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Abstract
Unsupervised out-of-distribution detection (OOD)
seeks to identify out-of-domain data by learning
only from unlabeled in-domain data. We present
a novel approach for this task – Lift, Map, De-
tect (LMD) – that leverages recent advancement
in diffusion models. Diffusion models are one
type of generative models. At their core, they
learn an iterative denoising process that gradu-
ally maps a noisy image closer to their training
manifolds. LMD leverages this intuition for OOD
detection. Specifically, LMD lifts an image off
its original manifold by corrupting it, and maps it
towards the in-domain manifold with a diffusion
model. For an out-of-domain image, the mapped
image would have a large distance away from
its original manifold, and LMD would identify
it as OOD accordingly. We show through exten-
sive experiments that LMD achieves competitive
performance across a broad variety of datasets.
Code can be found at https://github.
com/zhenzhel/lift_map_detect.

1. Introduction
Out-of-distribution (OOD) detection seeks to classify
whether a data point belongs to a particular domain. It is
especially important, because machine learning models typi-
cally assume that test-time samples are drawn from the same
distribution as the training data. If the test data do not fol-
low the training distribution, they can inadvertently produce
non-sensical results. The increased use of machine learn-
ing models in high-stake areas, such as medicine (Hamet &
Tremblay, 2017) and criminal justice (Rigano, 2019), am-
plifies the importance of OOD detection. For example, if a
doctor mistakenly inputs a chest X-ray into a brain tumor
detector, the model would likely still return a prediction –
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Figure 1. The pictorial intuition behind LMD for OOD detection.
A diffusion model learns a mapping to the in-domain manifold.
LMD lifts an image off its manifold by masking, and uses the
diffusion model to move it towards the in-domain manifold. An
in-domain image would have a much smaller distance between the
original and mapped locations than its out-of-domain counterparts.

which would be meaningless and possibly misleading.

Previous researches have studied OOD detection under dif-
ferent settings: supervised and unsupervised. Within the
supervised setup, the supervision can originate from dif-
ferent sources. In the most informed setting, one assumes
access to representative out-of-domain samples. These al-
low one to train an OOD detector as a classifier distinguish-
ing in-domain from out-of-domain data, and achieve high
performance (Hendrycks et al., 2018; Ruff et al., 2019) –
as long as the out-of-domain data do not deviate from the
assumed out-of-domain distribution. In many practical ap-
plications, however, such knowledge is unattainable. In fact,
out-of-domain data can be highly diverse and unpredictable.
A significantly more relaxed assumption is to only require
access to an in-domain classifier or class labels. Under
this setting, methods such as Hendrycks & Gimpel (2016);
Liang et al. (2017); Lee et al. (2018); Huang et al. (2021);
Wang et al. (2022) have achieved competitive performance.
Although less informed, this setting relies on two implicit
assumptions: the in-domain data have well-defined classes,
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and there are sufficiently plenty data with class annotations.
In practice, these assumptions often cannot be met. Unla-
beled data do not require the expensive human annotation,
and thus are often readily available in large quantity. Ideally,
one would like to build an OOD detector that only requires
unlabeled in-domain data during training.

Recently, a class of generative models – the diffusion mod-
els (DM) (Ho et al., 2020; Song et al., 2020) – have gained
increasing popularity. DMs formulate two processes: The
forward process converts an image to a sample drawn from
a noise distribution by iteratively adding noise to its pixels;
the backward process maps a noise image towards a specific
image manifold by iteratively removing noise from the im-
age. A dedicated neural network is trained to perform the
denoising steps in the backward process.

In this paper, we argue that we can leverage the property that
the diffusion model learns a mapping to a manifold, and turn
it into a strong unsupervised OOD detector. Intuitively, if we
lift an image from its manifold, then the lifted image can be
mapped back to its original vicinity with a diffusion model
trained over the same manifold. If instead the diffusion
model is trained over a different manifold, it would attempt
to map the lifted image towards its own training manifold,
causing a large distance between the original and mapped
images. Thus, we can detect out-of-domain images based
on such distance.

To this end, we propose a novel unsupervised OOD detec-
tion approach called Lift, Map, Detect (LMD) that captures
the above intuition. We can lift an image from its origi-
nal manifold by corrupting it. For example, a face image
masked in the center clearly does not belong to the face man-
ifold anymore. As shown by Song et al. (2020); Lugmayr
et al. (2022), the diffusion model can impute the missing
regions of an image with visually plausible content, a pro-
cess commonly referred as inpainting, without retraining.
Thus, we can map the lifted image by inpainting with a dif-
fusion model trained over the in-domain data. We can then
use a standard image similarity metric to measure the dis-
tance between the original and mapped images, and detect
an out-of-domain image when we observe a large distance.
Figure 1 illustrates an example: A diffusion model trained
on face images maps a lifted in-domain face image closer
to the original image than an out-of-domain fire hydrant
counterpart.

To summarize our contributions:

1. We propose a novel approach LMD for unsupervised
OOD detection, which directly leverages the diffusion
model’s manifold mapping ability without retraining.
We introduce design choices that improve the separa-
bility between in-domain and out-of-domain data.

2. We show that LMD is versatile through experiments

on datasets with different coloring, variability and res-
olution.

3. We provide qualitative visualization and quantitative
ablation results that verify the basis of our approach
and our design choices.

2. Background
Unsupervised OOD Detection. We formalize the unsu-
pervised OOD detection task as follows: Given a distribu-
tion of interest D, one would like to build a detector that
decides whether a data point x is drawn from D. The de-
tector is only built upon unlabeled in-distribution samples
x1, · · · ,xn ∼ D. Given a test data point x, the detector
outputs an OOD score s(x), where a higher s(x) signifies
that x is more likely not to be sampled from D.

Existing works can be roughly divided into three categories:
likelihood-based, reconstruction-based, and feature-based.
Likelihood-based approaches date back to Bishop (1994).
At a high level, one fits the in-domain distribution with a
model, and evaluates the likelihood of the test data under
the model. Recent approaches often employ a deep gener-
ative model that supports likelihood computation, such as
PixelCNN++ (Salimans et al., 2017) or Glow (Kingma &
Dhariwal, 2018). However, several works (Choi et al., 2018;
Nalisnick et al., 2018; Kirichenko et al., 2020) have found
that generative models sometimes assign higher likelihood
to out-of-domain data.

This issue can be alleviated in various ways. One line of
work adopts a likelihood ratio approach: Ren et al. (2019)
trains a semantic model and a background model, and takes
the ratio of the likelihoods from the two models. Serrà
et al. (2019) observes a negative correlation between an
image’s complexity and its likelihood, and adjusts the likeli-
hood by the compression size. Xiao et al. (2020) optimizes
the model configuration to maximize a test image’s likeli-
hood, and measures the amount of likelihood improvement.
Another line of work adopts a typicality test approach (Nal-
isnick et al., 2019; Morningstar et al., 2021; Bergamin et al.,
2022). They examine the distribution of in-domain likeli-
hood or other model statistics, and evaluate the typicality
of the test data model statistics through hypothesis testing
or density estimation. Lastly, several works (Maaløe et al.,
2019; Kirichenko et al., 2020) seek to improve the design
choices of generative models.

Reconstruction-based approaches evaluate how well a data
point can be reconstructed by a model learned over the in-
domain data. Our approach LMD falls into this category.
Within this line of work, Sakurada & Yairi (2014); Xia
et al. (2015); Zhou & Paffenroth (2017); Zong et al. (2018)
encode and decode data with autoencoders. Schlegl et al.
(2017); Li et al. (2018) perform GAN (Goodfellow et al.,
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2014) inversion for a data point, and evaluate its reconstruc-
tion error and discriminator confidence under the inverted
latent variable. Additionally, concurrent to our work, Gra-
ham et al. (2022) leverages diffusion models to reconstruct
images at varied diffusion steps, while we mask and inpaint
an image repeatedly with fixed steps. The two approaches
are complementary to each other.

Feature-based approaches featurize data in an unsupervised
manner, and fit a simple OOD detector like a Gaussian
Mixture Model over the in-domain features. Denouden
et al. (2018) leverages the latent variables of an autoencoder,
and evaluates the Mahalanobis distance in the latent space
along with the data reconstruction error. Ahmadian & Lind-
sten (2021) extracts low-level features from the encoder of
an invertible generative model. Hendrycks et al. (2019);
Bergman & Hoshen (2020); Tack et al. (2020); Sehwag
et al. (2021) learn a representation over the in-domain data
through self-supervised training; Xiao et al. (2021) further
shows that one can instead use a strong pretrained feature
extractor while maintaining comparable performance.

Diffusion Models. In this section, we provide a brief
overview of the diffusion models (DM). It is a type of gen-
erative model that learns the distribution of its training data.
DM formulates a forward process of corrupting data by
adding noise to them, commonly referred as diffusion. It
learns the reverse process of gradually producing a less
noisy sample, commonly referred as denoising. One classic
formulation of DM is called Denoising Diffusion Proba-
bilistic Models (DDPMs) (Sohl-Dickstein et al., 2015; Ho
et al., 2020). Specifically, starting from a data sample x0,
each step t = 1, 2, · · · , T of the diffusion process injects
Gaussian noise given by

q(xt|xt−1) = N (xt;
√
1− βtxt, βtI) (1)

where βt follows a fixed variance schedule. The DDPM
with a prior distribution xT ∼ N (0, 1) learns the denoising
process given by

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2)

where both µθ(xt, t) and Σθ(xt, t) are learned by a neural
network parametrized by θ. Note that other formulations
of DMs, such as score-based generative models (Song &
Ermon, 2019) and stochastic differential equations (Song
et al., 2020), also support diffusion and denoising processes.
Since LMD is agnostic to different formulations of DMs,
we refer the reader to Yang et al. (2022) for a more detailed
mathematical description of the other formulations.

3. Lift, Map, Detect
The intuition behind our algorithm, Lift, Map, Detect
(LMD), is illustrated in Figure 1. In a nutshell, we employ a

diffusion model learned over the in-domain data, which pro-
vides a mapping towards the underlying in-domain image
manifold. To test whether an image is in-domain or out-of-
domain, we lift the image off its original manifold through
corruption, and map the lifted image to the in-domain mani-
fold with the trained DM. If the original image is in-domain,
it is mapped back to its manifold, near its original location.
If it is out-of-domain, the image is mapped to a different
manifold, likely leaving a large distance between the orig-
inal image and the mapped image. Figure 2 shows the
high-level workflow of LMD. Algorithm 2 summarizes the
key steps of LMD in pseudocode.

Lifting Images. To lift an image off its manifold, we need
to corrupt the image so that it no longer appears to be from
its original manifold. Concretely, we apply a mask to the
image so that part of it is completely removed. Since various
mask patterns and sizes can be used, masking provides a
direct and flexible way to lift the image from the manifold.
For example, it is intuitive to see that the larger the mask is,
the further away the image is lifted from the manifold.

Mapping the Lifted Images. Since diffusion models (DM)
can perform inpainting without retraining (Song et al., 2020;
Lugmayr et al., 2022) (see Algorithm 1), we naturally em-
ploy a DM and use inpainting to map the lifted images.
Specifically, we employ a DM parametrized by θin that is
trained on the in-domain data. This DM can model the in-
domain distribution well enough to map a lifted in-domain
image back to its original vicinity. Meanwhile, the DM
should have almost no knowledge about the out-of-domain
manifold. Thus, it naturally maps a lifted out-of-domain
image towards the DM’s training manifold, which is the
in-domain manifold. This phenomenon leads to a larger
distance between the original and mapped images for out-
of-domain images than the in-domain ones. For ease of ref-
erence, we also refer these mapped images as reconstructed
images or simply reconstructions.

Algorithm 1 Inpaint

Input: original image xorig, binary mask M where 0
indicates region to be inpainted, diffusion model θ
Output: inpainted image xinp

for t = T to 1 do
if t == T then
xinp← sample from noise distribution

end if
x′
orig ← diffuse(xorig; θ) to step t− 1

xinp← denoise(xinp; θ) to step t− 1
xinp← x′

orig ·M + xinp · (1−M)
end for
return xinp

Reconstruction Distance Metric. We adopt the Learned
Perceptual Image Patch Similarity (LPIPS) (Zhang et al.,
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Figure 2. High-level workflow of LMD. LMD employs a diffusion model learned over the in-domain manifold. It first repeatedly lifts an
image from its manifold by masking it, and maps it towards the diffusion model’s training manifold by inpainting. Then, it inspects the
median distance between the original image and each mapped image to detect out-of-domain images. As out-of-domain images cannot be
mapped back to their own manifolds, they have larger distances.

2018) metric, a standard and strong metric that captures the
perceptual difference between images. Since LPIPS assigns
higher values to more dissimilar images, we compute the
LPIPS between original and reconstructed images, and use
it directly as the OOD score. We perform detailed ablation
on different reconstruction distance metrics in Section 4.4.

It is worth noting that mapping lifted images is the most cru-
cial component. The hypothesis – in-domain reconstructions
are closer to their original images than the out-of-domain
ones – ensures the effectiveness of LMD. With this in mind,
we now discuss two simple and yet effective ways that can
further improve detection performance consistently: multi-
ple reconstructions and novel masking strategy.

Multiple Reconstructions. The DM inpainting process
inherently involves multiple sampling steps. Occasionally,
due to randomness, DM could provide dissimilar recon-
structions for in-domain data, or similar reconstructions for
out-of-domain data. This could make the reconstruction
distance of the in-domain and out-of-domain images less
separable, and hence lead to suboptimal OOD detection per-
formance. To reduce the randomness, we perform multiple
lifting and mapping attempts for each image. We calculate
the OOD score from each attempt, and take the median1

OOD score as the final OOD score for an image. As shown
in Section 4.3, the simple median aggregation already pro-
vides strong performance. For further improvement, one
may use a parameterized model to learn the distribution of
the reconstruction distance across multiple attempts. We

1In our preliminary experiments, we find that median works
better than other simple aggregation methods such as mean.

leave this to future work.

Algorithm 2 Lift, Map, Detect (LMD)

Input: test image x, in-domain diffusion model θin
Output: OOD score of test image x
for i = 1 to r do

Mi← Get Mask(i)
x′
i← Inpaint(x,Mi, θin)

di ← Distance(x, x′
i)

end for
return Aggregate(d1, . . . , dr)

Novel Masking Strategy. The extent to which we mask an
image is crucial to the detection performance. If the size of
the mask is too large (or too small), the reconstruction dis-
tance for both in-domain and out-of-domain images would
be very large (or very small). Indeed, if the mask covers
the entire image, the reconstruction will be independent of
the original image. In this case, if the in-domain manifold
contains diverse images, an in-domain reconstruction can
be far from its original image despite still being on the same
manifold. Therefore, a suitable masking strategy should
leave enough context to allow in-domain reconstructions
to be similar to the original ones. To this end, we propose
to use a checkerboard mask pattern. It divides an image
into an N × N grid of image patches independent of the
image size, and masks out half of the patches similar to
a checkerboard. When multiple reconstruction attempts
are performed, we also invert the masked and unmasked
regions at each attempt. We call this masking strategy al-
ternating checkerboard N ×N (see Figure 3). Alternating
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checkerboard ensures all regions of the image to be masked
with just two attempts. This avoids situations in which the
distinguishing features of an out-of-domain image is never
masked. LMD by default sets N = 8; ablation study on
different mask choices can be found in Table 2.

⋯
Attempt 1

Checkerboard
Attempt 2
Inverted 

Checkerboard

Original Image Attempt 4
Inverted 

Checkerboard

Attempt 3
Checkerboard

Figure 3. The alternating checkerboard mask pattern. We invert
regions that are masked and unmasked at each reconstruction
attempt. The example in the figure is 8× 8.

4. Experiments
4.1. Experiment Settings

Evaluation Metric. LMD outputs an OOD score for each
input, so in practice we need to apply a threshold to binarize
the decision. In the experiments, we follow Hendrycks &
Gimpel (2016); Ren et al. (2019); Xiao et al. (2021), and
use the area under Receiver Operating Characteristic curve
(ROC-AUC) as our quantitative evaluation metric.

Baselines. We compare our methods with seven existing
baselines: Likelihood (Likelihood) (Bishop, 1994), Input
Complexity (IC) (Serrà et al., 2019), Likelihood Regret
(LR) (Xiao et al., 2020), Pretrained Feature Extractor +
Mahalanobis Distance (Pretrained) (Xiao et al., 2021), Re-
construction with Autoencoder and Mean Squared Error
loss (AE-MSE), AutoMahalanobis (AE-MH) (Denouden
et al., 2018) and AnoGAN (AnoGAN) (Schlegl et al., 2017).
Likelihood is obtained from the DM using the implementa-
tion from Song et al. (2020)2. For both Input Complexity
and Likelihood Regret, we adapt the official GitHub repos-
itory of Likelihood Regret3. Specifically, to compute the
Input Complexity, we use the likelihood calculated from the
DM for a fair comparison, and convert the compression size
to bits per dimension; we use the PNG compressor, because
it yields the best performance among all available compres-
sors in the GitHub repository. Pretrained Feature Extractor
+ Mahalanobis Distance is implemented by ourselves, as
there is no existing publicly available implementation to our
best knowledge.

Datasets. We perform OOD detection pairwise among CI-
FAR10 (Krizhevsky, 2009), CIFAR100 (Krizhevsky, 2009)
and SVHN (Netzer et al., 2011), and pairwise among
MNIST (LeCun et al., 2010), KMNIST (Clanuwat et al.,
2018) and FashionMNIST (Xiao et al., 2017). For LMD and

2https://github.com/yang-song/score sde pytorch
3https://github.com/XavierXiao/Likelihood-Regret

all the baselines, we use the training set of the in-domain
dataset to train the model if needed, and evaluate the perfor-
mance on the full test set of in-domain and out-of-domain
datasets. Additionally, to demonstrate our performance on
higher resolution images, we show qualitative results on
CelebA-HQ (Karras et al., 2017) as in-domain and Ima-
geNet (Russakovsky et al., 2015) as out-of-domain.

4.2. Implementation Details of LMD

We adapt the diffusion model implementation from Song
et al. (2020). For experiments in Table 1, we use Song et al.
(2020)’s pretrained checkpoint for CIFAR10, and we train
DMs on the training set of the in-domain dataset for all
the other datasets. We evaluate the OOD scores of the full
in-domain and out-of-domain test sets. The inpainting recon-
struction is repeated 10 times with alternating checkerboard
8× 8 masks (Figure 3). For CelebA-HQ vs. ImageNet, we
observe that CelebA-HQ does not have a train/test set split,
and its pretrained checkpoint is trained over the full dataset.
Thus, to avoid potential memorization issues, we use the
pretrained FFHQ (Karras et al., 2019) checkpoint instead.
We randomly sample a subset of size 100 from each dataset,
and standardize all images to 256× 256. We explore three
mask choices: checkerboard 4× 4, checkerboard 8× 8, and
a square-centered mask. We reconstruct each image only
once. We use LPIPS as the reconstruction distance metric
to calculate the OOD score for all the experiments.

4.3. Experimental Results

Table 1 shows the performance of LMD and the baselines on
various pairs of datasets. LMD achieves the highest perfor-
mance on five pairs, with a maximum improvement of 10%
(CIFAR100 vs. SVHN). LMD also achieves competitive
performance on several other pairs, and attains the highest
average ROC-AUC. This shows that LMD is consistent and
versatile. We observe that the performance of the baselines
are competitive on some pairs but limited on the others.

Figure 5 shows examples of the original, masked and in-
painted images for three pairs. We show four reconstruction
examples for each image, two with checkerboard mask and
two with inverted checkerboard mask. The diffusion mod-
els reconstruct the in-domain images relatively accurately,
while introducing a lot of artifacts in the out-of-domain in-
paintings. For example, when SVHN is out-of-domain, the
noise almost overwhelms the signals in the inpaintings.

Figure 6 shows the qualitative results and the ROC-AUC for
CelebA-HQ vs. ImageNet. Checkerboard 8× 8 performs
competitively, achieving an ROC-AUC of 0.991 without any
repeated reconstructions. Visually, the in-domain inpaint-
ings look almost identical to the original images, while the
out-of-domain inpaintings are locally incoherent. In this
specific setting, checkerboard 4× 4 and center masks yield
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Table 1. ROC-AUC performance of LMD against various baselines on 12 pairs of datasets. Higher is better. We use the same configuration
for LMD across all datasets: Alternating checkerboard mask 8 × 8, distance metric LPIPS, and 10 reconstructions per image. LMD
consistently demonstrates strong performance and attains the highest average ROC-AUC.

ID OOD LIKELIHOOD IC LR PRETRAINED AE-MSE AE-MH ANOGAN LMD

CIFAR-10 CIFAR-100 0.520 0.568 0.546 0.806 0.510 0.488 0.518 0.607
SVHN 0.180 0.870 0.904 0.888 0.025 0.073 0.120 0.992

CIFAR100 CIFAR-10 0.495 0.468 0.484 0.543 0.509 0.486 0.510 0.568
SVHN 0.193 0.792 0.896 0.776 0.027 0.122 0.131 0.985

SVHN CIFAR-10 0.974 0.973 0.805 0.999 0.981 0.966 0.967 0.914
CIFAR-100 0.970 0.976 0.821 0.999 0.980 0.966 0.962 0.876

MNIST KMNIST 0.948 0.903 0.999 0.887 0.999 1.000 0.933 0.984
FASHIONMNIST 0.997 1.000 0.999 0.999 1.000 1.000 0.992 0.999

KMNIST MNIST 0.152 0.951 0.431 0.582 0.102 0.217 0.317 0.978
FASHIONMNIST 0.833 0.999 0.557 0.993 0.896 0.868 0.701 0.993

FASHIONMNIST MNIST 0.172 0.912 0.971 0.647 0.804 0.969 0.835 0.992
KMNIST 0.542 0.584 0.994 0.730 0.976 0.996 0.912 0.990

AVERAGE 0.581 0.833 0.783 0.821 0.651 0.679 0.658 0.907

slightly better performance. This is probably because faces
are highly structured and provide a strong inductive bias.
Thus, with larger contiguous masked regions, the DM can
still produce reasonably authentic reconstructions for the
in-domain images, while being able to introduce more obvi-
ous artifacts for the out-of-domain images. Consequently,
the reconstruction qualities of the two domains are more
distinguishable. More discussion on mask choices can be
found in Section 4.4.

Original
Image

Checkerboard
4x4

Checkerboard
8x8

Checkerboard
16x16

Center Random
Patch

Figure 4. Visualization of the masks used in the mask ablation. For
the random patch mask, this figure only shows one example; we
sample a different pattern at each reconstruction attempt.

4.4. Ablation

Effects of Mask Choices. Table 2 shows ablation results on
different types of mask patterns (see Figure 4). Specifically,
we examine the following patterns: alternating checkerboard
4×4 and 16×16, a fixed non-alternating 8×8 checkerboard,
a square centered mask covering one-fourth of an image
(center), and a random patch mask covering 50% of an
8 × 8 patch grid (random patch) introduced in Xie et al.
(2022)4.

Alternating checkerboard 8×8 performs consistently across
the three datasets, while other patterns have fluctuation in
their performance. Not surprisingly, the center mask ex-
hibits very poor performance (0.444) on MNIST vs. KM-

4https://github.com/microsoft/SimMIM

NIST, as it removes too much information from the im-
ages. Alternating checkerboard 4× 4 also underperforms
on MNIST vs. KMNIST. This suggests that if the masked
patches are too large, both in-domain and out-of-domain
reconstructions may be dissimilar from the original images.
Fixed checkerboard 8× 8 performs only slightly worse than
its alternating counterpart, usually with a performance drop
of less than 0.01. This may be because for these datasets, the
distinguishing features of the in-domain and out-of-domain
images exist in many patches. Thus, they can already be
captured well enough by the fixed 8 × 8 mask. Neverthe-
less, the alternating checkerboard pattern should still be
preferred, since it can mask the entire image across multiple
reconstruction attempts.

Effects of Reconstruction Distance Metrics. LMD needs
to assess the reconstruction distance of the DM’s inpaintings,
so we explore three off-the-shelf reconstruction distance
metrics: Mean Squared Error (MSE), Structural Similarity
Index Measure (SSIM) (Wang et al., 2003), and Learned
Perceptual Image Patch Similarity (LPIPS) (Zhang et al.,
2018). Additionally, Xiao et al. (2021) demonstrates strong
performance using SimCLRv2 (Chen et al., 2020) represen-
tations, so we experiment with a SimCLRv2-based error
metric too. Specifically, we calculate the cosine distance
between the SimCLRv2 representations of the original and
reconstructed images, which we simply refer to as Sim-
CLRv2. These four reconstruction distance metrics range
from shallow reference based to deep feature based metrics.

We summarize the results of three dataset pairs in Table 3.
LPIPS is competitive on all three dataset pairs, while MSE,
SSIM, and SimCLRv2 fluctuate in their performance. In-
terestingly, on CIFAR10 vs. CIFAR100, SimCLRv2 out-
performs other metrics significantly, with an improvement
of 0.09. In Table 1, Xiao et al. (2021) also outperforms
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In-domain Examples Out-of-domain Examples

Orig. Masked Inp. Masked Inp. Masked Inp. Masked Inp. Orig. Masked Inp. Masked Inp. Masked Inp. Masked Inp.

In-domain vs. 
Out-of-domain

CIFAR10 vs. 
SVHN

KMNIST vs. 
FashionMNIST

FashionMNIST vs. 
KMNIST

Figure 5. Reconstruction examples from three dataset pairs. “Orig.” stands for the original image; “Inp.” stands for the inpainted image. In
general, the in-domain reconstructions are close to their original images, while the out-of-domain reconstructions are noisy and different
from the original ones.

Table 2. ROC-AUC performance on three dataset pairs with different mask types. Alternating checkerboard 8 × 8 shows strong and
consistent performance.

MASK TYPE CIFAR10 VS. CIFAR100 CIFAR10 VS. SVHN MNIST VS. KMNIST

ALTERNATING CHECKERBOARD 4× 4 0.594 0.987 0.923
ALTERNATING CHECKERBOARD 8× 8 0.607 0.992 0.984
ALTERNATING CHECKERBOARD 16× 16 0.597 0.981 0.997
FIXED CHECKERBOARD 8× 8 0.601 0.990 0.974
CENTER 0.570 0.978 0.479
RANDOM PATCH 0.591 0.990 0.912

Table 3. ROC-AUC performance on three dataset pairs with differ-
ent reconstruction distance metrics. LPIPS attains consistent and
strong performance, while other metrics have fluctuation in their
performance.

RECON. METRIC CIFAR10 CIFAR10 KMNIST
VS. CIFAR100 VS. SVHN VS. MNIST

MSE 0.548 0.155 0.835
SSIM 0.624 0.329 0.922
LPIPS 0.607 0.992 0.978
SIMCLRV2 0.713 0.970 0.920

all other methods on CIFAR10 vs. CIFAR100 using Sim-
CLRv2 representations. This suggests that other metrics
may be suitable for specific domains, and LPIPS serves as
an effective default choice for the distance metric.

Number of Reconstruction Attempts per Image. We also
study the effect of the number of reconstruction attempts on

the performance. Figure 7 shows the ROC-AUC from one
attempt to ten attempts per image for two pairs of datasets.
In both dataset pairs, increasing the number of attempts
almost always improves the ROC-AUC. The improvement
is especially significant initially, and saturates at around
ten attempts. The improvement is consistent across all four
distance metrics, further supporting the effectiveness of
LMD’s multiple reconstructions approach.

Table 4. ROC-AUC performance of our OOD detection framework
with an alternative lifting and mapping instantiation – diffusion
and denoising. It shows strong performance, although it is slightly
outperformed by our default choice of masking and inpainting.

MAPPING CIFAR10 CIFAR10 FASHIONMNIST
METHOD VS. CIFAR100 VS. SVHN VS. MNIST

DENOISING 0.600 0.976 0.941
INPAINTING 0.607 0.992 0.992
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In-domain Examples Out-of-domain Examples
Original Masked Inpainted Original Masked Inpainted

Checkerboard
8x8

Checkerboard
4x4

Center

0.991

0.994

1.000

Mask Type ROC-AUC

Figure 6. Reconstruction examples from CelebA-HQ (in-domain) and ImageNet (out-of-domain) using different masks. For out-of-domain
inpaintings, the checkerboard masks introduce locally incoherent artifacts, while the center mask introduces face-like artifacts. This
makes the out-of-domain images highly distinguishable.
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Figure 7. ROC-AUC against number of reconstruction attempts on
two pairs of datasets. As the number of reconstruction attempts
increases, the OOD detection performance improves regardless of
the choice of the reconstruction distance metric.

Alternative Way of Lifting and Mapping. Alternatively,
we can lift an image by diffusion, and map it by denoising.
Table 4 shows the performance of our OOD detection frame-
work under this instantiation on three dataset pairs. In our
experiments, we add noise to step t = 500 in each attempt
(where T = 1000), as it generally yields good results. Sim-
ilar to our inpainting setting, we perform 10 attempts per
image, and use the median reconstruction error under LPIPS
as the OOD score. We observe that diffusion/denoising is
also competitive, although it is slightly outperformed by
masking/inpainting. This indicates that our framework is
generally applicable in OOD detection, and supports various

promising alternative instantiations.

5. Discussion and Conclusion
One limitation of the vanilla diffusion model is that the
denoising process involves many iterations and is thus slow.
Consequently, like many DM-based algorithms in other
applications (Meng et al., 2021; Lugmayr et al., 2022), LMD
is hard to be applied to real-time OOD detection at the
current stage. Recently, there has been a popular line of
work on speeding up diffusion models without retraining.
For example, Nichol & Dhariwal (2021) re-scales the noise
schedule to skip sampling steps, Liu et al. (2022) proposes
pseudo numerical methods for diffusion models, and Watson
et al. (2022) optimizes fast samplers that enable sampling
with only 10-20 steps. This opens up a promising direction
for future work to integrate these methods into LMD.

In conclusion, we leverage the diffusion model’s manifold
mapping ability, and propose a method – Lift, Map, Detect
(LMD) – for unsupervised OOD detection. We show that it
is competitive and versatile through our experiments.
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