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Abstract
The output distribution of a neural network (NN)
over the entire input space captures the complete
input-output mapping relationship, offering in-
sights toward a more comprehensive NN under-
standing. Exhaustive enumeration or traditional
Monte Carlo methods for the entire input space
can exhibit impractical sampling time, especially
for high-dimensional inputs. To make such dif-
ficult sampling computationally feasible, in this
paper, we propose a novel Gradient-based Wang-
Landau (GWL) sampler. We first draw the con-
nection between the output distribution of a NN
and the density of states (DOS) of a physical sys-
tem. Then, we renovate the classic sampler for the
DOS problem, Wang–Landau algorithm, by re-
placing its random proposals with gradient-based
Monte Carlo proposals. This way, our GWL sam-
pler investigates the under-explored subsets of the
input space much more efficiently. Extensive ex-
periments have verified the accuracy of the output
distribution generated by GWL and also show-
cased several interesting findings — for example,
in a binary image classification task, both CNN
and ResNet mapped the majority of human unrec-
ognizable images to very negative logit values.

1. Introduction
The input-output mapping relationship of a trained neural
network (NN) is the key to understand a trained NN. Ex-
isting works measure the accuracy of a NN based on such
mapping relations over (pre-defined) subsets of the input
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Figure 1. The energy density of states (DOS) of a physical system
vs. the output distribution of a deep neural network.

space, such as in-distribution subsets (Dosovitskiy et al.,
2021; Tolstikhin et al., 2021; Steiner et al., 2021; Chen
et al., 2021; Zhuang et al., 2022; He et al., 2015), out-of-
distribution (OOD) subsets (Liu et al., 2020; Hendrycks &
Gimpel, 2016; Hendrycks et al., 2019; Hsu et al., 2020; Lee
et al., 2017; 2018), and adversarial subsets (Szegedy et al.,
2013; Rozsa et al., 2016; Miyato et al., 2018; Kurakin et al.,
2016).

Given the recent trend of applying NNs to open-world, non-
IID applications (Cao et al., 2022; Sun & Li, 2022), we
argue that it is crucial to obtain the complete output distri-
bution of a trained NN over the entire input space. This
output distribution can offer a complete picture about the
number of inputs mapped to certain output values. Note
that the entire input space here includes all kinds of inputs
mentioned above and even human unrecognizable inputs
(see Figure 2(a)). As a pilot study, we focus on binary clas-
sification — given a trained binary NN classifier, we aim
to sample the entire input space to obtain the output dis-
tribution, i.e., a histogram that counts the number of input
samples mapped to certain logit values, as shown in Fig 2(b).
The sampling procedure would also offer more fine-grained
information as side products, such as representative input
samples corresponding to a certain range of output values.

A straightforward solution is exhaustive enumeration or
traditional Monte Carlo methods (Chen et al., 2014; Welling
& Teh, 2011; Li et al., 2016; Xu et al., 2018). However, the
sampling time would become impractical, or the sampler
could get stuck in a subset of input space, especially for
high-dimensional inputs. To overcome these issues, in this
paper, we propose a novel sampler called Gradient-based
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(a) Different types of input samples (b) The output distribution of an example binary classifier

Figure 2. Input types and the example output distribution for binary classification between digits 0 and 1. The entire input space covers all
possible gray-scale images of the same shape. y is the output (logit) with respect to input x.

Wang–Landau (GWL) sampling as follows.

We first connect the output distribution of a NN to the den-
sity of states (DOS) of a physical system through an analogy
between the system energy and neural network output, as
shown in Figure 1. From the physics point of view, the input
x to the neural network can be viewed as the configuration
x of the system; the neural network output (e.g., logit values
in binary classifier) y(x) corresponds to the energy function
E(x); the output distribution of a NN is then analogous to
the DOS of a physical system, which is the number of con-
figurations corresponding to the same energy value. The log
scale of the DOS is the microcanonical entropy associated
with the energy, S(E(x)).

Our new sampler GWL is a novel renovation of the clas-
sic sampler for the DOS problem, Wang–Landau algo-
rithm (Wang & Landau, 2001), where we replace its ran-
dom proposals with gradient-based Monte Carlo proposals.
Given the overwhelming number of human unrecognizable
inputs in the entire input space, if one adopts the traditional
Monte Carlo proposal in the Wang–Landau algorithm, i.e.,
by changing pixel values at random, the sampling process
is likely to get stuck in this human unrecognizable subset.
Thus, we propose to apply a gradient-based proposal follow-
ing Gibbs-with-Gradients (Grathwohl et al., 2021), which
proves to be efficient to propose in-distribution inputs for a
trained NN model. This way, our GWL sampler investigates
the under-sampled subsets of the input space much more
efficiently. The accuracy of GWL has been empirically
verified on a small toy dataset — the output distribution gen-
erated by GWL aligns perfectly with the result of exhaustive
enumeration.

More importantly, by analyzing the output distribution gen-
erated by GWL, we showcase several interesting findings
of CNN and ResNet in a binary classification task based
on real-world pictures. First, our experiments show that in
both CNN and ResNet, the dominant output values are very
negative and the vast majority of them correspond to human-
unrecognizable input images. This supplies direct evidence
to the well-known overconfidence issue in NNs (Nguyen

et al., 2015). Second, when we focus on the output val-
ues where the in-distribution inputs correspond to, human-
unrecognizable inputs still dominate significantly. This re-
sult presents significant challenges to the out-of-distribution
(OOD) detection problems. Third, we observe a clear back-
ground darkness pattern of the representative samples of
CNN and ResNet when the output logit value increases, and
speculate these models simply utilize such “backdoors” to
predict the labels of the digits without truly understanding
the semantics of the images.

In summary, we demonstrate that sampling the entire input
space to obtain the output distribution of a trained NN is
computationally feasible, and it can provide new and in-
teresting insights for future systematic investigation. Our
contributions are summarized as follows.

• We tackle the challenging yet important problem to un-
cover the output distribution of a NN over the entire input
space. Such output distribution offers a novel perspective
to understand NNs.

• We connect this output distribution to the DOS in physics
and successfully renovate the Wang–Landau algorithm
using a gradient-based proposal, which is a critical compo-
nent to sample the entire output space as much as possible,
and to improve efficiency.

• We conduct extensive experiments on toy and real-world
datasets to confirm the accuracy of our proposed sampler.

• GWL sampler allows for detailed investigation of the
input-output mapping of NNs, facilitating further studies
systematically.

Reproducibility. Our code is on GitHub1.

2. Problem Definition
In the traditional setting, binary neural classifiers model
the class distribution through logit z. A neural classifier
parameterized by θ learns pθ(z|x) = δ(z − yθ(x)) through
a function yθ : x→ z ∈ R, where x ∈ Ω, Ω ⊆ {0, ..., N}D

1https://github.com/wetliu/gwl
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for images, and δ is the Dirac delta function. Ω aligns with
Gibbs-With-Gradient’s setting to be discrete.

The above model does not define the distribution of the data
x. This work aims to obtain the output value distribution of
binary classifiers in the entire input space: Ω = {0, ..., N}D.
Here we assume that the input follows a uniform distribu-
tion µ(x) over the domain Ω of x. We define the joint
distribution

pθ(z,x) = pθ(z|x)µ(x).

Our goal is to obtain the logit (output) distribution pθ(z),
which can be obtained by marginalizing the joint distribution
over the input space Ω:

pθ(z) =
∑
Ω

pθ(z|x)µ(x).

To sample from the distribution pθ(z), we can first sample
xi ∼ Uniform(Ω), then condition on the sampled xi to
obtain zi ∼ pθ(z|xi). While a uniform sampler in principle
can solve this problem, it can take an impractically long
time to converge.

3. Method
In this section, we discuss the connection between our prob-
lem to the density of states (DOS), introduce both Wang-
Landau algorithm and the Gibbs-With-Gradient proposal
method as a background, and present our new sampler
Gradient-Wang-Landau (GWL) algorithm.

3.1. Connection to Density of States in Physics

In statistical physics, given the energy function E : x →
E ∈ R , the DOS ρ(E) is defined as

ρ(E) =
∑
x∈Ω

δ(E − E(x)),

where δ is the Dirac delta function and Ω is the domain of x
where x is valid. The DOS can be viewed as a probability
distribution in the energy space; its log-probability defines
the entropy S:

S(E) = ln(ρ(E)).

Boltzmann constant is taken to be 1 in our setting. DOS
is meaningful because many physical quantities depend on
energy or its integration but not the specific input x.

We associate the neural network output distribution to DOS
in physics by making an analogy between the system energy
E = E(x) and NN output z = y(x). This connection is
based on the observation that the energy function in physics
maps an input configuration to a scalar-valued energy; sim-
ilarly, a binary neural classifier maps an image to a logit.
Both the logit and energy are treated as the direct output of

the mapping. Other quantities, such as the loss, are derived
from the output. The desired output distribution can be ob-
tained similarly as sampling the DOS in physics, which is
the count of the configurations given an energy value. The
output distribution and DOS are both defined in the entire
input space.

3.2. Traditional Samplers Are Not Directly Applicable

Traditional Monte Carlo (MC) samplers (Chen et al., 2014;
Welling & Teh, 2011; Li et al., 2016; Xu et al., 2018), in
principle, could be applied to sample the output distribution,
but they would not be efficient to our study. This is because
these algorithms bias the sampler to the more probable do-
main based on importance sampling. Consequently, a major
drawback is that the sampler is easily “stuck” in some local-
ized distributions as it is hard for the sampler to overcome
the barriers to visit all the possible configurations (or input
images in the NN case). This limitation is particularly se-
vere when sampling from multi-modal distributions. Our
problem setting, however, not only requires the sampler to
sample from a multi-modal distribution. More importantly,
the target distribution S is unknown upfront and the gener-
ated samples have to cover the whole output space. Using
traditional MC samplers, in the best case scenario, would
take an unreasonable time to converge. In the more critical
but likely scenario, there is a high risk of obtaining samples
that do not truly represent the underlying distribution.

3.3. Wang-Landau algorithm and Gibbs-With-Gradient

Wang–Landau (WL) algorithm was originally designed
to determine the DOS ρ(E) of a physical system (Wang &
Landau, 2001), when the DOS is not known a priori and
would be determined on-the-fly. It is therefore a suitable
tool for estimating the true distribution of our NN output
as it is also unknown before the sampling. WL uses a
histogram (array) to store the instantaneous estimation S̃.
WL improves the sampling efficiency by using the inverted
distribution as the sampling weight w(x):

w(x) ∝ exp(−S̃(E(x))).

The instantaneous entropy S̃ is updated iteratively until con-
vergence. At the end of the simulation, when the estimation
of the entropy approaches the true value S(E), the sampler
would sample the entire output space uniformly.

Previous work on the sampling of a complex physics system
has shown that with the same number of MC steps, WL
was able to successfully produce the correct distribution S
when the traditional Metropolis MC sampling fail (Li et al.,
2012). This is because WL can overcome energy barriers by
accumulating the counts of visits and uses their inverse as
sampling biases, a mechanism that traditional MC samplers
are missing.
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The Gibbs-With-Gradients (GWG) method is used for
energy-based models (EBM) by sampling

log p(x) = f(x)− logZ,

where f(x) is the unnormalized log-probability, Z is the
partition function, and x is discrete. Typical Gibbs sampler
iterates every dimension xi of x, computes the conditional
probability p(xi|x1, ...xi−1, xi+1, ..., xD), and samples ac-
cording to this conditional probability.

When the training data x are natural images and the EBM
learns x decently well, the traditional Gibbs sampler wastes
much of the computation. For example, most pixel-by-pixel
iterations over xi in MNIST dataset will be on the black
background. GWG proposes a smart proposal that selects
the pixel xi that is more likely to change, such as the pixels
around the edge between the bright and dark region of the
digits. Specifically, GWG uses a gradient proposal from x
to x′ in a discrete input space for Gibbs sampling, with a
proposal probability:

q(x′|x) ∝ ed̃ij(x)1(x′ ∈ H(x)),

where H(x) is the Hamming ball centered at x and d̃ij(x)
represents the bias imposed on the MC proposal. Approx-
imating d̃ij(x) by Taylor expansion and keeping only the
first order term, d̃ij(x) can be viewed as the (unnormalized)
log-likelihood of turning the ith-dimension from its current
value to the value j:

d̃ij(x) = ∇xf(x)ij − xT
i ∇xf(x)i.

3.4. Wang–Landau with Gradient Proposal

Directly applying WL algorithm with random proposals is
insufficient to sample the output space efficiently, because
a trained neural model learns a preferred mapping through
the loss function. For example, a binary classifier maps
the training inputs to either the sufficiently positive or neg-
ative logit values, which ideally should correspond to the
extremely rare but semantically meaningful inputs. After
the sampler explores and generates the peak centered at 0
where most random samples correspond to (Fig. 2(b)), it is
almost impossible for the sampler with a random proposal
to propose an input with meaningful structure (or even in-
distribution inputs) so that the other possible output values
are explored. Of course, whether those output values corre-
spond to in-distribution inputs can only be confirmed after
sampling. In summary, it is extremely difficult for random
proposals to explore all the possible output values.

We therefore use the Wang–Landau algorithm but replace
the random proposal with the one in Gibbs-With-Gradients
(GWG) sampler. GWG has a gradient proposal that takes
advantage of the model’s learned weights to propose inputs.

The (unnormalized) log-probability in GWL is defined as
−S̃(y(x)), where S̃ is the count of output y(x) in log scale.
The fixed f(·) in the original GWG becomes −S̃(y(x))
which keeps being updated in our sampling process. The
output distribution S is a unknown priori and we estimate
it by using an array. The minus sign guides the sampler to
explore the x with a lower S̃x. We then modify the MC
proposal bias d̃ij(x) to:

d̃ij(x) = −(∇xS̃(y(x))ij − xT
i ∇xS̃(y(x))i)

= −dS̃

dy
(∇xy(x)ij − xT

i ∇xy(x)i),

where dS̃
dy is estimated by numerical differentiation of the S̃

array.

Similar to the original WL algorithm, we first initialize two
histograms (arrays) with all of their bins set to 0. One of
these histograms S̃ is for estimating entropy S, and the other
histogram, H , is a counter of how many times the sampler
has visited a specific bin. H is also used for checking if all
the bins have been visited roughly equally, i.e., a flatness
check. We first preset the number of iterations that the
sampling will perform, as well as a modification factor fm
that is used to update the estimation of entropy S̃ iteratively.
At each MC step,we interpolate S̃ to get a differentiable
interpolation, take the derivative of the negation of S̃ with
respect to the output z and then the inputs x using chain
rule. GWG uses this gradient to propose the next input that
is likely to have a lower entropy and be accepted by the
sampler. The newly proposed input sample is then accepted
or rejected according the acceptance probability:

A(x→ x′) = min(1, eS̃x−S̃x′ q(x|x′)

q(x′|x)
),

where

q(x|x′)

q(x′|x)
=

exp(−dS̃x′
dy (∇x′y(x′)ij − x′T

i ∇x′y(x′)i))

exp(−dS̃x

dy (∇xy(x)ij − xT
i ∇xy(x)i))

.

When a proposal is accepted, the entropy S̃ of the corre-
sponding output value is updated using the modification
factor fm. Otherwise the S̃ of the “old” output value will
be updated. This sampling procedure repeats until the his-
togram H passes the flatness check. The sampler then enters
the next iteration with the counters in H reset to 0, ln fm
reduced by half, but the S̃ histogram is kept for further ac-
cumulation. This sampling procedure drives the sampler
to visit rare samples whose logit values correspond to the
lower entropy, while providing an estimation of entropy S̃
as a result at the end. This proposed algorithm is provided
in Alg. 1 in Appendix.
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4. Related Works and Discussions
Performance Characterization has long been explored
even before the era of deep learning (Haralick, 1992; Klette
et al., 2000; Thacker et al., 2008). The input-output re-
lationship has been explored for simple functions (Ham-
mitt & Bartlett, 1995) and mathematical morphological
operators (Gao et al., 2002; Kanungo & Haralick, 1990).
Compared to existing performance characterization ap-
proaches (Ramesh et al., 1997; Bowyer & Phillips, 1998;
Aghdasi, 1994; Ramesh & Haralick, 1992; 1994), our work
focuses on the output distribution (Greiffenhagen et al.,
2001) of a neural network over the entire input space (i.e.,
not task specific) following the blackbox approach (Court-
ney et al., 1997; Cho et al., 1997) where the system trans-
fer function from input to output is unknown. Our set-
ting shall be viewed as the most general forward uncer-
tainty quantification case (Lee & Chen, 2009) where the
model performance is characterized when the inputs are
perturbed (Roberts et al., 2021). To our best knowledge,
we demonstrate for the first time that the challenging task
of sampling the entire input space for modern neural net-
works is feasible and efficient by drawing the connection
between neural network and physics models. Our proposed
method can offer samples to be further integrated with the
performance characterization methods mentioned above.

Density Estimation and Energy Landscape Mapping
Previous works in density estimation focus on data den-
sity (Tabak & Turner, 2013; Liu et al., 2021), where class
samples are given and the goal is to estimate the density of
samples. Here we are not interested in the density of the
given dataset, but the density of all the valid samples in the
pixel space for a trained model. (Hill et al., 2019; Barbu
& Zhu, 2020) have done the pioneering work in sampling
the energy landscape for energy-based models. Their meth-
ods specifically focus on the local minimum and barriers
of the energy landscape. We can relax the requirement and
generalize the mapping on the “output” space where either
sufficiently positive or sufficiently negative output (logit)
values are meaningful in binary classifiers and other models.

Open-world Model Evaluation Though many neural
models have achieved the SOTA performance, most of them
are only on in-distribution test sets (Dosovitskiy et al., 2021;
Tolstikhin et al., 2021; Steiner et al., 2021; Chen et al., 2021;
Zhuang et al., 2022; He et al., 2015; Simonyan & Zisserman,
2014; Szegedy et al., 2015; Huang et al., 2017; Zagoruyko &
Komodakis, 2016). Open-world settings where the test set
distribution differs from the in-distribution training set cre-
ate special challenges for the model. While the models have
to detect the OOD samples from in-distribution samples (Liu
et al., 2020; Hendrycks & Gimpel, 2016; Hendrycks et al.,
2019; Hsu et al., 2020; Lee et al., 2017; 2018; Liang et al.,
2018; Mohseni et al., 2020; Ren et al., 2019), we also ex-
pect sometimes the model could generalize what it learns

to OOD datasets (Cao et al., 2022; Sun & Li, 2022). It
has been discovered that models have over-confident pre-
dictions for some OOD samples that obviously do not align
with human judgments (Nguyen et al., 2015). The OOD
generalization becomes more challenging because of this
discovery, because the models may not be as reliable as
we thought they were. Adversarial test sets (Szegedy et al.,
2013; Rozsa et al., 2016; Miyato et al., 2018; Kurakin et al.,
2016; Xie et al., 2019; Madry et al., 2017) also present spe-
cial challenges as models decisions are different from those
of humans. Moreover, carefully designed experiments help
us better understand the models. It is shown the simplicity
bias could be so extreme that the robustness is lost by using
the synthetic dataset and control experiments (Shah et al.,
2020). In the most general sense of the entire input space,
whether this conclusion still holds is still unknown. It is
argued that even the generative models cannot distinguish
in-or out-of-distribution samples (Nalisnick et al., 2018).
Having a full view of input-output relation with all the above
different kinds of test sets under consideration is important.

Samplers MCMC samplers (Chen et al., 2014; Welling
& Teh, 2011; Li et al., 2016; Xu et al., 2018) are developed
to scale to big datasets and sample efficient with gradi-
ents. Recently, Gibbs-With-Gradients (GWG) (Grathwohl
et al., 2021) is proposed to pick the promising pixel(s) as
the proposal. To further improve sampling efficiency, CS-
GLD (Deng et al., 2020) drives the sampler to explore the
under-explored energy using similar idea as Wang–Landau
algorithm (Wang & Landau, 2001). The important differ-
ence between our problem setting and the previous ones
solved by other MCMC samplers is the function or model as
distribution to be sampled from is unknown. Wang–Landau
algorithm utilizes previous approximation of the distribution
to drive the sampler to explore the under-explored energy
regions. This algorithm can be more efficient through paral-
lelization (Vogel et al., 2013; Cunha-Netto et al., 2008),
assumption about continuity in output space (Junghans
et al., 2014; Li & Eisenbach, 2017) and extension to multi-
dimensional outputs (Zhou et al., 2006). While the previous
samplers can be applied to high-dimensional inputs, the en-
ergy functions in physics are relative simple and symmetric.
However, modern neural networks are complex and hard
to characterize performance (Roberts et al., 2021). We as-
sume agnostic of the output properties of the model and thus
apply the Wang–Landau algorithm to sample the entropy
as a function of energy but with the gradient proposal in
GWG to make the sampler more efficient. Similar to GWG,
our sampler can propose the inputs corresponding to the
under-explored regions of outputs. Improvements of effi-
ciency can benefit from a patch of pixel changes. Lastly,
scaling for larger input is diffulty. For ImageNet, the entire
input space contains 256224×224×3 samples. This number
is much larger than our current problem setting and thus
we call for a more efficient sampler to achieve this task.
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Physics problems can solve the problem of size 10400×400

size because these physics models are relatively simple
and thus we can take the advantage of only computing the
energy changed due to the one spin change. Our current
deep-learning framework does not support this property.

5. Experiments
In this section, we apply our proposed Gradient Wang–
Landau sampler to inspect a few neural network models
and present the discovered output histogram together with
representative samples. The dataset and model training de-
tails are introduced in Sec. 5.1. We first empirically confirm
our sampler performance through a toy example in Sec. 5.2.
We then discuss results for modern binary classifiers in
Sec. 5.3 and Sec. 5.4. Hyperparameters of the samplers
tested in are Appendix C.

5.1. Datasets, Models, and Other Experiment Settings
Datasets As aforementioned, we focus on binary classifi-
cation. Therefore, we derive two datasets from the MNIST
datasets by only including samples with labels {0, 1}. The
training and test splits are the same as those in the original
MNIST dataset.

• Toy is a simple dataset with 5 × 5 binary input images
we construct. It is designed to make feasible the brute-
force enumeration over the entire input space (only 25×5

different samples). We center crop the MNIST samples
from {0, 1} classes and resize them to 5× 5 images. We
compute the average of the pixel values and use the aver-
age as the threshold to binarize the images — the pixel
value lower than this threshold becomes 0; otherwise, it
becomes 1. The duplicates are not removed for accuracy
after resizing since PyTorch does not find duplicate row
indices.

• MNIST-0/1 is an MNIST dataset whose samples only
have the {0, 1} labels. To align with the GWG setting,
the inputs are discrete and not Z-normalized. Therefore,
in this dataset, the input x is 28 × 28 dimensional with
discrete pixel values from {0, ..., 255}.

• MNIST-1 is an MNIST dataset whose samples only have
the {1} labels. The other properties are exactly the same
as MNIST-0/1.

Neural Network Models for Evaluation Since the focus
of this paper is not to compare different neural architectures,
given the relatively small datasets we have, we train two
types of models, a simple CNN, ResNet-18 (He et al., 2015),
and a ResNet from GWG. Each pixel of the inputs is first
transformed to the one-hot encoding and passed to a 3-by-3
convolution layer with 3 channel output. The CNN model
contains 2 convolution layers with 3-by-3 filter size. The
output channels are 32 and 128. The final features are
average-pooled and passed to a fully-connected layer for the

binary classification.

Please keep in mind that our goal in this experiment sec-
tion is to showcase that our proposed sampler can uncover
some novel interesting empirical insights for neural network
models. Models with different architectures, weights due
to different initialization, optimization, and/or datasets will
lead to different results. Therefore, our results and discus-
sions are all model-specific. Specifically, we train a simple
CNN model to classify the 5× 5 binary images in the Toy
dataset (CNN-Toy). The test accuracy of this CNN-Toy
model reaches 99.7%, which is almost perfect. We train a
simple CNN model to classify the 28 × 28 grey-scale im-
ages in the MNIST-0/1 dataset (CNN-MNIST-0/1). The test
accuracy of CNN-MNIST-0/1 model is 97.8%. We train a
ResNet-18 model to classify the 28× 28 grey-scale images
in the MNIST-0/1 dataset (ResNet-18-MNIST-0/1). The
test accuracy of ResNet-18-MNIST-0/1 model is 100%. We
train a ResNet model to classify the 28 × 28 grey-scale
images in the MNIST-0/1 dataset with data augmentation
(ResNet-AUG-MNIST-0/1). The test accuracy of ResNet-
AUG-MNIST-0/1 model is 99.95%. We train a ResNet
model to generate samples in MNIST-1 dataset using energy-
based model framework (ResNet-GEN-MNIST-1).

Sampling Methods for Comparison We compare sev-
eral different sampling methods (including our proposed
method) to obtain the output histogram over the entire in-
put space. In this whole section, we use S to denote the
approximation S̃.

• Enumeration generates the histogram by enumerating all
the possible pixel values as inputs. This is a rather slow
but the most accurate method.

• In-dist Test Samples generates the histogram of the in-
puts based on the fixed test set.This is commonly used in
machine learning evaluation. It is based on a very small
and potentially biased subset of the entire input space.

• Wang-Landau algorithm (WL) generates the histogram
the Wang-Landau algorithm with the random proposal.
Specifically, we randomly pick one pixel at a time and
change it to any valid (discrete) value as in this implemen-
tation 2.

• Gradient Wang-Landau (GWL) generates the histogram
by our proposed sampler of Wang-Landau algorithm with
gradient proposal.

5.2. Results of CNN-Toy

Given the CNN-Toy model, we apply Enumeration, GWL,
and In-dist Test Samples to obtain the output entropy his-
tograms, as shown in Fig. 3. Note that our GWL method
samples the relative entropy of different energy values as

2https://www.physics.rutgers.edu/˜haule/
681/src_MC/python_codes/wangLand.py
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Figure 3. Output histograms of CNN-Toy obtained by different
sampling methods. The in-distribution samples are only a very
small portion in the output histogram. We also present the repre-
sentative samples obtained by GWL given different logit values.
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Figure 4. Output histograms of CNN-MNIST-0/1 obtained by dif-
ferent sampling methods. The blue scale is for GWL and the black
scale is for in-distribution test samples. We also present the rep-
resentative samples obtained by GWL given different logit values
(more in Fig. 8(a) in Appendix).

duplicate x may be proposed. After normalization with
the maximum entropy, the GWL histogram almost exactly
matches the Enumeration histogram which is the ground
truth histogram. This confirms the accuracy of our GWL
sampler and we can apply it further to more complicated
models with confidence.

Remarkably, this histogram is quite different from the ex-
pectation we presented in Fig. 2(b) — this histogram is even
not centered at 0 or has the expected subdominant peaks on
both the positive and negative sides. Instead, the dominant
peak is so wide that it covers almost the entire spectrum of
the possible output values. From a coarse-grained overview,
most of the samples are mapped to the center of logit −5
with a decay from −5 to both sides in the CNN-Toy model.
This shows the CNN-Toy model is biased to predict more
samples to the negative logit values.

In Fig. 3, we also present the representative samples ob-
tained by GWL given different logit values in the CNN-Toy
model. Our conjectured analysis of the representative sam-
ples are in Appendix B. From this example, one can see that
the output histogram over the entire input space can offer a
comprehensive understanding of the neural network models,
helping researchers better understand critical questions such
as the distribution of the outputs, where the model maps the
samples to, and what the representative samples with high
likelihood are.

5.3. Results of CNN-MNIST-0/1

Entropy Histogram from GWL The application of GWL
on the CNN-Toy model is encouraging. Now we apply
GWL to the CNN-MNIST-0/1 that is trained on a real-world
dataset. The results from the 5th iteration are shown in Fig. 4.
As our GWL reveals, the output histogram of CNN-MNIST-
0/1, similar to CNN-Toy’s histogram, does not have the
subdominant peaks. It is also different from the presumed
case in Fig. 2(b). Compared with the output histogram of
the CNN-Toy model (i.e., Fig. 3), for the CNN-MNIST-0/1
case, the peak is on the negative boundary and the histogram
is skewed towards the negative logit values. S monoton-
ically decreases as the logit values go from negative to
positive. While the in-distribution samples have logit values
between −20 and 12 as we expect, these samples are expo-
nentially (i.e., e2000 at logit value -20 to e5500 at logit value
18, thousands in log scale) less often found than the majority
samples whose logit values are around −55. From a fine-
grained view, the CNN-MNIST-0/1 model tends to map the
human-unrecognizable samples to the very negative logit
values. While previous work (Nguyen et al., 2015) showed
the existence of the overconfident prediction samples, our re-
sult shows a rough but quantitative performance of this CNN
which can serve as a baseline for further improvements.

GWL is much more efficient than WL We first confirm
the correctness of our WL sampler on a 16×16 Ising model
and apply it to this CNN model. WL takes a much longer
time to converge and we are not able to obtain the converged
results. Both WL and GWL cannot have more than 1 worker
writing to the same set of DOS bins or else incorrect DOS
will be resulted (Yin & Landau, 2012). For comparison,
we inspect the intermediate S results of the GWL and WL
samplers, as shown in Fig. 5. As one can see from Fig. 5(a),
GWL is already able to explore the logit values efficiently
from the most dominant output value around −55 to the
positive logit values in the first iteration. Within only two it-
erations (Fig. 5(b)), GWL can discover the output histogram
covering the value range from−55 to 18. On the other hand,
as presented in Fig. 5(c), the original WL can only explore
the output ranges from around −55 to −53 for 60,000,000
steps (around 10 days without much substantial progress).
WL converges significantly slower and never ends in a rea-
sonable time. This result indicates that the GWL converges
much faster than the original WL and is able to explore a
much wider range of output values.

Manual inspection on more representative samples As
show in Fig. 4, for the CNN-MNIST-0/1 model, GWL can
effectively sample input images from logit values ranging
from -55 to 18. We further group these logit values per
5 unit of logit value in S. For every group, we sample
200 representative input images. To make sure they are
not correlated, we sample every 50000 pixel changes. For
demonstration purposes, we randomly pick 10-out-of-200
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Figure 5. Intermediate output histogram S per iteration. (a) GWL gradually explores the logit values in the first iteration. (b) GWL
discovers the output histogram well within 2 iterations. (c) The original WL explores the output distribution much slower.
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(a) Output distribution with logit values from -300 to -30.
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(b) Output distribution with logit values from -30 to 20.

Figure 6. Output histograms of ResNet-18-MNIST-0/1 obtained by different sampling methods. There may be a sharp local minima in the
output landscape causing a cliff around the logit value of -30. The blue scale is for GWL and the black scale is for in-distribution test
samples. We also present the representative samples obtained by GWL given different logit values. (more in Fig. 8(b) in Appendix)

samples from every group in Fig. 8(a) in Appendix. We
manually inspect the sufficiently positive group (e.g., the
last column in Fig. 8(a)) and the sufficiently negative groups
(e.g., the first five columns in Fig. 8(a)) , and there are no
human recognizable samples of digits. We also observe an
interesting pattern that as the logit value increases, more
and more representative samples have black background.
This result suggests that the CNN-MNIST-0/1 model may
heavily rely on the background to classify the images (Xiao
et al., 2020). We conjecture that is because the samples in
the most dominant peak are closer to class 0 samples than
class 1 samples and this is supported by experimental results
(see Appendix. D). More rigorous experiments to a definite
conclusion is yet required as future work. In summary,
although CNN-MNIST-0/1 holds a very high in-distribution
test accuracy, it is far from a robust model because it does
not truly understand the semantic structure of the digits.

Discussion Fig. 4 presents challenges to the OOD de-
tection methods that may be more model-dependent than
we thought before. If the model cannot map most of the
human unrecognizable samples with high uncertainty, the
likelihood-based OOD detection methods (Liu et al., 2020;
Hendrycks & Gimpel, 2016) cannot perform well for sam-
ples in the entire input space. Fig. 8(a) shows the inputs
with the in-distribution output values (output logits of the
red plot) of the CNN model may not uniquely correspond
to in-distribution samples. More rigorous experiments to a
definite conclusion are yet required as future work.

5.4. Results of ResNet-18-MNIST-0/1

Entropy Histogram from GWL When applying our
GWL samplers to the ResNet-18-MNIST-0/1 model, for
0th iteration (Fig. 6(a)), we observe that the sampler dis-
covers a wide range of negative logit values from around
logit value of -220 to around -33, much wider than that of
the CNN’s. This range of negative logits, however, does
not correspond to human recognizable inputs and there is
no obvious pattern observed in contrast to CNN-MNIST-
0/1’s results. It means the ResNet-18-MNIST-0/1 model
makes more confident predictions for some samples than
the CNN-MNIST-0/1 model does. Moreover, we observe a
cliff around the logit value of -33 and thus we specifically
sample the region from -30 to 20 and generate the repre-
sentative samples in this region where the in-distribution
logits fall into. Fig. 6(b) shows the entropy histogram after
the 1st iteration. Some output regions of the in-distribution
samples take longer time to discover. This calls for a more
efficient sampler in the future.

Manual inspection on more representative samples In-
terestingly, similar (if not exactly the same) pixel patterns
for CNN-MNIST-0/1 model appear, as shown in Fig. 6(b)
and Fig. 8(b). The representative samples, however, have
broader noisy boundaries compared to those from the CNN-
MNIST-0/1 model. The same phenomenon also happens
that the double peaks of the test set samples do not align
with the output distribution of the entire input space.
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Figure 7. Output histograms of ResNet-AUG-MNIST-0/1 and ResNet-GEN-MNIST-1.

Because of the complexity of ResNet-18 over CNN and
it takes a longer time to converge, we do not draw conclu-
sions about ResNet-18-MNIST-0/1 evaluation of the entropy
difference. Compared with the CNN-MNIST-0/1 model,
ResNet-18-MNIST-0/1 has more interesting phenomena for
further exploration.

5.5. Results of ResNet-AUG-MNIST-0/1 and
ResNet-GEN-MNIST-1

We show in Fig. 7 more sampling results from models
trained with different techniques in order to compare the
classifiers simply trained with cross-entropy. In ResNet-
AUG-MNIST-0/1, we train the model with significant data
augmentation with noise. The output distribution is not sig-
nificantly skewed to the left but peaked in the center and
decay to both sides. The representative samples also begin
to be recognized as 1 (with noise). In ResNet-GEN-MNIST-
1, sampling the trained energy-based model, we are able to
observe the training samples with the target class 1 on the
large logit region.

6. Conclusion
We aim to get a full picture of the input-output relationship
of a model through the inputs valid in the pixel space. We
propose to obtain a histogram to estimate the entropy in the
output space to better understand the input-output distribu-
tion. When the inputs are high-dimensional, enumeration or
uniform sampling is either impossible or takes too long to
converge. We connect the density of states in physics to this
histogram of output entropy. We propose a new, efficient
sampler, Wang–Landau sampling with gradient proposals,
to achieve this goal. We confirm empirically this can be
achieved and uncover some new aspects of neural networks.

We observe several limitations. First, though we combine
two samplers that have the theoretical guarantee of conver-
gence and confirm the performance of the sampler through
empirical results, we do not provide a proof of convergence
when they are combined. Second, because of the nature
of our problem, we observe that the sampler still takes a
decent amount of time to converge, especially for the more
complicated network architectures such as ResNet. We

avoid making conclusions on the distributions but provide
some observations for ResNet. The sampler for ResNet is
still converging but it also calls for further development of
faster samplers for these more complicated networks. Third,
even though the ratio of the recognizable samples can be de-
rived from our sampler, our CNN model maps an enormous
amount of samples to the desired output region of the in-
distribution inputs, and we do not observe even one human
recognizable sample out of the hundreds of representative
samples. Future automatic methods can alleviate the need
of human labels.

For future work, it is necessary to develop new and more
efficient samplers that have theoretical guarantees to acquire
this input-output relationship in order to sample with more
pixels, such as the ImageNet (Deng et al., 2009). Most
importantly, we can then develop new insights into network
architectures developed in the last decade for open-world
applications using these efficient samplers.
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A. Gradient Wang-Landau Algorithm
Here we provide the algorithms of the GWL algorithm. The input and output are listed. The hyperparameters are determined
mostly by the toy-example.

Algorithm 1 Our proposed Gradient Wang-Landau (GWL)

Input: pretrained model y: x→ z, flat histogram H = 0, entropy histogram S̃ = 0, modification factor ln fm, number
of iterations T , test set Dte, GWG sampler GWG(z, S̃), interpolation function g(z, S̃)
for i = 1 to T do
x ∼ Dte

repeat
z = y(x)
Sin = g(z, S̃)
x ∼ GWG(z,−Sin)
z̃ = round(z)
S̃[z̃]← S̃[z̃]+ ln fm
H[z̃]← H[z̃]+1

until H is flat
ln fm← (ln fm)/2
H ← 0

end for
return S(y)

B. Comment on Representative samples for CNN-Toy
The visualization results suggest that the CNN-Toy model probably learns the digit “1” for positive logit values as the center
pixels of the representative samples are white (see the three representative samples with logit values from 0 to 20) and “0”
for the very negative logit values as the center pixels of the representative samples are black (see two representative samples
with logit values from -20 to -30).

C. Hyper-parameters and Implementation Details for GWL and WL
The hyper-parameters for GWL and WL are extremely similar, if not identical, as the only major difference between GWL
and WL is the gradient proposal versus the random proposal. We first preset a large enough range of output values for
the sampler to explore the trained neural network models. In our experiments, we found that the output (logit) values of
the binary classifiers typically fall in the range of -300 to 100 (based on ResNet). Therefore, we use this range for all
experiments. For flatness histogram H , the bin window size is set to be 1, resulting in 400 bins. The histogram H is
considered flat if the difference between maximum bin value and minimum bin value is smaller than the average bin value.

D. Samples similarity
We conjecture that is because the samples in the most dominant peak are closer to class 0 samples than class 1 samples. We
compute the L2 pixel-wise distance from the uniform noise image to the samples of class 1 and 0 respectively. The mean L2
distance from uniform noise to 0 is around 0.3121 and that from uniform noise to 1 is around 0.3236. The distance between
1 and 0 samples is 0.1652. This result shows the samples in the most dominant peak are closer to class 0 samples than class
1 samples.

E. representative inputs
Here we list more representative samples of the CNN-MNIST-0/1 scenario. The samples are bounded by a black box of
boundaries.
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[-30.0,-27.5) [-27.5,-22.5) [-22.5,-17.5) [-17.5,-12.5) [-12.5,-7.5) [-7.5,-2.5) [-2.5,2.5) [2.5,7.5) [7.5,12.5) [12.5,17.5)

(a) CNN-MNIST-0/1

[-30.0,-27.5) [-27.5,-22.5) [-22.5,-17.5) [-17.5,-12.5) [-12.5,-7.5) [-7.5,-2.5) [-2.5,2.5) [2.5,7.5) [7.5,12.5)

(b) ResNet-18-MNIST-0/1

Figure 8. More representative samples of the CNN-MNIST-0/1 model and ResNet-18-MNIST-0/1 obtained by GWL at different logit
values, grouped by logit values larger than -30. We further group these logit values per 5 bins (correspond to a difference of 5 in logit
value) in S. The output values in the first column are within the range [-30,-27.5) etc.
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