

5. The MIME Approach
The MIME approach designs a target function from the per-
spective of mutual information, which can simultaneously
train the model and update the pseudo-labels in a label en-
hancement process (Xu et al., 2023; 2021). Specifically,
label-specific features (Yu & Zhang, 2022) are induced by
the information bottleneck (Tishby et al., 2000; Alemi et al.,
2017) principle, reducing the complexity of original features
while preserving its essential characteristics for a certain
label. Then the learned label-specific features can further as-
sist in improving the prediction of the model and estimating
the mutual information. Subsequently, the pseudo-labels can
be updated more precisely based on the estimated mutual
information.

Consider x and yj as random variables of the original fea-
tures and j-th label respectively, and let zj be the extracted
label-specific features of j-th label. Information bottleneck
expresses the tradeoff between the mutual information mea-
sures I(x, zj) and I(zj , yj), where I(x, zj) and I(zj , yj)
respectively quantify the amount of information that the
label-specific feature contains about the original features
and j-th label. Then we can maximize the objective func-

tion:

LIB =

c∑
j=1

I(zj , yj)− βjI(z
j ,x). (7)

Here the goal is to learn encoding zj that is maximally
expressive about yj while being maximally compressive
about x, where βj ≥ 0 controls the tradeoff. The first
term in Eq. (7) encourages zj to be indicative of yj and
the second term encourages zj to discard the redundant
information of x.

However, for SPMLL, the original accurate supervision
label yj is unavailable for Eq. (7). Let lj be the random
variable of j-th pseudo-labels. A lower bound is obtained for
Eq. (7) under a mild assumption that H(lj |zj) ≥ H(yj |zj)
1:

LIB =

c∑
j=1

I(zj , yj)− βjI(z
j ,x)

≥
c∑

j=1

I(zj , lj)− βjI(z
j ,x).

(8)

Information entropy H(·) is a measure of the uncertainty of
a random variable. Information bottleneck believes that ex-
tracted features zj contains most of the information that can
be used to predict yj while the pseudo-labels lj is not only
related to zj , but also to other factors (such as the methods
to generate the pseudo-labels). Therefore, the uncertainty of
lj is larger than that of yj when zj is known, thus we make
the assumption that H(lj |zj) ≥ H(yj |zj). The next step
is optimizing the objective function:

L =

c∑
j=1

I(zj , lj)− βjI(z
j ,x). (9)

We use variational inference to construct a lower bound for
Eq. (9) as the approximate methods proposed in (Alemi
et al., 2017).

The joint distribution p(x, zj , lj) is decomposed as:

p(x, zj , lj) = p(zj |x, lj)p(lj |x)p(x)
= p(zj |x)p(lj |x)p(x),

(10)

where we assume p(zj |x, lj) = p(zj |x), this restriction
means that the label-specific features zj do not depend di-
rectly on the pseudo-labels lj and it only relys on the original
features x. This assumption promotes the appearance of
unsupervised learning (Saunshi et al., 2019; He et al., 2020).
The first term of Eq. (9) can be written in full as:

I(zj , lj) =

∫
p(lj , zj) log

p(lj , zj)

p(lj)p(zj)
dljdzj

=

∫
p(lj , zj) log

p(lj |zj)

p(lj)
dljdzj .

(11)

1The detail is provided in Appendix A.3.
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Algorithm 1 MIME Algorithm

Input: The SPMLL training set D̃ = {(xi, γi)|1 ≤ i ≤
n}, a threshold τ , the number of iteration I and the
number of epoch T .

1: Initialize the pseudo-labels with AN solution (assuming
unannotated labels as negative ones) and get the initial-
ized training set with pseudo-labels D̄ = {(xi, li)|1 ≤
i ≤ n}.

2: Warm up the model with Eq. (20) and initialize the
model with parameters ϕ and θ.

3: for t = 1 to T do
4: for k = 1 to I do
5: Fetch a random mini-batch B from D̄;
6: Update the parameters ϕ and θ with Eq. (20).
7: end for
8: for i = 1 to n do
9: For each instance and its pseudo-label (xi, li).

10: for j = 1 to c do
11: Add the j-th label into the positive label set and

get a new pseudo-label vector lnew
i ;

12: if ℓ(xi, l
new
i )− ℓ(x, li) ≥ τ then

13: Add the j-th label into the positive label set
and update the pseudo-label vector of xi as
lnew
i .

14: end if
15: end for
16: end for
17: end for
Output: The parameters of model ϕ and θ.

Since p(lj |zj) is intractable, q(lj |zj) is employed to ap-
proximate p(lj |zj). Based on the fact that the Kullback-
Leibler divergence is always positive:

KL
[
p(lj |zj)∥q(lj |zj)

]
=

−
∫

p(lj |zj) log
q(lj |zj)

p(lj |zj)
dljdzj ≥ 0.

(12)

we have:∫
p(lj |zj) log p(lj |zj)dlj ≥

∫
p(lj |zj) log q(lj |zj)dlj ,

(13)
then:

I(zj , lj) ≥
∫

p(lj , zj) log
q(lj |zj)

p(lj)
dljdzj

=

∫
p(lj , zj) log q(lj |zj)dljdzj +H(lj)

≥
∫

p(lj , zj) log q(lj |zj)dljdzj .

(14)

For Eq. (14), p(lj , zj) can be rewritten as p(lj , zj) =∫
p(x, lj , zj)dx =

∫
p(x)p(lj |x)p(zj |x)dx according to

the assumption p(zj |x, lj) = p(zj |x) in Eq. (10). Then a
new lower bound is given:

I(zj , lj) ≥
∫

p(x)p(lj |x)p(zj |x)

log q(lj |zj)dljdzjdx.

(15)

We now consider the second term I(zj ,x) in Eq. (9):

I(zj ,x) =

∫
p(x, zj) log

p(zj |x)
p(zj)

dzjdx. (16)

Due to the difficulty of computing the marginal distri-
bution p(zj) =

∫
p(zj |x)p(x)dx, let r(zj) be a vari-

ational approximation of p(zj). Similar to Eq. (12),
since KL[p(zj)0∥r(zj)] ≥ 0 =⇒

∫
p(zj) log p(zj)dzj ≥∫

p(zj) log r(zj)dzj , then we have:

I(zj ,x) ≤
∫

p(x)p(zj |x) log p(zj |x)
r(zj)

dxdzj . (17)

According to Eq. (15) and Eq. (17), the objective function
(9) can be bounded by:

I(zj , lj)− βjI(z
j ,x) ≥∫

p(x)p(lj |x)p(zj |x) log q(lj |zj)dljdzjdx

− βj

∫
p(x)p(zj |x) log p(zj |x)

r(zj)
dxdzj .

(18)

The empirical data distribution p(x, l) =
1
n

∑n
i=1 δxi

(x)Πc
j=1δlji

(lj) is employed to approxi-
mate the joint distribution p(x, l) = p(x)p(l|x), then we
have:

L =

c∑
j=1

I(zj , lj)− βjI(z
j ,x)

≈ 1

nc

n∑
i=1

c∑
j=1

[ ∫
p(zj |xi) log q(l

j
i |z

j)

− βjp(z
j |xi) log

p(zj |xi)

r(zj)
dzj

]
,

(19)

where the label-specific feature of j-th label zj follows
a Gaussion distribution p(zj |x) = N

(
zj |fµ

e (x), f
Σ
e (x)

)
encoded by an inference model fe that outputs both the k-
dimensional mean of zj and the k × k covariance matrix Σ.
Note that the implicit reparameterization gradient (Figurnov
et al., 2018) is employed to write p(zj |x)dzj = p(ϵ)dϵ,
which avoids the inversion of the standardization function
and makes the gradients can be computed analytically in
backward pass, where zj = f(x, ϵ) is a deterministic func-
tion of x and the Gaussian random variable ϵ.

Assuming our selection of the posterior probability distri-
bution p(zj |x) and the prior probability distribution r(zj)

5



Revisiting Pseudo-Label for Single-Positive Multi-Label Learning

facilitates the computation of an analytical Kullback-Leibler
divergence. Then the objective function Eq. (19) is rewritten
as:

L ≈ 1

nc

n∑
i=1

c∑
j=1

Eϵ∼p(ϵ)

[
− log qϕ

(
lji |fθ (xi, ϵ)

)]
+ βj KL

[
p
(
zj |xi

)
∥r
(
zj
)]

,

(20)

where ϕ and θ is the parameters of the decoder model q
and encoder model f respectively. We assume that the
prior density r(zj) is the product of standard Gaussian
and p(zj |xi) is the product of Gaussian parameterized by
the mean vector µj = [µj

1, . . . , µ
j
k] and standard deviation

vector σj = [σj
1, . . . , σ

j
k]. Then:

KL[p(zj |xi)∥r(zj)] = −1

2

k∑
i=1

(
1 + 2 log((σj

i ))

− (µj
i )

2 − (σj
i )

2

)
.

We now discuss how to update the pseudo-labels l of in-
stance x. Recall the original objective function (9), the sec-
ond term of the equation is irrelevant to the pseudo-labels
and can be ignored; the first term can be expanded by the
empirical data distribution p(x, l) = 1

n

∑n
i=1 δxi(x)δlji

(l)
as:

c∑
j=1

I(zj , lj) =

c∑
j=1

∫
p(x)p(lj |x)p(zj |x)

log
p(lj , zj)

p(lj)p(zj)
dljdzjdx

=

n∑
i=1

c∑
j=1

∫
p(zj |xi) log

p(lji |zj)

p(lji )
dzj .

(21)

For convenience, we only consider a single instance and
define a score function:

ℓ(x, l) =

c∑
j=1

∫
p(zj |x) log p(lj |zj)

p(lj)
dzj

=

c∑
j=1

Ezj∼p(zj |x)
[
log p(lj |zj)− log p(lj)

] (22)

Intuitively, the score of a function increases when a a true
positive label is added to the identified positive label set
comparing with a false positive label. The unannotated
positive labels can be identified by utilizing the property
that the score function has a larger value if the identified
positive label set is more accurate. Then, we define the
ϵ-identifiable score function as:

Definition 5.1. (ε-identifiable Score Function) Let s be
the identified label set where the labels in the set are all

positive labels and let y be a positive label that is not in the
identified label set. A score function g : X × 2[c] 7→ R+

is called ϵ-identifiable Score Function if it have g(x, s ∪
{y})− g(x, s) ≥ ε.

The following theorem is derived from this definition, which
demonstrates that Eq. (22) is a ϵ-identifiable Score Function
and it is capable of identifying the true positive label.

Theorem 5.2. g(x, s) = ℓ(x, ls) is a ε-
identifiable Score Function for all 0 < ε ≤
min1≤j≤c Ezj∼p(zj |x)

[
log p(lj=1|zj)

p(lj=0|zj)

]
, where the j-

th item of ls is 1 if j-th label is in the identified label set s
and vice versa.

The proof is provided in Appendix A.4. Initializing the
identified positive label set by adding the only positive label
to it, the other positive labels can be identified if the score
function has a larger value when a new label is added in the
identified positive label set.

MIME first initializes the pseudo-labels by assuming unan-
notated labels as negative ones and warm-up the model to
attain a fine network before it starts fitting noise (Zhang
et al., 2017). Then the steps of optimizing Eq. (20) and
enhancing the pseudo-labels are iterated alternately. The
algorithmic description is shown in Algorithm 1.

6. Experiments
6.1. Experimental Configurations

Datasets: In the experiments, following (Cole et al., 2021;
Xu et al., 2022), we employed four large scale multi-label
image classification (MLIC) datasets and five widely-used
MLL datasets (Hang & Zhang, 2022) to evaluate our pro-
posed method. The four MLIC datasets include PSACAL
VOC 2021 (VOC) (Everingham et al., 2010), MS-COCO
2014 (COCO) (Lin et al., 2014), NUS-WIDE (NUS)
(Chua et al., 2009), and CUB-200 2011 (CUB) (Wah
et al., 2011); the five MLL datasets cover a wide range
of scenarios with heterogeneous multi-label characteristics.
For each MLIC dataset, we withhold 20% of the training set
for validation. For each MLL dataset, we split the dataset
as train/validation/test set in a ratio of 80%/10%10%. One
of the positive labels is randomly selected for each train-
ing instance, while the validation and test sets remain fully
labeled. The details of these datasets are provided in Ap-
pendix A.6. Following the experimental setting in previous
SPMLL literature, Mean average precision (mAP) is em-
ployed on the four MLIC datasets (Cole et al., 2021; Xie
et al., 2022; Zhou et al., 2022) and five popular multi-label
metrics are employed on the MLL datasets including Rank-
ing loss, Hamming loss, One-error, Coverage, and Average
precision (Xu et al., 2022).
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Table 1: Predictive performance of each comparing methods on four MLIC datasets in terms of mean average precision
(mAP) (mean ± std). The best performance is highlighted in bold (the larger the better).

VOC COCO NUS CUB

AN 85.546±0.294 64.326±0.204 42.494±0.338 18.656±0.090
AN-LS 87.548±0.137 67.074±0.196 43.616±0.342 16.446±0.269
WAN 87.138±0.240 65.552±0.171 45.785±0.192 14.622±1.300
EPR 85.228±0.444 63.604±0.249 45.240±0.338 19.842±0.423

ROLE 88.088±0.167 67.022±0.141 41.949±0.205 14.798±0.613
EM 88.674±0.077 70.636±0.094 47.254±0.297 20.692±0.527

EM-APL 88.860±0.080 70.758±0.215 47.778±0.181 21.202±0.792
SMILE 86.311±0.450 63.331±0.112 43.611±0.172 18.611±0.144
LAGC 88.021±0.121 70.422±0.062 46.211±0.155 21.840±0.237

MIME 89.199±0.157 72.920±0.255 48.743±0.428 21.890±0.347

Table 2: Predictive performance of each comparing methods on MLL datasets in terms of Average precision (AP) (mean ±
std). The best performance is highlighted in bold (the larger the better).

Image Scene Yeast Rcv1subset1 Mediamill

AN 0.599±0.029 0.694±0.095 0.719±0.006 0.501±0.002 0.690±0.002
AN-LS 0.668±0.022 0.737±0.043 0.735±0.002 0.548±0.002 0.696±0.001
WAN 0.672±0.031 0.765±0.053 0.730±0.003 0.551±0.002 0.687±0.002
EPR 0.658±0.020 0.713±0.037 0.729±0.002 0.502±0.003 0.606±0.017

ROLE 0.625±0.045 0.752±0.049 0.740±0.004 0.561±0.003 0.690±0.005
EM 0.531±0.039 0.724±0.032 0.682±0.093 0.582±0.003 0.691±0.002

EM-APL 0.521±0.011 0.622±0.069 0.718±0.012 0.563±0.002 0.686±0.001
SMILE 0.755±0.032 0.801±0.060 0.721±0.002 0.581±0.001 0.687±0.002

MIME 0.777±0.028 0.824±0.035 0.753±0.002 0.594±0.009 0.694±0.006
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Figure 1: (a) The sensitivity analysis of tradeoff parameters β. (b) The sensitivity analysis of dimension of label-specific
features k. (c) The sensitivity analysis of the threshold τ . (d) The mislabeled ratio curves of pseudo-labels on Image.

Comparing methods: Our method is compared with the
following: 1) AN (Cole et al., 2021) assumes that the unan-
notated labels are negative and uses binary cross entropy
loss for training. 2) AN-LS (Cole et al., 2021) assumes that
the unannotated labels are negative and reduces the impact
of the false negative labels by label smoothing. 3) WAN
(Cole et al., 2021), in which a weight parameter is intro-
duced in order to down-weight losses in relation to negative
labels. 4) EPR (Cole et al., 2021) utilizes a regularization to
constrain the number of predicted positive labels. 5) ROLE

(Cole et al., 2021) online estimates the unannotated labels
as learnable parameters throughout training based on EPR.
6) SMILE (Xu et al., 2022), in which the latent soft labels
are recovered in a label enhancement process to train the
multi-label classifier with binary cross entropy loss. 7) EM
(Zhou et al., 2022) reduces the effect of the incorrect labels
by the entropy-maximization loss. 8) EM-APL (Zhou et al.,
2022) adopts asymmetric-tolerance pseudo-label strategies
cooperating with entropy-maximization loss and then more
precise supervision can be provided. 9) LAGC (Xie et al.,
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Table 3: Predictive performance of each comparing methods on MLL datasets in terms of Ranking loss (mean ± std). The
best performance is highlighted in bold (the smaller the better).

Image Scene Yeast Rcv1subset1 Mediamill

AN 0.336±0.051 0.204±0.084 0.197±0.005 0.099±0.001 0.055±0.000
AN-LS 0.269±0.036 0.155±0.031 0.182±0.002 0.066±0.001 0.059±0.001
WAN 0.275±0.034 0.132±0.028 0.184±0.002 0.065±0.001 0.054±0.000
EPR 0.276±0.026 0.166±0.026 0.186±0.002 0.087±0.002 0.059±0.003

ROLE 0.304±0.048 0.145±0.041 0.179±0.005 0.070±0.003 0.067±0.002
EM 0.425±0.035 0.149±0.018 0.246±0.120 0.051±0.000 0.055±0.001

EM-APL 0.431±0.031 0.220±0.051 0.191±0.005 0.059±0.001 0.055±0.001
SMILE 0.194±0.025 0.124±0.054 0.185±0.005 0.054±0.001 0.055±0.002

MIME 0.170±0.045 0.099±0.023 0.171±0.009 0.050±0.002 0.053±0.006

Table 4: Predictive performance of each comparing methods on MLL datasets in terms of One-error (mean ± std). The best
performance is highlighted in bold (the smaller the better).

Image Scene Yeast Rcv1subset1 Mediamill

AN 0.629±0.042 0.478±0.126 0.240±0.002 0.510±0.006 0.161±0.006
AN-LS 0.526±0.014 0.439±0.068 0.242±0.010 0.498±0.006 0.151±0.009
WAN 0.513±0.041 0.399±0.097 0.239±0.002 0.485±0.008 0.169±0.006
EPR 0.543±0.024 0.482±0.058 0.240±0.000 0.531±0.004 0.486±0.146

ROLE 0.596±0.066 0.409±0.066 0.237±0.010 0.480±0.007 0.167±0.028
EM 0.708±0.073 0.479±0.055 0.240±0.000 0.481±0.006 0.150±0.005

EM-APL 0.721±0.029 0.638±0.105 0.240±0.007 0.481±0.010 0.156±0.002
SMILE 0.374±0.025 0.352±0.101 0.236±0.006 0.468±0.009 0.157±0.005

MIME 0.360±0.003 0.299±0.013 0.223±0.004 0.440±0.006 0.149±0.009

2022) designs a label-aware global consistency regulariza-
tion to recover the pseudo-labels leveraging the manifold
structure information learned by contrastive learning. The
implementation details in experiments is provided in Ap-
pendix A.5.

6.2. Experimental Results

Table 1 reports the comparison results on PSACAL VOC
2021 (VOC), MS-COCO 2014 (COCO), NUS-WIDE
(NUS), and CUB-200 2011 (CUB) in terms of mAP.
Due to that the adjacency matrix used by SMILE is difficult
to obtain for the large-scale MLIC datasets, we use the
confidence outputed by the model as the soft label of the
unbiased risk estimator in the experiment. As shown in
Table 1, our approach consistently surpasses all comparative
methods.

Table 2, 3 and 4 report the results of our method and other
comparing methods on five MLL datasets in terms of Aver-
age precision, Coverage, and One-error respectively. The
results on other metrics are comparable and can be observed
in Appendix A.7. It is noticeable that data augmentation
techniques used in LAGC cannot be directly applied to the

MLL datasets where the input of each instance is a feature
vector, so we do not compare LAGC with other methods
on MLL datasets. The results demonstrate that our method
achieves superior performance compared to all the compar-
ing approaches on the majority of evaluation metrics (except
the results of Yeast and Rcv1subset1 on the metrics
Hamming loss and Coverage where our method attains a
comparable performance against SMILE).

All of the results validate that our proposed method is capa-
ble of effectively addressing SPMLL problem.

6.3. Further analysis

We investigate the effect of the tradeoff parameters β,
the dimension of label-specific features k and the thresh-
old τ . The performance curves of MIME on dataset
COCO and NUS are illustrated in Figure 1a, Figure 1b
and Figure 1c. The hyperparameters β, k and τ are
changed in the range of {10−1, 10−2, 10−3, 10−4, 10−5},
{64, 128, 256, 512, 1024} and {0.9, 0.85, 0.8, 0.75, 0.7} re-
spectively. As shown in the figures, the largest performance
gap with respect to the tradeoff parameters β and the di-
mension of label-specific features k are about 1.9% and
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1.2%. The performance curves show that our method is
robust against the choice of tradeoff parameters β and the
dimension of label-specific features k in a wide range.

Figure 1d illustrates the mislabeled ratio of the generated
pseudo-labels on Image and Scene. As shown in the
figure, the mislabeled ratio is steadily decreasing and con-
verges eventually as the epoch increases, which shows that
the unannotated positive labels are continously identified by
MIME and it is an effective pseudo-label generation method
for SPMLL.

7. Conclusion
In this paper, we study single-positive multi-label learning
and provide the conditions of the effectiveness on pseudo-
label for SPMLL and demonstrate the learnability of pseudo-
label-based methods. Furthermore, based on the theoretical
guarantee of pseudo-label for SPMLL, we propose a novel
pseudo-label generation method for SPMLL named MIME
from the perspective of mutual information. Experiments
on four MLIC datasets and five MLL datasets demonstrate
the efficacy of our method over several existing SPMLL
approaches.

8. Acknowledgments
This research was supported by the National Key Research
& Development Plan of China (2018AAA0100104), the Na-
tional Science Foundation of China (62206050, 62125602,
and 62076063), China Postdoctoral Science Foundation
(2021M700023), Jiangsu Province Science Foundation for
Youths (BK20210220), Young Elite Scientists Sponsorship
Program of Jiangsu Association for Science and Technol-
ogy (TJ-2022-078), and the Big Data Computing Center of
Southeast University.

References
Alemi, A. A., Fischer, I., Dillon, J. V., and Murphy, K. Deep

variational information bottleneck. In Proceedings of 5th
International Conference on Learning Representations,
Toulon, France, 2017.

Boutell, M. R., Luo, J., Shen, X., and Brown, C. M. Learn-
ing multi-label scene classification. Pattern recognition,
37(9):1757–1771, 2004.

Chen, S., Wang, J., Chen, Y., Shi, Z., Geng, X., and Rui, Y.
Label distribution learning on auxiliary label space graphs
for facial expression recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 13981–13990, Seattle, WA, 2020.

Chen, Z., Wei, X., Wang, P., and Guo, Y. Multi-label im-
age recognition with graph convolutional networks. In

Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5177–5186, Long
Beach, CA, 2019.

Chua, T., Tang, J., Hong, R., Li, H., Luo, Z., and Zheng,
Y. NUS-WIDE: a real-world web image database from
national university of singapore. In Proceedings of the
8th ACM International Conference on Image and Video
Retrieval, Santorini Island, Greece, 2009.

Cole, E., Aodha, O. M., Lorieul, T., Perona, P., Morris, D.,
and Jojic, N. Multi-label learning from single positive
labels. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 933–942,
virtual, 2021.

Elisseeff, A. and Weston, J. A kernel method for multi-
labelled classification. In Advances in Neural Information
Processing Systems 14, pp. 681–687, Vancouver, British
Columbia, Canada, 2001.

Everingham, M., Gool, L. V., Williams, C. K. I., Winn,
J. M., and Zisserman, A. The pascal visual object classes
(VOC) challenge. International Journal of Computer
Vision, 88(2):303–338, 2010.

Figurnov, M., Mohamed, S., and Mnih, A. Implicit reparam-
eterization gradients. In Advances in Neural Information
Processing Systems 31, pp. 439–450, Montréal, Canada,
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A. Appendix
A.1. Proof of Theorem 4.1

Firstly, the set of hypotheses with expection hamming loss at least ϵ is defined as: Hϵ = {h ∈ H : Rham(h) ≥ ϵ}.
For convenience of proof, we define the dataset z = {xi,yi, li}ni=1 where yi and li are the ground-truth labels and the
pseudo-labels generated by some methods respectively. Let Rn,ϵ be the set of n instances for which there exists an ϵ-bad
hypothesis h with zero empirical risk on the dataset with pseudo-labels:

Rn,ϵ = {z ∈ (X × Y × Y)n : ∃h ∈ Hϵ, R̂ham(h) = 0}. (23)

The final objective of this proof is to show that Pr(z ∈ Rn,ϵ) < δ. The proof includes the following two lemmas.

Lemma A.1. We introduce another dataset z′ of size n, and define the set Sn,ϵ to be the event that there exists a hypothesis in
Hϵ that makes no classification errors on the pseudo-labels of z but makes at least ϵ

2 classification errors on the ground-truth
labels of z′.

Sn,ϵ = {(z, z′) ∈ (X × Y × Y)2n : ∃h ∈ Hϵ, R̂ham(h) = 0, R̂z′(h) ≥ ϵ

2
},

where R̂z′(h) = 1
nc

∑n
i=1

∑c
j=1 1(h

j(xi) ̸= yji ) denote the empirical hamming loss on the ground-truth labels of dataset
z′. Then Pr ((z, z′) ∈ Sn,ϵ) ≥ 1

2 Pr(z ∈ Rn,ϵ), when n > 8
ϵ ln 2.

Proof. Pr ((z, z′) ∈ Sn,ϵ) is decomposed as:

Pr ((z, z′) ∈ Sn,ϵ) = Pr ((z, z′) ∈ Sn,ϵ|z ∈ Rn,ϵ) Pr(z ∈ Rn,ϵ).

Now we condiser the item Pr ((z, z′) ∈ Sn,ϵ|z ∈ Rn,ϵ). Let H(z) = {h ∈ H : R̂ham(h) = 0} be the set of hypotheses with
zero classification errors on the pseudo-labels of z. Then we have:

Pr ((z, z′) ∈ Sn,ϵ|z ∈ Rn,ϵ)

= Pr
(
∃h ∈ Hϵ ∪H(z), R̂z′(h) ≥ ϵ

2
|z ∈ Rn,ϵ

)
≥ Pr

(
h ∈ Hϵ ∪H(z), R̂z′(h) ≥ ϵ

2
|z ∈ Rn,ϵ

)
,

where h is a particular hypothesis in the last line. Since h has error at least ϵ, by adopting Chernoff bound, when n > 8
ϵ ln 2,

Pr ((z, z′) ∈ Sn,ϵ|z ∈ Rn,ϵ) >
1
2 . Then the proof is completed.

With Lemma A.1, we can bound Rn,ϵ by Sn,ϵ.

Lemma A.2. If the hypothesis space H has Natarajan dimension dH and a small unreliability degree ξ < 1, then

Pr((z, z′) ∈ Sn,ϵ) ≤ (2n)dHc2cdH exp

(
−nθ1ϵ

2

)
.

Proof. In the following proof, we consider multi-label learning as a multiple binary classification problem. Then we
decompose the dataset z and z′ as z = (x,y, l) = {xi, yi, li}nci=1 where yi is one of the c labels of instance xi and li is the
corresponding pseudo-label, each instance is repeated c times in the new dataset because each instance and its corresponding
label set is decomposed as c instance-label pairs when we treat it as a multiple binary classification problem. Similarly,
z′ = (x′,y′, l′) = {x′

i, y
′
i, l

′
i}nci=1. For convenience, j = π(yi) = π(li) is employed to denote the original label index of yi

or li.

Next we will do the swapping technique which is used in various proofs of learnability (Liu & Dietterich, 2014). Let
the instances from (x,y, l) and (x′,y′, l′) form pairs by arbitrary pairing. The two instances of each pair are selected
from (x,y, l) and (x′,y′, l′) and the two instances are both indexed by a pair index. Define a group G of swaps with
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Figure 2: Black dots denote the misclassified instances-labels for a pair of datasets (x,y,x′,y′) and white dots denote the
correctly classified instance-labels.

size |G| = 2nc and a swap σ ∈ G has an index set Jσ ⊆ {1, . . . , nc}. The result of applying a swap σ is written as
σ(z, z′) = (zσ, z′σ). Since the swap does not change the measure of exception,

2nc Pr ((z, z′) ∈ Sn,ϵ)

=
∑
σ∈G

E [Pr ((z, z′) ∈ Sn,ϵ | x,y,x′,y′)]

=
∑
σ∈G

E [Pr (σ (z, z′) ∈ Sn,ϵ | x,y,x′,y′)]

=E

[∑
σ∈G

Pr (σ (z, z′) ∈ Sn,ϵ | x,y,x′,y′)

]
,

(24)

where the expection comes from the randomness of the generated pseudo-labels (l, l′) given (x,y,x′,y′).

Let H|(x,x′) be the set of hypothesis making different classifications for (x,x′). Define set Sh
n,ϵ for each hypothesis h ∈ H

as:

Sh
n,ϵ =

{
(z, z′) : R̂ham(h) = 0, R̂z′(h) ≥ ϵ

2

}
.

By the union bound, we have ∑
σ∈G

Pr (σ (z, z′) ∈ Sn,ϵ | x,y,x′,y′,y′)

≤
∑

h∈H|(x,x′)

∑
σ∈G

Pr
(
σ (z, z′) ∈ Sh

n,ϵ | x,y,x′,y′) . (25)

Start by expanding the condition in Sh
n,ϵ, for a pair of datasets (x,y,x′,y′). let u1, u2 and u3 represent the number of

pairs for which h classifies both incorrectly, one incorrectly, and both correctly. Let vσ, 0 ≤ vσ ≤ u2 be the number of
wrongly-predicted instances swapped into the dataset (xσ,yσ), Figure 2 illustrates the situation.

There are u1 + u2 − vσ misclassified instances in (x′,y′). R̂z′(h) ≥ ϵ
2 is equivalent to u1 + u2 − vσ ≥ ϵ

2n. There are
u1 + vσ misclassified instances in (x,y). Then:

Pr
(
σ (z, z′) ∈ Sh

n,ϵ | x,y,x′,y′)
= 1

(
R̂z′σ (h) ≥ ϵ

2

) nc∏
i=1

Pr
(
hj (xσ

i ) = li
)

= 1
(
R̂z′σ (h) ≥ ϵ

2

) nc∏
i=1

Pr
(
hj (xσ

i ) = li|hj (xσ
i ) = yi

)
1(hj (xσ

i ) = yi)

+ Pr
(
hj (xσ

i ) = li|hj (xσ
i ) ̸= yi

)
1(hj (xσ

i ) ̸= yi)

≤ 1
(
R̂z′σ (h) ≥ ϵ

2

) nc∏
i=1

1(hj (xσ
i ) = yi) + ξ1(hj (xσ

i ) ̸= yi)

≤ 1
(
u1 + u2 ≥ ϵ

2
nc
)
ξu1+vσ ,

(26)
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where j = π(li) and the hypothesis is considered as a binary classification for each label. Then sum up over each swap σ,
any swap that switch the instances pairs in u1 + u3 does not change the bound in Eq. (26). Since 0 ≤ vσ ≤ u2, for each

value 0 ≤ j ≤ u2, there are 2u1+u3

(
u2

j

)
swaps that have vσ = j, therefore,

∑
σ∈G

1
(
u1 + u2 ≥ ϵ

2
nc
)
ξu1+vσ

≤ 1
(
u1 + u2 ≥ ϵ

2
nc
)
2u1+u3

u2∑
j=0

(
u2

j

)
ξu1+j

= 1
(
u1 + u2 ≥ ϵ

2
nc
)
2nc−u2ξu1(1 + ξ)u2

= 1
(
u1 + u2 ≥ ϵ

2
nc
)
2ncξu1

(
1 + ξ

2

)u2

.

(27)

When (x,y,x′,y′) and h make u1 = 0 and u2 = ϵ
2nc, the right side reaches its maximum 2nc

(
1+ξ
2

)nϵc
2

2nc Pr ((z, z′) ∈ Sn,ϵ) ≤ (2n)dHc2cdH2nc
(
1 + ξ

2

)nϵc
2

. (28)

Apply the definition of θ1 to the inequation, completes the proof.

Proof. Proof of Theorem 4.1
By combining the results of Lemma A.1 and Lemma A.2, we have Pr (z ∈ Rn,ϵ) ≤ 2(dH+1)ndHc2cdH exp

(
−nθ1ϵ

2

)
. Bound

this with δ on a log scale to obtain

(dH + 1) log 2 + dH log n+ 2dHc log c− nθ1ϵ

2
≤ log δ.

Bound log n with
(
log
(

4dH
θ1ϵ

)
− 1
)
+ θ1ϵ

4dH
n, which is usually used as a trick to get a linear form for n. Then we solve for

n to obtain the result.

A.2. Proof of Theorem 4.2

Proof. Let u1, u2 and u3 represent the number of pairs for which h classifies both incorrectly, one incorrectly, and both
correctly. Let vσ, 1 ≤ vσ ≤ u2 be the number of wrongly-predicted instances swapped into the dataset (xσ,yσ).

Let u′
1, u′

2 and u′
3 represent the number of pairs for which h classifies both incorrectly, one incorrectly, and both correctly

for the instances with the single positive labels. Let v′σ, 1 ≤ v′σ ≤ u′
2 be the number of wrongly-predicted instances swapped

into the dataset (xσ,yσ).

We consider the extreme case where ξ = 1, the pseudo-label can be randomly generated. Similarly to the proof of Theorem
4.1,

Pr
(
σ (z, z′) ∈ Sh

n,ϵ | x,y,x′,y′)
= 1

(
Rz′σ (h) ≥ ϵ

2

) nc∏
i=1

Pr
(
hj (xσ

i ) = li, j = π(li)
)

≤ 1
(
u1 + u2 ≥ ϵ

2
nc
)
(1− τ)

u′
1+v′

σ ξ(u1−u′
1)+(vσ−v′

σ)

= 1
(
u1 + u2 ≥ ϵ

2
nc
)
(1− τ)

u′
1+v′

σ ,

(29)
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therefore, ∑
σ∈G

1
(
u1 + u2 ≥ ϵ

2
nc
)
(1− τ)

u′
1+v′

σ

≤ 1
(
u1 + u2 ≥ ϵ

2
nc
)
2u1+u3

u′
2∑

j=0

(
u′
2

j

)
(1− τ)

u′
1+j

= 1
(
u1 + u2 ≥ ϵ

2
nc
)
2nc−u2 (1− τ)

u′
1 (2− τ)

u′
2

= 1
(
u1 + u2 ≥ ϵ

2
nc
)
2nc
(
2− τ

2

)u′
2
(
1

2

)u2−u′
2

(1− τ)
u′
1 .

(30)

When (x,y,x′,y′) and h make u′
1 = 0 and u2 = u′

2 = ϵ
2nc, the right side reaches its maximum 2nc

(
2−τ
2

)nϵc
2 . Next proof

is same as Theorem 4.1.

A.3. Detail of Eq. (8)

H(lj |zj) ≥ H(yj |zj)

⇔ H(lj , zj)−H(zj) ≥ H(yj , zj)−H(zj)

⇔ H(lj , zj) ≥ H(yj , zj)

⇔ H(zj) +H(lj)− I(zj , lj) ≥ H(zj) +H(yj)− I(zj , yj)

⇔ H(lj)− I(zj , lj) ≥ H(yj)− I(zj , yj)

⇔ I(zj , lj) ≤ I(zj , yj)

⇔ LIB =

c∑
j=1

I(zj , yj)− βjI(z
j ,x) ≥

c∑
j=1

I(zj
j , l

j)− βjI(z
j ,x).

A.4. Proof of Theorem 5.2

For Eq. (22), let s be the indentified label set; y be a positive label and its index is k then:

ℓ(x, ls∪{y})− ℓ(x, ls)

=

∫
p(zk|x) log p(lk = 1|zk)

p(lk)
dzk

−
∫

p(zk|x) log p(lk = 0|zk)

p(lk)
dzk

= Ezk∼p(zk|x)
[
log p(lk = 1|zk)− log p(lk = 0|zk)

]
Since the label y is a positive label, p(lk = 1|zk) > p(lk = 0|zk). Then ℓ(x, ls∪{y})− ℓ(x, ls) > 0, there is a gap ε > 0

between ℓ(x, ls∪{y}) and ℓ(x, ls) for all 0 < ε ≤ min1≤j≤c Ezj∼p(zj |x)

[
log p(lj=1|zj)

p(lj=0|zj)

]
.

A.5. Implementation Details

In our methods, the encoder of each label-specific feature has the form of p(zj |x) = N
(
zj |fµ

e (x), f
Σ
e (x)

)
. For the MLIC

datasets, fe consists of a ResNet-50 (He et al., 2016) pretrained on ImageNet and a standard self-attention block (Vaswani
et al., 2017) as used in LAGC (Xie et al., 2022). For the MLL datasets, fe is implemented by a two layer MLP. The decoder
q(l|z) is a simple linear model followed by a sigmoid function. We use the Adam optimizer (Kingma & Ba, 2015). The
batch size is selected from {8, 16} and the number of epochs is set to 10. The learning rate , weight decay, and the tradeoff
parameter β are selected from {10−2, 10−3, 10−4} with a validation set. All the comparing methods run 5 trials on each
datasets. For fairness, we employed ResNet-50 as the backbone for all comparing methods.
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Table 5: Characteristics of the MLIC datasets.

Dataset #Training #Validation #Testing #Classes

VOC 4574 1143 5823 20
COCO 65665 16416 40137 80
NUS 120000 30000 60260 81
CUB 4795 1199 5794 312

Table 6: Characteristics of the MLL datasets.

Dataset #Examples #Features #Classes #Domain

Image 2000 294 5 Images
Scene 2407 294 6 Images
Yeast 2417 103 14 Biology

Rcv1subset1 6000 944 101 Text
Mediamill 42177 120 101 Video

Table 7: Predictive performance of each comparing methods on MLL datasets in terms of Hamming loss (mean ± std). The
best performance is highlighted in bold (the smaller the better).

Image Scene Yeast Rcv1subset1 Mediamill

AN 0.229±0.000 0.161±0.010 0.306±0.000 0.029±0.000 0.045±0.000
AN-LS 0.226±0.003 0.160±0.012 0.306±0.000 0.029±0.000 0.045±0.000
WAN 0.388±0.069 0.238±0.023 0.267±0.008 0.099±0.001 0.121±0.002
EPR 0.328±0.032 0.222±0.023 0.230±0.003 0.035±0.001 0.048±0.001

ROLE 0.241±0.028 0.150±0.009 0.291±0.005 0.028±0.000 0.045±0.000
EM 0.752±0.038 0.722±0.017 0.661±0.045 0.656±0.007 0.715±0.008

EM-APL 0.724±0.094 0.822±0.001 0.680±0.009 0.743±0.010 0.736±0.020
SMILE 0.205±0.008 0.124±0.035 0.205±0.003 0.025±0.000 0.048±0.002

MIME 0.188±0.083 0.117±0.017 0.305±0.005 0.028±0.000 0.045±0.000

A.6. Details of Datasets

The details of the four MLIC datasets and the five MLL datasets are provided in Table 5 and Table 6 respectively. The basic
statics about the MLIC datasets include the number of training set, validation set, and testing set (#Training, #Validation,
#Testing), and the number of classes (#Classes). The basic statics about the MLL datasets include the number of examples
(#Examples), the dimension of features (#Features), the number of classes (#Classes), and the domain of the dataset
(#Domain).

A.7. More Results of MLL Datasets

Table 7 and 8 report the results of our method and other comparing methods on five MLL datasets in terms of Hamming loss
and Coverage respectively.
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Table 8: Predictive performance of each comparing methods on MLL datasets in terms of Coverage (mean ± std). The best
performance is highlighted in bold (the smaller the better).

Image Scene Yeast Rcv1subset1 Mediamill

AN 0.302±0.043 0.184±0.070 0.486±0.011 0.223±0.002 0.191±0.001
AN-LS 0.247±0.030 0.142±0.025 0.465±0.006 0.158±0.004 0.209±0.005
WAN 0.250±0.027 0.122±0.023 0.460±0.005 0.160±0.002 0.190±0.002
EPR 0.251±0.021 0.150±0.022 0.460±0.002 0.199±0.004 0.197±0.011

ROLE 0.274±0.035 0.134±0.034 0.472±0.007 0.174±0.007 0.238±0.007
EM 0.370±0.025 0.135±0.015 0.529±0.133 0.128±0.001 0.192±0.002

EM-APL 0.375±0.025 0.194±0.040 0.479±0.009 0.144±0.002 0.193±0.003
SMILE 0.177±0.025 0.110±0.032 0.455±0.071 0.121±0.003 0.198±0.004

MIME 0.173±0.025 0.095±0.009 0.475±0.023 0.124±0.001 0.186±0.006
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