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Abstract
This paper studies online nonstochastic control
problems with adversarial and static constraints.
We propose online nonstochastic control algo-
rithms that achieve both sublinear regret and sub-
linear adversarial constraint violation while keep-
ing static constraint violation minimal against the
optimal constrained linear control policy in hind-
sight. To establish the results, we introduce an on-
line convex optimization with memory framework
under adversarial and static constraints, which
serves as a subroutine for the constrained online
nonstochastic control algorithms. This subrou-
tine also achieves the state-of-the-art regret and
constraint violation bounds for constrained on-
line convex optimization problems, which is of
independent interest. Our experiments demon-
strate the proposed control algorithms are adap-
tive to adversarial constraints and achieve smaller
cumulative costs and violations. Moreover, our
algorithms are less conservative and achieve sig-
nificantly smaller cumulative costs than the state-
of-the-art algorithm.

1. Introduction
Online nonstochastic control paradigm has been widely ap-
plied in practice (Hazan & Singh, 2022; Suo et al., 2021;
O’Connell et al., 2022). It is a topic of great interest in both
the learning and control communities because online non-
stochastic control algorithms are robust to time-varying and
even adversarial environments (Agarwal et al., 2019a;b; Co-
hen et al., 2018; Dean et al., 2019). In an online nonstochas-
tic control problem, the learner aims to learn a controller that
minimizes the cumulative costs in a time-varying or even
adversarial environment (e.g., the adversarial cost functions
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and disturbances). Practical control systems often operate
under various constraints (e.g., safety, demand-supply, or
energy constraints), which could be unpredictable and adver-
sarial as well. For example, robots need to navigate along a
collision-free path by maintaining a minimum distance from
each other with complicated surroundings (e.g., pedestri-
ans or other robots) (Brunke et al., 2022); cloud computing
platforms should guarantee low-latency service for users
with time-varying traffic workload (Tirmazi et al., 2020).
Motivated by these applications, we focus on online non-
stochastic control problems with adversarial constraints and
propose online nonstochastic control algorithms to achieve
the minimum cost and the best constraint satisfaction.

It is a challenging task to synthesize a safe (online) con-
troller because of the conflicting objectives, i.e. minimizing
the cumulative costs while satisfying all constraints. The
traditional way to guarantee constraint satisfaction is to
incorporate the constraints into Model Predictive Control
(constrained MPC) (Mayne et al., 2005; Rawlings et al.,
2017). However, constrained MPC often introduces overly-
conservative, even infeasible, actions in the presence of sys-
tem disturbances. To address the issue, a sequence of works
have relaxed or softened the constraints in MPC (Zeilinger
et al., 2010; Wabersich et al., 2022; Raković et al., 2023).
For online nonstochatic control problems where cost func-
tions or disturbance could be arbitrary and time-varying, it
is impossible to predict the model so the constrained MPC
method is not applicable. Only a few works (Nonhoff &
Müller, 2021; Li et al., 2021) have considered online non-
stochastic control with constraints, and they only studied
“static” affine constraints on the state xt and input ut, i.e.,
Dxxt ≤ 0 and Duut ≤ 0. The work by (Nonhoff & Müller,
2021) studied an online nonstochatic control problem with
state and input constraints, but the system dynamics are
noise/disturbance-free. The work most related to ours is
(Li et al., 2021), which considers adversarial cost func-
tions and adversarial disturbance but static affine constraints.
The paper proposed a gradient descent-based control al-
gorithm (called online gradient descent with buffer zones
(OGD-BZ)) to achieve Õ(

√
T ) regret while the static affine

constraints are satisfied. However, the work assumed the
affine constraints and the knowledge of slackness of the
constraints so that robust optimization methods can be used
to construct safe/feasible regions for the affine constraints.
The method also has the issue of being over-conservative as
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constrained MPC. Moreover, the method in (Li et al., 2021)
cannot be applied to the adversarial constraints because they
are unknown to the controller before an action is taken.

In this paper, we study an online nonstochastic control prob-
lem with adversarial constraints, where the cost and con-
straint functions are revealed after the control/action has
been taken (our setting can also include static constraints).
Specifically, we consider a discrete-time, linear system as
follows

xt+1 = Axt +But + wt,

where xt is the state, ut is the control/action and wt is the
adversarial noise/disturbance at time t. The learner takes
an action ut and observe the cost function ct(xt, ut) and
constraint functions dt(xt, ut) and l(xt, ut). The goal of the
learner is to minimize the cumulative costs

PT
t=1 ct(xt, ut)

while satisfying the constraints, where the constraint viola-
tion will be measured by three different metrics: the soft
cumulative constraint violation

PT
t=1 dt(xt, ut), the hard

cumulative violation
PT

t=1 d
+
t (xt, ut), and static anytime

violation l(xt, ut), ∀t, where d+t (·) = max(dt(·), 0). We
propose a class of constrained online nonstochastic con-
trol algorithms (COCA) that guarantee sublinear regret and
sublinear constraint violation against the optimal linear con-
trollers for the constrained problems in hindsight, where the
controller knows everything apriori. Our contributions are
summarized below (in Table 1):

• We propose COCA-Soft when adversarial constraints
are measured using soft cumulative violation. The al-
gorithm is based on the Lyapunov optimization method.
COCA-Soft achieves Õ(

√
T ) regret, O(1) cumulative

soft violation for adversarial constraints, and o(1) any-
time violation for static constraints.

• When considering hard cumulative violation as the
metric, we propose COCA-Hard based on proximal
optimization methods. COCA-Hard achieves Õ(T 2/3)
regret, Õ(T 2/3) hard cumulative violation for adver-
sarial constraints, and Õ(T−1/3) anytime violation for
static constraints.

• When the cost functions are strongly-convex, we pro-
pose COCA-Best2Worlds that integrates proximal and
Lyapunov optimization methods and provides perfor-
mance guarantees in terms of both soft and hard vio-
lation metrics. COCA-Best2Worlds achieves Õ(

√
T )

regret, O(1) and Õ(
√
T ) cumulative soft and hard vio-

lation for adversarial constraints, respectively, and o(1)
anytime violation for static constraints.

To the best of our knowledge, all these results are new in
the setting of online non-stochastic control with adversarial
and general static constraints (not necessarily static affine

constraints). In this paper, we focus on presenting COCA-
Soft and COCA-Hard and defer COCA-Best2Worlds in (Liu
et al., 2023).

1.1. Related work

Online Nonstochastic Control of Dynamic System: On-
line nonstochastic control leverages online learning or data-
driven methods to design efficient and robust control algo-
rithms in an adversarial environment, where both cost func-
tions and disturbances could be adversarial (Agarwal et al.,
2019a). The main idea behind online nonstochastic control
is to design a disturbance-action controller by carefully syn-
thesizing the historical disturbance through the subroutine
of online convex optimization (OCO) (Hazan, 2016). The
initial work (Agarwal et al., 2019a) shows the disturbance-
action controller can achieve Õ(

√
T ) regret w.r.t. the opti-

mal linear controller in hindsight that knows all costs and
disturbances beforehand. The results have been refined in
(Agarwal et al., 2019b; Foster & Simchowitz, 2020) when
the cost functions are strongly-convex and have been gener-
alized to various settings block-box time-invariant system
(Plevrakis & Hazan, 2020; Simchowitz et al., 2020; Cassel
et al., 2022), the time-varying system in (Minasyan et al.,
2021), the non-linear system (Foster et al., 2020; Ghai et al.,
2022), and only with bandit feedback (Gradu et al., 2020).
Further, a neural network has been used to parameterize the
control policy in (Chen et al., 2022b) and the regret perfor-
mance is analyzed by combining OCO algorithm (Hazan,
2016) and neural-tangle kernel (NTK) theory (Jacot et al.,
2018). However, these works do not consider any adversar-
ial or static constraints.

Online Learning with Constraints: Online learning with
constraints has been widely studied in the literature (Mah-
davi et al., 2012; Sun et al., 2017; Neely & Yu, 2017; Cao
et al., 2021; Yi et al., 2021a;b; Guo et al., 2022). Existing
results can be classified according to the types of constraints,
e.g., static, stochastic, and adversarial constraints. We next
only review the papers on adversarial constraints because
they are the most related ones. The work (Sun et al., 2017)
studied OCO with adversarial constraints and established
O(

√
T ) regret and O(T 3/4) soft cumulative constraint vi-

olation. The work (Yi et al., 2021b; Guo et al., 2022) con-
sidered the benchmark of hard cumulative violation and
established O(

√
T ) regret and O(T 3/4) hard violation. The

performance has been further improved to be O(log T ) re-
gret and O(

√
T log T ) hard violation when the objective is

strongly-convex (Guo et al., 2022).

Safe Reinforcement Learning: Safe reinforcement learn-
ing (RL) refers to reinforcement learning with safety con-
straints and has received great interest as well (Aswani et al.,
2013; Fisac et al., 2019; Garcı́a et al., 2015; Koller et al.,
2018; Wabersich & Zeilinger, 2018; Cheng et al., 2019; Tir-
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Algorithms Cost Function Regret Soft/Hard Adversarial Vio. Static Vio.
OGD-BZ in (Li et al., 2021) Convex Õ(

√
T ) None/None None∗

COCA-Soft Convex Õ(
√
T ) O(1)/None o(1)

COCA-Hard Convex Õ(T 2/3) Õ(T 2/3)/Õ(T 2/3) Õ(T−1/3)

COCA-Best2Worlds Strongly Convex Õ(
√
T ) O(1)/Õ(

√
T ) o(1)

Table 1. Our contribution and related work. *(Li et al., 2021) establishes zero violation for static anytime affine constraints, which is
a special case of static constraints studied in this paper. Moreover, if we use projection-based method for static affine constraints, our
algorithm can also achieve zero violation.

mazi et al., 2020; Efroni et al., 2020; Ding et al., 2020; 2021;
Liu et al., 2021; Amani et al., 2021; Vaswani et al., 2022;
Chen et al., 2022a; Ghosh et al., 2022; Wei et al., 2022).
In safe RL, The agent optimizes the policy by interacting
with the environment without violating safety constraints.
However, the line of safe RL requires either the knowledge
of the initial safe policy or a stationary environment where
the reward and cost distributions are time-invariant.

2. Online Nonstochastic Control with
Constraints

In this section, we introduce the online nonstochastic control
problem with constraints and the performance metrics for
evaluating the cost and constraint satisfaction. We consider
the following linear system:

xt+1 = Axt +But + wt,

where xt ∈ Rn is the state, ut ∈ Rm is the control/action
and wt ∈ Rn is the noise or disturbance at time t. Note
wt could be even adversarial. The system parameters
A ∈ Rn×n and B ∈ Rn×m are assumed to be known.
A constrained online nonstochastic control system works as
follows: given the state xt, ∀t ∈ [T ], the learner takes action
ut and observes the cost function ct(xt, ut) and constraint
functions dt(xt, ut) and l(xt, ut). The system evolves to
the next state xt+1 according to the system equation. Note
the noises, costs, and constraints are chosen by an oblivi-
ous adversary. Our objective is to design an optimal control
policy to minimize

PT
t=1 ct(xt, ut) while satisfying the con-

straints. Next, we introduce our baseline policy and define
the performance metrics of regret and constraint satisfaction.

Offline Control Problem: Assuming the full knowledge of
disturbance, cost functions, and constraint functions before-
hand, the offline control problem is defined to be:

min
{ut}

TX

t=1

ct(xt, ut)

s.t. xt+1 = Axt +But + wt, ∀t ∈ [T ],

dt(xt, ut) ≤ 0,

l(xt, ut) ≤ 0, ∀t ∈ [T ].

We define K∗ ∈ Rm×n to be the optimal linear control
uK∗
t = −K∗xK∗

t which satisfies the constraints, i.e., K∗ ∈
Ω such that

Ω = {π | dt(xπ
t , u

π
t ) ≤ 0, l(xπ

t , u
π
t ) ≤ 0, ∀t ∈ [T ]} .

Regret: Given the optimal linear policy K∗ as the baseline,
the goal of the learner is to design an online nonstochastic
control policy π that minimizes the following regret

R(T ) =

TX

t=1

ct(x
π
t , u

π
t )−

TX

t=1

ct(x
K∗
t , uK∗

t ).

Constraint Violation: The control algorithm needs to obey
the constraints. However, since the constraints are unknown
and adversarial, some violation has to occur during learning
and control. To evaluate the level of constraint satisfaction,
we consider two different metrics for adversarial constraints:
soft violation and hard violation:

Vsoft
d (T ) =

TX

t=1

dt(x
π
t , u

π
t ),

Vhard
d (T ) =

TX

t=1

d+t (x
π
t , u

π
t ),

and the anytime violation for the static constraint l is

Vl(t) = l(xπ
t , u

π
t ).

Note soft and hard violation metrics for adversarial con-
straints are for different applications. For example, in cloud
computing, the latency constraint is soft and the soft viola-
tion is a natural metric; however in drone control, the power
constraint is hard and the hard violation is a better metric.
We consider anytime violation for static constraint function
l because it is related to state and input constraints that needs
to be satisfied anytime, resembling stability requirements.
To present our algorithm, we first present several key con-
cepts of online nonstochastic control from (Agarwal et al.,
2019a).

2.1. Preliminary on Constrained Online Nonstochastic
Control

Definition 2.1 (Strong Stability). A linear controller K ∈
Rm×n is (κ, ρ)-strongly stable if there exists matrices
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A,B,U, L such that

Ã := A−BK = ULU−1

with max(∥U∥2, ∥H−1∥2, ∥K∥2) ≤ κ and ∥L∥2 ≤ 1 −
ρ, ρ ∈ (0, 1].

Given the knowledge of system dynamics A and B, the
(κ, ρ)-strongly stable controller K can be computed with
semi-definite programming (SDP) (Cohen et al., 2018).
Note the stable controller K might not satisfy the constraints
in Ω, i.e., K /∈ Ω.

Definition 2.2 (Disturbance-Action Policy Class (DAC)).
A disturbance-action policy π(K, {Mt}) with memory size
H is defined as follows

ut = −Kxt +

HX

i=1

M
[i]
t wt−i,

where Mt ∈ M and M = {M[1]
t , · · · ,M[H]

t | ∥M[i]
t ∥ ≤

a(1− ρ)i,M
[i]
t ∈ Rm×n, a > 0, ∀i ∈ [H]}.

The disturbance-action policy consists of a linear combina-
tion of the disturbance (the memory size is H = Θ(log T )
in the paper). Given a stable controller K and by carefully
choosing {Mt}, π(K, {Mt}) aims to approximate a good
linear stable controller that achieves small costs and satis-
fies the constraints in Ω. Further, we define DAC with fixed
weights, which serves as an intermediate policy class and is
frequently used in our analysis.
Definition 2.3 (DAC with Fixed Weight). For a DAC
π(K, {Mt}), the set of fixed weight DAC policies is

E = {π(K, {Mt}) | Mt = M, ∀t ∈ [T ]}. (1)

Let Ms:t := {Ms, · · · ,Mt} and Ã = A − BK. Under a
policy π(K, {Mt}) in DAC, Ψπ

t,i(Mt−H:t−1) is defined to
be the disturbance-state transfer matrix:

Ψπ
t,i(Mt−H:t−1)

=Ãi−1I(i ≤ H) +

HX

j=1

Ãj−1BM
[i−j]
t−j Ii−j∈[1,H].

We occasionally abbreviate Ψπ
t,i(Mt−H:t−1) to be Ψπ

t,i

without causing any confusion. As shown in (Agarwal et al.,
2019a), under a policy π in DAC, the state is represented by
xπ
t =

Pt
i=1 Ψ

π
t,iwt−i, which is equivalent to

xπ
t = ÃHxt−H +

2HX

i=1

Ψπ
t,iwt−i.

By truncating the true states, we define the approximated
states and actions

x̃π
t =

2HX

i=1

Ψπ
t,iwt−i, ũπ

t = −Kx̃π
t +

HX

i=1

M
[i]
t wt−i. (2)

Further, we have the approximated cost and constraint func-
tions in the following

ct(x̃
π
t , ũ

π
t ), dt(x̃

π
t , ũ

π
t ), l(x̃π

t , ũ
π
t ). (3)

Based on the definition of approximated constraint func-
tions, we define an approximated constraint set Ω̃ such that

Ω̃ = {π | dt(x̃π
t , ũ

π
t ) ≤ 0, l(x̃π

t , ũ
π
t ) ≤ 0, ∀t ∈ [T ]}.

Note the states in both Ω and Ω̃ are driven by the same
underlying dynamics with the policy π. Intuitively, Ω and Ω̃
are “close” if the approximated errors of states and actions
are small. We introduce the following assumptions on cost
and constraint functions.

Assumption 2.4. The cost ct(x, u) and constraint func-
tions dt(x, u) and l(x, u) are convex and differentiable.
Let C0 and C1 be positive constants. As long as ∥x −
x′∥ ≤ D and ∥u − u′∥ ≤ D, we assume the gradi-
ents ∥∇xct∥, ∥∇uct∥, ∥∇xdt∥, ∥∇udt∥, ∥∇xl∥, ∥∇ul∥ are
bounded by C0D; we assume ct, dt, and l are bounded by
C1D. We assume the noises ∥wt∥ ≤ W, ∀t are bounded.

Further, we introduce an assumption on the feasibility of the
offline control problem. This assumption can be regarded
as Slater’s condition in the optimization literature.

Assumption 2.5. Let δ be a positive constant, there exists a
policy π ∈ E such that

dt(x
π
t , u

π
t ) ≤ −δ, l(xπ

t , u
π
t ) ≤ −δ, ∀t ∈ [T ].

Note it is non-trivial to extend (Agarwal et al., 2019a) into a
constrained setting because it requires an adaptive balance
between the costs and constraints. Next, we propose our
constrained control algorithms to achieve this goal.

3. Constrained Online Nonstochastic Control
Algorithm

Given an (arbitrary) stable control policy K, we develop a
set of online nonstochastic control policy π(K, {Mt}) to
adjust the weights of disturbance/noise {Mt} such that it
achieves small regret and constraint violation. Specifically,
we use constrained online learning algorithms as the subrou-
tines of our online nonstochastic control policy π(K, {Mt})
to optimize the weights {Mt}.
According to the definition in (2), the approximated state
x̃π
t and action ũπ

t are only related to the weights of the
past H steps Mt−H:t := {Mt−H , · · · ,Mt}. Therefore,
we denote c̃t(Mt−H:t) := ct(x̃

π
t , ũ

π
t ), d̃t(Mt−H:t) :=

dt(x̃
π
t , ũ

π
t ), l̃(Mt−H:t) := l(x̃π

t , ũ
π
t ). To simplify notation,

we further define c̃t(M) := c̃t(M, · · · ,M) and similarly
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for d̃t(M) and l̃(M). We are ready to present our con-
strained online nonstochastic control algorithm (COCA)
by using the constrained online convex optimization solver
(COCO-Solver) as the subroutine.

Constrained Online Nonstochastic Control Algorithm
Initialize: a (κ, ρ) stable controller K and the proper
learning rates in COCO-Solver.
for t = 1, · · · , T, do

Observe state xt and compute the disturbance wt−1.
Apply control ut = −Kxt +

PH
i=1 M

[i]
t wt−i.

Receive feedback including cost function ct(xt, ut)
and constraint functions dt(xt, ut) and l(xt, ut).
Compute the approximated cost function c̃t(·) and
constraint functions d̃t(·) and l̃(·).
Invoke the COCO-Solver(Mt, Qt, c̃t(·), d̃t(·), l̃(·))
to obtain Mt+1 and Qt+1.

end for

For COCA at time t, we observe the state xt and infer the
previous disturbance wt−1 = xt − Axt−1 − But−1. The
information of state and the past disturbances are used in
π(K, {Mt}) to output a control/action ut. Then we observe
the full information of the cost function ct(·, ·) and con-
straint functions dt(·, ·) and lt(·, ·). Based on the feedback,
we compute c̃t(·), d̃t(·), and l̃(·), and invoke COCO-Solver
to optimize the weights of disturbance {Mt} for the next
control period t+ 1. Note COCO-Solver has an input vari-
able of Qt, which is designed to track the soft cumulative
violation of dt(·, ·) and is also a feedback signal to control
the trade-off between the cost and soft constraint satisfaction
of dt(·, ·).
As discussed, COCO-Solver is the key to optimizing the
cumulative costs while minimizing (soft or hard) constraint
violations. Depending on the types of constraint viola-
tion metrics we want to optimize, COCO-Solver will be
instantiated with the COCO-Soft or COCO-Hard solvers.
Moreover, when the cost functions are strongly-convex, we
design COCO-Best2Worlds solver that can optimize soft
and hard cumulative violations simultaneously. The key in
COCO-Solver is to design the proper surrogate functions
to incorporate the cost and (adversarial) constraints (e.g.,
the Lyapunov optimization method for soft violation and
the penalty-based method for hard violation). This design
enables a flexible trade-off between the cost and constraint
violation and renders a large policy region for optimizing
costs. Therefore, COCA with dedicated solvers is less con-
servative compared to the existing robust optimization-based
control approaches (Dean et al., 2019; Li et al., 2021), which
usually construct overly-conservative regions via robust op-
timization and use a projection-based method to guarantee
the constraints in each control period. Moreover, these ap-

proaches are infeasible to handle the adversarial constraints
because they require the knowledge of future constraints.
Next, we introduce these solvers and their corresponding
theoretical performance, respectively.

3.1. COCA with COCO-Soft Solver

We instantiate COCO-Solver in COCA with the algorithm
COCO-Soft(Mt, Qt, c̃t(·), d̃t(·), l̃(·)). The main idea be-
hind COCO-soft is to carefully design a control surrogate
function based on the Lyapunov optimization method such
that the cumulative cost and soft violation are balanced.
Specifically, for the loss function, we use c̃t(Mt) + ⟨M−
Mt,∇c̃t(Mt)⟩ to approximate c̃t+1(M). For the adversar-
ial constraint, we use d̃t(Mt) + ⟨M − Mt,∇d̃t(Mt)⟩ to
approximate d̃t+1(M) and the virtual queue Qt indicates
the degree of the constraint violation, i.e., a large/small
Qt means a large/small violation of the adversarial con-
straints. The product term Qt⟨M−Mt,∇d̃t(Mt)⟩ in the
control surrogate function is a proxy term of Qtd̃t+1(M).
Combining with the virtual queue update, minimizing the
product term is equivalent to minimize the Lyapunov drift
of Q2

t+1(M)−Q2
t . For the static constraint function l̃(M),

we directly impose the penalty factor η to prevent the vi-
olation. In summary, the control surrogate function care-
fully integrates the approximated cost and constraints in
V c̃t+1(M) +Q2

t+1(M) + ηl̃+(M), so optimizing the sur-
rogate function guarantees the best trade-off between the cu-
mulative costs and constraint violations. Next, we present

COCO-Soft(Mt, Qt, c̃t(·), d̃t(·), l̃(·))
Control Decision: Choose Mt+1 ∈ M to minimize the
control surrogate function

V ⟨M−Mt,∇c̃t(Mt)⟩+Qt⟨M−Mt,∇d̃t(Mt)⟩
+ ηl̃+(M) + α∥M−Mt∥2.

Virtual Queue Update:

Qt+1 =
h
Qt + d̃t(Mt) + ⟨Mt+1 −Mt,∇d̃t(Mt)⟩+ ϵ

i+

Output: Mt+1 and Qt+1.

the theoretical results for COCA with the COCO-Soft solver.
We only present order-wise results. The exact constants and
proof can be found in Appendix C in (Liu et al., 2023).

Theorem 3.1. Given a stable controller K, under Assump-
tions 2.4 and 2.5, COCA with COCO-Soft solver achieves

R(T ) =O
�√

T log3 T
�
,

Vsoft
d (T ) = O (1) , Vl(t) = O(1/ log T ), ∀t ∈ [T ].
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Remark 3.2. Theorem 3.1 implies COCA with COCO-Soft
achieves similar performance as the optimal offline linear
controller K∗ when T is large. COCO-Soft only needs to
solve an almost unconstrained optimization problem, which
is more computationally efficient than the projection-based
method in (Li et al., 2021). Moreover, if we project Mt+1

into the set of {M | l̃(M) ≤ 0} instead of the penalty-based
design ηl̃+(M), we can also achieve zero anytime violation
as in (Li et al., 2021), which is verified in Appendix C.4
in (Liu et al., 2023). Finally, we would like to mention
that Lyapunov optimization with the pessimistic design in
virtual queue allows COCO-Soft to achieve the best trade-
off between regret and violation (please refer to Theorem
4.4 and Remark 4.5).

3.2. COCA with COCO-Hard Solver

We instantiate COCO-Solver in COCA with the algorithm
COCO-Hard(Mt, Qt, c̃t(·), d̃t(·), l̃(·)). The main idea be-
hind COCO-hard is to capture the constraint directly in the
control surrogate function with the proximal penalty-based
method, which is different from the Lyapunov optimiza-
tion method in COCO-Soft. Since the design for c̃t(M)
and l̃(M) is similar to that in COCO-Soft. We focus on
the new design for taking care of the adversarial constraint.
Specifically, we directly use d̃+t (M) as a proxy term of
d̃+t+1(M) and impose a penalty factor γ to prevent the viola-
tion. Therefore, the control surrogate function approximates
V c̃t+1(M)+γd̃+t+1(M)+ηl̃+(M), which directly captures
the cumulative costs and (hard) constraint violation.

COCO-Hard(Mt, c̃t(·), d̃t(·), l̃(·))
Control Decision: Choose Mt+1 ∈ M to minimize the
control surrogate function

V ⟨M−Mt,∇c̃t(Mt)⟩+ γd̃+t (M) + ηl̃+(M)

+ α∥M−Mt∥2

Output: Mt+1.

Next, we present the theoretical results for COCA with the
COCO-Hard solver. The detailed parameters and proof can
be found in Appendix D in (Liu et al., 2023).

Theorem 3.3. Given a stable linear controller K, under
Assumptions 2.4, COCA with COCO-Hard solver achieves

R(T ) =O(T
2
3 log2 T ),

Vl(t) =O(log T/T
1
3 ), ∀t ∈ [T ],

Vhard
d (T ) =O(T

2
3 log2 T ), for a large T.

Remark 3.4. COCO-Hard establishes Theorem 3.3 without
a “Slater-like” Assumption 2.5. Similar as in COCO-Soft,

COCO-Hard is computationally efficient and avoids the
complex projection operator. Moreover, by tuning learning
rates V, γ, η, and α in COCO-Hard, we are able to estab-
lish a trade-off R(T ) = Õ(Tmax{1− c

2 ,c}), Vhard
d (T ) =

Õ(Tmax{1− c
2 ,0.5}), and Vl(t) = Õ(T− c

2 ), ∀t ∈ [T ], with
c ∈ [0.5, 1) (please refer to Appendix D.4 in (Liu et al.,
2023) for details).

3.3. A Roadmap to Prove Theorems 3.1 and 3.3

We provide a general roadmap to prove the regret and con-
straint violation in Theorems 3.1 and 3.3.

Regret analysis: we have the following decomposition for
the regret

R(T ) =

TX

t=1

ct(x
π
t , u

π
t )−

TX

t=1

ct(x
K∗
t , uK∗

t )

=

TX

t=1

[ct(x
π
t , u

π
t )− ct(x̃

π
t , ũ

π
t )] (4)

+

TX

t=1

ct(x̃
π
t , ũ

π
t )− min

π∈Ω̃
T E

TX

t=1

ct(x̃
π
t , ũ

π
t ) (5)

+ min
π∈Ω̃

T E

TX

t=1

ct(x̃
π
t , ũ

π
t )−

TX

t=1

ct(x
K∗
t , uK∗

t ). (6)

The term in (4) is on the approximation error of cost func-
tions, related to the approximated errors of states and ac-
tions, and is bounded by O(1) in Lemma F.1 when choosing
the memory size H = Θ(log T ) for a disturbance-action
policy. The term in (6) is on the representation ability of a
disturbance-action policy with constraints, which can also
be bounded by O(1) in Lemma G.1 because K∗ intuitively
belongs to the class Ω̃

T E . The term in (5) is the key to the
regret of COCA, which depends on the regret of COCO-
Solver and will be established in Theorems 4.4 and 4.6 in
the next section, respectively.

Cumulative soft/hard violation of dt function: we have
the following decomposition for the soft/hard violation of
adversarial dt:

Vsoft
d (T ) =

TX

t=1

[dt(x
π
t , u

π
t )− dt(x̃

π
t , ũ

π
t )] + dt(x̃

π
t , ũ

π
t )

Vhard
d (T ) ≤

TX

t=1

[dt(x
π
t , u

π
t )− dt(x̃

π
t , ũ

π
t )]

+ + d+t (x̃
π
t , ũ

π
t )

The difference terms in Vsoft
d (T ) and Vhard

d (T ) are on
the approximation error of constraint functions, which are
also related to the approximated errors of states and ac-
tions and are bounded by O(1) in Lemma F.1; the termsPT

t=1 dt(x̃
π
t , ũ

π
t ) or

PT
t=1 d

+
t (x̃

π
t , ũ

π
t ) are on the soft or

hard constraint violation of COCO-Solver, which are estab-
lished in the next section.
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Anytime violation of l function: we have the following
decomposition for the constraint l function:

Vl(t) = l(xπ
t , u

π
t )− l(x̃π

t , ũ
π
t ) + l(x̃π

t , ũ
π
t ).

Similarly, the difference term is on the anytime approxi-
mated error of constraint functions, which is bounded by
O(1/T ) in Lemma F.1; the term of l(x̃π

t , ũ
π
t ) depends on

the anytime violation of COCO-Solver, which is established
in the next section.

As discussed above, the key is to analyze the performance
of ct(x̃π

t , ũ
π
t ), dt(x̃

π
t , ũ

π
t ) and l(x̃π

t , ũ
π
t ) with COCO-Solver,

where the approximated states x̃π
t and actions ũπ

t depend
on the past states and actions up to the previous H steps,
i.e., Mt−H:t. COCO-Solver is naturally implemented by a
constrained online convex optimization with memory frame-
work (COCOwM). Since COCOwM is a plug-in component
of COCA, we present the analysis in a separate section and
any advance in COCOwM can be directly translated to that
in COCA.

4. COCO-Solver via Constrained Online
Convex Optimization with Memory

In the standard constrained online convex optimization
(COCO), the loss and constraint functions at time t only
depend on the current decision Mt ∈ M. In the constrained
online convex optimization with memory (COCOwM), the
loss function ft(Mt−H:t) and cost functions gt(Mt−H:t)
and h(Mt−H:t) at time t depends on the historical deci-
sions of {Mt−H:t} up to the previous H-steps. If we
associate ft(Mt−H:t), gt(Mt−H:t), and h(Mt−H:t) with
ct(x̃

π
t , ũ

π
t ), dt(x̃

π
t , ũ

π
t ), and l(x̃π

t , ũ
π
t ), respectively, CO-

COwM is naturally used to optimize {Mt} and the perfor-
mance of COCOwM (or COCO-Solver) can be translated
to that of COCA. Similar to COCA, we define the metrics
of regret and constraint violation for COCOwM.

Offline COCOwM: Recall for a simple notation, we de-
fine ft(M) = ft(M, · · · ,M) and similarly for gt(M) and
h(M). We formulate the offline COCOwM as follows:

min
M∈M

TX

t=1

ft(M) (7)

s.t. h(M) ≤ 0, gt(M) ≤ 0, ∀t ∈ [T ]. (8)

Let the optimal solution to (7)-(8) be M∗. We define the
regret and constraint violations of COCOwM

Rf (T ) =

TX

t=1

ft(Mt−H:t)−
TX

t=1

ft(M
∗),

Vsoft
g (T ) =

TX

t=1

gt(Mt−H:t), Vhard
g (T ) =

TX

t=1

g+t (Mt−H:t)

Vh(t) = h(Mt−H:t), ∀t ∈ [T ].

Before presenting the formal analysis of COCOwM (or
COCO-Solver) algorithms, we introduce several necessary
assumptions.
Assumption 4.1. The feasible set M is convex with diame-
ter D such that ∥M−M′∥ ≤ D, ∀M,M′ ∈ M.
Assumption 4.2. The loss and constraint functions are con-
vex and Lipschitz continuous with Lipschitz constant L.
Further, assume h(M) ≤ E and gt(M) ≤ E, ∀t ∈ [T ].

Assumption 4.3. There exists a positive constant ξ > 0 and
M ∈ M such that h(M) ≤ −ξ and gt(M) ≤ −ξ, ∀t ∈
[T ].

We are ready to present the theoretical results of COCO-Soft
and COCO-Hard solvers introduced in Section 3.

4.1. Theoretical Analysis of COCO-Soft

COCO-Soft(Mt, Qt, ft(·), gt(·), h(·)) optimizes ft(Mt),
gt(Mt), and h(Mt), which are slightly off to the true tar-
gets ft(Mt−H,t), gt(Mt−H,t), and h(Mt−H,t). Therefore,
we also need to quantify the mismatches by establishing the
stability terms ∥Mt −Mt+1∥. The following theorem es-
tablishes the regret and constraint violation of COCO-Soft.
Theorem 4.4. Under Assumptions 4.1-4.3, COCO-Soft al-
gorithm achieves

Rf (T ) =O
�√

T log3 T
�
,

Vh(t) =O(1/ log T ), ∀t ∈ [T ],

Vsoft
g (T ) =O (1) , for a large T.

We outline the key steps of the proof and leave the details in
Appendix C in (Liu et al., 2023). We first study the regret

Rf (T ) ≤
TX

t=1

|ft(Mt−H:t)− ft(Mt)|+ ft(Mt)− ft(M
∗)

≤O(H2
TX

t=1

∥Mt+1 −Mt∥) +O(
√
T log3 T + T ϵ),

which proves the regret bound by letting the pessimistic
factor ϵ = Θ(log3 T/

√
T ) in Lemma C.1 and by Lemma

C.2. Similarly, we establish the soft constraint violation

Vsoft
g (T ) ≤

TX

t=1

|gt(Mt−H:t)− gt(Mt)|+ gt(Mt)

= O(H2
TX

t=1

∥Mt+1 −Mt∥+
√
T log3 T − T ϵ)

which is O(1) with ϵ = Θ(log3 T/
√
T ) for a relatively

large T. Finally, we have anytime violation

Vh(t) ≤|h(Mt−H:t)− h(Mt)|+ h(Mt)

=O(1/ log T ).
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(a) Cumulative costs (b) Soft violations (c) Hard violations (d) Range of xt (e) Range of ut

Figure 1. Experiment results for QVF control with winds blowing down wt ∼ U(−5.5,−4.5). The lines are plotted by averaging over 10
independent runs. The shaded areas in Figures (a)-(c) are 95% confidence intervals and in Figure (d)-(e) are the full ranges of the data.

Remark 4.5. Theorem 4.4 achieves Õ(
√
T ) regret and O(1)

violation, which significantly improves the best existing re-
sults of O(

√
T ) regret and violation in (Neely & Yu, 2017),

a special case of ours by letting H = 0. Moreover, for OCO
with stochastic constraints in (Yu et al., 2017), COCO-Soft
can also establish Õ(

√
T ) regret and O(1) violation against

the same baseline in (Yu et al., 2017), which again improves
O(

√
T ) regret and violation in (Yu et al., 2017) (please refer

to Appendix C.5 for details). The key design and analysis
for such improvement is to introduce the pessimistic factor
ϵ in virtual queue update and compare COCO-Soft with a
“ϵ-tight” baseline such that we can trade regret (the amount
of T ϵ) to achieve a constant soft violation Vsoft

g (T ).

4.2. Theoretical Analysis of COCO-Hard

For COCO-Hard, we also omit the intermediate lemmas
and only present the main theorem due to the limited space.
The details and proofs can be found in Appendix D in (Liu
et al., 2023).

Theorem 4.6. Under Assumptions 4.1-4.2, COCO-Hard
algorithm achieves

Rf (T ) =O
�
T

2
3 log2 T

�
,

Vh(t) =O(log T/T
1
3 ), ∀t ∈ [T ],

Vhard
g (T ) =O

�
T

2
3 log2 T

�
, for a large T.

Note once the regret and constraint violation of COCO
solvers have been established in Theorems 4.4 and 4.6, we
plug them into the roadmap in Section 3.3 and prove the
performance of COCA in Theorems 3.1 and 3.3.

5. Experiment
In this section, we test our algorithms on a quadrotor ver-
tical flight (QVF) control under an adversarial environ-
ment, which is modified from (Li et al., 2023). The experi-
ment is designed to verify if our algorithms are adaptive to
time-varying/adversarial constraints and we compare COCA

with the stable controller without considering constraints in
(Agarwal et al., 2019a). We also test our algorithms on a
Heating Ventilation and Air Conditioning (HVAC) control
with static affine constraints in (Li et al., 2021). The ex-
periment is to verify if our approach is less conservative in
designing COCA algorithms. The learning rates of COCA
algorithms can be found in Appendix H in (Liu et al., 2023).

5.1. QVF Control

The system equation is

ẍt =
ut

m
− g − Iaẋt

m
+ wt,

where xt is the altitude of the quadrotor, ut is the motor
thrust, m is the mass of the quadrotor, g is the gravitational
acceleration, and Ia is the drag coefficient of the air resis-
tance. Let m = 1kg, g = 9.8m/s

2, and Ia = 0.25kg/s.
The system is discretized with ∆t = 1s. We impose
time-varying constraints, zt ≥ 0.3 + 0.3 sin(t/10), to
emulate the complicated time-varying obstacles on the
ground. The static affine constraints are zt ≤ 1.7 and
0 ≤ vt ≤ 12. We consider a time-varying quadratic
cost function 0.1(zt − 0.7)2 + 0.1ż2t + χt(vt − 9.8)2,
where χt ∼ U(0.1, 0.2). We simulate two different wind
conditions wt ∼ U(−5.5,−4.5) (winds blow down) and
wt ∼ U(4.5, 5.5) (winds blow up), respectively.

Figure 1 shows the experiment results for QVT control with
winds blowing down wt ∼ U(−5.5,−4.5). Figure 2 shows
the experiment results for QVT control with winds blow-
ing up wt ∼ U(4.5, 5.5). These two figures show that both
COCA-Soft and COCA-Hard achieve much better perfor-
mance than the stable controller in (Agarwal et al., 2019a).
Specifically, our algorithms have much smaller cumulative
costs, near-zero static constraint violations, negative cumu-
lative soft violations that decrease by time, and cumulative
hard violations that remain unchanged small constant shortly
after the initial stages. Moreover, our algorithms have small
hard constraint violations while having similar costs com-
pared with the controller in (Agarwal et al., 2019a) in both
settings. These results verify our algorithms are very adap-
tive to the adversarial environment and achieve minimal
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(a) Cumulative costs (b) Soft violations (c) Hard violations (d) Range of xt (e) Range of ut

Figure 2. Experiment results for QVF control with winds blowing up wt ∼ U(4.5, 5.5). The lines are plotted by averaging over 10
independent runs. The shaded areas in Figures (a)-(c) are 95% confidence intervals and in Figure (d)-(e) are the full ranges of the data.
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(a) Cumulative costs (b) Range of xt (c) Range of ut

Figure 3. Experiment results for HVAC Control. The lines are average of 10 runs. The lines are plotted by averaging over 10 independent
runs. The shaded areas in Figure (a) are 95% confidence intervals and in Figures (b)-(c) are the full ranges of the data.

cumulative costs and best constraints satisfaction. More-
over, we observe COCA-Soft and COCA-Hard have almost
identical performance on cumulative costs and soft viola-
tions, but COCA-Hard has a smaller hard violation than
COCA-Soft. It justifies the penalty-based design is efficient
in tackling the hard violation.

5.2. HVAC Control

The system equation is

ẋt =
θo − xt

vζ
− ut

v
+

wt + ι

v
,

where xt is the room temperature, ut is the airflow rate of
the HVAC system as the control input, θo is the outdoor
temperature, wt is the random disturbance, ι represents
the impact of the external heat sources, v and ζ denotes the
environmental parameters. Let v = 100, ζ = 6, θo = 30◦C,
and ι = 1.5. Let wt ∼ U(−1.1, 1.3) and we discretize
the system with ∆t = 60s. Similar to (Li et al., 2021),
the state and input constraints are 22.5 ≤ xt ≤ 25.5 and
0.5 ≤ ut ≤ 4.5, respectively. We specify the time-varying
cost functions ct = 2(xt − 24)2 + χt(ut − 2.5)2 with
χt ∼ U(0.1, 4.0).

We compare COCA with OGD-BZ algorithm (COCA-Soft
and COCA-Hard are exactly identical, called COCA, be-
cause there only exist static state and input constraints).

Figure 3 (a)-(c) show the cumulative costs, the ranges of
the room temperature xt and control input ut. We observe
that COCA has a significantly better cumulative cost than
OGD-BZ algorithm with a near-zero constraint violation.
The results verify our approach is effective in designing
less-conservative COCA algorithms.

6. Conclusions and Extensions
In this paper, we studied online nonstochastic control prob-
lems with adversarial and static constraints. We developed
COCA algorithms that minimize cumulative costs and soft
or hard constraint violations. Our experiments showed the
proposed algorithms are adaptive to time-varying environ-
ments and less conservative in achieving better performance.
We need to mention when the costs are strongly-convex,
COCA-Best2Worlds combines the Lyapunov optimization
and the penalty-based methods to achieve minimal soft/hard
violations for adversarial constraints. The informal results
are in Table 1 and the details are in Appendix E in (Liu et al.,
2023). We conclude our paper by mentioning possible fu-
ture directions. The paper assumes the system dynamics is
linear, known, and time-invarying. It would be interesting to
extend COCA to the setting when the systems are unknown
(Plevrakis & Hazan, 2020; Simchowitz et al., 2020; Cassel
et al., 2022), time-varying (Minasyan et al., 2021), or even
nonlinear (Foster et al., 2020; Ghai et al., 2022).
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