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Abstract
In recent years, online search has been playing
an increasingly important role in imperfect in-
formation games (IIGs). Previous online search
is known as common-knowledge subgame solv-
ing, which has to consider all the states in a
common-knowledge closure. This is only com-
putationally tolerable for medium size games,
such as poker. To handle larger games, order-1
Knowledge-Limited Subgame Solving (1-KLSS)
only considers the states in a knowledge-limited
closure, which results in a much smaller subgame.
However, 1-KLSS is unsafe. In this paper, we
first extend 1-KLSS to Safe-1-KLSS and prove
its safeness. To make Safe-1-KLSS applicable to
even larger games, we propose Opponent-Limited
Subgame Solving (OLSS) to limit how the op-
ponent reaches a subgame and how it acts in the
subgame. Limiting the opponent’s strategy dra-
matically reduces the subgame size and improves
the efficiency of subgame solving while still pre-
serving some safety in the limit. Experiments
in medium size poker show that Safe-1-KLSS
and OLSS are orders of magnitude faster than
previous common-knowledge subgame solving.
Also, OLSS significantly improves the online per-
formance in a two-player Mahjong game, whose
game size prohibits the use of previous common-
knowledge subgame-solving methods.

1. Introduction
Artificial Intelligence (AI) has demonstrated superhuman
performance in many large-scale Perfect Information Games
(PIGs, e.g., Go and chess) and Imperfect Information Games
(IIGs, e.g., Taxes hold’em) (Silver et al., 2016; 2017; Brown
& Sandholm, 2018; Moravčı́k et al., 2017; Brown & Sand-
holm, 2019). In most AIs, online search has been critical
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in improving online performance. Take heads-up no-limit
Texas hold’em as an example. A common approach is to
first generate a blueprint strategy using Counterfactual Re-
gret Minimization (CFR) algorithms (Zinkevich et al., 2007;
Lanctot et al., 2009; Tammelin et al., 2015) and abstrac-
tion techniques (Gilpin & Sandholm, 2007; Gilpin et al.,
2007). When playing online, subgame-solving techniques
(Burch et al., 2014; Moravcik et al., 2016; Brown & Sand-
holm, 2017; Brown et al., 2018; Zhang & Sandholm, 2021)
are used to refine the blueprint strategy, making it less ex-
ploitable and hopefully more profitable.

While it is straightforward to construct and solve a subgame
for any state encountered online in PIGs, online search in
IIGs is much more difficult. This is because one has to
consider a subgame under common knowledge to keep the
updated strategy safe, i.e., not more exploitable than the
blueprint strategy. Prior approaches (Burch et al., 2014;
Moravcik et al., 2016; Brown & Sandholm, 2017) usually
enumerate the entire common-knowledge closure, which is
the smallest set of states that the current state is in accord-
ing to public information. Afterward, they construct and
solve the common-knowledge subgame, which is a set of
trees rooted at the states in the closure. For example, in
two-player Texas hold’em, community cards and betting
history are public information, and a common-knowledge
closure contains around

(
52
2

)
×
(
50
2

)
states that enumerate

every possible hole-card assignment of both players. These
approaches work well in Texas hold’em but are computa-
tionally incapable of games with larger common-knowledge
closure, e.g., dark chess.

The recently proposed Order-1 Knowledge-Limited Sub-
game Solving (1-KLSS) (Zhang & Sandholm, 2021) re-
duces the subgame size dramatically by only considering an
order-1 knowledge-limited subgame, instead of the common-
knowledge subgame. However, 1-KLSS is unsafe if ap-
plied independently to every state in the same common-
knowledge closure (Zhang & Sandholm, 2021). Besides, the
computational complexity of 1-KLSS is still unbearable in
IIGs with large order-1 subgames, e.g., two-player Mahjong
(Fu et al., 2022a) and Stratego (Perolat et al., 2022).

In this paper, we first revisit knowledge-limited subgame
solving and propose Safe-1-KLSS. Specifically, we refor-
mulate the common-knowledge subgame margin (Moravcik
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Algorithm know. safe oppo. subgame size example

Unsafe % % ! O(|I∞|) O(N2
h)

Resolving % ! % O(|I∞|) O(N2
h)

Maxmargin % ! % O(|I∞|) O(N2
h)

Reach-Maxmargin % ! % O(|I∞|) O(N2
h)

1-KLSS ! % % O(|I1|) O(Nh)

Safe-1-KLSS (ours) ! ! % O(|I1|) O(Nh)

OLSS-I (ours) ! % ! O(|I1|) O(Nh)

OLSS-II (ours) ! % ! O(N) O(N)

Table 1: Overview of subgame solving. An
algorithm is knowledge-limited (know.) if it
performs in a knowledge-limited subgame.
It is safe if it does not increase the exploitabil-
ity. It is opponent-limited (oppo.) if it limits
the opponent’s strategy space. The “exam-
ple” column gives the subgame size of a two-
player Taxes hold’em with Nh hands. I∞

is the common-knowledge closure and I1

is the order-1 closure. N is the number of
opponent strategies used in OLSS.

et al., 2016) and define a new term named internal gift. We
show that a subgame solving is unsafe (safe) when the op-
ponent’s value is (not) allowed to increase more than the
internal gift. Specially, 1-KLSS is unsafe as we show that
1-KLSS allows the opponent’s value at every order-1 sub-
game to increase by the internal gift of the corresponding
common-knowledge subgame. As a result, the total increase
in the opponent’s value can be much higher than the internal
gift because a common-knowledge subgame corresponds to
multiple order-1 subgames. In contrast, we propose Safe-
1-KLSS, which distributes the internal gift to each order-1
subgame according to a reaching probability of the order-1
subgame. Moreover, we prove the safety of Safe-1-KLSS
by showing that the total increase of the opponent’s value is
never allowed to exceed the internal gift.

Based on Safe-1-KLSS, we propose Opponent-Limited Sub-
game Solving (OLSS) to improve efficiency by limiting
the strategy space of the opponent. We develop two types
of OLSS. OLSS-I limits how the opponent reaches a sub-
game, i.e., the opponent can choose among some strategies
for reaching the subgame. In this way, OLSS-I forces the
player to focus more on the possible states that the oppo-
nent may reach, thus making the online search potentially
more efficient. We prove that OLSS-I is safe when the
opponent can choose any pure undominated strategy. Ex-
periments in medium poker games show that Safe-1-KLSS
and OLSS-I are orders of magnitude faster than previous
common-knowledge subgame solving.

For even larger games that Safe-1-KLSS and OLSS-I are
incapable of, we propose OLSS-II to further reduce the sub-
game size. OLSS-II only allows the opponent to choose
among some strategies for the entire game. Thus, the agent
is equivalently playing in a single-agent environment after
the opponent has chosen its strategy. OLSS-II is unsafe
when the number of opponent strategies is limited. Nev-
ertheless, experiments in two-player Mahjong show that
OLSS-II can significantly improve online performance by
allowing the opponent to use only one or two strategies. An
overview of previous and our subgame-solving algorithms
is given in Table 1.

2. Notation
For a two-player zero-sum IIG, the set of players is denoted
by P = {P1, P2}. Starting from the root ∅, the two players
and chance (or nature) take actions in turn until a terminal
node. The action history is denoted by h. The set of histories
is denoted by H . For any non-terminal history h ∈ H , the
set of legal actions at h is denoted by A(h). The acting
player at history h is denoted by P (h), where P (h) ∈
P ∪ {c}. c is chance, which chooses actions according to
predefined distributions. After player P (h) takes action a ∈
A(h), the resulting history is denoted by ha. If a sequence
of actions exists from h to h′, then h′ is a descendent of h,
denoted by h ⊏ h′. Let h ⊑ h′ represent that h ⊏ h′ or
h = h′. For finite games we considered in this paper, the set
of terminal histories is denoted by Z. For any z ∈ Z, the
payoff for player p is up(z) ∈ R. As the game is two-player
and zero-sum, we have u1(z) = −u2(z).

For each player, H can be divided into information sets
(infosets) of the player. The set of infosets is denoted by
Ip. For any infoset I ∈ Ip, any two histories h, h′ ∈ I are
indistinguishable to p. Let P (I) = P (h) and A(I) = A(h)
for any h ∈ I . Let Ip(h) be the infoset of player p of history
h. For two infosets I, I ′ ∈ Ip, if there are h ∈ I and h′ ∈ I ′

satisfy h ⊑ h′, it is denoted by I ⊑ I ′.

A strategy of player p ∈ P is denoted by σp(I) ∈ ∆(A(I))
for I ∈ Ip, P (I) = p, and σp(I, a) is the probability
of choosing action a. The set of strategies of player p
is denoted by Σp. Since the histories in an infoset are
indistinguishable, their strategies must be identical. So
σp(h, a) = σp(I, a) for any h ∈ I when P (I) = p. The
strategy of the other player and chance is denoted by σ−p.
A strategy profile σ ∈ Σ is defined as σ = ⟨σp, σ−p⟩. The
chance player’s strategy, which is fixed and known, is de-
noted by σc(h, a).

πσ(h) =
∏

h′a′⊑h σP (h′)(h
′, a′) is called the reach of h,

which is the probability of reaching h when all the players
act according to σ. πσ

p (h) is the contribution of p to this
probability. πσ

−p(h) is the contribution of the opponent and
chance. The probability of reaching h′ from h is denoted
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by πσ(h, h′). Let πσ
p (I) = πσ

p (h) for any h ∈ I , and
define the reach of the opponent and chance as πσ

−p(I) =∑
h∈I π

σ
−p(h). The belief βσ

−p(h|I) = πσ
−p(h)/π

σ
−p(I) is

the distribution of h ∈ I given that all the players follow σ
and I is reached.

The expected payoff of the game for player p is denoted by
up(σp, σ−p). Formally, up(σp, σ−p) =

∑
z∈Z πσ(z)up(z).

A best response BR(σ−p) is a strategy of player p such that
up(BR(σ−p), σ−p) = maxσ′p∈Σp

up(σ
′
p, σ−p). A Nash

equilibrium σ∗ = ⟨σ∗
p , σ

∗
−p⟩ is a strategy profile where

every player plays a best response. The exploitability of a
strategy σp is the distance to a Nash equilibrium, defined as
e(σp) = up(σ

∗
p, BR(σ∗

p)) − up(σp, BR(σp)). Define the
total exploitability as e(σ) =

∑
p∈P e(σp). When e(σ) = ϵ,

σ is called an ϵ-equilibrium.

Given a strategy σ, the counterfactual value at infoset I of
player p is vσp (I) =

∑
h∈I β

σ
−p(h|I)up(h), where up(h) =∑

z∈Z πσ(h, z)up(z) is the expected value. Let vσp (I, a) =∑
h∈I β

σ
−p(h|I)up(ha). A counterfactual best response

CBR(σp) is a best response that maximizes the counterfac-
tual value at every infoset. Define the counterfactual best
response value as CBV σ−p(I) = v

⟨CBR(σ−p),σ−p⟩
p (I) and

CBV σ−p(I, a) = v
⟨CBR(σ−p),σ−p⟩
p (I, a).

For a set of nodes denoted by S, let σS ∈ ΣS (σS
p ∈ ΣS

p for
player p) be the strategy in S. Let σ[S←σS ] be the strategy
that uses σS in S and σ elsewhere. Let Stop be the set of root
nodes of S, i.e., the set of nodes in S whose parent nodes are
not in. Define the belief, i.e., the distribution of h ∈ Stop as
βσ(h|Stop) = πσ(h)/

∑
h′∈Stop

πσ(h′) when all the play-

ers follow σ. Let IStop
p = {Ip(h)|h ∈ Stop} be the set of

root infosets of player p. Define the counterfactual value for
player p at Stop as vσp (Stop) =

∑
h∈Stop

βσ(h|Stop)u
σ
p (h)

when σ is used, and similarly define the counterfac-
tual best response value as CBV

⟨σp,σ−p⟩
p (Stop) =∑

h∈Stop
βσ(h|Stop)CBV σ−p(Ip(h)).

3. Previous Subgame Solving
Subgame solving is a technique for refining strategies online
for IIGs. In an IIG, instead of only considering the current
infoset, it needs to analyze the common-knowledge closure,
which is the smallest set of infosets that the current infoset is
in according to public information. Take the game shown in
Figure 1 as an example, Ia and Ib are in the same common-
knowledge closure, and their strategy should be considered
simultaneously. This is because the strategy at Ia affects the
strategy at Ic and then the strategy at Ib, and vice versa. We
define infoset hypergraph and common-knowledge closure
(Zhang & Sandholm, 2021) formally as follows:

Definition 3.1. The infoset hypergraph G of a game is a
hypergraph whose vertices are histories in H , and whose

Figure 1: The 100-matching pennies. At the root, chance
chooses an integer n ∈ {1, . . . , 100} randomly and uni-
formly, which is only visible to P1. Then, the players play
a game of matching pennies. The colored nodes indicate
the players to move. Ia and Ib are P1’s infosets (the other
98 infosets are not shown). Ic and I ′c (the set of the nodes
linked by the blue dotted line) are P2’s infosets. Inside the
dotted box is an order-1 subgame.

hyperedges are information sets.
Definition 3.2. For any S ⊆ H , the order-k knowledge set
Sk is the set of histories that are at most distance k−1 away
from S in G. The common-knowledge closure S∞ is the
connected component of G containing S.

Take Ia in Figure 1 as an example, we have I1a = Ia and
I2a = I∞a = Ia ∪ · · · ∪ Ib. Given an infoset I , the order-k
subgame Ik is a set of trees rooted at the histories in Ik.
Specially, I∞ is named the common-knowledge subgame.
In this paper, we use S to denote the common-knowledge
subgame I∞ and use SI to denote the order-1 subgame
I1 for simplicity. Without loss of generality, we assume
P (h) = P1 for h ∈ Stop, and we refine the strategy in S or
SI for P1. A common-knowledge subgame is a well-defined
IIG given a distribution of h ∈ Stop.

3.1. Common-Knowledge Subgame Solving

For a subgame S, common-knowledge subgame solving
updates the entire strategy of P1 in S. The most intuitive
one, known as Unsafe solving (Gilpin & Sandholm, 2006),
assumes that all players follow the blueprint to reach the
subgame. In other words, it assumes the distribution of h ∈
Stop is exactly βσ(h|Stop). Unsafe solving has been found
to do extremely well in some cases (Brown & Sandholm,
2017; 2018; 2019; Moravčı́k et al., 2017). However, Unsafe
solving can increase exploitability sometimes.

Resolving (Burch et al., 2014), Maxmargin solving (Morav-
cik et al., 2016), and Reach-Maxmargin solving (Brown &
Sandholm, 2017) are safe subgame solving algorithms in the
sense that they guarantee the common-knowledge subgame
margin non-negative at every P2 root infoset I2 ∈ IStop

2 .
This margin is defined as

MσS

CK(I2) = CBV σ1(I2)− CBV σ1[S←σS
1 ](I2). (1)
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It measures how much the opponent CBV decreases: if
MσS

CK(I2) ≥ 0 for each I2 ∈ IStop

2 , the exploitability is
guaranteed to not increase by the recursive nature of coun-
terfactual values. Specifically, Resolving is an algorithm
that tries to recover a strategy that satisfies MσS

CK(I2) ≥
0,∀I2 ∈ IStop

2 , while Maxmargin solving tries to maximize
the minimum margin: maxσS

1 ∈ΣS
1
min

I2∈IStop
2

MσS

CK(I2).

In practice, it may be too conservative to guarantee that
MσS

CK(I2) ≥ 0 at every I2 ∈ IStop

2 . The reason is the
values at some P2’s infosets may be so poor that the infosets
should not be reached. In other words, if P2 has reached
such an infoset, it must have taken mistake actions in history.
Reach-Maxmargin solving catches this intuition and uses
a value g, named the gift, to estimate how much P2 may
have wasted to reach an infoset. The gift is then added to
the margin, which results in the reach-margin: MσS

R (I2) =

MσS

CK(I2) + g(I2). This margin is guaranteed non-negative
in Reach-Maxmargin solving. In order to guarantee that
the exploitability does not increase, the non-negative g(I2)
should be carefully estimated. However, this gift is difficult
to estimate in large IIGs.

3.2. Knowledge-Limited Subgame Solving

Common-knowledge subgame solving requires solving a
common-knowledge subgame, which could be too large to
solve online. k-KLSS (mostly k = 1) (Zhang & Sandholm,
2021) relieves this problem by fixing the strategy outside
of the k-order subgame. So, the nodes outside IK+1 can
be pruned as both players’ strategies will not change there.
Besides, the nodes in IK+1 \ Ik can also be discarded
since their values can be precomputed according to P2’s
strategy and the blueprint. As a result, k-KLSS only needs to
solve an order-k subgame Ik, and any common-knowledge
subgame-solving algorithm can be used to solve Ik. In this
paper, we assume the default solver is Maxmargin solving.

However, 1-KLSS is unsafe when applied to every infoset
reached during play (Zhang & Sandholm, 2021). Take the
game shown in Figure 1 as an example, and assume the
blueprint strategy of P1 is to choose H and T with prob-
abilities 0.55 and 0.45. Applying 1-KLSS to Ia changes
the strategy to choose T with probability 1, which reduces
the exploitability. However, if it is applied to every infoset,
P1 will choose T everywhere, and the exploitability will
increase from 0.1 to 1. The problem arises because the
fixed strategy assumption is untrue in this case. The authors
(Zhang & Sandholm, 2021) have proposed methods to ob-
tain the safety guarantee by updating the blueprint or allocat-
ing deviations from the blueprint. However, these methods
require much memory for recording additional information,
which may be impractical in large IIGs. In the next section,
we provide more analysis of knowledge-limited subgame

solving and propose Safe-1-KLSS.

4. Safe Knowledge-Limited Subgame Solving
In this section, we first revisit the common-knowledge sub-
game margin and show why 1-KLSS is unsafe. Then,
we propose Safe-1-KLSS, which decomposes a common-
knowledge subgame margin into multiple safe-1-KLSS mar-
gins and guarantees safety by maximizing the safe-1-KLSS
margins separately.

4.1. Revisiting Subgame Margin

As defined before, a common-knowledge subgame margin is
MσS

CK(I2) = CBV σ1(I2)− CBV σ1[S←σS
1 ](I2), which can

be reformulated as

MσS

CK(I2) = min
σS
2 ∈ΣS

2

{
dσ

S

(I2) +RσS
2 (I2)

}
,where

dσ
S

(I2) :=v
⟨σ1,σ

S
2 ⟩

2 (I2)− v
⟨σ1[S←σS

1 ],σS
2 ⟩

2 (I2),

RσS
2 (I2) :=CBV σ1(I2)− v

⟨σ1,σ
S
2 ⟩

2 (I2) ≥ 0.

(2)

Note that the v
⟨σ1,σ

S
2 ⟩

2 (I2) in dσ
S

(I2) and RσS
2 (I2) can be

cancelled out and minσS
2 ∈ΣS

2
−v

⟨σ1[S←σS
1 ],σS

2 ⟩
2 (I2) is equiv-

alent to −CBV σ1[S←σS
1 ](I2). So the MσS

CK(I2) in Eq. (2)
is exactly the common-knowledge subgame margin. Intu-
itively, we can consider dσ

S

(I2), which equals zero when
σS
1 = σ1 in S, as the new objective that P1 wants to max-

imize; and RσS
2 (I2), which is non-negative, as the inter-

nal gift to P1. Similar to the gift in Reach-Maxmargin
solving (Brown & Sandholm, 2017), internal gift allows
dσ

S

(I2) ≤ 0 while it is still guaranteed that MσS

CK(I2) ≥ 0.

The formulation allows us to further decompose the new
objective into the belief-weighted sum of the sub-objective,
denoted by dσ

SI (I2), in each order-1 subgame I ∈ IStop

1 :

dσ
S

(I2) =
∑

I∈IStop
1

βσ
−2(I|I2)dσ

SI
(I2),where (3)

dσ
SI
(I2) :=

∑
h∈I∩I2

βσ
−2(h|I ∩ I2)

(
u
⟨σ1,σ

SI
2 ⟩

2 (h)− uσSI

2 (h)
)
.

The derivation is given in Appendix A. In the equation,
βσ
−2(I|I2) =

∑
h∈I∩I2

βσ
−2(h|I2) is the probability of

reaching I when I2 is reached; and βσ
−2(h|I ∩ I2) =

βσ
−2(h|I2)/

∑
h∈I∩I2

βσ
−2(h|I2) is the probability to reach

h when I and I2 are reached. Note that both βσ
−2(I|I2) and

βσ
−2(h|I∩I2) are non-negative, and

∑
I∈IStop

1

βσ
−2(I|I2) =

1,
∑

h∈I∩I2
βσ
−2(h|I ∩ I2) = 1. So the margin MσS

CK(I2)
can be rewritten into

min
σS
2 ∈ΣS

2

{ ∑
I∈IStop

1

βσ
−2(I|I2)dσ

SI
(I2) +RσS

2 (I2)

}
. (4)
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The equation shows that the belief-weighted sum of dσ
SI (I2)

should be greater than −RσS
2 (I2), in order to guarantee

MσS

CK(I2) ≥ 0. Recall that RσS
2 (I2) ≥ 0.

4.2. Revisiting 1-KLSS: Why is it Unsafe?

Now we formally define the optimization target of 1-KLSS
and demonstrate why it is unsafe. Given a subgame S and an
order-1 subgame SI , 1-KLSS assumes that σS

1 (h) = σ1(h)

for h ∈ S \ SI . So, dσ
S
I′ (I2) = 0 for I ′ ̸= I , and Eq. (4)

can be rewritten into the 1-KLSS margin:

MσS

KL(I2) = min
σS
2 ∈ΣS

2

{
βσ
−2(I|I2)dσ

SI
(I2) +RσS

2 (I2)
}
.

(5)
The target of 1-KLSS is then to maximize the minimum
1-KLSS margin: max

σ
SI
1 ∈Σ

SI
1

min
I2∈IStop

2

MσS

KL(I2). 1-
KLSS is safe if it is only applied to SI and leaves the
strategy in SI′ , I

′ ̸= I unchanged. However, if 1-KLSS
is applied to every order-1 subgame in S independently,
the sum of βσ

−2(I|I2)dσ
SI (I2) in Eq. (4) is likely to be

less than −RσS
2 (I2). This is because Eq. (5) allows ev-

ery βσ
−2(I|I2)dσ

SI (I2) to be as little as −RσS
2 (I2) while

maximizing MσS

KL(I2). Therefore, 1-KLSS can not guaran-
tee that MσS

CK(I2) ≥ 0 by maximizing MσS

KL(I2) at every
infoset I ∈ IStop

1 , and it is unsafe.

4.3. Safe-1-KLSS: Decomposing the Margin

Eq. (4) shows that the belief-weighted sum of dσ
SI (I2)

should be greater than −RσS
2 (I2), which inspires us to dis-

tribute the gift RσS
2 (I2) to each order-1 subgame and de-

compose MσS

CK , just like the decomposition of dσ
S

(I2) in
Eq. (3). Specifically, according to Eq. (4) and Jensen’s
inequality, we prove that

MσS

CK(I2) ≥
∑

I∈IStop
1

βσ
−2(I|I2)MσSI

SKL(I2),where (6)

MσSI

SKL(I2) := min
σ
SI
2 ∈Σ

SI
2

{
dσ

SI
(I2) +Rσ

SI
2 (I2)

}
. (7)

The proof is given in Appendix A. In Eq. (7), Rσ
SI
2 (I2) =

CBV σ1(I2) − v
⟨σ1,σ

SI
2 ⟩

2 (I2) is the gift, and MσSI

SKL(I2) is
named the Safe-1-KLSS margin. As we can see, MσS

CK is
lower bounded by the belief-weighted sum of the Safe-1-
KLSS margins. This motivates us to propose Safe-1-KLSS,
which maximizes MσS

CK(I2) by independently maximizing
the minimum Safe-1-KLSS margin in each infoset I ∈
IStop

1 : max
σ
SI
1 ∈Σ

SI
1

min
I2∈IStop

2

MσSI

SKL(I2).

Notice that MσSI

SKL(I2) = 0 if σSI
1 = σ1 in SI , it is guar-

anteed that MσSI

SKL(I2) ≥ 0 after applying Safe-1-KLSS to

subgame SI . As a result, it is guaranteed that MσS

CK(I2) ≥ 0
and Safe-1-KLSS is safe:

Theorem 4.1. Given a strategy σ1, a common-knowledge
subgame S, a set of subgames S = {SI |I ∈ IStop

1 }, and
a strategy σSI

1 for each subgame SI produced by apply-
ing Safe-1-KLSS, let σ′

1 be the strategy that plays accord-
ing to σSI

1 for each subgame SI and σ1 elsewhere. If
π
BR(σ′1)
1 (I2) > 0 for some I2 ∈ IStop

2 , then e(σ′
1) ≤

e(σ1)−
∑

h∈I2
πσ1
−2(h)

∑
I∈IStop

1

βσ
−2(I|I2)MσSI

SKL(I2).

The proof is given in Appendix A. To solve an order-1
subgame using Safe-1-KLSS, we can construct a gadget
game (Burch et al., 2014; Moravcik et al., 2016) and use
CFR to compute the strategy. More details are provided in
Section 6. Safe-1-KLSS can be performed at every infoset
reached during play in a nested fashion. However, instead
of constructing a new order-1 subgame every time a new
infoset is reached, a new subgame should be extracted from
the last gadget game in Safe-1-KLSS. This is because an
order-1 subgame is incomplete in the sense of subgame
solving (but a gadget game is well-defined).

While both 1-KLSS and Safe-1-KLSS try to solve a sub-
game S by solving the order-1 subgames, we would like to
remark on the critical differences between them as follows:

Principle: 1-KLSS converts a common-knowledge sub-
game to an order-1 subgame, and reduces MσS

CK to MσS

KL.
So, 1-KLSS should only solve one SI for a subgame S in
principle, otherwise, it is unsafe. In contrast, Safe-1-KLSS
decomposes S to many order-1 subgames and decomposes
MσS

CK to {MσSI

SKL}I∈IStop
1

. It solves S by solving (maxi-

mizing MσSI

SKL) each order-1 subgame independently.

Safety: 1-KLSS is unsafe, since maximizing MσS

KL in each
order-1 subgame does not guarantee that MσS

CK ≥ 0. In
contrast, Safe-1-KLSS is safe, since MσS

CK is lower bounded
by the belief-weighted sum of MσSI

SKL (Eq. 6).

Practice: 1-KLSS scales up the gift when maximizing
MσS

KL. This can be seen when we divide Eq. (5) by
βσ
−2(I|I2). Note that βσ

−2(I|I2) ∈ [0, 1]. In contrast, Safe-
1-KLSS does not scale the gift and guarantees the total gift
used by all the order-1 subgames does not exceed RσS

2 .

The rest of this section considers the efficiency of Safe-
1-KLSS. Safe-1-KLSS has to guarantee MσSI

SKL(I2) ≥ 0

for every I ∈ IStop

1 and every I2 ∈ IStop

2 . This may be
too conservative and inefficient since 1) some infosets of
P1 may not use the gift, which can be redistributed to the
other infosets in IStop

1 ; 2) some infosets of P2 may not be
reached by any best response so we do not need to concern
the margins there to guarantee safety. We thereby propose
two treatments, one for each point, to improve efficiency.
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The first treatment is to scale up the gift. This allows some
order-1 subgames to use more of the gift while assuming
other subgames use less. Recall that the algorithm is still
safe as long as the total gift used does not exceed RσS

2 (I2).
In this paper, the gift is scaled up by a factor of two by
default. Different scale factors are tested in Appendix C.

For the second point, we can weigh the infoset I2 ∈ IStop

2

according to the reaching probability of any best response of
the resolved strategy σ′

1. The reason is that the best response
value u1(σ

′
1, BR(σ′

1)), which determines the exploitability,
is a sum of payoffs weighted by the reaching probabilities
of BR(σ′

1) ultimately. Therefore, instead of maximizing
every margin for I2 ∈ IStop

2 , it should be more effective
in reducing the exploitability by maximizing the reaching-
probability-weighted sum of them. While BR(σ′

1) and its
reaching probability are not known before we solve σ′

1, we
propose to “guess” them online. One option is to assume
the opponent will reach according to the blueprint strategy,
just as in Unsafe subgame solving. To make it safer, we
can allow the opponent to choose among a set of strategies.
When the opponent can choose any strategy, P1 is forced to
guarantee the safety against any strategy. We will present
the method, named Opponent-Limited Subgame Solving
(OLSS), in the next section.

5. Opponent-Limited Subgame Solving
In this section, we propose OLSS-I, which limits how the
opponent may reach the subgame, to make Safe-1-KLSS
more efficient. Then, for even larger games that safe-1-
KLSS and OLSS-I are incapable of, we propose OLSS-II to
further reduce the size of the subgame, by limiting how the
opponent may act in the subgame.

5.1. OLSS-I

OLSS-I allows the opponent to choose a mixture of a set
of predefined strategies ΣN

2 = {σ1
2 , . . . , σ

i
2, . . . , σ

N
2 } to

reach the subgame. This is partially inspired by depth-
limited subgame solving (Brown et al., 2018), which allows
the opponent to choose among a set of strategies for the
remainder of the game at the depth limit. For any subgame
S, define the opponent-limited margin:

M
⟨σS

1 ,σi
2⟩

OL1 (Stop) =CBV
⟨σ1,σ

i
2⟩

2 (Stop)

− CBV
⟨σ1[S←σS

1 ],σi
2⟩

2 (Stop),
(8)

OLSS-I is subject to M
⟨σS

1 ,σi
2⟩

OL (Stop) ≥ 0,∀σi
2 ∈ ΣN

2 . In
this way, we consider the subgame S as a whole and weigh
each history h according to the belief β⟨·,σi

2⟩(h|Stop). For
the order-1 knowledge subgame SI in Safe-1-KLSS, we
only need to consider the histories h ∈ I , and maximize the

margin: max
σ
SI
1 ∈Σ

SI
1

minσi
2∈ΣN

2
M

⟨σS
1 ,σi

2⟩
OLKL1(I), where

M
⟨σS

1 ,σi
2⟩

OLKL1(I) = min
σ
SI
2 ∈Σ

SI
2

{
d⟨σ

SI
1 ,σ′2⟩(I) +Rσ′2(I)

}
, (9)

d⟨σ
SI
1 ,σ′2⟩(I) = v

⟨σSI
1 ,σ′2⟩

1 (I)− v
⟨σ1,σ

′
2⟩

1 (I),

Rσ′2(I) =
∑
h∈I

β
σi
2

−1(h|I)Rσ
SI
2 (I2(h)),

and σ′
2 = σi

2[SI←σ
SI
2 ]. Clearly, if ΣN

2 = Σ2 or ΣN
2 includes

all the pure undominated P2 strategies that can reach I ,
OLSS-I is safe:

Theorem 5.1. Given a strategy σ1, a common-knowledge
subgame S, a set of subgames S = {SI |I ∈ IStop

1 }, and
a strategy σSI

1 for each subgame SI produced by applying
OLSS-I, let σ′

1 be the strategy that plays according to σSI
1

for each subgame SI and σ1 elsewhere. If ΣN
2 includes all

the pure undominated P2 strategies, then, e(σ′
1) ≤ e(σ1).

We prove the theorem by showing M
⟨σS

1 ,σi
2⟩

OL (Stop) ≥ 0,
∀σi

2 ∈ ΣN
2 . The full proof is in Appendix A. Of course,

including all the pure undominated strategies is impractical.
In many cases, using the blueprint strategy may still produce
safe strategies. Note that when ΣN

2 = {σ2}, OLSS-I is
equivalent to Unsafe solving, which performs well in many
cases (Brown & Sandholm, 2019), except that OLSS-I is for
order-1 subgames. To make the solved strategy safer, it is
likely enough to include only a few “meta-strategies”. In our
experiments, OLSS-I can always produce low-exploitability
strategies in poker games using the blueprint strategy and
three “biased” strategies (Brown et al., 2018). Since the
strategies are predefined, it allows us to use Monte Carlo
CFR (MCCFR) (Lanctot et al., 2009) to solve the gadget
game, which samples the root nodes according to the belief
of the histories. Doing so also makes OLSS-I more efficient.

OLSS-I can also be applied for solving common-knowledge
subgames and use Resolving or Maxmargin solving to find
a strategy σS that satisfies M ⟨σS

1 ,σi
2⟩

OL (Stop) ≥ 0,∀σi
2 ∈ ΣN

2 ,
which can be seen as an extension of Unsafe solving.

5.2. OLSS-II

Although Safe-1-KLSS and OLSS-I can solve much larger
subgames than previous common-knowledge subgame solv-
ing, They still do not apply to games with large order-1
closures. For example, in two-player Mahjong, the size of
an order-1 closure is about 1011, making it impossible to
solve the subgame online. For this kind of IIGs, we need a
new method whose subgame size is independent of the size
of any order knowledge closure. One idea is to limit how
the opponent may act in the subgame. In this subsection,
we propose OLSS-II to allow the opponent to choose a
mixture of a set of predefined strategies for the entire game.
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Specifically, given a blueprint σ and a strategy σi
2 ∈ ΣN

2 ,
define the opponent-limited margin as

M
⟨σS

1 ,σi
2⟩

OL2 (Stop) =CBV
⟨σ1,σ

i
2⟩

2 (Stop)

− v
⟨σ1[S←σS

1 ],σi
2⟩

2 (Stop).
(10)

For an order-1 subgame SI in Safe-1-KLSS, the target is

max
σ
SI
1 ∈Σ

SI
1

minσi
2∈ΣN

2
M

⟨σSI
1 ,σi

2⟩
OLKL2 (I), where

M
⟨σSI

1 ,σi
2⟩

OLKL2 (I) =d⟨σ
SI
1 ,σi

2⟩(I) +Rσi
2(I),

d⟨σ
SI
1 ,σi

2⟩(I) =v
⟨σSI

1 ,σi
2⟩

1 (I)− v
⟨σ1,σ

i
2⟩

1 (I),

Rσi
2(I) =

∑
h∈I

β
σi
2

−1(h|I)Rσi
2(I2(h)).

(11)

Clearly, OLSS-II can be seen as a special case of OLSS-I
with σSI

2 = σi
2 in SI . Therefore, if ΣN

2 includes all the pure
undominated strategies, OLSS-II is safe.

More importantly, when σ1 and σi
2 are given, v⟨σ1,σ

i
2⟩

1 (I),

Rσi
2(I), and v

⟨σSI
1 ,σi

2⟩
1 (I) are only functions of σSI

1 as in a
single-agent environment. Therefore, after P2 has chosen
its strategy for the entire game, we can treat P2 as a part of
the environment, and define an “environmental model” that
takes actions for both P2 and chance according to predefined
distributions. As a result, the subgame tree can be reduced to
the infoset tree whose nodes are infosets of P1. Specifically,
given a strategy σ, we construct a model E for infosets
I ∈ I1, P (I) = −1:

Eσ
−1(I, a) =

∑
h∈I π

σ
−1(h)σ(h, a)∑

h∈I π
σ
−1(h)

. (12)

Also, the payoff at terminal infoset I of P1 is replaced by

V σ
1 (I) =

∑
z∈I π

σ
−1(z)u(z)∑

z∈I π
σ
−1(z)

. (13)

Here the definition of infoset is extended to terminal nodes.
So, the counterfactual value at infoset I of P1 can be com-
puted as in a single-agent environment:

vσ1 (I) =
∑

I⊑I′,I′⊆Z

π⟨σ1,E
σ
−1⟩(I, I ′)V σ

1 (I ′). (14)

Then v
⟨σ1,σ

i
2⟩

1 (I), Rσi
2(I), and v

⟨σSI
1 ,σi

2⟩
1 (I) can be com-

puted accordingly. Obviously, traversing the infoset tree is
much more efficient than traversing the original history tree.
This makes OLSS-II the only subgame-solving algorithm
suitable for large IIGs, e.g., two-player Mahjong. Although
limiting the strategy of P2 may result in a more exploitable
strategy, we find that in two-player Mahjong, including only
one or two P2 strategies in ΣN

2 is enough to gain significant
benefit. When N = 1, OLSS-II is reduced to a local best

response algorithm against the one opponent model in ΣN
2 .

Nevertheless, if we have a model that estimates the oppo-
nent’s strategy well, the resolved strategy by OLSS-II may
even be better than a Nash-equilibrium strategy.

6. Gadget Games and Examples
In this section, we present how to construct gadget games
for Safe-1-KLSS and OLSS to use iterative algorithms, e.g.,
CFR, to resolve the subgames. Take the game shown in
Figure 2 as an example and suppose P1 has reached Ia
and σ1 is the uniform strategy, of which the exploitability
is e(σ1) ≈ 0.166. The Safe-1-KLSS Maxmargin gadget
game is shown on the left of Figure 3. The gadget game
is constructed as follows: 1) The order-1 subgame is first
cloned, which is a set of subtrees rooted at h ∈ I . 2) Upon
I , P2 is allowed to choose an infoset I2 ∈ IStop

2 . 3) RσSI

and v
⟨σ1,σ

SI
2 ⟩

2 are precomputed and added to the payoffs
for every σSI

2 ∈ ΣSI
2 . In more complicated cases, another

two passes may be needed for computing them. Note that
the “environmental model” trick can also be used in Safe-1-
KLSS and OLSS-I to compute the gifts and counterfactual
values online as σ1 is known. For Safe-1-KLSS, the solved
strategy at Ia is the same as the blueprint. This is due to
the artifact that P2 can choose an infoset in Maxmargin
solving. Note that P2 does not act before Ia in the original
game. OLSS-I can eliminate this artifact since it considers
the opponent’s strategy rather than its infosets.

In the middle of Figure 3, the OLSS-I gadget game is shown.
The construction is similar to that in Safe-1-KLSS, except
that P2 chooses a strategy rather than an infoset. Since
P2 has not acted, it is safe to only include an arbitrary
P2 strategy in ΣN

2 . After solving the gadget game, the
strategy at Ia increases the probability of choosing T to
0.6. This reduces the exploitability by about 0.066. When
the subgame at I ′a is also solved independently, the total
reduction of the exploitability is approximately 0.122. On
the right of Figure 3 is the gadget game of OLSS-II. OLSS-
II is not safe. In this example, the exploitability is increased
by 0.066.

Figure 2: A game modified from 100-matching pennies.
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Figure 3: Left: The Safe-1-KLSS maxmargin gadget game constructed from Ia. Middle: The OLSS-I gadget game. P2 can
only choose action s1 at the beginning, which represents an arbitrary strategy. Right: The OLSS-II gadget game. P2 can
choose actions s1 or s2 at the root node to use strategy σ1

2 or σ2
2 in the subgame, respectively. P2 nodes are replaced by

chance nodes, as its strategy is fixed except at the root node.

7. Experimental Results
In this section, we test Safe-1-KLSS and two OLSS algo-
rithms in multiple IIGs, including small and medium poker
games, whose infoset sizes vary from 6 to 2600, and one
large-scale two-player Mahjong game (Fu et al., 2022a),
whose infoset size is approximately 1011. Safe-1-KLSS and
OLSS-I are evaluated in all the poker games. OLSS-II is
only evaluated in Mahjong, not in poker, because it is de-
signed for larger-scale games. Indeed, OLSS-II is the only
algorithm available for the Mahjong benchmark.

7.1. Results in Poker Games

We first test our algorithms in four Leduc poker (Southey
et al., 2012) and one Flop hold’em Poker (FHP) (Brown
et al., 2019). In Table 2, Leduc(ns, nr, nh) is a Leduc game
that has ns suits × nr ranks and nh hole cards. We use
these games to test the scalability of the algorithms. FHP is
a simplified two-player heads-up limit Texas hold’em. The
description of the games can be found in Appendix B. The
blueprint strategy in each game is generated by MCCFR
(Lanctot et al., 2009), and Chance Sampling CFR (CSCFR)
(Johanson et al., 2012) is used to solve the gadget games.
Subgame solving is applied in each game immediately after
the community card(s) are dealt. The solved strategies are
combined with the blueprint to evaluate the exploitability.

As shown in Table 2, Safe-1-KLSS reduces the exploitabil-
ity in every game, while 1-KLSS usually increases the ex-
ploitability. We can also see that Unsafe solving performs
exceptionally well in large Leduc pokers and FHP. However,
Unsafe solving increases the exploitability in Leduc(2,3,1).
Besides, OLSS-I reduces the exploitability and is faster
than Safe-1-KLSS in every game, and it achieves lower ex-
ploitability than Maxmargin solving in most of the Leduc
games. So, opponent limiting is effective in poker games.

In Figure 4, the exploitability curve of each algorithm in
FHP is shown. The X-axis is the number of iterations of
CSCFR for solving the subgames. As we can see, Safe-1-
KLSS and OLSS-I can reduce the exploitability after about

103 iterations, while 1-KLSS significantly increases the
exploitability (from 10.640 to 97.313). Furthermore, Safe-
1-KLSS and OLSS-I are about 100 times faster than the
common-knowledge solving algorithms. This is because
the size of the order-1 subgames they solve is only 1/1326
of the common-knowledge subgame in FHP. In our exper-
iments, the subgame size is further reduced using hand
isomorphism algorithm (Waugh, 2013). In Figure 5, it is
shown that as the game size increases, the number of itera-
tions needed to reduce the exploitability by 20% increases
more slowly in OLSS-I, since the subgame size in Safe-1-
OLSS and OLSS-I is O(I1) rather than O(I∞) in common-
knowledge subgame solving. The results also show that
OLSS-I is more efficient than Safe-1-KLSS. So, opponent
limiting is effective and efficient in poker games.

7.2. Results in Two-Player Mahjong

In this section, we test OLSS-II in Two-player Mahjong.
The blueprint strategy is trained using ACH algorithm (Fu
et al., 2022a), which is an actor-critic algorithm for large-
scale IIGs. For comparison, we also trained an agent using
PPO algorithm (Schulman et al., 2017). The agents are
referred to as ACH and PPO in the rest of the paper. As
we have mentioned, using one or two opponent strategies
significantly improves the strategy. For the Mahjong game,
two environmental models are trained and used. The first
one is a Random (R) model 1 that randomly discards a tile
according to the distribution of the remaining tiles. The
second one is the environmental model of ACH. We ignore
RσSI (I) in this test since it is difficult to learn or compute
in such a large-scale game. It is also less useful when
N is small. We run our search in a depth-limited fashion
similar to previous online searches in large-scale games
(Silver et al., 2016; 2017; Brown et al., 2018; Zhang &
Sandholm, 2021). The depth limit is set to eight steps in our

1We use depth-limited search, so the “random” model is not
entirely random. Considering the highly stochastic nature of the
game, we believe a random model in a depth-limited fashion is a
good environmental model for the game.
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Table 2: Exploitability of Subgame solving in poker games.

Game Blueprint Unsafe Maxmargin Resolving 1-KLSS Safe-1-KLSS OLSS-I

Leduc(2,3,1) 0.150 0.195 0.109 0.089 0.190 0.120 0.091
Leduc(2,3,1) 0.150 0.142 0.115 0.113 0.132 0.127 0.099
Leduc(2,13,1) 0.150 0.044 0.084 0.065 0.453 0.127 0.097
Leduc(2,13,2) 0.150 0.077 0.127 0.089 1.091 0.128 0.107
Leduc(2,13,3) 0.150 0.089 0.113 0.090 1.108 0.117 0.104
FHP 10.640 5.077 6.153 6.142 97.313 8.334 6.659
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Figure 4: Exploitability of OLSS-I and common-
knowledge subgame solving algorithms in FHP.
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Figure 5: Number of iterations needed to reduce the
exploitability by 20% in Leduc poker games.

Table 3: Head-to-head performance of ACH v.s. the oppo-
nents before and after applying OLSS-II. The values are
given with 95% confidence interval. In the setting column,
“R” and “ACH” indicate whether the Random model and the
ACH model are used in the subgame solving. For compari-
son, a best response (estimated using a PPO agent) can win
an ACH agent by no more than 0.75 (fan).

Opponent Blueprint (fan) Setting OLSS-II (fan)

ACH 0.00± 0.00 R 0.14± 0.13
ACH 0.00± 0.00 ACH 0.18± 0.13
PPO 0.05± 0.13 R 0.22± 0.13
PPO 0.05± 0.13 ACH 0.20± 0.13
PPO 0.05± 0.13 R + ACH 0.22± 0.13

experiments. At the depth limit, we return the value of the
blueprint. More details about the blueprint strategy and the
environmental models are provided in Appendix D.

As shown in Table 3, OLSS-II significantly improves the
performance of ACH regardless of whether the opponent is
ACH itself or PPO. Among the settings, OLSS-II with the
Random environmental model is doing surprisingly well. So,
although the environmental model does not reflect any op-
ponent’s strategy, it captures the dynamics of the game and
helps the agent refine its strategy. Besides, when the oppo-
nent is ACH itself, OLSS-II performs better if the ACH en-
vironmental model is used. This suggests that OLSS-II can
be combined with opponent-modeling methods (Ganzfried
& Sandholm, 2015; Fu et al., 2022b).

8. Conclusions and Future Work
For large-scale IIGs, we proposed Safe-1-KLSS and two
types of OLSS. Specifically, we revisited knowledge-limited
subgame solving and proposed Safe-1-KLSS, which is
proven safe when applied to every infoset during play. Based
on Safe-1-KLSS, a more efficient OLSS-I, which limits how
the opponent can reach the subgame, is proposed. For larger
IIGs, we propose OLSS-II, which only allows the oppo-
nent to choose among a set of predefined strategies for the
entire game. The experiments in poker games show that
Safe-1-KLSS and OLSS-I are effective and efficient, by or-
ders of magnitude faster than previous common-knowledge
subgame solving. Despite lacking theoretical guarantees,
OLSS-II is the only algorithm applicable for two-player
Mahjong, and it significantly improves the performance.

With Safe-1-KLSS and OLSS-I, online subgame solving
can be applied to larger IIGs that were impossible with
previous common-knowledge subgame solving. They can
also be combined with previous techniques, such as Reach-
Maxmargin and depth-limited subgame solving, for more
efficiency. For OLSS-II, combining it with opponent model-
ing is a promising direction. Finally, although using a small
number of strategies in OLSS-I and OLSS-II is enough in
our experiments, there are still some open questions: 1) how
many strategies are needed to guarantee safety? 2) how do
we find the smallest set of strategies for good performance?
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A. Proofs
A.1. Proof for Equation 3

Proof. The new objective function dσ
S

(I2) can be decomposed as follows:

dσ
S

(I2) =v
⟨σ1,σ

S
2 ⟩

2 (I2)− v
⟨σ1[S←σS

1 ],σS
2 ⟩

2 (I2)

=
∑
h∈I2

βσ
−2(h|I2)

(
(u

⟨σ1,σ
S
2 ⟩

2 (h)− u
⟨σS

1 ,σS
2 ⟩

2 (h)
)

=
∑

I∈IStop
1

( ∑
h∈I∩I2

βσ
−2(h|I2)

) ∑
h∈I∩I2

βσ
−2(h|I2)∑

h∈I∩I2
βσ
−2(h|I2)

(
u
⟨σ1,σ

S
2 ⟩

2 (h)− u
⟨σS

1 ,σS
2 ⟩

2 (h)
)

=
∑

I∈IStop
1

( ∑
h∈I∩I2

βσ
−2(h|I2)

)
dσ

SI
(I2)

=
∑

I∈IStop
1

βσ
−2(I|I2)dσ

SI
(I2).

(15)

The second equality is according to the definition of counterfactual value. In the last line, we use βσ
−2(I|I2) to denote∑

h∈I∩I2
βσ
−2(h|I2). Note that

∑
h∈I∩I2

βσ
−2(h|I2) ≥ 0 and

∑
I∈IStop

1

βσ
−2(I|I2) = 1.

A.2. Proof for Equation 6

Proof. For a common-knowledge subgame S, the common-knowledge margin is:

MσS

CK(I2) = min
σS
2 ∈ΣS

2

{
dσ

S

(I2) +RσS
2 (I2)

}
. (16)

Assume dσ
S

(I2) +RσS
2 (I2) ≥ 0 for every I2 ∈ IStop

2 . Note that σS
1 must exist such that dσ

S

(I2) +RσS
2 (I2) ≥ 0 since it is

true when σS
1 equals σ1 in the subgame.

For MσS

CK(I2), we have

MσS

CK(I2) = min
σS
2 ∈ΣS

2

{
dσ

S

(I2) +RσS
2 (I2)

}

= min
σS
2 ∈ΣS

2


∑

I∈IStop
1

βσ
−2(I|I2)dσ

SI
(I2) +RσS

2 (I2)


= min

σS
2 ∈ΣS

2


∑

I∈IStop
1

βσ
−2(I|I2)

(
dσ

SI
(I2) +RσS

2 (I2)
)

≥
∑

I∈IStop
1

βσ
−2(I|I2) min

σS
2 ∈ΣS

2

{
dσ

SI
(I2) +RσS

2 (I2)
}

=
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I∈IStop
1

βσ
−2(I|I2) min

σ
SI
2 ∈Σ

SI
2

{
dσ

SI
(I2) +Rσ

SI
2 (I2)

}
.

(17)

The second equality is because of βσ
−2(I|I2) ≥ 0 and

∑
I∈IStop

1

βσ
−2(I|I2) = 1. The inequality is according to Jensen’s

inequality. The last equality is because P2 only needs to consider its strategy in SI to minimize dσ
SI (I2) +RσS

2 (I2). More

12



Opponent-Limited Online Search for Imperfect Information Games

specifically, since P1 only changes its strategy in SI , the counterfactual best response strategy of P2 in the infosets that do
not intersect with SI is fixed and therefore does not affect RσS

2 (I2). So, RσS
2 (I2) = Rσ

SI
2 (I2).

Therefore, we have

MσS

CK(I2) ≥
∑

I∈IStop
1

βσ
−2(I|I2) min

σ
SI
2 ∈Σ

SI
2

{
dσ

SI
(I2) +Rσ

SI
2 (I2)

}
=

∑
I∈IStop

1

βσ
−2(I|I2)MσSI

SKL(I2).
(18)

A.3. Proof for Theorem 4.1

Proof. According to the definition of MσS

CK , we have

CBV σ1[S←σS
1 ](I2) ≤ CBV σ1(I2)−

∑
I∈IStop

1

βσ
−2(I|I2)MσSI

SKL(I2),∀I2 ∈ IStop

2 . (19)

Then, according to Theorem 1 in (Moravcik et al., 2016), if πBR(σ′)
2 (I∗2 ) > 0 for some I∗2 ∈ IStop

2 , we have

e(σ′
1) ≤ e(σ1)−

∑
h∈I∗2

πσ1
−2(h)

∑
I∈IStop

1

βσ
−2(I|I2)MσSI

SKL(I
∗
2 ). (20)

A.4. Proof for Theorem 5.1

Proof. We first prove that for any σi
2 ∈ ΣN

2 ,

M
⟨σS

1 ,σi
2⟩

OL (Stop) ≥ 0. (21)

As we have defined before, the opponent-limited margin is

M
⟨σS

1 ,σi
2⟩

OL (Stop) = min
σS
2 ∈ΣS

2

{
CBV

⟨σ1,σ
i
2⟩
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⟨σ1[S←σS

1 ],σi
2[S←σS

2 ]⟩
2 (Stop)

}
. (22)

For CBV
⟨σ1,σ

i
2⟩

2 (Stop), we have

CBV
⟨σ1,σ

i
2⟩

2 (Stop) =
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=
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1
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i
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i
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Note that β⟨σ1,σ
i
2⟩(h|Stop)/

∑
h∈I β

⟨σ1,σ
i
2⟩(h|Stop) = β

σi
2

−1(h|I) since P1 has the same reaching probability for each h ∈ I .

Similarly, for v⟨σ1[S←σS
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and

v
⟨σ1,σ

i
2[S←σS

2 ]⟩
2 (Stop) =
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I∈IStop
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h∈I
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So, the opponent-limited margin is
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Besides, for
∑

h∈I β
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2
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β
σi
2

−1(h|I)
(
CBV σ1(I2(h))− v

⟨σ1,σ
SI
2 ⟩

2 (I2(h))

)
=
∑
h∈I

β
σi
2

−1(h|I)Rσ
SI
2 (I2(h))

=Rσi
2[SI←σ

SI
2 ](I).

(28)

Combining the above equations, we get

M
⟨σS

1 ,σi
2⟩

OL (Stop)

≥ min
I∈IStop

1

min
σ
SI
2 ∈Σ

SI
2

(
d⟨σ

SI
1 ,σi

2[SI←σ
SI
2 ]⟩(I) +Rσi

2[SI←σ
SI
2 ](I)

)
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1

M
⟨σSI

1 ,σi
2⟩

OLKL1 (I).

(29)

Since OLSS-I guarantees that M ⟨σSI
1 ,σi

2⟩
OLKL1 (I) ≥ 0 for any I ∈ IStop

1 and any strategy in ΣN
2 , M ⟨σS

1 ,σi
2⟩

OL (Stop) ≥ 0. When
ΣN

2 includes all the pure non-dominated strategies, it means that any best response, which is a mixed strategy of some pure
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non-dominated strategies, in the entire game can not get more payoff from S. So, we have u2(σ1[S←σS
1 ], BR(σ1[S←σS

1 ])) ≤
u2(σ1, BR(σ1)) and e(σ1[S←σS

1 ]) ≤ e(σ1).

B. Description of Benchmark Games
• Leduc(2,3,1) (Southey et al., 2012) is a two-player zero-sum EFG. It can be considered as a simplified Heads-up Limit

Texas hold’em (HULH).2 In Leduc, there are two suits of cards, each suit comprises three ranks, and two rounds of
betting are allowed. At the beginning of the game, each player places an ante of one chip in the pot and is dealt with
one card, which is only visible to itself. In the first round of betting, player 1 has to choose an action between Call and
Raise. Taking the action Call means that the player will place or has placed the same chips as the opponent and leaves
the choice to the opponent. Taking the action Raise means that the player will place more chips than the opponent to
the pot. It is only two raises allowed in the first round of betting. Sometimes when a player bets fewer chips than his
opponent and is asked to take an action, he can choose to Fold. If he does so, the game is over, and the player loses all
chips. The first round ends if one of the players has chosen Fold or if both players agree to end. If no player folds, a
public card is revealed to both of the players and then the second round of betting takes place, with the same dynamic as
the first round. After the two rounds of betting, if one of the players has a pair with the public card, that player wins the
pot. Otherwise, the player with a higher private card wins. In the first round, the player taking action Raise should place
2 (named raise size) more chips to the pot than the opponent. In the second round, the raise size is 4. The infoset size
and the common-knowledge closure size after dealing the community card are 4 and 20, respectively.

• Leduc(2,13,1) has the same rules as Leduc, except that it has two suits of thirteen cards. The infoset size and the
common-knowledge closure size after dealing the community card are 24 and 600, respectively.

• Leduc(2,13,2) has the same rules as Leduc, except that it has two suits of thirteen cards and each player is dealt two
cards rather than one. The infoset size and the common-knowledge closure size after dealing the community card are
253 and 75900, respectively.

• Leduc(2,13,3) has the same rules as Leduc, except that it has two suits of thirteen cards and each player is dealt three
cards rather than one. The infoset size and the common-knowledge closure size after dealing the community card are
1540 and 3542000, respectively.

• FHP (Brown et al., 2019) is a simplified HULH that uses standard four suits of thirteen cards. At the beginning of the
game, each player places an ante of 50 chips in the pot and is dealt two cards. It has the same dynamic in each round of
betting as Leduc. However, it allows three raises and a raise size of 100 in each round of betting, and the first player to
act in the second round is player 2. After the first round of betting, three public cards are revealed to the players. After
two rounds of betting, the rank of the five cards (two private cards + three public cards) of each player is evaluated, and
the player with the higher rank wins the pot. We use the standard hand evaluating method3 used in HULH. The infoset
size and the common-knowledge closure size after dealing the community cards are 1081 and 1271256, respectively.

• Two-player Mahjong (Fu et al., 2022a) is a simplified Mahjong game. The game rules are similar to Competition
Mahjong. The corresponding game, “two-player Mahjong Master”, is played by humans in Tencent mobile games
(https://majiang.qq.com). The infoset size is about 1011, and the common-knowledge closure size is about 1022.

C. Additional Experimental Results
This section presents more results of Safe-1-KLSS and OLSS in poker games. The experiments are conducted based on the
OpenSpiel project (Lanctot et al., 2019). The license is Apache-2.0.

C.1. Exploitability Curves

In Figure 6, the exploitability curves of Safe-1-KLSS, OLSS-I, and other algorithms in Leduc(2,3,1) poker games are
given. The curve of 1-KLSS is not plotted as its values are much larger. As we have stated before, Unsafe increases the
exploitability in Leduc poker but converges faster and better than the other algorithms in Leduc(2,13,1) and Leduc(2,13,2).

2https://en.wikipedia.org/wiki/Texas hold %27em
3https://en.wikipedia.org/wiki/List of poker hands
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Figure 6: Exploitability of the algorithms in Leduc poker games.
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Also, as the game size increases, the proposed Safe-1-KLSS and OLSS-I are more efficient than other common-knowledge
subgame solving.

C.2. Parameters in OLSS-I

OLSS-I assumes the opponent can choose among a set of N strategies ΣN
2 to reach the subgame. As discussed in the paper,

using the blueprint and three “biased” strategies (Brown et al., 2018) is enough in Poker games to achieve good results.
In this paper, the first biased strategy is biased to action Fold: the probability of action Fold is scaled up by five and then
normalized. The other two biased strategies are biased to action Call and Raise by scaling up the probabilities, respectively.

In this subsection, we test OLSS-I with different numbers of opponent strategies in FHP, as shown in Figure 7. When
N = 1, it assumes the opponent follows the blueprint to reach the subgame. When N = 7, another three biased strategies
are included, which scale up the probabilities by 20. The results show that it is sufficient to limit the number of opponent
strategies for reaching the subgame in FHP.

On the right of Figure 7, we test OLSS-I with different regret scale factors. As we can see, scaling up the regrets indeed
improves performance. However, it can also hurt the performance when the scale factor is too large.
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Figure 7: Left: Exploitability of OLSS-I with different numbers (denoted by N in the figure) of opponent strategies. Right:
Exploitability of OLSS-I with different regret scale factors (denoted by η in the figure).

D. Mahjong
We now describe the details of experiments in two-player Mahjong. Two-player Mahjong is similar to Competition Mahjong.
The difference is that in two-player Mahjong, there are only 72 tiles in total(Characters, Winds, Dragons, Flowers, Seasons).
At the beginning of the game, each player is dealt 13 tiles, and each player takes action in turn. If the opponent just discarded,
a player can choose Chow, Pong, or Kong the tile. Otherwise, he can draw a tile from the deck and discards one.

D.1. Environmental Model and Blueprint

For the environmental model, We need to calculate all the possible legal actions according to the remaining tiles in the
current infoset. We use cross-entropy loss to train our environmental model. The final output is a mixed distribution of
strategies that the opponent holds different tiles in hand. In environmental model training, the learning rate is 1e-3, and the
batch size is 8192.

We use the same network architecture to train the blueprint and the environmental models, which is the same as ACH(Fu
et al., 2022a). We use three residual blocks(He et al., 2016) layers and two fully-connected layers in our model. In the
blueprint model, two branches output action probabilities and the infoset value. In the environmental model, only the action
probabilities are predicted.

The Adam optimizer is used in our two-player Mahjong experiments. Blueprint models are trained for two days with 8
V100 GPUs and 1200 CPUs. And we use 8 V100 GPUs and 2400 CPUs to train the environmental model. Table 4 shows
the overview of blueprint model hyper-parameters.
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Parameter Range Best
Shared

Ratio clip (ϵ) - 0.5
GAE (λ) - 0.95
Learning rate {2.5e-3, 2.5e-4} 2.5e-4
Discount factor (γ) - 0.995
Value loss coefficient (α) - 0.5
Batch size {4096, 8192} 8192

ACH
Entropy coefficient (β) {0.1, 1e-4} 5e-4
Logit threshold (lth) - 8

PPO
Entropy coefficient (β) {0.1, 1e-4} 0.01

Table 4: Hyper-parameters used for the blueprint.

Parameter value
Evaluation time 1000
Rollout steps 8
Exploration coefficient (c) 20
Value discount factor (γ) 1

Table 5: Hyper-parameters used in online search.

D.2. Online Search

The search in Mahjong is repeated for several simulations, which in our experiments is set to 1000. In each simulation,
the search starts from a root infoset I0 and finishes at the end of the game. The value at the root infoset is accumulated
without discount(γ = 1). At root infoset I0, we select action according to pUCT algorithm, and at the rest of other infosets,
actions are sampled according to their original strategies. In the part where the opponent chooses his strategy, the same
pUCT algorithm is used.

We use pUCT in Mahjong because we found that if we use a CFR algorithm like experiments in poker, we need many
simulations to make the average policy converge, which is time-consuming. Compared to the CFR algorithm, pUCT is a
much faster algorithm. It considers prior probability and samples a trajectory instead of traversing the whole game tree. In
our experiments, we can get a significant result by pUCT algorithm with 1000 simulation times, but the CFR algorithm with
5000 simulations is far from enough.

at = argmax
a∈A(I)

{
Q(I, a) + σ(I, a) ·

√∑
b N(I, b)

1 +N(I, a)
· c
}

(30)

In (30), Q(I, a) denotes the accumulated value from previous simulations, P (I, a) is the probability of action a on infoset
I , N(I, a) is the number of visit times, and c is a hyper-parameter that controls the degree of exploration. Two-player
Mahjong is a game with high variance, so a large parameter value c = 20 is preferred to encourage exploration and reduce
the influence of Q(I, a) in our experiments.

Due to the large number of infosets in two-player Mahjong, we simplified our experiments. During simulations, all the
players are only allowed to take Discard-type actions. Instead of rollout to the end, each simulation ends after eight steps
and returns a value from a value function. The value function is trained with the blueprint policy simultaneously.

D.3. Evaluation

Because of the high variance of two-player Mahjong, we need a large number of games to evaluate. In order to make our
experimental results significant, we conduct 200000 games in our experiments. We randomly generated 100000 decks and
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allowed players to swap their positions alternately in the same deck, which can help reduce the variance of evaluation.
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