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Abstract

Text-to-audio (TTA) systems have recently gained

attention for their ability to synthesize general au-

dio based on text descriptions. However, previ-

ous studies in TTA have limited generation qual-

ity with high computational costs. In this study,

we propose AudioLDM, a TTA system that is

built on a latent space to learn continuous audio

representations from contrastive language-audio

pretraining (CLAP) embeddings. The pretrained

CLAP models enable us to train LDMs with au-

dio embeddings while providing text embeddings

as the condition during sampling. By learning

the latent representations of audio signals with-

out modelling the cross-modal relationship, Au-

dioLDM improves both generation quality and

computational efficiency. Trained on AudioCaps

with a single GPU, AudioLDM achieves state-

of-the-art TTA performance compared to other

open-sourced systems, measured by both objec-

tive and subjective metrics. AudioLDM is also

the first TTA system that enables various text-

guided audio manipulations (e.g., style transfer)

in a zero-shot fashion. Our implementation and

demos are available at https://audioldm.

github.io.

1. Introduction

Generating sound effects, music, or speech according to per-

sonalized requirements is important for applications such

as augmented and virtual reality, game development, and

video editing. Traditionally, audio generation has been

achieved through signal processing techniques (Andresen,

1979; Karplus & Strong, 1983). In recent years, gener-
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ative models (Oord et al., 2016; Ho et al., 2020; Song

et al., 2021; Tan et al., 2022), either unconditional or condi-

tioned on other modalities (Kreuk et al., 2022; Żelaszczyk

& MaÂndziuk, 2022), have revolutionized this task. Previ-

ous studies primarily worked on the label-to-sound setting

with a small set of labels (Liu et al., 2021b; Pascual et al.,

2022) such as the ten sound classes in the UrbanSound8K

dataset (Salamon et al., 2014). In comparison, natural lan-

guage is considerably more flexible than labels as they can

include fine-grained descriptions of audio signals, such as

pitch, acoustic environment, and temporal order. The task

of generating audio prompted with natural language descrip-

tions is known as text-to-audio (TTA) generation.

TTA systems are designed to generate a wide range of high-

dimensional audio signals. To efficiently model the data, we

adopt a similar approach as DiffSound (Yang et al., 2022)

by employing a learned discrete representation to efficiently

model high-dimensional audio signals. We also draw in-

spiration from the recent advancements in autoregressive

modelling of discrete representation learnt on the waveform,

such as AudioGen (Kreuk et al., 2022), which has surpassed

the capabilities of DiffSound. Building on the success of

StableDiffusion (Rombach et al., 2022), which uses latent

diffusion models (LDMs) for high-quality image genera-

tion, we extend previous TTA approaches to continuous

latent representations, instead of learning discrete represen-

tations. Additionally, as audio manipulations, such as style

transfer (Engel et al., 2020; Pascual et al., 2022), are de-

sired for some applications such as games, we explore and

achieve various zero-shot text-guided audio manipulations

with LDMs, which have not been demonstrated before.

For previous TTA works, a potential limitation for genera-

tion quality is the requirement of large-scale high-quality

audio-text data pairs, which are usually not readily avail-

able, and where they are available, are of limited quality and

quantity (Liu et al., 2022f). To better utilize the low-quality

data, several methods for text preprocessing have been pro-

posed (Kreuk et al., 2022; Yang et al., 2022). However,

these preprocessing steps limit generation performances by

overlooking the relations of sound events (e.g., a dog is

barking at the bark is transformed into dog bark park). By

comparison, our proposed method only requires audio data

for generative model training, circumvents the challenge of
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(a) Training and sampling process of AudioLDM

(b) Audio inpainting with AudioLDM

(c) Audio style transfer with AudioLDM

Figure 1. Overview of the AudioLDM system for text-to-audio generation (a). During training, latent diffusion models (LDMs) are

conditioned on an audio embedding E
x and trained in a continuous space z0 learned by VAE. The sampling process uses text embedding

E
y as the condition. Given a pretrained LDM, zero-shot audio inpainting (b) and style transfer (c) are realized in the reverse diffusion

process of LDM. The block Forward Diffusion denotes the process that corrupt data with gaussian noise (see Equation 2).

text preprocessing, and performs better than using audio-text

paired data, as we will discuss later.

In this work, we present a TTA system, AudioLDM,

which achieves high generation quality with continuous

LDMs, with good computational efficiency and enables

text-conditional audio manipulations. The overview of

AudioLDM design for TTA generation and text-guided

audio manipulation is shown in Figure 1. Specifically,

AudioLDM learns to generate the representation in a la-

tent space encoded by a mel-spectrogram-based variational

auto-encoder (VAE). An LDM conditioned on a contrastive

language-audio pretraining (CLAP) embedding is developed

for VAE latent generation. By leveraging the audio-text-

aligned embedding space in CLAP, we remove the require-

ment for paired audio-text data during training LDM, as

the condition for VAE latent generation can directly come

from the audio itself. We demonstrate that training an LDM

with audio only can be even better than training with audio-

text data pairs. The proposed AudioLDM achieves leading

TTA performance on the AudioCaps dataset with a Freshet

distance (FD) of 23.31, outperforming the DiffSound base-

line (FD of 47.68) by a large margin. Our system also en-

ables zero-shot audio manipulations in the sampling process.

In summary, our contributions are as follows:

• We demonstrate the first attempt to develop a continuous

LDM for TTA generation. Our AudioLDM method out-

performs existing methods in both subjective evaluation

and objective metrics.

• We utilize CLAP embeddings to enable TTA generation

without using language-audio pairs to train LDMs.

• We experimentally show that using audio only data in

LDM training can obtain a high-quality and computation-

ally efficient TTA system.

• We show that our proposed TTA system can perform

text-guided audio styles manipulation, such as audio style

transfer, super-resolution, and inpainting, without fine-

tuning the model on a specific task.

2. Related Work

Text-to-Audio Generation has gained a lot of attention re-

cently. Two works (Yang et al., 2022; Kreuk et al., 2022)

explore how to learn audio representations in a discrete

space given a natural language description, and then decode

the representations to the audio waveform. Since both works

require audio-text paired data for training the latent genera-

tion model, they have both proposed methods to address the

issues of low quality and scarcity of paired data.

DiffSound (Yang et al., 2022) consists of a text encoder, a

decoder, a vector-quantized variational autoencoder (VQ-

VAE), and a vocoder. To alleviate the scarcity of audio-

text paired data, they propose a mask-based text generation

strategy (MBTG) for generating text descriptions from audio

labels. For example, the label dog bark, a man speaking

will be represented as [M] [M] dog bark [M] man speaking

[M], where [M] represent the mask token. However, the text

generated by MBTG still only includes the label information,

which might potentially limit model performance.
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AudioGen (Kreuk et al., 2022) uses a Transformer-based

decoder to learn to generate the target discrete tokens that

are directly compressed from the waveform. AudioGen is

trained on 10 datasets and proposes data augmentation meth-

ods to enhance the diversity of training data. When creating

the language-audio pairs, they pre-process the language de-

scriptions to labels to better match the class-label annotation

distribution and simplify the task. For example, the text de-

scription a dog is barking at the park is transformed to dog

bark park. For data augmentation, they mix audio samples

according to various signal-to-noise ratios and concatenate

the transformed language descriptions. This means that the

detailed text descriptions showing the spatial and temporal

relationships are discarded.

Diffusion Models (Ho et al., 2020; Song et al., 2021) have

achieved state-of-the-art sample quality in tasks such as im-

age generation (Dhariwal & Nichol, 2021; Ramesh et al.,

2022; Saharia et al., 2022), image restoration (Saharia et al.,

2021), speech generation (Chen et al., 2021; Kong et al.,

2021b; Leng et al., 2022), and video generation (Singer et al.,

2022; Ho et al., 2022). For speech or audio synthesis, dif-

fusion models have been studied for both mel-spectrogram

generation (Popov et al., 2021; Chen et al., 2022c) and wave-

form generation (Lam et al., 2022; Lee et al., 2022; Chen

et al., 2022b).

A major concern with diffusion models is that the iterative

generation process in a high-dimensional data space will

result in a low inference speed. One of the solutions is to em-

ploy diffusion models in a small latent space, an approach

used, for example, in image generation (Vahdat et al., 2021;

Sinha et al., 2021; Rombach et al., 2022). For TTA gener-

ation, the audio waveform has redundant information (Liu

et al., 2022e;c) that increases modeling complexity and de-

creases inference speed. To overcome this, DiffSound (Yang

et al., 2022) uses text-conditional discrete diffusion models

to generate discrete tokens as a compressed representation

of mel-spectrograms. However, the quality of the sound

generated by their method is limited. In addition, audio

manipulation methods are not explored.

3. Text-Conditional Audio Generation

3.1. Contrastive Language-Audio Pretraining

Text-to-image generation models have shown stunning sam-

ple quality by utilizing Contrastive Language-Image Pre-

training (CLIP) (Radford et al., 2021) for generating the

image prior. Inspired by this, we leverage Contrastive

Language-Audio Pretraining (CLAP) (Wu et al., 2022) to

facilitate TTA generation.

We denote audio samples as x and the text description as

y. A text encoder ftext(·) and an audio encoder faudio(·) are

used to extract a text embedding Ey ∈ R
L and an audio

embedding Ex ∈ R
L respectively, where L is the dimen-

sion of CLAP embedding. A recent study (Wu et al., 2022)

has explored different architectures for both the text encoder

and the audio encoder when training the CLAP model. We

follow their result to build an audio encoder based on HT-

SAT (Chen et al., 2022a), and built a text encoder based

on RoBERTa (Liu et al., 2019). We use a symmetric cross-

entropy loss as the training objective (Radford et al., 2021;

Wu et al., 2022). For details of the training process and the

language-audio datasets see Appendix A.

After training the CLAP model, an audio sample x can be

transformed into an embedding Ex within an aligned audio

and text embedding space. The generalization ability of

CLAP model has been demonstrated by various downstream

tasks such as the zero-shot audio classification (Wu et al.,

2022). Then, for unseen language or audio samples, CLAP

embeddings also provide cross-modal information.

3.2. Conditional Latent Diffusion Models

The TTA system can generate an audio sample x̂ given

text description y. With probabilistic generative model

LDMs, we estimate the true conditional data distribution

q(z0|Ey) with a model distribution pθ(z0|Ey), where

z0 ∈ R
C×T

r
×F

r is the prior of an audio sample x in the

space formed from the compressed representation of the

mel-spectrogram X ∈ R
T×F , and Ey is the text embed-

ding obtained by pretrained text encoder ftext(·) in CLAP.

Here, r denotes the compression level, C denotes the chan-

nel of the compressed representation, T and F denote the

time-frequency dimensions in the mel-spectrogram X . With

pretrained CLAP to jointly embed the audio and text infor-

mation, the audio embedding Ex and the text embedding

Ey share a joint cross-modal space. This allows us to pro-

vide Ex for training the LDMs, while providing Ey for

TTA generation.

Diffusion models (Ho et al., 2020; Song et al., 2021) consist

of two processes: i) a forward process to transform the data

distribution into a standard Gaussian distribution with a pre-

defined noise schedule 0 < β1 < · · · < βn < . . . βN < 1,

and ii) a reverse process to gradually generate data samples

from the noise according to an inference noise schedule.

In the forward process, at each time step n ∈ [1, . . . , N ],
the transition probability is given by:

q(zn|zn−1) = N (zn;
√

1− βnzn−1, βnI), (1)

q(zn|z0) = N (zn;
√
ᾱnz0, (1− ᾱn)ϵ), (2)

where ϵ ∼ N (0, I) denotes injected noise, αn is a repa-

rameterization of 1 − βn and ᾱn :=
∏n

s=1
αs represents

the noise level at each step. At the final time step N ,

zN ∼ N (0, I) has a standard isotropic Gaussian distri-

bution. For model optimization, we employ the reweighted
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noise estimation training objective (Ho et al., 2020; Kong

et al., 2021b; Rombach et al., 2022):

Ln(θ) = Ez0,ϵ,n ∥ϵ− ϵθ(zn, n,E
x)∥2

2
, (3)

where Ex is the embedding of the audio waveform x pro-

duced by the pretrained audio encoder faudio(·) in CLAP.

In the reverse process, starting from Gaussian noise distri-

bution p(zN ) ∼ N (0, I) and the text embedding Ey, a

denoising process conditioned on Ey gradually generates

the audio prior z0 by the following process:

pθ(z0:N |Ey) = p(zN )

N
∏

t=n

pθ(zn−1|zn,E
y) (4)

pθ(zn−1|zn,E
y) = N (zn−1;µθ(zn, n,E

y),σ2

nI). (5)

The mean and variance are parameterized as (Ho et al.,

2020):

µθ(zn, n,E
y) =

1√
αn

(zn − βn√
1− ᾱn

ϵθ(zn, n,E
y))

(6)

σ2

n =
1− ᾱn−1

1− ᾱn

βn (7)

where ϵθ(zn, n,E
y) is the predicted generation noise, and

σ2

1
= β1. In the training stage, we learn the generation of

an audio prior z0 given the cross-modal representation Ex

of an audio sample x. Then, in TTA generation, we provide

the text embeddings Ey to predict the noise ϵθ(zn, n,E
y).

Built on the CLAP embeddings, our LDM realizes TTA

generation without text supervision in the training stage. We

provide the details of network architecture in Appendix B.

3.3. Conditioning Augmentation

In text-to-image generation, diffusion-based models have

demonstrated an ability to capture the fine-grained details

between objects and backgrounds (Ramesh et al., 2022;

Saharia et al., 2022; Liu et al., 2022d). One of the reasons

for this success is the large-scale language-image training

pairs, such as 400 million image-text pairs in the LAION

dataset (Schuhmann et al., 2021). For TTA generation,

it is also desired to generate compositional audio signals

whose relationships are consistent with natural language

descriptions. However, the scale of available language-

audio datasets is not comparable to that of language-image

datasets. For data augmentation, AudioGen (Kreuk et al.,

2022) use a mixup strategy which mixes pairs of audio

samples and concatenates their respective processed text

captions to form new paired data. In our work, as shown

in Equation 3, we provide the audio only embedding Ex

as conditioning information when training LDMs, we can

implement data augmentation on audio only signals instead

of needing to augment language-audio pairs. Specifically,

we perform mixup augmentation on audio x1 and x2 by:

x1,2 = λx1 + (1− λ)x2, (8)

where λ is a scaling factor varying between [0, 1] sampled

from a Beta distribution B(5, 5) (Gong et al., 2021). Here

we do not need to consider the corresponding text descrip-

tion y1,2, since text information is not needed during LDM

training. By mixing audio pairs, we increase the number of

training data pairs (z0,E
x) for LDMs, which makes LDMs

robust to CLAP embeddings. In the sampling process, given

the text embedding Ey from unseen language descriptions,

LDMs are expected to generate the corresponding audio

prior z0.

3.4. Classifier-free Guidance

( = 1.0 ( = 4.0( = 3.0( = 2.0

Figure 2. The samples generated with different scales of the

classifier-free guidance. The text prompt is ªA cat is meowingº.

For diffusion models, controllable generation can be

achieved by introducing guidance at each sampling step.

After classifier guidance (Song et al., 2021; Nichol & Dhari-

wal, 2021), classifier-free guidance (Ho & Salimans, 2021;

Nichol et al., 2021) (CFG) has been the state-of-the-art tech-

nique for guiding diffusion models. During training, we

randomly discard our condition Ex with a fixed probability,

e.g., 10% to train both the conditional LDMs ϵθ(zn, n,E
x)

and the unconditional LDMs ϵθ(zn, n). In generation, we

use text embedding Ey as condition and perform sampling

with a modified noise estimation ϵ̂θ(zn, n,E
y):

ϵ̂θ(zn, n,E
y) = wϵθ(zn, n) + (1− w)ϵθ(zn, n,E

y),
(9)

where w determines the guidance scale. Compared with Au-

dioGen (Kreuk et al., 2022), we have two differences. First,

they leverage CFG on a transformer-based auto-regressive

model, while our LDMs retain the theoretical formulation

behind the CFG (Ho & Salimans, 2021). Second, our text

embedding Ey is extracted from unprocessed natural lan-

guage and therefore enables CFG to make use of the detailed

text descriptions as guidance for audio generation. How-

ever, AudioGen removed the text details showing spatial or

temporal relationships with text preprocessing methods.

3.5. Decoder

We use VAE to compress the mel-spectrogram X ∈ R
T×F

into a small latent space z ∈ R
C×T

r
×F

r , where r is the
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Original 𝑛0 = 𝑁/4 𝑛0 = 𝑁/2 𝑛0 = 3𝑁/4
Figure 3. The manipulation result with different starting points n0

of the shallow reverse process. The original signal is Trumpet, and

the text prompt for style transfer is Children Singing.

compression level of the latent space. Our VAE is composed

of an encoder and a decoder with stacked convolutional

modules. In the training objective, we adopt a reconstruction

loss, an adversarial loss, and a Gaussian constraint loss.

We provide the detailed architecture and training methods

in Appendix C. In the sampling process, the decoder is

used to reconstruct the mel-spectrogram X̂ from the audio

prior ẑo generated from LDMs. To explore a compression

level r that achieves a small latent space for LDMs without

sacrificing sample quality, we test a group of values r ∈
[1, 2, 4, 8, 16], and take r=4 as our default setting because

of its high computational efficiency and generation quality.

Moreover, as we conduct conditioning augmentation for

LDMs, we implement data augmentation with Equation 9

for VAE as well in order to guarantee the reconstruction

quality of generated compositional samples. For vocoder,

we employ HiFi-GAN (Kong et al., 2020a) to generate the

audio sample x̂ from the reconstructed mel-spectrogram X̂ .

The training details are shown in Appendix D.

4. Text-Guided Audio Manipulation

Style Transfer Given a source audio sample xsrc, we can

calculate its noisy latent representation zn0
with a prede-

fined time step n0 ≤ N according to the forward process

shown in Equation 2. By utilizing zn0
as the starting point

of the reverse process of a pretrained AudioLDM model, we

enable the manipulation of audio xsrc with text input y with

a shallow reverse process pθ(z0:n0
|Ey):

pθ(z0:n0
|Ey) = p(zn0

)

n0
∏

n=1

pθ(zn−1|zn,E
y), (10)

where n0 controls the manipulation results. If we define

a n0 ≈ N , the information provided by source audio will

not be retained and the manipulation would be similar to

TTA generation. We show the effect of n0 in Figure 3,

where larger manipulations can be seen in the setting of

n0 = 3N/4.

Inpainting and Super-Resolution Both audio inpainting

and audio super-resolution refer to generating the missing

part given the observed part xob. We explore these tasks

by incorporating the observed part in latent representation

zob into the generated latent representation z. Specifically,

in reverse process, starting from p(zN ) ∼ N (0, I), after

each inference step shown in Equation 5, we modify the

generated zn−1 with:

z′
n−1

= (1−m)⊙ zn−1 +m⊙ zob
n−1

, (11)

where z′ is the modified latent representation, m ∈ R
T
r
×F

r

denotes an observation mask in latent space, zob
n−1

is ob-

tained by adding noise on zob with the forward process

shown by Equation 2.

The values of observation mask m depend on the observed

part of a mel-spectrogram X . As we adopt a convolu-

tional structure in VAE to learn the latent representation

z, we can roughly retain the spatial correspondency in mel-

spectrogram, as it is shown in Figure 7 in Appendix C.

Therefore, if a time-frequency bin Xt,f is observed, we set

the observation mask m t
r
,
f
r

in latent space as 1. By using

m to denote the generation part and observation part in z,

according to Equation 11, we can generate the missing in-

formation conditioned on the text prompt with TTA models,

while retaining the ground-truth observation zob.

5. Experiments

Training dataset The datasets we used in this paper in-

cludes AudioSet (AS) (Gemmeke et al., 2017), Audio-

Caps (AC) (Kim et al., 2019), Freesound (FS)1, and BBC

Sound Effect library (SFX)2. AS is currently the largest au-

dio dataset, with 527 labels and over 5, 000 hours of audio

data. AC is a much smaller dataset with around 49, 000 au-

dio clips and text descriptions. Most of the data in AudioSet

and AudioCaps are in-the-wild audio from YouTube, so the

quality of the audio is not guaranteed. To expand the dataset,

especially with high-quality audio data, we crawl the data

from the FreeSound and BBC SFX datasets, which have a

wide range of categories such as music, speech, and sound

effects. We show our detailed data processing methods and

training configuration in Appendix E.

Evaluation dataset We evaluate the model on both AC and

AS. Each audio clip in AC has 5 text captions. We generate

the evaluation set by randomly selecting one of them as text

condition. Because the authors of AC intentionally remove

the audio with the label related to music (Kim et al., 2019),

to evaluate model performance with a wider range of sound,

we randomly select 10% audio samples from AS as another

evaluation set. Since AS does not contain text descriptions,

we use the concatenation of labels as text descriptions, such

as Speech, hip hop music, and crowd cheering.

Evaluation methods We perform both objective evaluation

1https://freesound.org/
2https://sound-effects.bbcrewind.co.uk/

search
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Model Text Data Use CLAP Params Duration (h) FD ↓ IS ↑ KL ↓ FAD ↓ OVL ↑ REL ↑

Ground truth - - - - - - - - 83.61±1.1 80.11±1.2

DiffSound† (Yang et al., 2022) ✓ ✗ 400M 5420 47.68 4.01 2.52 7.75 45.00±2.6 43.83±2.3

AudioGen† (Kreuk et al., 2022) ✓ ✗ 285M 8067 - - 2.09 3.13 - -

AudioLDM-S-Full-RoBERTa ✓ ✗ 181M 145 32.13 4.02 3.25 5.89 - -

AudioLDM-S ✗ ✓ 181M 145 29.48 6.90 1.97 2.43 63.41±1.4 64.83±0.9

AudioLDM-L ✗ ✓ 739M 145 27.12 7.51 1.86 2.08 64.30±1.6 64.72±1.6

AudioLDM-S-Full ✗ ✓ 181M 8886 23.47 7.57 1.98 2.32 - -

AudioLDM-L-Full ✗ ✓ 739M 8886 23.31 8.13 1.59 1.96 65.91±1.0 65.97±1.6

Table 1. The comparison between AudioLDM and baseline TTA generation models. Evaluation is conducted on AudioCaps test set.

The symbol † marks industry-level computation. DiffSound is trained on 32 V100 GPUs and AudioGen is trained on 64 A100 GPUs,

while AudioLDM models are trained on a single GPU, RTX 3090 or A100. The AS and AC stand for AudioSet and AudioCaps datasets

respectively. The results of AudioGen are employed from (Kreuk et al., 2022) since their implementation has been not publicly available.

and human subjective evaluation. The main metrics we

use for objective evaluation include frechet distance (FD),

inception score (IS), and kullback±leibler (KL) diver-

gence. Similar to the frechet inception distance in image

generation, the FD in audio indicates the similarity between

generated samples and target samples. IS is effective in eval-

uating both sample quality and diversity. KL is measured

at a paired sample level and averaged as the final result.

All of these three metrics are built upon a state-of-the-art

audio classifier PANNs (Kong et al., 2020b). To compare

with (Kreuk et al., 2022), we also adopt the frechet audio

distance (FAD) (Kilgour et al., 2019). FAD has a similar

idea to FD but it uses VGGish (Hershey et al., 2017) as a

classifier which may have inferior performance than PANNs.

To better measure the generation quality, we choose FD as

the main evaluation metric in this paper. For subjective

evaluation, we recruit six audio professionals to carry on

a rating process following (Kreuk et al., 2022; Yang et al.,

2022). Specifically, the generated samples are rated based

on i) overall quality (OVL); and ii) relevance to the input

text (REL) between a scale of 1 to 100. We include the

details of human evaluation in Appendix E. We open-source

our evaluation pipeline to facilitate reproducibility3.

Models We employ two recently proposed TTA systems,

DiffSound (Yang et al., 2022) and AudioGen (Kreuk et al.,

2022) as our baseline models. DiffSound is trained on AS

and AC datasets with around 400M parameters. AudioGen

is trained on AS, AC, and eight other datasets with around

285M parameters. Since AudioGen has not released pub-

licly available implementation, we reuse the KL and FAD

results reported in their paper. We train two AudioLDM

models. One is a small model named AudioLDM-S, which

has 181M parameters, and the other is a large model named

AudioLDM-L with 739M parameters. We describe the de-

tails of UNet architecture in Appendix B. To demonstrate the

advantage of our method, we simply train these two models

only with the AC dataset. Moreover, to explore the effect of

3https://github.com/haoheliu/audioldm_

eval

the scale of training data, we develop an AudioLDM-L-Full

model which is trained on AC, AS, FreeSound, and BBC

SFX datasets.

5.1. Results

We show the main evaluation results on the AC test set in

Table 1. Given the single training dataset AC, AudioLDM-

S can achieve better generation results than the baseline

models on both objective and subjective evaluations, even

with smaller model size. By expanding model capacity with

AudioLDM-L, we further improve the overall results. Then,

by incorporating AS and the two other datasets into train-

ing, our model AudioLDM-L-Full achieves the best quality,

with an FD of 23.31. Although RoBERTa and CLAP have

the same text encoder structure, CLAP has an advantage

in that it decouples audio-text relationship learning from

generative model training. This decoupling is intuitive as

CLAP has already modelled the relationship between au-

dio and text by aligning their embedding spaces. On the

other hand, AudioLDM-S-Full-RoBERTa, in which the text

encoder only represents textual information, requires the

model to learn the text-audio relationships while simultane-

ously learning the audio generation process. Additionally,

our CLAP-based method allows for model training using

audio-only data. Therefore, using Roberta without pretrain-

ing with CLAP may increase the difficulty of training.

Our human evaluation shows a similar trend as other evalu-

ation metrics. Our proposed methods have OVL and REL

of around 64, outperforming DiffSound with OVL of 45.00
and REL of 43.83 by a large margin. On the AudioLDM

model size, we notice that the larger model is advantageous

for the overall audio qualities. After scaling up the training

data, both OVL and REL show significant improvements.

Figure 4 shows the score statistic of different models aver-

aged between all the raters. We notice our model is more

concentrated on the higher scores compared with DiffSound.

Our spam cases, which are randomly selected real record-

ings, show high scores, indicating the rating result is reli-

able.
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Figure 4. The histogram of the human evaluation result. The horizontal axis and vertical axis represent the rating score and frequency,

respectively. OVL denotes the overall quality of audio files and REL denotes the relation between text and generated audio. Both OVL and

REL are scored on a scale of 1 to 100. Scores on each evaluation file are averaged among all the raters.

Figure 5. The comparison of various evaluation metrics evalu-

ated in the training process of i) AudioLDM-S trained with text

embedding (S-Text+Audio) ii) AudioLDM-S (S-Audio), and iii)

AudioLDM-L (L-Audio).

To perform the evaluation on audio data that could include

music, we further evaluate our model on the AS evaluation

set. We compare our method with DiffSound and show the

results in Table 2. Our three AudioLDM models show a

similar trend as they perform on the AC test set. We can

outperform the DiffSound baseline by a large margin on all

the metrics.

Model FD ↓ IS ↑ KL ↓

DiffSound 50.40 4.19 3.63

AudioLDM-S 28.08 6.78 2.51

AudioLDM-L 27.51 7.18 2.49

AudioLDM-L-Full 24.26 7.67 2.07

Table 2. The evaluation results on the AudioSet evaluation set.

Conditioning Information As we train LDMs conditioned

on the audio embedding Ex but provide the text embed-

ding Ey to LDMs in TTA generation, a natural concern

is that if stronger results could be achieved by directly us-

ing the text embedding as training condition. We conduct

experiments and show the results in Table 3. For a fair com-

parison, we also conduct data augmentation and we adopt

the strategy from AudioGen. Specifically, we use the same

mixing method for audio pairs shown in Section 3.3, and

concatenate two text captions as conditioning information.

Table 3 shows by training LDMs on Ex, we can achieve

better results than training with Ey .

We believe the primary reason for the result in Table 3 is

that text embedding cannot represent the generation target

Model Text Audio FD ↓ IS ↑ KL ↓

AudioLDM-S ✓ ✓ 31.26 6.35 2.01

AudioLDM-S ✗ ✓ 29.48 6.90 1.97

AudioLDM-S-Full ✓ ✓ 27.20 7.52 2.38

AudioLDM-S-Full ✗ ✓ 23.47 7.57 1.98

AudioLDM-L-Full ✓ ✓ 25.79 7.95 2.26

AudioLDM-L-Full ✗ ✓ 23.31 8.13 1.59

Table 3. The comparison between text embedding and audio em-

bedding as conditioning information on the training of LDMs.

as good as audio embedding. Firstly, due to the ambiguity

and complexity of sound, the text caption is difficult to be

accurate and comprehensive. Different human annotators

may have different perceptions and descriptions over the

same audio, which make training with text-audio pair less

stable than with audio only. Moreover, some of the captions

are at a highly-abstracted level and cannot correctly describe

the audio content. For example, there is an audio in the BBC

SFX dataset with caption Boats: Battleships-5.25 conveyor

space, which is even difficult for humans to imagine how

it sounds. This quality of language-audio pairs may hinder

model optimization. By comparison, if we use Ex from

CLAP latents as a condition, it is extracted directly from

the audio signal and is aligned with ideally the best text

caption, which enables us to provide strong conditioning

information to LDMs without considering the noisy labeled

text description. Figure 5 shows sample quality as a function

of training progress. We notice that i) training with audio

embedding can lead to significantly better results than text

embedding throughout the entire training process; and ii)

larger models may converge more slowly but can achieve

better final performance.

Compression Level We study the effect of compression

level r on generation quality. Table 4 shows the performance

comparison with r=4, 8, 16. We observe a decreasing trend

with the increase of compression levels. Nevertheless, in

the setting of r=16 where we compress the 64-band mel-

spectrogram into only 4 dimensions in the frequency axis,

our performance is still on par with AudioGen on KL, and

better than DiffSound on all the metrics.
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Model r FD ↓ IS ↑ KL ↓

AudioLDM-S 4 29.48 6.90 1.97

AudioLDM-S 8 33.50 6.13 2.04

AudioLDM-S 16 34.32 5.68 2.09

Table 4. The effect of the compression level on AudioLDM.

Task Super-resolution Inpainting

Dataset AudioCaps VCTK AudioCaps

Unprocessed 2.76 2.15 10.86

Kuleshov et al. (2017) - 1.32 -
Liu et al. (2022a) - 0.78 -

AudioLDM-S 1.59 1.12 2.33

AudioLDM-L 1.43 0.98 1.92

Table 5. Performance comparisons on zero-shot super-resolution

and inpainting, which are evaluated by LSD and FAD, respectively.

If we set the compression level as r=1, which means we

directly generate mel-spectrogram from CLAP embeddings,

the training process is difficult to implement on a single

RTX 3090 GPU. Similar results happen on r=2. Moreover,

the inference speed will be low with r=1, 2. In our studies,

r=4 achieves high generation quality while reducing the

computational load to a reasonable level. Hence, we use it

as the default setting in our experiments.

Text-Guided Audio Manipulation We show the perfor-

mance of our text-guided audio manipulation methods on

two tasks: super-resolution and inpainting. Specifically,

for super-resolution, we upsample the audio signal from

8 kHz to 16 kHz sampling rate. For the inpainting task, we

remove the audio signal between 2.5 and 7.5 seconds and

refill this part by inpainting. Since most studies on audio

super-resolution work on speech signal (Liu et al., 2021a;

2022a), we demonstrate our results on both AudioCaps, and

a speech dataset VCTK (Yamagishi et al., 2019), which is

a multi-speaker speech dataset. For super-resolution, we

employ two models AudioUNet (Kuleshov et al., 2017) and

NVSR (Liu et al., 2022a) as baseline models, and employ

log-spectral distance (LSD) (Wang & Wang, 2021) as the

evaluation metric for comparison. For the inpainting task,

we use FAD as a metric and establish a baseline for this

task. Table 5 shows that AudioLDM can outperform the

strong AudioUNet baseline, but the result is not as good

as NVSR (Liu et al., 2022a). Recall that AudioLDM is a

model trained on a diverse set of audio signals, including

those with heavy background noise. This can lead to the

presence of white noise or other non-speech sound events

in the output of our super-resolution process, potentially

reducing performance. Nevertheless, our contribution could

open the door to achieving text-guided audio manipulation

with the TTA system in a zero-shot way. Further improve-

ments could be expected based on our benchmark results.

We provide several samples of our results in Appendix I.

5.2. Ablation Study

Table 6 shows the result of our ablation study on AudioLDM-

S. By simplifying the attention mechanism in UNet into a

one-layer multi-head self-attention (w. Simple attn), the per-

formance in each metric will have a notable decrease, which

indicates complex attention mechanism is preferred. Also,

we notice the widely used balanced sampling strategy (Gong

et al., 2021; Liu et al., 2022b) in audio classification does not

show improvement in TTA (w. Balance samp). Conditional

augmentation (see Section 3.3) shows improvement in the

subjective evaluation, but it does not show improvement in

the objective evaluation metrics (w. Cond aug). The reason

could be that conditioning augmentation generates training

data that is not representative of the AudioCaps dataset, re-

sulting in model outputs that are not well-aligned with the

evaluation data, ultimately leading to lower metric scores.

Nevertheless, conditioning augmentation can improve two

subjective metrics and we still recommend using it as a data

augmentation technique.

Setting FD↓ IS↑ KL↓ OVL ↑ REL ↑

AudioLDM-S 29.48 6.90 1.97 63.41 64.83

w. Simple attn 33.12 6.15 2.09 - -
w. Balance samp 34.05 6.21 2.16 - -
w. Cond aug 31.88 6.25 2.02 64.49 65.01

Table 6. The ablation study on the attention mechanism, the bal-

ance sampling technique for training data, and the conditioning

augmentation algorithm.

DDIM Sampling Step The number of inference steps in the

reverse process of DDPMs can directly affect the generation

quality (Ho et al., 2020; Song et al., 2021). Generally, the

sample quality can be improved with an increase in the

number of sampling steps and computational load at the

same time. We explore the effect of the DDIM (Song et al.,

2020) sampling steps on our latent diffusion model. Table 7

shows that more sampling steps lead to better quality. With

enough sampling steps such as 100, the gain of adding

sampling steps becomes less significant. The result of 200
steps is only slightly better than that of 100 steps.

Guidance Scale represents a trade-off between conditional

generation quality and sample diversity. A suitable guidance

scale can improve the consistency between generated sam-

ples and conditioning information at an acceptable cost of

DDIM steps 10 25 50 100 200

FD 55.84 42.84 35.71 30.17 29.48

IS 4.21 5.91 6.51 6.85 6.90

KL 2.47 2.12 2.01 1.94 1.97

Table 7. Effect of sampling steps of LDMs with a DDIM sampler.
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Figure 6. The comparison between different classifier-free guid-

ance scales (on the horizontal axis) for the AudioLDM-S model

trained on AudioCaps.

generation diversity. We show the effect of guidance scale

w on TTA in Figure 6. When w = 3, we achieve the best

results in both FD and KL, but not in FAD. We suppose the

reason is the audio classifier in FAD is not as good as FD,

as mentioned in Section 5. In this case, the improvement in

the adherence to detailed language description may become

misleading information to the classifier in FAD. Consider-

ing previous studies report FAD results instead of FD, we

set w = 2 for comparison, but also provide detailed effects

of w on FAD, FD, IS, and KL, respectively.

Case Study We conduct case study and show the generated

results in Appendix I, including style transfer (see Figure 9-

11), super-resolution (see Figure 12), inpainting (see Fig-

ure 13-14), and text-to-audio generation (see Figure 15-22).

Specifically, for text-to-audio, we demonstrate the controlla-

bility of AudioLDM, including the control of the acoustic

environment, material, sound event, pitch, musical genres,

and temporal orders.

6. Conclusions

We have presented a new method AudioLDM for text-

to-audio (TTA) generation, with contrastive language-

audio pretraining (CLAP) models and latent diffusion mod-

els (LDMs). Our method is advantageous in generation

quality, computational efficiency, and audio manipulations.

With a single training dataset AudioCaps and a single GPU,

AudioLDM achieves SOTA generation quality evaluated

by both subjective and objective metrics. Moreover, Audi-

oLDM enables zero-shot text-guided audio style transfer,

super-resolution, and inpainting.
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Appendix

A. Contrastive Language-Audio Pretraining

We follow the pipeline of the contrastive language-audio pretraining (CLAP) models proposed by (Wu et al., 2022) to

capture the similarity between text and audio, and project them into joint latent space. The training dataset includes the

currently largest public dataset LAION-Audio-630K, the AudioSet dataset whose text caption is augmented with keyword-

to-caption4 by T5 model (Raffel et al., 2020), the AudioCaps dataset and the Clotho dataset (Drossos et al., 2020). The

LAION-Audio-630K dataset contains 633, 526 language-audio pairs and 4325.39 hours of audio samples. The AudioSet

dataset contains 1, 912, 024 pairs and 463.48 hours of audio samples. The AudioCaps dataset contains 49, 274 pairs and

136.87 hours of audio samples. The Clotho dataset contains 3, 839 pairs and 23.99 hours of audio samples. These datasets

contain various natural sounds, audio effects, music and human activity.

Given the audio sample x and the text data y, we use an audio encoder and a text encoder to extract their embedding

Ex ∈ R
L and Ey ∈ R

L respectively, where L is set as 512. We build the audio encoder based on HTSAT (Chen et al.,

2022a) and the text encoder based on RoBERTa (Liu et al., 2019). The symmetric cross-entropy loss used to train these

contrastive encoders is:

Ls =
1

2D

D
∑

i=1

(l1 + l2), (12)

l1 = log
exp(Ex

i ·Ey
i /τ)

∑N

i=1
exp(Ex

i ·Ey
j /τ)

, (13)

l2 = log
exp(Ey

i ·Ex
i /τ)

∑N

i=1
exp(Ey

i ·Ex
j /τ)

), (14)

where τ is a learnable temperature parameter and D is the batch size.

B. Latent Diffusion Model

We adopt the UNet backbone of StableDiffusion (Rombach et al., 2022) as the basic architecture of LDM for AudioLDM.

As shown in Equation 5, the UNet model is conditioned on both the time step t and the CLAP embedding E. We map

the time step into a one-dimensional embedding and then concatenate it with E as conditioning information. Since our

condition vector is only one-dimensional, we do not use the cross-attention mechanism in StableDiffusion for conditioning.

Instead, we directly use the feature-wise linear modulation layer (Perez et al., 2018) to merge conditioning information with

the feature map of the UNet convolution block. The UNet backbone we use has four encoder blocks, a middle block, and

four decoder blocks. With a basic channel number of cu, the channel dimensions of encoder blocks are [cu, 2cu, 3cu, 5cu].
The channel dimensions of decoder blocks are the reverse of encoder blocks, and the channel of the middle block has 5cu
dimensions. We add an attention block in the last three encoder blocks and the first three decoder blocks. Specifically, we

add two multi-head self-attention layers with a fully-connected layer in the middle as the attention block. The number of

heads is determined by dividing the embedding dimension of the attention block with a parameter ch. We set AudioLDM-S

and AudioLDM-L with cu=128, ch=32, and cu=256, ch=64, respectively. In the forward process, we use N = 1000 steps.

A linear noise schedule from β1 = 0.0015 to βN = 0.0195 is used. In sampling, we employ the DDIM (Song et al., 2020)

sampler with 200 sampling steps. For classifier-free guidance, a guidance scale w of 2.0 is used in Equation 9.

C. Variational Autoencoder

We compress the mel-spectrogram X ∈ R
T×F of x into a small continuous space z ∈ R

C×T
r
×F

r with a convolutional

VAE, where T and F is the time and frequency dimension size respectively, C is the channel number of the latent encoding,

and r is the compression level (downsampling ratio) of latent space. Both the encoder E(·) and the decoder D(·) are

composed of stacked convolutional modules. In this way, VAE encoder could preserve the spatial correspondancy between

mel-spectrogram and latent space, as it is shown in Figure 7. Each module is formed by ResNet blocks (Kong et al., 2021a)

which are made up of convolutional layers and residual connections. The encoding z will be evenly split into two parts,

zµ and zσ , with shape (C
2
, T
r
, F
r
), representing the mean and variance of the VAE latent space. The input of the decoder

is a stochastic encoding ẑ = ẑµ + ẑσ · ϵ, ϵ ∼ N (0, I). During generation, the decoder will be used to reconstruct the

4https://github.com/gagan3012/keytotext
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mel-spectrogram given the generated latent representations.

We employ three loss functions in our training objective: the mel-spectrogram reconstruction loss, adversarial losses, and a

gaussian constraint loss. The reconstruction loss calculates the mean absolute error between the input sample X ∈ R
T×F

and the reconstructed mel-spectrogram X̂ ∈ R
T×F . The adversarial losses are employed to enhance the reconstruction

quality. Specifically, we adopt the PatchGAN (Isola et al., 2017) as our discriminator, which will divide the input image into

small patches and predict whether each patch is real or fake by outputting a matrix of logits. The PatchGAN discriminator is

trained to maximize the logits of correctly identifying real patches while minimizing the logits of incorrectly identifying

fake patches. We also apply the gaussian constraint on the latent space of VAE. By enforcing a gaussian constraint on the

latent space, the VAE is encouraged to learn a continuous, structured latent space, rather than a disorganized one. This

can help the VAE to better capture the underlying structure of the data, which can result in more stabilized and accurate

reconstructions (Kingma & Welling, 2013).

We train our VAE using the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 4.5 × 10−6 and a batch size

of six. The audio data we use includes AudioSet, AudioCaps, Freesound, and BBC SFX. We perform experiments with

three compression-level settings r=4, 8, 16, for which the latent channels are C = 8, 16, 32, respectively. VAEs in all three

settings are trained with at least 1.5M steps on a single NVIDIA RTX 3090 GPU. To stabilize training, we do not apply the

adversarial loss in the first 50K training steps. We apply the mixup (Kong et al., 2020b) strategy for data augmentation.

Table 8 shows the reconstruction performance of our VAE model with different values of r. All three settings achieve

comparable metrics score with the GT Mel + Vocoder setting, indicating the autoencoder can perform reliable mel-

spectrogram encoding and decoding.

Setting PSNR↑ SSIM↑ FD↓ IS↑ KL↓

GT Mel + Vocoder 25.41 0.86 8.76 10.71 0.23

Compressionr=4 25.38 0.86 9.02 10.67 0.23

Compressionr=8 25.14 0.84 9.68 10.50 0.25

Compressionr=16 24.87 0.82 9.90 9.84 0.29

Table 8. The objective metrics of VAE reconstruction performance with different compression level r on the AudioSet evaluation set.

Original mel-spectrogram

Time-masked mel-spectrogram Frequency-masked mel-spectrogram

Corresponding VAE latent Corresponding VAE latent

Figure 7. Visualization of the time-frequency-masked spectrogram and their corresponding VAE latent. This figure shows VAE encoder

roughly preserves the spatial correspondancy between the spectrogram and the latent.

D. Vocoder

In this work, we employ HiFi-GAN (Kong et al., 2020a) as a vocoder, which is widely used for speech waveform generation.

It contains two sets of discriminators, a multi-period discriminator, and a multi-scale discriminator, to enhance the perceptual

quality. To synthesize the audio waveform, we train it on the AudioSet dataset. For the input samples at the sampling rate of

16, 000Hz, we extract 64 bands mel-spectrogram. Then we follow the default settings of HiFi-GAN V1. The window, FFT,

and hop size are set to 1024, 1024, and 160. The fmin and fmax are set as 0 and 8000. We use the AdamW optimizer with
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0.8 and 0.99. The learning rate starts from 2× 10−4 and a learning rate decay of 0.999 is used. We use a batch size of 96
and train the model with 6 NVIDIA 3090 GPUs. We release this pretrained vocoder in our open-source implementation.

E. Experiment Details

Data Processing The duration of the audio samples in AudioSet and AudioCaps is 10 seconds, while it is much longer in

FreeSound and BBC SFX datasets. To avoid overusing the data from long audio, which usually have repeated sound, we

only use the first thirty seconds of the audio in both the FreeSound and BBC SFX datasets and segment them into ten-second

long audio files. Finally, we have in total 3, 302, 553 ten-seconds audio samples for model training. It should be noted that

even if some datasets, e.g., AudioCaps and BBC SFX, have text captions for the audio, we do not utilize them during the

training of LDMs. We only use the audio samples for training. We resample all the datasets into 16kHz sampling rate and

mono format, and all samples are padded to 10 seconds.

Configuration For each LDM model, we use the compression level r=4 as the default setting. Then, we train AudioLDM-S

and AudioLDM-L for 0.6M steps on a single GPU, NVIDIA RTX 3090, with the batch size of 5 and 8, respectively. The

learning rate is set as 3× 10−5. The AudioLDM-L-Full is trained for 1.5M steps on one NVIDIA A100 with a batch size of

8. The learning rate is 10−5. For better performance on AudioCaps, we further fine-tune AudioLDM-L-Full on AudioCaps

for 0.25M steps before evaluation. It should be noted that we limit our batch size because of the scarcity of GPU. However,

this potentially restricts the performance of AudioLDM models. In comparison, DiffSound uses 32 NVIDIA V100 GPUs

for model training with a batch size of 16 on each GPU. AudioGen utilizes 64 A100 GPUs with a batch size of 256.

Human evaluation We construct the dataset for human subjective evaluation with 70 randomly selected samples where 30
audios are from AudioCaps, 30 audios are from AudioSet, and 10 randomly selected real recordings, which we will refer to

as spam cases. Therefore, each model should generate 60 audio samples given the corresponding text descriptions. We

gather the output from models in one folder and anonymize them with random identifiers. An example questionnaire is

shown in Table 9. The participant will need to fill in the last two columns for each audio file given the text description. Our

final result shows that all the human raters have an average score above 90 on the spam cases. Hence, their evaluation result

is considered reliable.

File name Text description Overall impression (1-100) Relation to the text description (1-100)

random name 108029.wav A man talking followed by lights scrapping on a wooden surface 80 90

random name 108436.wav Bicycle Music Skateboard Vehicle 70 80

random name 116883.wav A power tool drilling as rock music plays 90 95

... ... ... ...

Table 9. Example questionnaire for human evaluation. The participant will need to fill in the last two columns.

F. The Effect of Finetuning

Table 10 compares the results obtained with and without fine-tuning on the evaluation set. We observe an improvement in

various evaluation metrics, which is expected since the training set of AudioCaps has a distribution that is similar to the

evaluation set. However, it is important to note that higher performance on the limited distribution of the evaluation set may

not necessarily indicate better performance overall. A model that can generate broader distributions of audio may perform

worse on the evaluation set, even though it may have better generalization capabilities. Future work in audio generation can

focus on building an evaluation protocal that is more aligned with human perceptions.

Model Text Data Use CLAP Finetuned FD ↓ IS ↑ KL ↓ FAD ↓

AudioLDM-S-Full-Roberta ✓ ✗ ✗ 34.28 3.53 3.44 6.96

AudioLDM-S-Full-Roberta ✓ ✗ ✓ 32.13 4.02 3.25 5.89

AudioLDM-S-Full ✗ ✓ ✗ 24.13 6.68 2.36 4.94

AudioLDM-S-Full ✗ ✓ ✓ 23.47 7.57 1.98 2.32

AudioLDM-L-Full ✗ ✓ ✗ 23.51 7.11 2.19 4.19

AudioLDM-L-Full ✗ ✓ ✓ 23.31 8.13 1.59 1.96

Table 10. The comparison between fine-tuned and non-finetuned models on the AudioCaps evaluation set.
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G. Computation Efficiency Comparison

(a) Different batch sizes (b) Different sampling steps (c) With/Without classifier-free guidance

Figure 8. These three figures show the time cost when generating ten seconds of audio, measured on a single A100 GPU.

As shown in Figure 8(a), AudioLDM-S can generate eight ten-second-long audios within ten seconds without classifier-free

guidance. With classifier-free guidance, AudioLDM-Small can generate eight ten-second-long audios with 150 DDIM

steps. Figure 8(c) shows our model is faster than the DiffSound on different batch sizes. Our model can generate eight

ten-second-long audios with 20 seconds while DiffSound needs more than 40 seconds. Since AudioGen has not been

open-sourced yet, we did not perform a speed comparison with AudioGen.

H. Limitations

There are several limitations to our study that warrant further investigation in future work. For example, the sampling rate of

our model is still insufficient, especially for the generation of music. Exploring higher-fidelity sampling rates such as 32

kHz or 48 kHz could improve the quality of the generated audio. Also, all the modules in AudioLDM are trained separately,

which may result in misalignment between different modules. For instance, the latent space learned by VAE may not be

optimal for the latent diffusion model. Future work can explore approaches to better align the different modules, such as

end-to-end fine-tuning.

The possible negative impact of our method might be the abuse of our technology or released models, e.g., generating fake

audio effects to provide misleading information. Moreover, sensitive text content should be restricted in future work to

prevent the creation of harmful audio content.
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I. Demos

Audio Style Transfer

We show three examples of zero-shot audio style transfer with AudioLDM-S, using the developed shallow reverse process (see

Equation 10). In Figure 9, we show the transfer from drum beats to ambient music. From left to right, we show the source

audio sample drum beats, and the six generated samples guided by text prompt ambient music with different starting points

n0. Given a smaller n0 (i.e., the left part of the figure), the generated sample is similar to drum beats, while when we set

n0 = 0.8×N for the last sample, the generated sample will be aligned with the text input ambient music. Similarly, we

show the source audio trumpt, and the seven generated samples guided by text prompt children singing in Figure 10. We

show the source audio sheep vocalization, and the five generated samples guided by text prompt narration, monologue in

Figure 11.

Figure 9. Audio style transfer from drum beats to ambient music.

Figure 10. Audio style transfer from trumpet to children singing.

Figure 11. Audio style transfer from sheep vocalization to narration, monologue.
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Audio Super-Resolution

In Figure 12, we show four cases of zero-shot audio super-resolution with AudioLDM-S: 1) violin, 2) sneezing sound from

a woman, 3) baby crying, and 4) female speech. The sampling rate of input samples (left) is 8 kHz, and that of generated

samples (middle) and ground-truth samples (right) is 16 kHz. Our visualization shows we can retain the ground-truth

observation in the low-frequency part (below 8 kHz), while generating the high-frequency missing part (from 8 kHz to

16 kHz) with pretrained AudioLDM-S. The generated high-frequency information is consistent with the low-frequency

observation.

Original

Low resolution

Processed

High resolution

Sneezing sound

from a woman.

Baby Crying

Female Speech

Violin

Ground TruthText description

Figure 12. The examples of zero-shot audio super-resolution with AudioLDM-S.
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Audio Inpainting

In Figure 13, we show four samples of zero-shot audio inpainting with AudioLDM-S. The time length of each audio sample

is 10 seconds. In the unprocessed part, we remove the content between 2.5 and 7.5 seconds from the ground-truth sample

as the input of inpainting. In the inpainting result part, we show the generated samples guided by the same text prompt of

the ground-truth sample. In the ground truth part, we show the ground-truth sample for comparison.

A young woman is talking.

Organ, hammond organ. Air horn, truck horn, speech

Orchestra

Unprocessed

Inpainting result

Ground truth

Unprocessed

Inpainting result

Ground truth

Figure 13. The examples of zero-shot audio inpainting with AudioLDM-S.

In Figure 14, we use one sample to demonstrate the audio inpainting guided by different text prompts. Given the observed

audio signal shown in the top row, we guide the inpainting process with four different text prompts: 1) ambient music; 2) a

man is speaking with bird calls in the background; 3) a cat is meowing; 4) raining with wind blowing. As can be seen,

the observed audio signal is preserved in each generated sample, while the generated content can be controlled by text input.
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A cat is meowing.

Ambient music. A man is speaking with bird calls in the background.

Raining with wind blowing.

Figure 14. The example of zero-shot audio inpainting with AudioLDM-S given different text prompts.

Environment Control

In Figure 15, we demonstrate that AudioLDM can control the acoustic environment of generated samples with a text

description. The four samples are generated with the same random seed, but with different text prompts. Their common

text information is ªA man is speaking inº, while the specific text information describes the acoustic environment as ªa

small roomº, ªa huge roomº, ªa huge room without background noiseº, and ªa studioº. These samples show the ability

of AudioLDM to capture the fine-grained text description about the acoustic environment, and control the corresponding

effects on audio samples, such as reverberation or background noise.

A man is speaking in 

a huge room 

without background noise.

A man is speaking in 

a studio.
A man is speaking in 

a huge room.

A man is speaking in 

a small room.

Figure 15. The examples of controlling acoustic environment with AudioLDM-S.
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Music Control

In Figure 16, we show the generated music samples when we control the music characteristics with text input. The first

sample is generated by ªTheme music with bass drumº. Then, we add specific text information ªfluteº, ªfast, fluteº, or

ªflute in the backgroundº, to change the text input. The corresponding variations can be seen in generated mel-spectrograms.

We use these samples to demonstrate the ability of AudioLDM to add new musical instruments to music samples, tune the

speed of music, and control the foreground-background relations.

Theme music with bass drum.

Theme music with flute and bass drum.

Theme music with flute in the background

and bass drum.

Fast theme music with flute and bass drum.

Figure 16. The examples of controlling music characteristics with AudioLDM-S.
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Pitch Control

In Figure 17, we show the ability of AudioLDM to control the pitch of generated samples. Pitch is an important characteristic

of sound effects, music and speech. Here, we set the common text information as ªSine wave with · · · pitchº, and input the

specific text information ªlowº, ªmediumº, and ªhighº. The text-controlled pitch variation can be seen from the three

generated samples.

Sine wave with low pitch

Sine wave with medium pitch

Sine wave with high pitch

Figure 17. The examples of pitch controlling on generating samples with AudioLDM-S.
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Material Control

In Figure 18, we show the ability of AudioLDM to control the materials which generate audio samples. We show four

samples generated by the common action ªhitº between different materials, e.g., wooden object and wooden environment,

or metal object and wooden environment.

Wooden object is hitting the wooden surface Metal object is hitting the wooden surface

Two small plastic balls hit and drop on the ground Two small wooden balls hit and drop on the ground

Figure 18. The examples of controlling the materials of generated audio samples with AudioLDM-S.

Temporal Order Control

In Figure 19, we show the ability of AudioLDM to control the temporal order between generated compositional audio

signals. When the text description includes multiple sound effects, AudioLDM can generate the audio signals, and the

temporal order between them is consistent with the text input.

Cat is purring followed by slow and tender meowing. A female is speaking followed by footstep sound

A racing car is passing by and disappear A man is speaking followed by music playing

Figure 19. The examples of controlling the temporal order between generated compositional audio samples with AudioLDM-S.
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Text-to-Audio Generation

In Figure 20, we show four text-to-audio generation results with AudioLDM-S. They include sound effects in natural

environment, human speech, human activity, and sound from objects interaction.

Rubbing the paper into a ball

Large thunder storm in the ocean

Two metal objects hitting sound.

A group of people is cheering.

Figure 20. The examples of text-to-audio generation with AudioLDM-S.

Novel Audio Generation

In Figure 21, we show four novel audio samples generated with AudioLDM-S. Their text description is rarely seen, e.g., ªA

wolf is singing a beautiful song.º. We use them to exhibit the generalization ability of AudioLDM.

A music played by dog barking sounds.

A music played by finger snapping.

A music played by car horns

A wolf is singing a beautiful song.

Figure 21. The examples of novel audio generation with AudioLDM-S.
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Music Generation

In Figure 22, we show four music samples generated with AudioLDM-S. Here, we are using the labels of AudioSet as text

description for music generation, and we are able to specify the music genres of generated samples such as Classical music.

Swing music A cappella

Afrobeat Classical music

Figure 22. The examples of music generation with AudioLDM-S.
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