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Abstract
The noise transition matrix plays a central role in
the problem of learning with noisy labels. Among
many other reasons, a large number of existing
solutions rely on the knowledge of it. Identi-
fying and estimating the transition matrix with-
out ground truth labels is a critical and chal-
lenging task. When label noise transition de-
pends on each instance, the problem of iden-
tifying the instance-dependent noise transition
matrix becomes substantially more challenging.
Despite recently proposed solutions for learn-
ing from instance-dependent noisy labels, the lit-
erature lacks a unified understanding of when
such a problem remains identifiable. The goal
of this paper is to characterize the identifiabil-
ity of the label noise transition matrix. Building
on Kruskal’s identifiability results, we are able
to show the necessity of multiple noisy labels in
identifying the noise transition matrix at the in-
stance level. We further instantiate the results
to explain the successes of the state-of-the-art
solutions and how additional assumptions alle-
viated the requirement of multiple noisy labels.
Our result reveals that disentangled features im-
prove identification. This discovery led us to an
approach that improves the estimation of the tran-
sition matrix using properly disentangled features.
Code is available at https://github.com/
UCSC-REAL/Identifiability.

1. Introduction
The literature of learning with noisy labels concerns the sce-
nario when the observed training labels Ỹ can differ from
the true one Y . The noise transition matrix T (X), defined
as the transition probability from Y to Ỹ given X , plays
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a central role in both defining and solving this problem.
Among many other benefits, the knowledge of T (X) has
demonstrated its use in performing risk correction (Natara-
jan et al., 2013; Patrini et al., 2017), label correction (Patrini
et al., 2017), and constraint corrections (Wang et al., 2021a;
Wei et al., 2023). In beyond, it also finds applications in
ranking small loss samples (Han et al., 2020) and detect-
ing corrupted samples (Zhu et al., 2021a). Applying the
wrong transition matrix T (X) can lead to a number of is-
sues. The literature has well-documented evidence that a
wrongly inferred transition matrix can lead to decline of
model performance (Natarajan et al., 2013; Liu & Wang;
Xia et al., 2019; Zhu et al., 2021c), and false sense of fair-
ness (Wang et al., 2021a; Liu & Wang; Zhu et al., 2022b).
Prior works have also documented challenges in estimating
the noise transition matrices when the quality of available
training information remains unclear. For instance, in (Zhu
et al., 2022a) the authors show that when the quality of
representations dropped, the estimation error in T (X) in-
creases significantly (Figure 1 therein). Other references
have observed these challenges too (Xia et al., 2019).1

Knowing whether a T (X) is identifiable or not is cru-
cial and informs us if T (X) and the underlying noisy
learning problem are indeed learnable. The earlier re-
sults have focused on class-dependent transition matrix
T (X) ≡ T := [P(Ỹ = j|Y = i)]i,j ,∀X , that is differ-
ent Xs observe the same transition matrix. The literature
has provided discussions of the identifiability of this class-
dependent T (Scott, 2015), and has identified a reducibility
condition for inferring the inverse noise rate, which closely
relates to T . Later works have developed a sequence of
solutions to estimate T under a variety of assumptions, in-
cluding irreducibility (Scott, 2015), anchor points (?Xia
et al., 2019; Yao et al., 2020a), separability (Cheng et al.,
2020), rankability (Northcutt et al., 2017; 2021), redundant
labels/tensor (Liu et al., 2020; Traganitis et al., 2018; Zhang
et al., 2014), clusterability (Zhu et al., 2021c), among others
(Zhang et al., 2021; Li et al., 2021).

Nonetheless, recent study (Wei et al., 2021) has shown
that the above class-dependent model fails to capture the
real-world noise patterns, but rather real human-level noise
follows an instance-dependent model. Intuitively, the in-

1We provide experiments to validate this in Appendix C.4.
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stance X encodes the difficulties in generating the label for
it. At the same time, we observe a recent surge of differ-
ent solutions towards solving the instance-dependent label
noise problem (Cheng et al., 2020; Xia et al., 2020b; Cheng
et al., 2021a; Yao et al., 2021). Some of the results took on
the problem of estimating T (X), while the others proposed
solutions to intervene directly on the instance-dependent
noisy labels. We will survey these results in Section 1.1.

Despite the above successes, there lacks a unified under-
standing of when this learning from instance-dependent
noisy label problem is indeed identifiable and therefore
learnable. The potentially complicated dependency between
X and T (X) renders it even less clear whether solving
this problem is feasible or not. This observation calls for
the need for demystifying: (1) Under what conditions are
the noise transition matrices T (X) identifiable? (2) When
and why do the existing solutions work when handling the
instance-dependent label noise? (3) When T (X) is not
identifiable, what can we do to improve its identifiability?
Providing answers to these questions will be the primary
focus of this paper.

The main contributions of this paper are to characterize the
identifiability of instance-dependent label noise, use them
to provide evidences to the success of existing solutions
and point out possible directions to improve. Among other
findings, some highlights of the paper are 1. We find many
existing solutions have a deep connection to the celebrated
Kruskal’s identifiability results that date back to the 1970s
(Kruskal, 1976; 1977). 2. Three separate independent and
identically distributed (i.i.d.) noisy labels (random variables)
are both necessary and sufficient for instance-level identi-
fiability. This observation echoes the previous successes
of developing tensor-based approaches for identifying the
hidden models. 3. Disentangled features help improve iden-
tifiability and learnability.

Our paper will proceed as follows. Section 2 and 3 will
present our formulation and the highly relevant preliminar-
ies. Section 4 provides characterizations of the identifia-
bility at the instance level and lays the foundations for our
discussions. Section 5 extends the discussion to different in-
stantiations that provides evidence of the success of existing
solutions. Section 6 provides some empirical observations.

1.1. Related works

In the literature of learning with label noise, a major set of
works focus on designing risk-consistent methods, i.e., per-
forming empirical risk minimization (ERM) with specially
designed loss functions on noisy distributions leads to the
same minimizer as if performing ERM over the correspond-
ing unobservable clean distribution. The noise transition ma-
trix is a crucial component for implementing risk-consistent
methods, e.g., loss correction (Patrini et al., 2017), loss

reweighting (Liu & Tao, 2015), label correction (Xiao et al.,
2015) and unbiased loss (Natarajan et al., 2013). A number
of solutions were proposed to estimate this transition matrix
for class-dependent label noise, which we have discussed in
the introduction. To handle instance-dependent noise, recent
solutions include estimating local transition matrices for dif-
ferent groups of data (Xia et al., 2020b), using confidence
scores to revise transition matrices (Berthon et al., 2020),
and using clusterability of the data (Zhu et al., 2021c). More
recent works have used the causal knowledge to improve
the estimation (Yao et al., 2021), and the deep neural net-
work to estimate the transition matrix defined between the
noisy label and the Bayes optimal label (Yang et al., 2021).
Other works chose to focus on the learning from instance-
dependent label noise directly, without explicitly estimating
the transition matrix (Zhu et al., 2021b; Cheng et al., 2021a;
Berthon et al., 2020; Xia et al., 2020a; Li et al., 2020).

The identifiability issue with label noise has been discussed
in the literature, despite not being formally treated. Relevant
to us is the identifiability results studied in the Mixture Pro-
portion Estimation setting (Scott, 2015; Yao et al., 2020b;
Menon et al., 2015). We’d like to note that the identifia-
bility was defined for the inverse noise rate, which differs
from our focus on the noise transition matrix T . To our best
knowledge, we are not aware of other works that specifi-
cally address the identifiability of T (X), particularly for
an instance-dependent label noise setting. Highly relevant
to us is the Kruskal’s identifiability results (Kruskal, 1976;
1977; Sidiropoulos & Bro, 2000; Allman et al., 2009), which
reveals a sufficient condition for identifying a parametric
model that links a hidden variable to a set of observed ones.
Kruskal’s early results were developed under the context of
tensor, which later proves to be a powerful tool for learn-
ing latent variable models (Sidiropoulos et al., 2017; Zhang
et al., 2014; Anandkumar et al., 2014).

2. Formulation
We use (X,Y ) to denote a supervised data in the form of
(feature, label) drawn from an unknown distribution over
X×Y . We consider a K-class classification problem where
the label Y ∈ {1, 2, ...,K} with K ≥ 2. In our setup, we
do not observe the clean true label Y , but rather a noisy one,
denoting by Ỹ . The generation of Ỹ follows the following
transition matrix:

T (X) := [P(Ỹ = j|Y = i,X)]Ki,j=1 .

T (X) is a K ×K matrix with its (i, j) entry being P(Ỹ =
j|Y = i,X).

To define identifiability, we will denote by Ω an observation
space. We first define identifiability for a general parametric
space Θ. Denote the distribution induced by the parameter
θ ∈ Θ of a statistical model on the observation space Ω as
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Pθ (Kruskal, 1976; Allman et al., 2009). To give an example,
for a fixed X (when consider instance-level identifiability),
and Ω is simply the outcome space for its associated noisy
label Ỹ , i.e., {1, 2, ...,K}. In this case, each θ is the combi-
nation of a possible transition matrix T (X) and the hidden
prior of P(Y |X), which we use to denote the conditional
probability distribution of Y given X . Pθ is then the dis-
tribution (probability density function) P(Ỹ |X). Later in
Section 4 when we introduce three noisy labels Ỹ1, Ỹ2, Ỹ3

for each X , Pθ is the joint distribution P(Ỹ1, Ỹ2, Ỹ3|X).
Identifiability defines as follows:

Definition 2.1 (Identifiability). The parameter θ (statistical
model) is identifiable if Pθ ̸= Pθ′ ,∀θ ̸= θ′.

We define identifiability for the task of learning with noisy
labels for an X . Denote by

θ(X) := {T (X),P(Y |X)} .

Pθ(X) is the distribution (probability density function) over
Ω, defined by the noise transition matrix T (X) and the prior
P(Y |X). To emphasize, Ω is not necessarily the observation
space of the noisy label Ỹ only. The exploration of an
effective Ω will be one of the focuses.

Definition 2.2 (Identifiability of T (X)). For a given X ,
T (X) is identifiable if Pθ(X) ̸= Pθ′(X) for θ(X) ̸= θ′(X),
up to label permutation.

Label permutation relabels the label space, e.g., 1 →
2, 2 → 1, and the rows in T (X) will swap. Allowing
for label permutation would mean that our results allow the
high noise rate regime. For instance, for a binary classifi-
cation problem, an 80% noise rate would correspond to a
counterfactual 20% one. Finding either model would be
regarded as being identifiable. In practice, further restric-
tion such as noise rate should not exceed 50% can help us
remove one of the two cases.

3. Preliminary
In this section, we will introduce two highly relevant results
on Mixture Proportion Estimation (MPE) (Scott, 2015) and
Kruskal’s identifiability result (Kruskal, 1976; 1977).

3.1. Preliminaries using irreducibility and anchor points

The problem of learning from noisy labels ties closely to an-
other problem called Mixture Proportion Estimation (MPE)
(Scott, 2015), which concerns the following problem: let
F, J,H be distributions defined over a Hilbert space Z . The
three relate to each other as follows: F = (1−κ∗)J+κ∗H .
The identifiability problem concerns the ability to identify
the mixture proportion κ∗ from only observing F and H .
The following identifiability result has been established:

Proposition 3.1. (Blanchard et al., 2010) κ∗ is identifiable
if J is irreducible with respect to H , that J can not be
written as J = γH + (1− γ)F ′, where 0 ≤ γ ≤ 1, and F ′

is another distribution.

Later, the anchor point condition (Yao et al., 2020b), a
stronger requirement was established:
Proposition 3.2. (Yao et al., 2020b) κ∗ is identifiable if
there exists a subset S ⊆ Z such that H(S) > 0, but
J(S)
H(S) = 0, where J(S), H(S) denote the probabilities of S
measured by J,H .

The above set S is called an anchor set. A sequence of
follow-up works have emphasized the necessity of anchor
points in identifying a class-dependent transition matrix T
(Xia et al., 2019; Li et al., 2021).

Prior work has established the connection between the MPE
problem and the learning from noisy label one (Yao et al.,
2020b) for the identifiability of an inverse noise rate P(Y |Ỹ )
but not the noise transition T (X). We reproduce the dis-
cussion and fill in the gap. The discussion and results are
for the class-dependent but not instance-dependent label
noise, i.e., T (X) ≡ T (P(Ỹ |Y,X) ≡ P(Ỹ |Y )), and for
a binary classification problem. To follow the convention,
we assume Y ∈ {−1,+1}. There are two things we need
to do: (1) State the noisy label problem as an MPE one;
and (2) show that the identifiability of κ∗ is equivalent to
the identifiability of T . We start with the first thing above.
We want to acknowledge that this equivalence appeared
before in (Yao et al., 2020b; Menon et al., 2015). We repro-
duce it here to make our paper self-contained. Denote by
π+ := P(Y = −1|Ỹ = +1), π− := P(Y = +1|Ỹ = −1)
and π̃− = π−

1−π+
, π̃+ = π+

1−π−
.

Lemma 3.3. P(X|Ỹ = −1),P(X|Ỹ = +1) relate to
P(X|Y = −1),P(X|Y = +1) as follows:

P(X|Ỹ = −1) = π̃− · P(X|Ỹ = +1)

+ (1− π̃−) · P(X|Y = −1)
P(X|Ỹ = +1) = π̃+ · P(X|Ỹ = −1)

+ (1− π̃+) · P(X|Y = +1) .

Now P(X|Ỹ = +1),P(X|Ỹ = −1) correspond to the
observed mixture distribution F,H , while P(X|Y = +1)
and P(X|Y = −1) are the two unobserved Js, π̃−, π̃+

correspond to the mixture proportion κ∗. This has es-
tablished the learning with noisy label problem as two
MPE problems corresponding for the two associated dis-
tributions P(X|Ỹ = −1),P(X|Ỹ = +1). Therefore to
formally establish the equivalence between identifying κ∗

and T , we will only need to establish the equivalence be-
tween identifying π̃−, π̃+ and identifying T . Denote by
e+ := P(Ỹ = −1|Y = +1), e− := P(Ỹ = +1|Y = −1)
which determine the T for the binary case. We then have:
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Theorem 3.4. Identifying {π̃−, π̃+} is equivalent with iden-
tifying {e−, e+}.

The above theorem concludes the same irreducibility and
anchor point conditions proposed under MPE also apply to
identifying noise transition matrix T . This conclusion aligns
with previous successes in estimating class-dependent noise
transition matrix T when the anchor point conditions are
satisfied (Liu & Tao, 2015; Xia et al., 2019; Li et al., 2021).
The above result has limitations. Notably, the result focuses
on two mixed distributions, leading to the binary classifi-
cation setup in the noisy learning setting. The authors did
not find an easy extension to the multi-class classification
problem. Secondly, the translation to the noisy learning
problem requires the noise transition matrix to stay the same
for a distribution of X (e.g., P(X|Ỹ = +1)), instead of
providing instance-level understanding for each X .

3.2. Kruskal’s identifiability result

Our results build on the Kruskal’s identifiability result
(Kruskal, 1976; 1977). The setup is as follows: suppose
that there is an unobserved variable Z that takes values
in a K-sized discrete domain {1, 2, ..., r}. Z has a non-
degenerate prior P(Z = i) > 0. Instead of observing
Z, we observe p variables {Oi}pi=1. Each Oi has a fi-
nite state space {1, 2, ..., κi} with cardinality κi. Let Mi

be a matrix of size r × κi, which j-th row is simply
[P(Oi = 1|Z = j), ...,P(Oi = κi|Z = j)]. In this case,
[M1,M2, ...,Mp] and P(Z = i) are the hidden parameters
that control the generation of observations - together, these
form our θ. We now introduce the Kruskal rank of a matrix,
which plays a central role in Kruskal’s identifiability results.

Definition 3.5 (Kruskal rank). (Kruskal, 1976; 1977) The
Kruskal rank of a matrix M is the largest number I such
that every set of I rows 2 of M are linearly independent.

In this paper, we will use Kr(M) to denote the Kruskal rank

of matrix M . To give an example, M =

[
1 0 0
0 1 0
2 0 0

]
⇒

Kr(M) = 1. This is because [1, 0, 0] and [2, 0, 0] are lin-
early dependent. We first reproduce the following theorem:

Theorem 3.6. (Kruskal, 1976; 1977; Sidiropoulos & Bro,
2000) The parameters Mi, i = 1, ..., p are identifiable, up
to label permutation, if

p∑
i=1

Kr(Mi) ≥ 2r + p− 1 (1)

The result for p = 3 was first established in (Kruskal,
2There exists other definition that checks columns. Results

would be symmetrical.

1977) demonstrating the power of a three-way tensor, and
then it was shown in (Sidiropoulos & Bro, 2000) that the
proof extends to a general p. The proof builds on show-
ing that different parameter θ leads to different stacking
of Ms: [M1, ...,Mp]. When p = 3, [M1,M2,M3] :=∑K

k=1 m
k
1

⊗
mk

2

⊗
mk

3 forms the tensor of the observa-
tions, where mk

i , i = 1, 2, 3 is the k-th column of Mi.

4. Instance-Level Identifiability
This section will characterize the identifiability of T (X) at
the instance level.

4.1. Single noisy label might not be sufficient

At a first sight, it is impossible to identify P(Ỹ |Y,X) from
only observing P(Ỹ |X),3 unless X satisfies the anchor
point definition that P(Y = k|X) = 1 for a certain k:
since P(Ỹ |X) = P(Ỹ |Y,X) · P(Y |X), different combina-
tions of P(Ỹ |Y,X),P(Y |X) can lead to the same P(Ỹ |X).
More specifically, consider the following example:
Example 1. Suppose we have a binary classification problem

with T (X) =

[
1− e−(X) e−(X)
e+(X) 1− e+(X)

]
. Note that using

chain rule (probability) we have

P(Ỹ = +1|X)

= P(Ỹ = +1|Y = +1, X) · P(Y = +1|X)

+ P(Ỹ = +1|Y = −1, X) · P(Y = −1|X)

= (1− e+(X)) · P(Y = +1|X) + e−(X) · P(Y = −1|X)

Consider two cases: (1): P(Y = +1|X) = 1, e+(X) =
e−(X) = 0.3 and (2): P(Y = +1|X) = 0.7, e+(X) =
0.1, e−(X) = 0.233. Both cases will return the same
P(Ỹ = +1|X) = 0.7.

Is then the anchor point necessary for identifying T (X) at
the instance level? The discussion in the rest of this section
departs from the classical single noisy label setting.

4.2. The necessity of multiple noisy labels

Setups We assume for each instance X , we will have p
conditionally independent (given X,Y ) and identically dis-
tributed noisy labels Ỹ1, ..., Ỹp generated according to T (X).
Let’s assume for now we potentially have these labels. Later
in this section, we discuss when having multiple redundant
labels are possible, and connect to existing solutions in the
literature in the next section. For each instance X , denote
by KX ≤ K the number of non-degenerated label classes

3We clarify that we will require knowing P(Ỹ |X) - this re-
quirement may appear weird when only one noisy label is sampled.
But in practice, there are tools available to regress the posterior
function P(Ỹ |X) for each X .
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k such that P(Y = k|X) > 0. W.l.o.g., let us assume the
non-degenerate classes are simply {1, 2...,KX}.

Before we formally present the results for having multiple
conditionally independent noisy labels, we offer intuitions.
The reason behind this identifiability result ties close to
latent class model (Clogg, 1995) and tensor decomposition
(Anandkumar et al., 2014). When the p noisy labels are
conditionally independent given X and Y , we will have
the joint distribution written as: P(Ỹ1, Ỹ2, ..., Ỹp|Y,X) =∏p

i=1 P(Ỹi|Y,X) That is, the joint distribution of noisy
labels can be encoded in a much smaller parameter space!
In our setup, when we assume the i.i.d. Ỹi, i = 1, 2, ..., p
are generated according to the same transition matrix T (X),
the parameter space is fixed and determined by the size
of T (X). Yet, when we increase p, the observation space
P(Ỹ1, Ỹ2, ..., Ỹp|Y,X) becomes richer to help us identify
T (X). We now define an informative noisy label.
Definition 4.1. For a given (X,Y ), we call their noisy label
Ỹ informative if rank(T (X)) = KX .

Definition 4.1 requires the KX rows of T (X) are linearly
independent. When the observation space for Ỹ is the same
as Y (therefore T (X) is a squared matrix), i.e., the true
label Y has a full support on the entire label space, then
the requirement is stating that T (X) is of full rank, which
is already assumed in the literature - e.g., loss correction
(Natarajan et al., 2013; Patrini et al., 2017; Traganitis et al.,
2018) would require the matrix has an inverse T−1(X),
which is equivalent to T (X) being full rank. In particular,
it was required e+(X) + e−(X) < 1 in (Natarajan et al.,
2013), which can be easily shown to imply T (X) is full
rank.

But we do not remove the possibility that T (X) is not a
squared matrix and KX can be much smaller than the entire
label space. The name for informativeness is inspired by
the following observation: when the noisy label brings in
useful information such that P(Y = i|Ỹ = i) ̸= P(Y =
i|Ỹ = i), the rows in T (X) have to be different. For binary
classification

T (X) =

[
1− e− e−
e+ 1− e+

]
,

when P(Y = 1|Ỹ = 1) ̸= P(Y = 1), we have
P(Ỹ=1|Y=1|)·P(Y=1)

P(Ỹ=1)
̸= P(Y = 1), which is equivalent to

P(Ỹ = 1|Y = 1|) ̸= P(Ỹ = 1), i.e., 1 − e1 ̸= P(Y =
1) · (1− e1) + P(Y = 0) · e0, that is 1− e1 ̸= e0.

Our first identifiability result states as follows:
Theorem 4.2. With i.i.d. noisy labels, three informative
noisy labels Ỹ1, Ỹ2, Ỹ3 (p = 3) are both sufficient and nec-
essary to identify T (X) when KX ≥ 2.

Note that KX ≥ 2 is easily satisfied as long as there exists

uncertainty in P(Y |X) - As long as there is uncertainty in
P(Y |X), we have at least two non-degenerated label class
k with P(Y = k|X) and therefore KX ≥ 2. Further by
Definition 4.1, we establish that rank(T (X)) ≥ KX ≥ 2.

Proof sketch. We provide the key steps of the proof. The
full proof can be found in the supplemental material.
We first prove sufficiency. We first relate our problem
setting to the setup of Kruskal’s identifiability scenario:
Y ∈ {1, 2, ...,KX}. corresponds to the unobserved hid-
den variable Z. P(Y = i) corresponds to the prior of
this hidden variable. Each Ỹi, i = 1, ..., p corresponds
to the observation Oi. κi is then simply the cardinality
of the noisy label space, K. In the context of this the-
orem, p = 3, corresponds to the three noisy labels we
have. Each Ỹi corresponds to an observation matrix Mi:
Mi[j, k] = P(Oi = k|Z = j) = P(Ỹi = k|Y = j,X).
Therefore, by definition of M1,M2,M3 and T (X), they
all equal to T (X): Mi ≡ T (X), i = 1, 2, 3. When
T (X) has a rank KX , we know immediately that all rows
in M1,M2,M3 are independent. Therefore, the Kruskal
ranks satisfy Kr(M1) = Kr(M2) = Kr(M3) = KX .
Checking the condition in Theorem 3.6, we easily verify
Kr(M1)+Kr(M2)+Kr(M3) = 3KX ≥ 2KX+2 . Calling
Theorem 3.6 proves the sufficiency.

To prove necessity, we need to prove less than 3 informative
labels will not suffice to guarantee identifiability. The idea is
to show that the two different sets of parameters T (X) can
lead to the same joint distribution P(Ỹ1, Ỹ2|X). We leave
the detailed constructions to the supplemental material.

The above result points out that to ensure identifiability of
T (X) at the instance level, we would need three condition-
ally independent and informative noisy labels. This result
coincides with a couple of recent works that promote the
use of three redundant labels (Liu et al., 2020; Zhu et al.,
2021c; Zhang et al., 2014). Per our theorem, these two
proposed solutions have a more profound connection to the
identifiability of hidden parametric models, and three labels
are not only algorithmically sufficiently, but also necessary.
This result also echoes the power of tensor (stacking third
order information) in uncovering hidden models (Tragani-
tis et al., 2018; Zhang et al., 2014). Particularly relevant
to us is (Zhang et al., 2014) where it was shown a spec-
tral EM approach that uses three noisy labels suffices to
identify the noise transition matrix of labels. We want to
highlight that our proof and results establish both the ne-
cessity and sufficiency for having three informative noisy
labels, independent from the specific algorithms developed.
Another note we want to add is that our main inquiry is on
establishing the conditions for identifying T (X), instead of
proposing algorithms to estimate T (X).

The crowdsourcing community has been largely focusing on
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soliciting more than one label from crowdsourced workers,
yet the learning from noisy label literature has primarily
focused on learning from a single one. One of the primary
motivations of crowdsourcing multiple noisy labels is in-
deed to aggregate them into a cleaner one (Liu et al., 2012;
Karger et al., 2011; Liu & Liu, 2015), which serves as a pre-
processing step towards solving the noisy learning problem.
Nonetheless, our result demonstrates the other significance
of having multiple labels - they help the learner identify the
underlying true noise transition parameters.

5. Instantiations and Practical Implications of
Our Identifiability Results

Most of the learning with noisy label solutions focus on
the case of using a single label and have observed empir-
ical successes. In this section, we provide extensions of
our results to cover of state-of-the-art learning with noisy
label methods, together with specific assumptions over X ,
T (X) = [P(Ỹ |Y,X)] etc. We show that our results can eas-
ily extend to these specific instantiations that successfully
avoided the requirements of having multiple noisy labels
for each X . The high-level intuition for Section 5.1 is to
leverage the smoothness and clusterability of the nearest
neighbor Xs so that their noisy labels will jointly serve as
the multiple noisy labels for the local group. Section 5.2 and
5.3 build on the notion that if T (X) is the same for a group
of Xs, each group can then be treated as one “instance” and
a “disentangled” version of X will become observation vari-
ables that serve the similar role of the additionally required
noisy labels. We carry the thoughts that each X’s noisy
label Ỹ is informative as defined in Definition 4.1.

5.1. Leveraging smoothness and clusterability of X

We start with a discussion using the smoothness and cluster-
ability of X . Recent results have explored the clusterability
of Xs (Zhu et al., 2021c; Bahri et al., 2020) to infer the
noise transition matrix:

Definition 5.1. The 2-NN clusterability requires each X and
its two nearest neighbors X1, X2 share the same true label
Y , that is Y = Y1 = Y2, and T (X) = T (X1) = T (X2).

This definition helps us remove the requirement for multiple
noisy labels per each X: one can view it as for each X ,
borrowing the noisy labels from its 2-NN, we have three
independent noisy labels Ỹ , Ỹ1, Ỹ2, all from the same Y
(Figure 1). This smoothness or clusterability condition al-
lows us to apply our identifiability results when one believes
the T (X) stays the same for the 2-NN nearest neighborhood
X,X1, X2. But, when does an instance X and its 2-NN
X1, X2 share the same true label? This requirement seems
strange at the first sight: as long as P(Y |X),P(Y1|X1) are
not degenerate (being either 0 or 1 for different label classes),

Figure 1. Data generation: label correlation among triplets. Orange
circles and blue squares indicate different labels.

there always seems to be a positive probability that the real-
ized Y ̸= Y1, no matter how close X and X1 are. Nonethe-
less, the 2-NN requirement seems to hold empirically: ac-
cording to (Zhu et al., 2021c) (Table 3 therein), when using a
feature extractor built using the clean label, more than 99%
of the instance satisfies the 2-NN condition. Even when
using a weaker feature extractor, the ratio is mostly always
in or close to the 80% range.

The following data generation process for an unstructured
discrete domain of classification problem (Feldman, 2020;
Liu, 2021) justifies the 2-NN requirement. The intuition is
that when Xs are informative and sufficiently discriminative,
the similar Xs are going to enjoy the same true label.

• Let λ = {λ1, ..., λn} denote the priors for each X ∈ X .

• For each X ∈ X , sample a quantity qX independently
and uniformly from the set λ.

• The resulting probability mass function of X is given by
D(X) = qX∑

X∈X qX
.

• A total of N Xs are observed. Denote by X1, X2 X’s
two nearest neighbors.

• Each (X,X1, X2) forms a triplet if ||X1−X||, ||X2−X||
fall below a threshold ϵ (closeness).

• A single Y for the tuple (X,X1, X2) draws from
P(Y |X,X1, X2).

• Based on Y , we further observe three Ỹ , Ỹ1, Ỹ2 according
to P(Ỹ , Ỹ1, Ỹ2|Y ).

The above data-generation process captures the correlation
among Xs that are really close. We prove the above data
generation process satisfies the 2-NN clusterability require-
ment with high probability.

Theorem 5.2. When N is large enough such that N >
4
∑

X∈X qX
minX qX

, w.p. at least 1−Nexp(−2N), each X and its
two nearest neighbor X1, X2 satisfy the 2-NN clusterability.
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Smoothness conditions in semi-supervised learning
This above discussion also ties closely to the smoothness
requirements in semi-supervised learning (Zhu et al., 2003;
Zhu, 2005), where the neighborhood Xs can provide and
propagate label information in each local neighborhood of
Xs. Indeed, this idea echoes the co-teaching solution (Jiang
et al., 2018; Han et al., 2018) in the literature of learning
with noisy labels, where a teacher/mentor network is trained
to provide artificially generated noisy labels to supervise the
training of the student network. Our identifiability result,
to a certain degree, implies that the addition of the addi-
tional noisy supervision improves the chance for identifying
T (X). In (Jiang et al., 2018; Han et al., 2018), counting the
noisy label itself, and the “teacher” supervision, there are
two such noisy supervision labels4. This observation raises
an interesting question: does adding an additional teacher
network for an additional supervision help? This question
merits empirical verification.

5.2. Leveraging smoothness and clusterability of T (X)

We show that another “smoothness” assumption of T (X) in-
troduces new observation variables for us to identify T (X).
In Figure 2, we define variable G = {1, 2, ..., |G|} to denote
the group membership for each X . Consider a scenario that
X can be grouped into |G| groups such that each group
of Xs share the same T (X): T (X1) = T (X2) if X1, X2

share the same group membership. We observe G,X, Ỹ .
This type of grouping has been observed in the literature:

Figure 2. Graph for (G,X, Y, Ỹ ). Grey color indicates observable
variables.

Class-dependent T P(Ỹ |Y,X) ≡ P(Ỹ |Y ), a single group.

Noise clusterability The noise transition estimator proposed
in (Zhu et al., 2021c) was primarily developed for class-
dependent but not instance-dependent T (X). Nonetheless,
a noise clusterability definition is introduced therein to al-
low the approach to be applied to instance-dependent noise.
Under noise clusterability, using clustering algorithms can
help separate the dataset into local ones.

Group-dependent T (X) Recent results have also studied

4Co-teaching is a sample selection approach. Part of the so-
lution in it requires supervision datasets constructed according
to another network’s predictions. In a certain sense, the training
process benefits from artificially generated noisy labels.

the case that the data X can be grouped using additional
information (Wang et al., 2021a; Liu & Wang; Wang et al.,
2021b). For instance, (Wang et al., 2021a; Liu & Wang)
consider the setting where the data can be grouped by the
associated “sensitive information”, e.g., by age, gender, or
race. Then the noise transition matrix remains the same for
Xs that come from each group.

By this grouping, X becomes informative observations for
each hidden Y and will fulfill the requirement of observing
additional noisy labels. We now define a disentangled fea-
ture and an informative feature: Denote by R(X) ∈ Rd∗

a learned representation for X . Denote by Ri the random
variable for Ri(X), i = 1, 2, .., d∗. For simplicity of the
analysis, we assume each Ri has finite observation space
Ri with cardinality |Ri| = κi. Define Mi for each Ri as
Mi[j, k] = P(Ri = Ri[k]|Y = j), where in above Ri[k]
denotes the k-th element inRi.
Definition 5.3 (Disentangled R). R is disentangled if
{Ri}d

∗

i=1 are conditional independent given Y .

Note our definition of disentangled representation does have
differences from conventional disentanglement. For exam-
ple, a well accepted definition of disentangled representa-
tion is based on group theory which operates on X (Higgins
et al., 2018). A recent work also designs an algorithm to
learn self-supervised disentangled representation based on
this definition (Wang et al., 2021c). Our work is to study
the identifiability of the label noise transition matrix. Thus
our definition of disentangled representation is related to Y

Definition 5.4 (Informative features). Ri is informative if
its Kruskal rank is at least 2: Kr(Mi) ≥ 2.
Assuming each X can be transformed into a set of disentan-
gled features R, we prove:
Theorem 5.5. For Xs in a given group g ∈ G, with a
single informative noisy label, T (X) is identifiable if the
number of disentangled and informative features d∗ satisfy
that d∗ ≥ K.
This result points out a new observation that even when
we have a single noisy label, given a sufficient number of
disentangled and informative features, the noise transition
matrix T is indeed identifiable, without requiring either mul-
tiple noisy labels, or the anchor point condition. The above
result aligns with recent discussions of a neural network
being able to disentangle features (Higgins et al., 2018;
Steenbrugge et al., 2018) proves to be a helpful property.
We establish that having disentangled feature helps identify
T (X). The required number of disentangled features grows
linearly in K. When relaxing the unique identifiability to
generic identifiability, i.e., the identifiability scenario has
measure zero (Allman et al., 2009), the above theorem can
be further extended to requiring d∗ ≥ ⌈log2

2K∗
G+1
2 ⌉, where

K∗
G = maxX∈G KX . Details are deferred to Appendix

(Theorem B.1). Note that the existence of disentangled X

7



Identifiability of Label Noise Transition Matrix

does not imply that we will be able to directly infer P(Y |X)
which will help us complete the learning task directly. But
rather, it is indeed possible to further identify the structure
P(X|Y ) (from unobserved to observed) but this is an iden-
tifiability problem defined on a much higher space.

When disentangled features are not given, how do we dis-
entangle X using only noisy labels to benefit from our
results? In Section 6 we will test the effectiveness of a
self-supervised representation learning approach that takes
the side information relative to true label Y but operates
independently from noisy labels. This result implies when
the noise rate is high such that Ỹ starts to become uninfor-
mative, dropping the noisy labels and focusing on obtaining
the disentangled features helps with the identifiability of
T (X). This observation also helps explain successes in ap-
plying semi-supervised (Cheng et al., 2021a; Li et al., 2020;
Nguyen et al., 2019) and self-supervised learning (Cheng
et al., 2021b; Zheltonozhskii et al., 2022; Ghosh & Lan,
2021) to handle noisy labels.

5.3. Smoothness and clusterability of T (X) with
unknown groupings

In practice, we often do not know the groupings of X that
share the same T (X), nor do we have a clear power (e.g.,
the noise clusterability condition) to separate the data into
different groups. In reality, different from Figure 2, the
group membership can often remain hidden, if no additional
knowledge of the data is solicited, leading to a situation in
Figure 3. It is a non-trivial task to jointly infer the group
membership with T (X).

Figure 3. Graph with unobserved G. Grey color indicates observ-
able variables.

We first show that mixing the group membership can lead
to non-negligible estimation errors. Suppose that there
are two groups of X , each having a noise transition ma-
trix T1(X), T2(X). Suppose we ended up estimating one
T ∗(X) for both groups mistakenly. Then:
Theorem 5.6. Any estimator T ∗(X) will incur at least the
following estimation error:

||T1(X)− T ∗(X)||F + ||T2(X)− T ∗(X)||F
≥ (1/

√
2) · ||T1(X)− T2(X)||F

The above result shows the necessity of identifying G as

well. Now we present our positive result on the iden-
tifiability when G is hidden too: Re-number the com-
bined space of G × Y as {1, 2, ..., |G|K}5. We are go-
ing to reuse the definition of Mi for each disentangled
feature Ri: Define the “Kruskal matrix” for each Ri as
Mi[j, k] = P(Ri = Ri[k]|G× Y = j).

Theorem 5.7. For Xs in a given group g ∈ G, with a
single informative noisy label, T (X) is identifiable if the
number of disentangled and informative features d∗ satisfy
that d∗ ≥ 2|G|K − 1.

When we have unknown groups, the requirement of the num-
ber of informative and disentangled features grows linearly
in |G|. We now relate to the literature that implicitly groups
Xs. We will use X to denote the space of all possible Xs.

Part-dependent label noise (Xia et al., 2020b) discusses
a part-dependent label noise model where each T (X) can
decompose into a linear combination of p parts: T (X) =∑p

i ωi(X) · Ti. The motivation of the above model is each
X can be viewed as a combination of multiple different sub-
parts, and each of them has a certain difficulty being labeled.
The hope is that the parameter space ω(X) can reduce the
dependency between X and T (X). DenoteW := {ω(X) :
X ∈ X}. To put into our result, |G| = |W|. If W has
a much smaller space than X , the condition specified in
Theorem 5.7 would be more likely to be satisfied.

DNN approach (Yang et al., 2021) proposes using a deep
neural network to encode the dependency between X and
T ∗(X), with the only difference being that T ∗(X) is de-
fined as the transition between Ỹ and the Bayes optimal la-
bel Y ∗. Define: DNN := {DNN(X) : X ∈ X}. Similarly,
in analogy to our results in Theorem 5.7, with replacing
the hidden variable Y to Y ∗, |G| will be determined by
|DNN|. So long as the DNN can identify the patterns in
T (X) and compress the space of DNN(X) as compared to
X , the identifiability becomes easier to achieve.

The causal approach (Yao et al., 2021) proposed improving
the identifiability by exploring the causal structure. With
causal inference, one can identify a more representative
and compressed X̃ for each X such that P(Ỹ |Y,X, X̃) =
P(Ỹ |Y, X̃). Denote X̃ := {X̃ : X̃ → X ∈ X}, and
|G| = |X̃ |. Therefore in order to meet the identifiability
condition in Theorem 5.7, the hidden variable X̃ has to be
sufficiently parameterized to induce a smaller |G|.

6. Empirical Evidence: Disentangled Features
Most of our results above verified the empirical success of
existing approaches from the identifiability’s perspective
and we refer the interested reader to the detailed experi-

5By mapping (G = 1, Y = 1) → 1, (G = 1, Y = 2) →
2, ..., (G = |G|, Y = K) → |G|K.
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Table 1. Estimation error for different features on CIFAR-10. Each experiment is run 3 times and mean ± std is reported. asymm.:
asymmetric label noise; inst.: instance-dependent label noise. (numbers) are noise rates. All the encoders are ResNet50 backbone.

Feature Type asymm. 0.3 asymm. 0.4 inst. 0.4 inst. 0.5 inst. 0.6
Weakly-Supervised 14.51 ± 0.4 15.2 ± 0.02 8.39 ± 0.05 6.91 ± 0.06 6.18 ± 0.15

SimCLR 4.42 ± 0.01 4.41 ± 0.01 2.91 ± 0.02 2.55± 0.04 2.64 ± 0.03
IPIRM 3.73 ± 0.02 3.74 ± 0.01 2.47 ± 0.03 2.20 ± 0.02 2.37 ± 0.06

ments in the corresponding references. We now empiri-
cally show the possibility of learning disentangled features
to help identify the noise transition matrix. In this paper,
we consider two types of label noise: asymmetric label
noise (Han et al., 2018; Wei et al., 2020) and instance-
dependent label noise (Cheng et al., 2021a; Zhu et al.,
2021b). The label noise of each instance is characterized
by Tij(X) = P(Ỹ = j|X,Y = i). For asymmetric label
noise, T (X) ≡ T , each clean label is randomly flipped
to its adjacent label w.p. ϵ, where ϵ is the noise rate, i.e.,
Tii = 1−ϵ, Tii+Ti,(i+1)K = 1, (i+1)K := i mod K+1.
For instance-dependent label noise, the generation of noisy
labels also depends on the features. We follow CORES
(Cheng et al., 2021a) to generate instance-dependent label
noise. The generation process is detailed in Algorithm 2
in Appendix C.1. With these definitions, asymm./inst. ϵ in
Table 1 denotes asymmetric/instance-dependent label noise
with noise rate ϵ.

Experiment details We consider three types of encoders
that are used to generate features. The first encoder is pre-
trained by cross-entropy (CE) loss under 0.1 symmetric label
noise rate to simulate the weakly-supervised features, which
is generally adopted in FW (Patrini et al., 2017) and HOC
(Zhu et al., 2021c). However, since the training data is noisy,
it is hard to guarantee that features are disentangled - this is
our baseline. The second encoder is pre-trained by SimCLR
(Chen et al., 2020), a representative work on SSL literature
which learns a good represention based on InfoNCE loss
(Van den Oord et al., 2018). However, it is shown that the
features learned by SimCLR are only partly disentangled on
some simple augmentation features such as rotation and col-
orization (Wang et al., 2021c). The third encoder is trained
by IPIRM (Wang et al., 2021c), which embeds InfoNCE
loss into IRM (Invariant Risk Minimization) framework (Ar-
jovsky et al., 2019) to learn fully disentangled features. We
train SimCLR model and IPIRM model by referring official
codebase of IPIRM 6. After training these three encoders,
we fix the encoder and generate features from raw samples
to estimate the noise transition matrix using HOC estimator
(Zhu et al., 2021c). The hyper-parameters for estimating
transition matrix are consistent with official implementation
of HOC 7: optimizer: Adam, learning rate: 0.1, number of it-

6https://github.com/Wangt-CN/IP-IRM
7https://github.com/UCSC-REAL/HOC

erations: 1500. We defer the key steps of HOC to Algorithm
1 in Appendix C.1. Note all the three encoders are trained
on CIFAR100 datasets and generate feature for CIFAR10 to
estimate noise transition matrix.

Evaluation We evaluate the performance via absolute es-
timation error defined below: err =

∑K
i=1

∑K
j=1 |T̂i,j −

Ti,j |/K2 · 100, where T̂ is the estimated noise transition
matrix, T is the real noise-transition matrix, K is the num-
ber of classes in the dataset, which is also the size of the
transition matrix. The overall experiments are shown in
Table 1. We observe that the estimation error decreases
as features become more disentangled which supports our
analyses. We defer the details, more experiments, as well
as experiments on comparing training performances using
disentangled features, to the Appendix.

7. Concluding Remarks
This paper characterizes the identifiability of instance-level
label noise transition matrix. We connect the problem to
the celebrated Kruskal’s identifiability result and present
a necessary and sufficient condition for the instance-level
identifiability. We extend and instantiate our results to prac-
tical settings to explain the successes of existing solutions.
We show the importance of disentangled features for identi-
fying the noise transition matrix.

Our work has limitations. At multiple places of the work, we
state such. For instance, we discussed the situation when we
will have multiple noisy labels and our focus on discretized
features. In Section 5.2, we clearly stated our requirement
of the disentangled and informative features.

Future direction of work includes exploring the extension of
our results to other weakly supervised learning settings (e.g.,
Positive Unlabeled learning, semi-supervised learning etc).
Our results also encourage discussions on what assumptions
are needed for the data in order to improve the identifiability
of hidden factors.
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Appendix: Identifiability of Label Noise Transition Matrix
The Appendix is organized in the following way: Section A proves the Theorems in the main paper; Section B provides more
discussions on generic identifiability; Section C provides more experiments on learning with noisy labels w.r.t. disentangled
features and elaborates the detailed experimental settings in the paper.

Notation Table
We provide the main notations below:

Table 2. Table of Notations for Frequently Used Variables

X ≜ sample
Y ≜ clean label
Ỹ ≜ noisy label
K ≜ number of classes

KX ≜ number of non-degenerated label classes
T (X) ≜ label noise transition matrix of X

Kr(M) ≜ Kruskal rank of matrix M

e+, e− ≜ noise rate for label +1 and label −1, respectively.
π+, π− ≜ inverse noise rate P(Y |Ỹ ) for label +1 and label −1, respectively.

Oi, i = 1, ..., p ≜ observed variables.
Z ≜ hidden variable
|G| ≜ number of groups in X

R(X) ≜ learned representation of X
d∗ ≜ dimension of R(X)

A. Omitted Proofs

Proof for Lemma 3.3
Proof. Using Bayes rule we easily obtain

P(X|Ỹ = +1) = P(X|Y = +1) · P(Y = +1|Ỹ = +1)

+ P(X|Y = −1) · P(Y = −1|Ỹ = +1) (2)

The equality is due to the fact that Ỹ and X are assumed to be independent given Y . Similarly:

P(X|Ỹ = −1) = P(X|Y = +1) · P(Y = +1|Ỹ = −1)
+ P(X|Y = −1) · P(Y = −1|Ỹ = −1) (3)

Since both P(X|Y = +1),P(X|Y = −1) are unknown, solving Eqn. (2) and (3) we further have

P(X|Ỹ = −1) = π̃− · P(X|Ỹ = +1) + (1− π̃−) · P(X|Y = −1) (4)

P(X|Ỹ = +1) = π̃+ · P(X|Ỹ = −1) + (1− π̃+) · P(X|Y = +1). (5)

Proof for Theorem 3.4
Proof. Further from π̃−, π̃+ we can solve and derive π− = π̃−(1−π̃+)

1−π̃−π̃+
, π+ = π̃+(1−π̃−)

1−π̃−π̃+
, establishing the equivalence

between identifying π̃−, π̃+ with identifying π−, π+. Next we show that identifying π−, π+ is equivalent with identifying
{e+, e−}.
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We first show identifying {π+, π−} suffices to identify {e+, e−}. To see this,

P(Ỹ = +1|Y = −1) = P(Y = −1|Ỹ = +1)P(Ỹ = +1)

P(Y = −1)

And:

P(Y = −1) = P(Y = −1|Ỹ = +1)P(Ỹ = +1) + P(Y = −1|Ỹ = −1)P(Ỹ = −1)

The derivation for P(Ỹ = −1|Y = +1) is entirely symmetric. Since we directly observe P(Ỹ = −1),P(Ỹ = +1), with
identifying P(Y = +1|Ỹ = −1),P(Y = −1|Ỹ = +1), we can identify P(Ỹ = +1|Y = −1),P(Ỹ = −1|Y = +1).

Next we show that to identify {e+, e−}, it is necessary to identify {π+, π−}. Suppose not: we are unable to identify π+, πi

but are able to identify {e+, e−}. This implies that there exists another pair {π′
+, π

′
−} ≠ {π+, π−} such that (denote by

p̃ := P(Ỹ = +1))

P(Ỹ = +1|Y = −1) = π+p̃

π+p̃+ (1− π−)(1− p̃)
(6)

=
π′
+p̃

π′
+p̃+ (1− π′

−)(1− p̃)
(7)

P(Ỹ = −1|Y = +1) =
π−(1− p̃)

(1− π+)p̃+ π−(1− p̃)
(8)

=
π′
−(1− p̃)

(1− π′
+)p̃+ π′

−(1− p̃)
(9)

By dividing π+, π
′
+ in both the numerator and denominator in Eqn. (6) and (7), we conclude that

1− π−

π+
=

1− π′
−

π′
+

(10)

While from Eqn (8) and (refeqn:e+:2) we conclude:

1− π+

π−
=

1− π′
+

π′
−

(11)

From Eqn. (10) and (11) we have

(1− π−)π
′
+ = (1− π′

−)π+ (12)
(1− π′

+)π− = (1− π+)π
′
− (13)

Taking the difference and re-arrange terms we prove

π+ + π− = π′
+ + π′

−

From Eqn. (10) again, taking −1 on both side we have

1− π− − π+

π+
=

1− π′
− − π′

+

π′
+

(14)

This proves π+ = π′
+. Similarly we have π− = π′

− - but this contradicts the assumption that {π′
−, π

′
+} is a different

pair.
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Proof for Theorem 4.2
Proof. We first prove sufficiency. We first relate our problem setting to the setup of Kruskal’s identifiability scenario:
Y ∈ {1, 2, ...,KX} corresponds to the unobserved hidden variable Z. P(Y = i) corresponds to the prior of this hidden
variable. Each Ỹi, i = 1, ..., p corresponds to the observation Oi. κi is then simply the cardinality of the noisy label space,
K. In the context of this theorem, p = 3, corresponding to the three noisy labels we have.

Each Ỹi corresponds to an observation matrix Mi:

Mi[j, k] = P(Oi = k|Z = j) = P(Ỹi = k|Y = j,X)

Therefore, by definition of M1,M2,M3 and T (X), they all equal to T (X): Mi ≡ T (X), i = 1, 2, 3. When T (X) has a
rank KX , we know immediately that all rows in M1,M2,M3 are linearly independent. Therefore, the Kruskal ranks satisfy

Kr(M1) = Kr(M2) = Kr(M3) = KX

Checking the condition in Theorem 3.6, we easily verify

Kr(M1) + Kr(M2) + Kr(M3) = 3KX ≥ 2KX + 2

Calling Theorem 3.6 proves the sufficiency.

Now we prove necessity. To prove so, we are allowed to focus on the binary case, where

T (X) =

[
1− e−(X) e−(X)
e+(X) 1− e+(X)

]
Note in above, for simplicity we drop e−, e+’s dependency in X . We need to prove less than 3 informative labels will not
suffice to guarantee identifiability. The idea is to show that the two different set of parameters e−, e+ can lead to the same
joint distribution P(Ỹ1, Ỹ2|X).

The case with a single label is already proved by Example 1. Now consider two noisy labels Ỹ1, Ỹ2. We first claim the
following three quantities fully capture the information provided by Ỹ1, Ỹ2:

• Posterior: P(Ỹ1 = +1|X)

• Positive Consensus: P(Ỹ1 = Ỹ2 = +1|X)

• Negative Consensus: P(Ỹ1 = Ỹ2 = −1|X)

This is because other statistics in Ỹ1, Ỹ2|X can be reproduced using combinations of the three quantities above:

P(Ỹ1 = −1|X) = 1− P(Ỹ1 = +1|X) ,

P(Ỹ1 = +1, Ỹ2 = −1|X) = P(Ỹ1 = +1|X)− P(Ỹ1 = Ỹ2 = +1|X) ,

P(Ỹ1 = −1, Ỹ2 = +1|X) = P(Ỹ2 = +1|X)− P(Ỹ1 = Ỹ2 = +1|X) .

But P(Ỹ2 = +1|X) = P(Ỹ1 = +1|X), since the two noisy labels are identically distributed. The above three quantities led
to three equations that depend on e+, e−: denote by γ := P(Y = +1)

Next we prove the following system of equations:

P(Ỹ = +1|X) = γ · (1− e+) + (1− γ) · e−
P(Ỹ1 = Ỹ2 = +1|X) = γ · (1− e+)

2 + (1− γ) · e2−
P(Ỹ1 = Ỹ2 = −1|X) = γ · e2+ + (1− γ) · (1− e−)

2
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To see this:

P(Ỹ1 = Ỹ2 = +1|X)

=P(Ỹ1 = Ỹ2 = +1, Y = +1|X)

+ P(Ỹ1 = Ỹ2 = +1, Y = −1|X)

=P(Ỹ1 = Ỹ2 = +1|Y = +1, X) · P(Y = +1|X)

+ P(Ỹ1 = Ỹ2 = +1|Y = −1, X) · P(Y = −1|X)

=γ · (1− e+)
2 + (1− γ) · e2−

The last equality uses the fact that Ỹ1, Ỹ2 are conditional independent given Y , so

P(Ỹ1 = Ỹ2 = +1|Y = +1, X) =

P(Ỹ1 = +1|Y = +1, X) · P(Ỹ2 = +1|Y = +1, X)

P(Ỹ1 = Ỹ2 = +1|Y = −1, X) =

P(Ỹ1 = +1|Y = −1, X) · P(Ỹ2 = +1|Y = −1, X)

We can similarly derive for P(Ỹ1 = Ỹ2 = −1|X).

Now we show the above equations do not identify e+, e−. For instance, it is straightforward to verify that both of the
solutions below satisfy the equations (up to numerical errors, exact solution exists but in complicated forms):

• γ = 0.7, e+ = 0.2, e− = 0.2

• γ = 0.8, e+ = 0.242, e− = 0.07

The above example proves that two informative noisy labels are insufficient to guarantee identifiability.

For completeness we provide rationals for the multi-class case too. The idea is to show that the complete information
returned by the single noisy label and two noisy labels do not always guarantee a unique solution.

For the first order information:

P(Ỹ = i|X) =
∑

k∈[K]

P(Y = k) · P(Ỹ = i|Y = k,X)

=
∑

k∈[K]

P(Y = k|X) · Tki(X)

Enumerating all is, there are K equations, written in a matrix form as:

P̃ = (T (X))⊤ ·P

where P̃ is the vector form for [P(Ỹ = 1|X);P(Ỹ = 2|X); ...;P(Ỹ = K|X)] and P is the one for P(Y = k|X).

For the second order information

P(Ỹ1 = i, Ỹ2 = j|X) =
∑

k∈[K]

P(Y = k|X) · P(Ỹ1 = i|Y = k,X) · P(Ỹ2 = j|Y = k,X)

=
∑

k∈[K]

P(Y = k|X) · Tki(X) · Tkj(X)

Enumerating pairs of (i, j) we have K2 equations, written in matrix form as:

C = (T (X))⊤ · Λ · T (X)

where in above C is a K × K matrix with the (i, j)-th entry being P(Ỹ1 = i, Ỹ2 = j|X); Λ is a diagonal matrix with
Λii = P(Y = k|X).

16



Identifiability of Label Noise Transition Matrix

Notice that ∑
j

P(Ỹ1 = i, Ỹ2 = j|X) = P(Ỹ1 = i)

and ∑
j

∑
k∈[K]

P(Y = k|X) · Tki(X) · Tkj(X) =
∑

k∈[K]

P(Y = k|X) · Tki(X)

we know that for every K equations from the second order information, there is at least one redundant equation. That
is to conclude that we have at most K + K2 − K = K2 independent equations. Nonetheless, we have K(P(Y =
k|X)) +K2(T (X)) = K2 +K unknown variables. So the equations are under-determined. Therefore we conclude for the
general K, there exists cases two labels will not define a unique solution. For instance, for K = 3, we can easily find the
following two sets of parameter settings will return us the same observed distribution for two labels:

Parameter setting 1:

[P(Y = 1|X),P(Y = 2|X),P(Y = 3|X)] = [0.35, 0.35, 0.3], T (X) =

 0.6 0.2 0.2
0.175 0.65 0.175
0.15 0.15 0.7


Parameter setting 2:

[P(Y = 1|X),P(Y = 2|X),P(Y = 3|X)] = [0.31, 0.34, 0.35], T (X) =

 0.65 0.175 0.175
0.175 0.65 0.175
0.175 0.175 0.65


Similar examples can be obtained by searching through the solutions space of the equations.

Proof for Theorem 5.2
Proof. In the unstructured model, we first show that, with a large N , with high probability, each X’s will present at least 3
times. Denote by NX the number of times X appears in the dataset. Then

NX :=

N∑
i=1

1[Xi = X], E[NX ] =
qX∑

X∈X qX
N (15)

When N is large enough such that N >
4
∑

X∈X qX
minX qX

, we have E[NX ] > 4. Then using Hoeffding inequality we have

P(NX ≤ 3) ≤ exp(−2N).

Using union bound (across N samples), it implies that with probability at least 1−Nexp(−2N), NX ≥ 3,∀X:

P(NX > 3,∀X) = 1− P(NX ≤ 3,∃X) ≤ 1−Nexp(−2N) (16)

This further implies that with probability at least 1−Nexp(−2N), we have X1 = X2 = X for each X: Their distance is 0,
clearly falling below the closeness threshold ϵ. Therefore they will share the same true label.

Note that we are not imagining the exact same data appearing three times, but rather that three different data that happen to
have the same pattern X that appeared three times ([2]). For instance, these three Xs can correspond to three independent
users trying to apply for a credit card and ending up having the same application profiles (e.g., age, salary range, education
level etc); it can also be three similar cat images ended up with the same encoding of the features.

Proof for Theorem 5.5
Proof. The d∗ features and the noisy label Ỹ jointly give us d∗+1 independent observations. Denote by K∗

G = maxX∈G KX .
In Kruskal’s setup, Y ∈ {1, 2, ...,K∗

G} will then correspond. to the unobserved hidden variable Z. If the noisy label is
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informative we know that Kr(T (X)) = K∗
G ≤ K. Then checking Kruskal’s condition we have:

Kr(T (X)) +

d∗∑
i=1

Kr(Mi) ≥ K∗
G + 2 · d∗ ≥ K∗

G +K∗
G + d∗ = 2K∗

G + d∗ + 1− 1

Calling Theorem 3.6, we establish the identifiability.

Proof for Theorem 5.6
Proof. By definition

||T1(X)− T ∗(X)||F =

√∑
i

∑
j

(T1[i, j]− T [i, j])2 (17)

Easy to show that

||T1(X)− T ∗(X)||F + ||T2(X)− T ∗(X)||F

=

√∑
i

∑
j

(T1[i, j]− T [i, j])2 +

√∑
i

∑
j

(T2[i, j]− T [i, j])2

=

√√√√√
√∑

i

∑
j

(T1[i, j]− T [i, j])2 +

√∑
i

∑
j

(T2[i, j]− T [i, j])2

2

≥
√∑

i

∑
j

(
(T1[i, j]− T [i, j])

2
+ (T2[i, j]− T [i, j])

2
)

(Dropping the cross-product term which is positive)

Then we prove that

||T1(X)− T ∗(X)||F + ||T2(X)− T ∗(X)||F

≥

√√√√∑
i

∑
j

(
T1[i, j]−

T1[i, j] + T2[i, j]

2

)2

+

(
T2[i, j]−

T1[i, j] + T2[i, j]

2

)2

(minimum distance is at half)

=

√√√√∑
i

∑
j

2

(
T1[i, j]− T2[i, j]

2

)2

=
1√
2

√∑
i

∑
j

(T1[i, j]− T2[i, j])2

=
1√
2
||T1(X)− T2(X)||F

Proof for Theorem 5.7
Proof. The proof is straightforward by checking Kruskal’s identifiability condition:

Kr(T (X)) +

d∗∑
i=1

Kr(Mi) ≥ 1 + 2 · d∗ ≥ 1 + 2|G|K − 1 + d∗ = 2|G| ·K + d∗ + 1− 1

Note |G| ·K is the size of space for the unobserved variable (G× Y renumbered as {1, 2, ..., |G|K}).
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Algorithm 1 Key Steps of HOC

1: Input: Noisy dataset: D̃ = {(xn, ỹn)}n∈[N ], with disentangled features.
//Find 2-NN using a similarity function Sim(x, x′).

2: With 1− Sim(x, x′) as the distance metric:
{(ỹn, ỹn1 , ỹn2),∀n} ← Get2NN(D̃);

//Count first-, second, and third-order consensus patterns:
3: (ĉ[1], ĉ[2], ĉ[3])← CountFreq({(ỹn, ỹn1

, ỹn2
),∀n})

//Solve equations:
4: Find T such that match the counts (ĉ[1], ĉ[2], ĉ[3]).

B. Generic identifiability
We provide a bit more detail for the discussion on generic identifiability left in Section 5.2.

Theorem B.1. With a single informative noisy label, T (X) is generically identifiable for each group g ∈ G if the number of
disentangled features d∗ satisfies that d∗ ≥ ⌈log2

2K∗
G+1
2 ⌉, and τi ≥ 2.

Proof. We first reproduce a relevant theorem in (Allman et al., 2009):

Theorem B.2. (Allman et al., 2009) When p = 3 (3 independently observations), the model parameters are generically
identifiable, up to label permutation, if

min(K∗
G, κ1) + min(K∗

G, κ2) + min(K∗
G, κ3) ≥ 2K∗

G + 2 (18)

Based on the above theorem we have the following identifiability result:

Grouping d∗ features evenly into two groups, each corresponding to a meta variable/feature:

R∗
1 =

d∗
1∏

i=1

Ri, X
∗
2 =

d∗∏
j=d∗

1+1

Rj

Denote feature dimensions of each group as d∗1, d
∗
2:

τ∗1 =

d∗
1∏

i=1

≥ 2d
∗
1 ≥ 2⌈log2

2K∗
G+1

2 ⌉ ≥ 2K∗
G + 1

2
(19)

Similarly τ∗2 ≥ KX+2
2 . Denote by M∗

1 ,M
∗
2 the two observation matrices for the grouped variables

M∗
i [j, k] = P(R∗

i = R∗
i [k]|Y = j), i = 1, 2.

Then:

Kr(T (X)) + Kr(M∗
1 ) + Kr(M∗

2 ) ≥ 1 + 2
2K∗

G + 1

2
= 2K∗

G + 2,

which again satisfied the identifiability condition specified in Theorem 3.6.

C. More experiments
In this section, we elaborate the detailed experiment setting and perform more experiments w.r.t. disentangled features.

C.1. More training details for Table 1

We present the key steps of HOC estimator in Algorithm 1 and the instance-dependent label noise generation in Algorithm 2.
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Algorithm 2 Instance-Dependent Label Noise Generation

Input:
1: Clean examples (xn, yn)

N
n=1; Noise rate: ε; Size of feature: 1× S; Number of classes: K.

Iteration:
2: Sample instance flip rates qn from the truncated normal distribution N (ε, 0.12, [0, 1]);
3: Sample W ∈ RS×K from the standard normal distribution N (0, 12);
for n = 1 to N do
4: p = xn ·W // Generate instance dependent flip rates. The size of p is 1×K.
5: pyn

= −∞ // Only consider entries different from the true label
6: p = qn · softmax(p) // Let qn be the probability of getting a wrong label
7: pyn = 1− qn // Keep clean w.p. 1− qn
8: Randomly choose a label from the label space as noisy label ỹn according to p;
end for

Output:
9: Noisy examples (xi, ỹn)

N
n=1.

Table 3. Comparison of test accuracy on CIFAR10 by using the estimated transition matrix.
Methods inst. 0.3 inst. 0.4 inst. 0.5 inst. 0.6

FW (SimCLR) 66.61 65.82 64.51 62.81
FW (IPIRM) 73.24 72.54 71.33 69.42

Table 4. Comparison of test accuracy on CIFAR100 by using different DNN initialization.
Methods inst. 0.3 inst. 0.4 inst. 0.5 inst. 0.6

CE (random init) 43.47 35.17 27.07 18.25
CE (SimCLR init) 58.95 49.7 36.87 25.07
CE (IPIRM init) 64.92 56.18 43.75 30.36

C.2. Training performance using estimated transition matrix

We can further use the estimated transition matrix to perform forward loss correction (FW) (?). Table 3 records the
performance of FW by using the estimated transition matrix of SimCLR and IPIRM. The hyper-parameters for all the
experiments in Table 3 are the same: optimizer: SGD, training epochs: 100, learning rate: 0.1 for first 50 epochs and 0.01
for last 50 epochs, batch-size: 256. From the results, we can observe that the test accuracy increases as features become
more disentangled.

C.3. Initializing DNN using disentangled features

Except for estimating transition matrix, we can directly use disentangled features to perform training on noisy dataset. Table
4 shows the effect of using disentangled features as DNN initialization on CIFAR100. The hyper-parameters for all the
experiments in Table 4 are consistent with Table 3. From the results, We can observe that even with vanilla Cross Entropy
loss, the disentangled features are still beneficial to the performance.

C.4. verifying the importance of characterizing the identifiability of the label noise transition matrix

C.4.1. CIFAR10 EXPERIMENT

Our first experiment is to show that when estimated transition matrices is far from the ground-truth matrix, it may make
model perform worse even compared to the baseline (vanilla training with Cross Entropy).

Experiment setting: The training framework with transition matrix is followed from FW (Patrini et al., 2017). The dataset
is CIFAR10 and the network structure is ResNet34. The hyper-parameters are as follows: batchsize (64), learning rate (0.1
for first 50 epochs and 0.01 for last 50 epochs), optimizer (SGD). For a randomly selected set of instances (50% of the
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Table 5. Comparison of test accuracy on CIFAR10 by using different transition matrix.
CE FW with T1 FW with T2 FW with T3

Test accuracy 79.34 82.62 81.65 78.13

population), we generate noisy labels using the following transition matrix:

T = P(Ỹ |Y,X) =



0.9 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011
0.019 0.82 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019
0.028 0.028 0.74 0.028 0.028 0.028 0.028 0.028 0.028 0.028
0.037 0.037 0.037 0.66 0.037 0.037 0.037 0.037 0.037 0.037
0.045 0.045 0.045 0.045 0.58 0.045 0.045 0.045 0.045 0.045
0.054 0.054 0.054 0.054 0.054 0.51 0.054 0.054 0.054 0.054
0.063 0.063 0.063 0.063 0.063 0.063 0.43 0.063 0.063 0.063
0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.35 0.071 0.071
0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.27 0.08
0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.2


The above transition matrix T is uniform off-diagonal with diagonals evenly spaced over [0.9, 0.2], which is the ground-truth
transition matrix in our setting. The remaining unselected instances will enjoy a T ≡ 0.

We perform experiments using the following three uniform off-diagonal transition matrix with forward loss correction (?):

• T1 with diagonals evenly spaced over [0.9, 0.2]

• T2 with all diagonals 0.4.

• T3 with diagonals evenly spaced over [0.2, 0.9]

where T1 is the ground-truth transition matrix while T3 is far from the ground-truth. The results are listed in Table 5.

It can be observed that when using T3, the performance is even worse than vanilla training with Cross Entropy, suggesting
the importance of identifying and estimating the noise transition matrix.

C.4.2. GAUSSIAN EXPERIMENT

Our second experiment is to show that in some settings, the transition matrix is hard to estimate correctly, which suggests the
importance of identifiability. Consider a simple setting for binary classification and a set of instances generated according to
the following setups:

• X ∼ N (0, 3) where N denotes Gaussian distribution with mean 0 and variance 3.

• P(Y = 1|X) = sigmoid(X) = 1
1+e−X

We generate X and Y following the above procedure and define the ground-truth transition matrix T = P(Ỹ |Y,X) =[
0.9 0.1
0.2 0.8

]
for generating Ỹ from Y . Our goal is to examine whether we can estimate the correct transition matrix using

(X, Ỹ ).

Experiment setting: The training framework for estimating transition matrix is followed from FW (Patrini et al., 2017). We

randomly sample 5000 (x, y) pairs from the data generating procedure and using T = P(Ỹ |Y ) =

[
0.9 0.1
0.2 0.8

]
to generate

Ỹ from Y . The network structure is a simple FCN (fully connected network tructure) with one hidden layer (10 nodes) and
ReLU activation. The hyper-parameters are as follows: learning rate (0.01 for 100 epochs ), optimizer (SGD). We perform
the experiments with 30 runs and record the average performance in Table 6.
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Table 6. Comparison of test accuracy for CE and FW.
CE FW with estimated transition matrix

Test accuracy 83.22 83.31

From Table 6, we can see that FW has very little gain compared to vanilla Cross Entropy training. We then calculate the
average estimated transition matrix:

Testimated =

[
0.983 0.017
0.008 0.992

]
We find that Testimated is nearly as the same as the identity matrix, suggesting that in this setting, FW is hard to estimate
noise transition matrix correctly and contributes less to the performance.
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