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Abstract
Data valuation—quantifying the contribu-
tion of individual data sources to certain pre-
dictive behaviors of a model—is of great im-
portance to enhancing the transparency of
machine learning and designing incentive sys-
tems for data sharing. Existing work has
focused on evaluating data sources with the
shared feature or sample space. How to val-
uate fragmented data sources of which each
only contains partial features and samples re-
mains an open question. We start by present-
ing a method to calculate the counterfactual
of removing a fragment from the aggregated
data matrix. Based on the counterfactual
calculation, we further propose 2D-Shapley,
a theoretical framework for fragmented data
valuation that uniquely satisfies some appeal-
ing axioms in the fragmented data context.
2D-Shapley empowers a range of new use
cases, such as selecting useful data fragments,
providing interpretation for sample-wise data
values, and fine-grained data issue diagnosis.

1. Introduction
Data are essential ingredients for building machine
learning (ML) applications. The ability to quantify
and measure the value of data is crucial to the en-
tire lifecycle of ML: from cleaning poor-quality sam-
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Figure 1: Illustration of different data valuation set-
tings based on how training set is partitioned among
different data contributors.

ples and tracking important ones to be collected dur-
ing data preparation to setting proper proprieties over
samples during training to interpret why certain be-
haviors of a model emerge during deployment. Deter-
mining the value of data is also central to designing
incentive systems for data sharing and implementing
current policies about the monetarization of personal
data.

Current literature of data valuation (Jia et al., 2019b;
Ghorbani & Zou, 2019) has exclusively focused on
valuing horizontally partitioned data—in other words,
each data source to be valued shares the same feature
space. How to value vertically partitioned data, where
each data source provides a different feature but shares
the same sample space, has been studied in the context
of ML interpretability (Covert et al., 2020). However,
none of these abstractions could fully capture the com-
plexity of real-world scenarios, where data sources can
have non-overlapping features and samples (termed as
fragmented data sources hereinafter).
Example 1. Consider two banks, B1 and B2, and two
e-commerce companies, E1 and E2, located in Region
1 and 2. These four institutions are interested in col-
laboratively building an ML model to predict users’
credit scores with their data. Due to the geographi-
cal difference, B1 and E1 have a different user group
from B2 and E2. Also, due to the difference in busi-
ness, B1 and B2 provide different features than what
E1 and E2 can offer. Overall, the four institutions par-
tition the aggregated data horizontally and vertically,
as illustrated by Figure 1(c). How to quantify each
institution’s contribution to the joint model training?
Example 2. Due to inevitable errors occurring dur-
ing the data generation and collection processes, real-
world data are seldom high quality. Suppose that a
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data analyst is interested in identifying some poten-
tially erroneous entries in a dataset. Existing horizon-
tal and vertical data valuation tools can help locate
the rows or columns that could contain errors by re-
turning the ones with the lowest values. Nevertheless,
can we perform more fine-grained detection—e.g., how
to pinpoint the coordinate of erroneous entries?
Example 3. Horizontal data valuation is now widely
used to explain the importance of each sample to a
learning outcome (Tang et al., 2021; Karlaš et al.,
2022). But how can a data analyst further explain
these sample importance scores—why a sample re-
ceives a certain importance score? Is a sample “low-
quality” because it contains several “moderate low
quality” features or an “exceptionally low quality” fea-
ture?

Answering the above questions calls for a quantitative
understanding of how each block in the data matrix
(e.g. a sub-matrix as in Ex. 1 or a single entry as in
Ex. 2 and 3) contributes to the outcome of learning.

Technical Challenges. The problem of block valuation
requires rethinking about fundamental aspects of data
valuation. Existing data valuation theory consists of
two basic modules at a conceptual level: (1) Coun-
terfactual Analysis, where one calculates how the util-
ity of a subset of data sources would change after the
source to be valued is removed; and (2) Fair Attribu-
tion, where a data source is valued based on a weighted
average of its marginal utilities for different subsets
and the weights are set for the value to satisfy certain
fairness properties. The fairness notion considered by
the past valuation schemes requires that permuting the
order of different data sources does not change their
value.

For horizontal and vertical valuation, the counterfac-
tual can be simply calculated by taking the difference
between the model performance trained on a subset
of columns or rows and the performance with one col-
umn or row being removed. However, it is unclear
how to calculate the counterfactual when a block is ex-
cluded because the remaining data matrix could be in-
complete. Besides, the fairness notion of existing data
value notions is no longer appropriate in the context
of block valuation. As a concrete example to illustrate
this point, consider Figure 1(c) and suppose the two
blocks on the left provide temperature measurements
as features and the ones on the right are humidity mea-
surements. In this case, one should not expect the
value to be unchanged when two blocks with different
physical meanings (e.g., yellow and pink) are swapped.

Contributions. This paper presents the first focused
study on data valuation without assuming shared fea-

ture space or sample space. Toward that end, we make
the following contributions.

• We present an approach that enables evaluation
of the marginal contribution of a block within
the data matrix to any other block with non-
overlapping sample and feature spaces.

• We abstract the block valuation problem into a
two-dimensional (2D) cooperative game, where
the utility function is invariant to column permu-
tations and row permutations but not to any ar-
bitrary entry permutations.

• We propose axioms that a proper valuation
scheme should satisfy in the 2D game and show
that the axioms lead to a unique representation of
the value assignment (referred to as 2D-Shapley).
Particularly, this representation is a natural gen-
eralization of the Shapley value (Shapley, 1997)—
a celebrated value attribution scheme widely used
in data valuation among other applications.

• We demonstrate that 2D-Shapley enables new
applications, including selecting useful data frag-
ments, providing interpretation for sample-wise
data values, and fine-grained data issue diagnosis.

2. Background and Related Work
In a typical setting, a set of data sources are used to
learn an ML model, which achieves a certain perfor-
mance score. The goal of data valuation is to quantify
the contribution of each data source toward achiev-
ing the performance score. The definition of a data
source depends on the context in which the data val-
uation results are utilized. For instance, when using
data valuation to interpret how the global behavior of
the ML model depends on individual samples or indi-
vidual features, a sample or a feature in the training
data is regarded as a data source; when using data val-
uation to inform the reward design for data sharing,
the collection of all samples or all features contributed
by the same entities is regarded as a data source.

Formally, let N = {1, . . . ,n} denotes the index set of n
training data sources. A data valuation scheme assigns
a score to each training data source in a way that re-
flects their contribution. These scores are referred to
as data values. To analyze a source’s “contribution”,
we define a utility function U : 2N→R, which maps any
subset of the data sources to a score indicating the use-
fulness of the subset. 2N represents the power set of
N, i.e., the set of all subsets of N, including the empty
set and N itself. For the classification task, a common
choice for U is the performance of a model trained on
the input subset, i.e., U(S) = acc(A (S)), where A is a
learning algorithm that takes a set S⊆ N of sources as
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input and returns a model, and acc is a metric function
to evaluate the performance of a given model, e.g., the
accuracy of a model on a hold-out validation set.
Past research has proposed various ways to character-
ize data values given the utility function, among which
the Shapley value is arguably the most widely used
scheme for data valuation. The Shapley value is de-
fined as

ψ1d
i (U) := 1

n ∑n
k=1

(n−1
k−1

)−1
∑ S⊆N\i
|S|=k−1

[U(S∪ i)−U(S)] .

(1)

To differentiate from the proposed work, we will refer
to the Shapley value defined in Eq. (1) as 1D-Shapley.
1D-Shapley is popular due to its unique satisfaction
of the following four axioms (Shapley, 1953):

• Dummy: if U (S∪ i) =U(S)+c for any S⊆ N \ i and
some c ∈ R, then ψ1d

i (U) = c.
• Symmetry: let π : N→ N be any permutation of N

and πU(S) :=U(π(S)), then ψ1d
π(i)(πU) = ψ1d

i (U).
• Linearity: For utility functions U1,U2 and

any α1,α2 ∈ R, ψ1d
i (α1U1 +α2U2) = α1ψ1d

i (U1)+
α2ψ1d

i (U2).
• Efficiency: for every U,∑i∈N ψ1d

i (U) =U(N).

The symmetry axiom embodies fairness. In particu-
lar, πU arises upon the reindexing of data sources
1, . . . ,n with the indices π(1), . . . ,π(n); the symmetry
axiom states that the evaluation of a particular po-
sition should not depend on the indices of the data
sources.

Although the Shapley value was justified through these
axioms in prior literature, the necessity of each axiom
depends on the actual use case of data valuation re-
sults. Recent literature has studied new data value no-
tions obtained by relaxing some of the aforementioned
axioms and enabled improvements in terms of accuracy
of bad data identification (Kwon & Zou, 2022), robust-
ness to learning stochasticity (Wang & Jia, 2023; Wu
et al., 2022a), and computational efficiency (Yan &
Procaccia, 2021). For instance, relaxing the efficiency
axiom gives rise to semi-values (Kwon & Zou, 2022;
Wang & Jia, 2023); relaxing the linearity axiom gives
rise to least cores (Yan & Procaccia, 2021). This paper
will focus on generalizing 1D-Shapley to block valua-
tion. As we will expound on later, 1D-Shapley faces
two limitations to serve a reasonable notion for block-
wise values. Note that 1D-Shapley and the aforemen-
tioned relaxed notions share a similar structure: all of
them are based on the marginal utility of a data source.
Hence, our effort to generalize the 1D-Shapley to new
settings can be adapted to other more relaxed notions.

Another line of related work focuses on developing ef-

ficient algorithms for data valuation via Monte Carlo
methods (Jia et al., 2019b; Lin et al., 2022), via surro-
gate utility functions such as K-nearest-neighbors (Jia
et al., 2019a), neural tangent kernels (Wu et al.,
2022b), and distributional distance measures (Just
et al., 2023; Tay et al., 2022), and via reinforce-
ment learning (Yoon et al., 2020). These ideas can
also benefit the efficient computation of the proposed
2D-Shapley. As a concrete example, this paper builds
upon Monte Carlo simulation and surrogate model ap-
proaches to improve the efficiency of 2D-Shapley.

Beyond data valuation, 1D-Shapley has been exten-
sively used to gain feature-based interpretability for
black-box models locally and globally. The local inter-
pretability methods (Lundberg & Lee, 2017; Strumbelj
& Kononenko, 2010) focus on analyzing the relative im-
portance of features for each input separately; there-
fore, the importance scores of features across different
samples are not comparable. By contrast, our work
allows the comparison of feature importance across
different samples. The global interpretability meth-
ods (Covert et al., 2020), on the other hand, explain
the model’s behavior across the entire dataset. In the
context of this paper, we consider them vertical data
valuation. Compared to global interpretability meth-
ods, our work provides a more fine-grained valuation
by associating each entry of the feature with an impor-
tance score. Our work improves the interpretability of
the global feature importance score in the sense that
it reveals the individual sample’s contribution to the
importance of a feature.

3. How to Value a Block?
This section starts with formulating the block valua-
tion problem. Then, we will discuss the challenges of
using 1D-Shapley to tackle the block valuation prob-
lem in terms of both counterfactual analysis and fair
attribution. At last, we will present our proposed
framework for solving the block valuation problem.

3.1. Problem Formulation

Let N = {1,2, · · · ,n} and M = {1,2, . . . ,m}, indexing n
disjoint collection of samples and m disjoint collection
of features contributed by nm sources (or blocks). Each
data source can be labeled by (i, j) for i∈N and j ∈M,
where we call i the sample-wise index and j the feature-
wise index. To measure the contribution of a data
source, we need to define a utility function, which mea-
sures the usefulness of a subset of data sources. The
utility function h(S,F) takes in two separate sets S⊆N
and F ⊆M as the variables and returns a real-valued
score indicating the utility of {(i, j)}i∈S, j∈F . Note that
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this paper focuses on valuing the relative importance
of feature blocks; that is, we assume that each data
contributor provides a block of features and then the
aggregation of features will be annotated by a separate
entity (e.g., a data labeling company) that does not
share the profit generated from joint training. More
formally, we define the utility function as follows:
h(S,F) := Performance of the model trained on the
feature blocks {(i, j)}i∈S, j∈F after annotation.

One can potentially generalize our framework to
jointly value feature and label blocks by redefining the
utility function to be non-zero only when feature and
label are both included in the input block, like (Jia
et al., 2019a; Yona et al., 2021), but an in-depth inves-
tigation is deferred to future work.

The benefit of this utility function definition is two-
fold. First, its two-dimensional index always corre-
sponds to a data fragment with the same feature space
for all samples inside. As a result, one can calculate
the utility in a straightforward manner by training on
the matrix and evaluating the corresponding perfor-
mance. This is an essential advantage over the one-
dimensional index utilized by 1D-Shapley, as will be
exemplified later. Second, created this way, the utility
function is invariant to permutations of sample-wise in-
dices in S for any given F and permutations of feature-
wise indices in F for any given S, but not to permuta-
tions of the sample-wise and feature-wise indices com-
bined. This is a desirable property as for many data
types in ML, such as tabular data, one would expect
that swapping samples or swapping features 1 does not
change the model performance, yet swapping any two
entries in the matrix may lead to arbitrary errors and
thus alter the model performance significantly.

Our goal is to assign a score to each block in
{(i, j)}i∈N, j∈M that measures its contribution to the
outcome of joint learning h(N,M).

3.2. A Naive Baseline: 1D-Shapley

One idea to tackle the block valuation problem is to
flatten the indices of blocks into one dimension and
leverage 1D-Shapley to value each block. Specifically,
we can reindex {(i, j)}i∈N, j∈M by T = {1, . . . ,nm}. Note
that this step discards the structural information con-
tained in the two-dimensional indices. Then, one can
utilize Eq. (1) to value each i ∈ T .

The second step of applying Eq. (1) requires calculat-
1Swapping features in an image dataset may lead to the

loss of certain local information. However, it is rare that
different pixel positions of an image dataset are contributed
by different entities. So we will not consider this case.

ing U(S∪ i)−U(S) for any S ⊆ T \ i. Both S and S∪ i
could correspond to a data fragment with samples dif-
fering in their feature space (see example in Figure 2);
nevertheless, how to evaluate the utility of such a frag-
ment is unclear. An ad hoc way of addressing this
problem is to perform missing value imputation, e.g.,
filling out the missing values of a feature using the
average of the feature values present.

In addition to the difficulty of evaluating the counter-
factual, the symmetry axiom satisfied by 1D-Shapley
no longer has the correct fairness interpretation when
the input indices are flattened from 2D ones. In that
case, 1, . . . ,nm, carry specific meanings entailed by the
original 2D structure; e.g., some indices might corre-
spond to temperature features, and others might cor-
respond to humidity. Hence, the symmetry axiom
that requires unchanged data values after permuting
the data sources’ indices is not sensible and necessary,
as the permutation might map the content of a data
source from one meaning to an entirely different one.

We will use 1D-Shapley with missing value imputa-
tion as a baseline for our proposed approach. This
simple baseline is still a useful benchmark to assess
the extra (non-trivial) gains in different application
scenarios that our approach can attain.

Figure 2: A visualization of 1D-Shapley marginal con-
tribution applied to sample-feature valuation.

3.3. Our Approach: 2D-Shapley

Here, we will describe 2D-Shapley as a principled
framework for valuing data blocks. We will empha-
size how 2D-Shapley overcomes the challenges of the
1D-Shapley baseline in terms of (1) calculating the
counterfactual, (2) framing the correct fairness prin-
ciples, and then derive the representation of the data
values based on the new counterfactual analysis and
principle. At last, we will show efficient algorithms to
compute 2D-Shapley.

3.3.1. Two-Dimensional Counterfactual Analysis
Given a two-dimensional utility function h(·, ·), we will
define the marginal contribution of a block (i, j) to the
collection of blocks {(i, j)}i∈S, j∈F as

Mi, j
h (S,F) :=h(S∪ i,F ∪ j)+h(S,F)

−h(S∪ i,F)−h(S,F ∪ j). (2)
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The rationality of the definition of Mi, j
h (S,F) can be

shown by Figure 3. The area corresponding to h(S∪
i,F ∪ j) can be viewed as the area (S∪ i,F ∪ j), which
subtracts these two areas of (S∪ i,F) and (S,F∪ j), plus
the (S,F) area that is subtracted twice, the remaining
area is shown in Figure 3 as “marginal”, which cor-
responds to the marginal influence of the block (i, j).

Figure 3: Re-
moval process and
marginal influence
of (i, j).

The unique advantage is that
each individual utility is well-
defined as it takes as input a
collection of blocks within which
the samples all share same fea-
ture space.

3.3.2. Axioms
for Block Valuation

We start by redefining “dummy”
for block valuation, where the
underlying utility function is 2D.
Definition 3.1. (2D-Dummy) We call a block (i, j) a
2D-dummy under utility function h if for all S ⊆ N\i
and F ⊆M\ j,

Mi, j
h (S,F) = c,c ∈ R. (3)

2D-dummy implies the canonical (one-dimensional)
dummy mentioned in Section 2. Specifically, if sam-
ple i is a sample dummy which satisfies h(S∪ i,F) =
h(S,F)+ c1 and h(S∪ i,F ∪ j) = h(S,F ∪ j)+ c2 for S ⊆
N\i,F ⊆M\ j like the dummy defined in 1D-Shapley,
then Eq. (3) is satisfied with c := c2−c1, and similarly,
if feature j is a feature dummy which satisfies h(S,F ∪
j) = h(S,F)+ c′1 and h(S∪ i,F ∪ j) = h(S∪ i,F)+ c′2 for
S ⊆ N\i,F ⊆ M\ j, then Eq. (3) is also satisfied with
c := c′2− c′1. However, Eq. (3) can not imply sample i
is a sample dummy or feature j is a feature dummy.

We first define the utility function set G which con-
tains all possible utility functions, and define a value
function ψ : G→ Rn×m and denote the value of block
(i, j) as ψi j(h) which is the i jth element in matrix ψ(h).
In order to build an equatable evaluation system, we
provide the following axioms.
Axiom 1. (2D-Linearity) For any two utility functions
h1,h2 ∈ G and any β1,β2 ∈ R,

ψi j(β1h1 +β2h2) = β1ψi j(h1)+β2ψi j(h2). (4)

Axiom 2. (2D-Dummy) If the block (i, j) is a dummy
of h which satisfies Eq. (3), then ψi j(h) = c.
Axiom 3. (2D-Symmetry) Let π1 : N→N and π2 : M→
M be two permutations, then:

ψπ1(i)π2( j)[(π1π2)h] = ψi j(h), (5)

where for all S⊆ N,F ⊆M,

[(π1π2)h](S,F) := [(π2π1)h](S,F) := h(π1(S),π2(F)).
(6)

Axiom 4. (2D-Efficiency) For every utility function h∈
G,

∑
i∈N
j∈M

ψi j(h) = h(N,M). (7)

Let us discuss the rationality of the four axioms.

The 2D-linearity axiom is inherited from 1D-Shapley,
which implies that the value of the (i, j)-th block under
the sum of two ML performance measures is the sum
of the value under each performance measure.

The 2D-dummy axiom can be interpreted by taking
c = 0. If a block has no contribution to the ML task,
no matter what the situation (i.e., for any S⊆N\i and
F ⊆M\ j), then its value is zero.

In the 2D-symmetry axiom, the rows and columns are
permuted independently. As a result, the entries from
the same feature will always remain in the same col-
umn. The axiom state that such permutations would
not change the value for individual data blocks, which
is what we would expect in many ML applications. In
Appendix A, we proved that Axiom 3 is implied by
explanation here.

The 2D-efficiency axiom is inherited from 1D-Shapley,
requiring that the sum of the values of all the data
blocks equals the performance of the whole data set.

Based on the axioms, we provide a definition:
Definition 3.2. The value ψi j(h) with respect to the
utility function h is a two-dimensional Shapley value
(2D-Shapley for short) if ψi j satisfies the 2d-linearity,
2d-dummy, 2d-symmetry and 2d-efficiency axioms, de-
noting as ψ2d

i j .

2D-Shapley can be seen as the two-dimensional exten-
sion of Shapley values, which inherits its advantage
with a natural adaptation of the dummy and symme-
try axiom to the two-dimensional utility function sce-
nario.

3.3.3. Representation Theory

We will show that there exists an analytic and unique
solution for 2D-Shapley.
Theorem 3.3. (Representation Theory of 2D-Shapley)
The ψ2d

i j has a unique solution:

ψ2d
i j =

1
nm

n

∑
s=1

m

∑
f=1

∆s f , (8)
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where i ∈ N, j ∈M,

∆s f =
1(n−1

s−1

)(m−1
f−1

) ∑
(S,F)∈Di j

s f

Mi, j
h (S,F), (9)

Di j
s f = {(S,F) : S⊆N\i,F ⊆M\ j, |S|= s−1, |F |= f −1},

and Mi, j
h (S,F) defined in Eq. (2).

Theorem 3.3 indicates that ψ2d
i j is a weighted average

of the two-dimensional counterfactual in Eq. (2). The-
orem 3.3 is referred to as the representation theory of
2D-Shapley, because the proof procedure shows that
ψ2d

i j has a basis expansion formulation (see Eq. (15) in
Appendix B). To show the basis expansion, a series of
basic utility functions in G needs to be defined (e.g.,
Eq. (13)). Compared with the representation theory
of 1D-Shapley by Roth (1988), one technical challenge
is to define the basis and basic utility functions for
the 2D case to handle the 2D counterfactual. Further-
more, the proof of the uniqueness of 2D-Shapley has
to solve a complex high-dimensional linear system (see
Eq. (19) in Appendix B). Our proof incorporates new
techniques, unseen in the classic proof of 1D-Shapley,
to deal with these unique technical challenges arising
in the 2D context.

Moreover, the representation theory also implies that
2D-Shapley can be reduced to 1D-Shapley. The fol-
lowing corollary shows that summing up the block val-
ues over all rows gives 1D-Shapley of features, and
summing up the block values over all columns gives
1D-Shapley of samples. Corollary 3.4 does not only
indicate that the 2D-Shapley is a natural generaliza-
tion of 1D-Shapley, but also is useful for discussing
the experimental results of how 2D values can explain
1D values (see Subsection 4.1).
Corollary 3.4. For any h∈G, let ψ1d

i· (h) :=∑ j∈M ψ2d
i j (h)

and ψ1d
· j (h) := ∑i∈N ψ2d

i j (h), then

ψ1d
i· (h) =

1
n ∑

S⊆N\i
|S|=s

1(n−1
s
) [h(S∪ i,M)−h(S,M)], (10)

and

ψ1d
· j (h) =

1
m ∑

F⊆M\ j
|F |= f

1(m−1
f
) [h(N,F ∪ j)−h(N,F)], (11)

which are in the form of 1D-Shapley.

Finally, having the analytical expression Eq. (8) of
2D-Shapley at hand will provide us with great conve-
nience in designing efficient algorithms.

3.3.4. Efficient Algorithm

The computational complexity of exactly calculating
2D-Shapley is exponential in mn due to the summa-
tion over all possible rows and columns. To overcome
this challenge, we develop a Monte Carlo approach
to approximating 2D-Shapley. The key idea is that
2D-Shapley can be rewritten as an expectation of the
marginal contribution of (i, j) to the blocks indexed
by row indices before i and column indices before j
over random permutations of rows and columns. As
a result, we can approximate 2D-Shapley by taking
an average over randomly sampled rows and columns.
We also design the algorithm in ways that can reuse
utility function evaluations across different permuta-
tions, which gives rise to significant efficiency gains.
The full details of the algorithm design are provided
in Appendix E, and the pseudo-code is shown in Algo-
rithm 1.

Evaluating the utility function requires retraining a
model. For small-scale datasets, it might be possible to
evaluate the utility function within a reasonable time
multiple times, but for large-scale datasets, even eval-
uating it once might require days to finish. This would
deem our method impractical for any applications.
Nonetheless, we can even obviate all model training
to compute our values when using K-nearest-neighbor
(KNN) as a surrogate model. KNN-surrogate-based
data valuation has shown great computational advan-
tage while providing effective data quality identifica-
tion (Jia et al., 2019a). In this work, we leverage a
similar idea to reduce the computational complexity
of 2D-Shapley for large models. First, let us observe
from Eq. (8) and Corollary. D.1 that after rearranging
inner terms, we have:

ψ2d
i j =

1
n!m! ∑

π1∈Π(N)
π2∈Π(M)

[
h(Pπ1

i ∪ i,Pπ2
j ∪ j)− (12)

h(Pπ1
i ,Pπ2

j ∪ j)
]
−
[
h(Pπ1

i ∪ i,Pπ2
j )−h(Pπ1

i ,Pπ2
j )

]
,

where Π(X) is a set of all permutations of X , π ∈Π(X)
is a permutation of X , and Pπ

i is a set of elements pre-
ceding i in π. The expression in the first bracket is
the 1D marginal contribution of sample i and is valid
since both utilities are trained on same features, Pπ2

j ∪ j.
Similarly, the second bracket also represents a valid
1D marginal contribution of the sample i but with fea-
tures Pπ2

j . From this observation, we can apply the
results of 1D-Shapley value approximated with near-
est neighbors, ϕKNN, defined recursively in Theorem
1 (Jia et al., 2019a), and the 2D-Shapley under KNN
surrogates can be therefore expressed as
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ψ2d-KNN
i j =

1
m! ∑

π2∈Π(M)

[ϕKNN(i,Pπ2
j ∪ j)−ϕKNN(i,Pπ2

j )].

This new formulation is efficient as it requires no more
model training and removes the summing over all pos-
sible permutations of samples. We can further ap-
proximate the sum over all possible permutations over
features with the average over sampled permutations.
Our final complexity becomes O(PT |M||N|2log|N|),
where P is the number of sampled feature permuta-
tions, T is the number of test points used for evaluat-
ing model performance, and |N|, |M| are the cardinality
of N and M respectively, and the pseudo-code for the
overall KNN-based approximation is provided in Algo-
rithm 2.

4. Experiments

This section covers the two general application scenar-
ios of 2D-Shapley. (1) Cell valuation, where each
cell in the training data matrix is considered a data
source and receives a score indicating its contribu-
tion to a learning task performed on the matrix. We
mainly demonstrate this application scenario’s bene-
fits in fine-grained data debugging and interpreting
canonical sample-wise or feature-wise data values. (2)
Sub-matrix valuation, where a sub-matrix containing
multiple cells is considered a data source and receives
a joint score. This scenario is closely related to data
marketplaces, where each entity provides a dataset
that appears as a submatrix in the aggregated data.
Details about datasets, models, implementations, and
ablation studies on a budget of inserted outliers are
provided in Appendix F.

4.1. Cell Valuation

Sanity check of cell-wise values. We first check
whether the cell-wise values produced by our method
make sense via the data removal experiments com-
monly used in the data valuation literature. Specifi-
cally, we would expect that removing the cells with
the highest values from the training set leads to the
most significant performance degradation; conversely,
removing the cells with the lowest values should barely
affect the model performance. To evaluate the model
performance after removal, we “remove” a cell by re-
filling its content with the average of all other cells on
the same feature column. In the previous section, we
present two algorithms to calculate 2D-Shapley. We
will label the values obtained from the Monte Carlo-
based method as 2D-Shapley-MC and the ones from
the KNN-surrogate-based method as 2D-Shapley-KNN.

1D-Shapley and random removal are used as our base-
lines. In particular, 1D-Shapley is estimated by the
permutation sampling described in (Jia et al., 2019b).
For each baseline, we remove a number of cells at a
time based on their sample-feature value ranking in
either descending or ascending order; then, we train a
model on the reduced dataset and evaluate the model
performance.

As shown in Figure 4, when removing cells in ascend-
ing value order, 2D-Shapley can not only maintain
the model performance but also improve it by at least
2% for Census, Credit, and Breast Cancer datasets,
whereas 1D-Shapley dips the model performance ear-
lier than 2D-Shapley in all three datasets. Consider-
ing removal from the highest valued cells, we observe
that 2D-Shapley can effectively detect contributing
cells, and removing these cells causes the model per-
formance to drop quickly. By contrast, removing cells
according to 1D-Shapley is close to random removal.
These results indicate that 2D-Shapley is more effec-
tive than 1D-Shapley at recognizing the contribution
of cells and can better inform strategic data harnessing
in ML.
Fine-Grained Outlier Localization. Existing horizon-
tal data valuation methods have demonstrated promis-
ing results in detecting abnormal samples (Ghorbani &
Zou, 2019; Kwon & Zou, 2022; Wang & Jia, 2023) by
finding lowest-valued samples. However, it is rarely
the case that every cell in the sample is abnormal.
For instance, a type of error in the Census data is
“198x→189x”, where the years of birth are wrongly
specified; this error could appear on a single feature
column and, at the same, only affects partial samples
(or users) born in 198x. Existing horizontal valuation
remains limited in localizing these erroneous entries.

To demonstrate the potential of 2D-Shapley in fine-
grained entry-wise outlier detection, we first inject out-
lier cells into the clean dataset, Breast Cancer Dataset.
Following a recent outlier generation technique in (Du
et al., 2022), we inject low-probability-density values
into the dataset as outlier cells. We explain the out-
lier injection method in detail in Appendix F.3. We
randomly place outlier cells in 2% (50 of total cells).
Afterward, we compute 2D-Shapley-KNN for each cell
in the dataset with inserted outliers, which are shown
in Figure 10. Since we expect outliers not to be helpful
for the model performance, the values for outlier cells
should be low. Therefore, we sort the 2D-Shapley
cell values in ascending order and prioritize human in-
spection towards the ones with the lowest values. We
show the detection rate of the inserted outliers in Fig-
ure 5A). As we can see, with 2D-Shapley values, we
can detect 90% of inserted outliers within the first 5%
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Figure 4: Performance comparison between 2D-Shapley and baselines on various use cases.
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Figure 5: A) Detection of the inserted out-
liers in the Breast Cancer dataset. B) De-
tection of the inserted outliers in the Age
category of the Census dataset.

Figure 6: 2D Shapley vs
Model Performance on var-
ious dataset splits.

A) B)

Figure 7: Cell values of samples
with similar 1D values in Breast
Cancer dataset.

of all cells. By contrast, based on the values produced
by 1D-Shapley, one would need over 90% of cell in-
spection to screen out all the outlier cells.

We further examine a practical case of outliers caused
by human errors, where the cells have been incorrectly
typed, e.g., “18” became “81”. In the Census dataset,
for the feature “Age”, we randomly swap 15 cells be-
tween “17” and “71”, “18” and “81”, “19” and “91”.
Similarly, we sort the values of all cells in the dataset
in ascending order. As we observe in Figure 5B),
detection with 2D-Shapley outperforms 1D-Shapley.
Particularly, with 2D-Shapley we can detect 80% of
added outliers with less than 1800 inspected cells while
1D-Shapley requires 4 times as many cells to achieve
a comparable rate. The 1D-Shapley and 2D-Shapley
heatmaps are provided in Appendix. The results
above demonstrate the effectiveness of 2D-Shapley in
locating outlier cells in a dataset.

Enabling Interpretation of 1D Valuation Results.
Apart from outlier detection, 2D-Shapley also brings
new insights into horizontal sample valuation or verti-
cal feature valuation, which is referred to as 1D valu-
ation. For instance, 1D sample valuation produces an
importance score for each sample, but we lack a deeper
understanding of why a sample receives a certain value.

Recall Corollary 3.4 that the sum of 2D-Shapley over
rows or columns gives 1D feature values and 1D sample
values, respectively. Hence, 2D-Shapley allows one to
interpret the 1D value of a sample by further breaking
it down to contributions of different features in that
sample. That is, 2D-Shapley gives insights into the
relative importance of different features of a sample
to the valuation result received by the sample. For
example, in Figure 7A), we observe that two samples
have similar 1D values and their cell values are also
close. However, in Figure 7B), we observe a contrast-
ing case, where although both samples have a close 1D
value, their cell values are completely unrelated. More
detailed results can be found in Appendix F.3.

4.2. Sub-matrix Valuation

We turn to the application of 2D-Shapley to inform
dataset pricing in the data marketplace. 2D-Shapley
enables a principled method to value fragmented data
sources as illustrated in Figure 1(c), where each source
is a sub-matrix in the aggregated training data matrix.
A reasonable measure of a source’s value should reflect
its usefulness for ML. Hence, to verify the significance
of the resulting values for sub-matrix valuation, we
measure the model performance trained on a source
and examine the correlation between its value and the
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performance. For this experiment, we use the Credit
Dataset with sources contributing fragmented data
and consider multiple random splits of the dataset.
The results are provided in Figure 6, where each line
corresponds to a different split of the aggregate data
into individual sources. Figure 6 shows that with the
increasing model performance trained on the block, its
corresponding 2D-Shapley block value also increases.

5. Conclusion

This work aims to set the theoretical foundation for
more realistic data valuation application scenarios. In
particular, we investigate the block valuation problem
and present 2D-Shapley, a new data value notion that
is suitable to solve this problem. 2D-Shapley empow-
ers a range of new use cases, such as informing the
pricing of fragmented data, strategic data selection on
a fine-grained scale, and interpreting 1D valuation re-
sults. Our work opens up many new venues for future
investigation. First, we can immediately adapt our
proof technique to prove a two-dimensional generaliza-
tion of other typical data value notions (Kwon & Zou,
2022; Wang & Jia, 2023). Second, it is interesting to
build upon our framework to evaluate irregular-shaped
data sources (Fang et al., 2019) and incorporate label
information for joint valuation in a principled way.
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Supplementary Materials

A. Proof of the fact that Axiom 3 is implied by its explanation
The explanation above is: for i1, i2 ∈ N, j1, j2 ∈M, if for any S ⊆ N\{i1, i2} and F ⊆M, h(S∪ i1,F) = h(S∪ i2,F),
and for any S⊆ N and F ⊆M\{ j1, j2}, h(S,F ∪ j1) = h(S,F ∪ j2), then ψi1 j1(h) = ψi2 j2(h).

For the proof, we prove in three steps that the explanation is equivalent to Axiom 3. Note that we should assume
Axiom 1, 2 and 4 already exist. For simplicity, we use the lowercase letter to denote the cardinality of a set, for
example, |S|= s.

We want to prove the following proposition.

Proposition A.1. If Axiom 1, 2 and 4 exist, then Axiom 3 is equivalent to its explanation.

Proof. For the direction that Axiom 3 is implied by its explanation, we prove in three steps.

• Step 1: Define a utility function hS,F :

hS,F(W1,W2) =

{
1, i f S⊆W1,F ⊆W2.
0,otherwise. (13)

For fixed S ⊆ N, F ⊆M and i1, i2 ∈ S, j1, j2 ∈ F and for all W1 ⊆ N\{i1, i2},W2 ⊆M\{ j1, j2}, Mi1, j1
hS,F

(W1,W2) =

Mi2, j2
hS,F

(W1,W2). It leads to the conclusion that ψi1 j1(hS,F) = ψi2 j2(hS,F) according to the explanation.

For i∗ /∈ S, j ∈ M (or j∗ /∈ F , i ∈ N) and W1 ⊆ N\i∗, W2 ⊆ M\ j, (W1 ⊆ N\i, W2 ⊆ M\ j∗,) Mi∗, j
hS,F

(W1,W2) = 0.
(Mi, j∗

hS,F
(W1,W2) = 0.) It leads to the conclusion that ψi∗ j(hS,F) = 0, ∀ j ∈M (ψi j∗(hS,F) = 0, ∀i ∈ N) according

to Axiom 2.

In summary, we have conclusion that the values ψi js are the same when i ∈ S, j ∈ F , and otherwise zero.
According to Axiom 4,

1 = hS,F(N,M) = ∑
i∈N
j∈M

ψi j(hS,F) = ∑
i∈S
j∈F

ψi j(hS,F).

then ψi j(hS,F) = 1/s f , where i ∈ S, j ∈ F .

• Step 2: We have to prove a lemma which shows another formation of a utility h by using hS,F defined above.

Lemma A.2.

h = ∑
S⊆N
F⊆M

CS,F(h)hS,F ,

where CS,F(h) = ∑ S′⊆S
F ′⊆F

(−1)s+ f−s′− f ′h(S′,F ′).
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Proof. We can directly verify the lemma.

h(W1,W2) = ∑
S⊆N
F⊆M

CS,F(h)hS,F(W1,W2)

= ∑
S⊆W1
F⊆W2

∑
S′⊆S
F ′⊆F

(−1)s+ f−s′− f ′h(S′,F ′)

= ∑
S′⊆W1
F ′⊆W2

[ w1

∑
s=s′

(−1)s−s′(w1−s′
s−s′

) w2

∑
f= f ′

(−1) f− f ′(w2− f ′
f− f ′

)]
h(S′,F ′)

= h(W1,W2).

■

• Step 3: Combine the first two steps, and by Axiom 1,

ψi j(h) = ∑
S⊆N
F⊆M

CS,F(h)ψi j(hS,F)

= ∑
i∈S⊆N
j∈F⊆M

CS,F(h)/s f .

Let π1,π2 be two permutations on N and M respectively, then

ψπ1(i)π2( j)(π1π2h) = ∑
π1(i)∈S⊆N

π2( j)∈F⊆M

CS,F(π1π2h)/s f

= ∑
i∈π1(S)⊆N
j∈π2(F)⊆M

Cπ1(S),π2(F)(h)/s f

= ψi j(h).

For another direction that Axiom 3 implies its explanation, since we already assume Axiom 1, 2, 3 and 4 hold,
then we have the formula of 2D-Shapley, that is, Eq. (22). Clearly, we can see the numerator is always the same
for both i1 j1 and i2 j2 under the same S and F , hence ψi1 j1(h) = ψi2 j2(h).

■

B. Proof of the representation theory of 2D-Shapley
In this section, we will justify the representation theory by a number of proposed lemmas. The proof process
is to add the axioms one by one and try to show what each axiom does for 2D-Shapley. We add linearity and
dummy axioms first to get a sum of weighted marginals.
Lemma B.1. For any value ψi j satisfying the 2d-linearity and 2d-dummy axioms (Axiom 1 and 2), we have that

ψi j(h) = ∑
S⊆N\i

∑
F⊆M\ j

pi j
S,F [h(S∪ i,F ∪ j)+h(S,F)

−h(S∪ i,F)−h(S,F ∪ j)], (14)

where ∑S⊆N\i ∑F⊆M\ j pi j
S,F = 1.

Proof. For any h ∈ G,

h = ∑
S⊆N
F⊆M

h(S,F)WS,F , (15)
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where
WS,F(W1,W2) =

{
1, i f W1 = S,W2 = F.
0,otherwise.

By the 2d-linearity axiom,

ψi j(h) = ∑
S⊆N
F⊆M

h(S,F)ψi j(WS,F).

Now define another utility function W ′S,F :

W ′S,F(W1,W2) =

{
1, i f S⊆W1,F =W2.
0,otherwise.

For any S⊆ N\i and F ⊆M\ j, we can check that block (i, j) is a dummy for W ′S,F , then by the 2d-dummy axiom,
ψi j(W ′S,F) = 0. Especially, let S = N\i and any fixed F ′ ⊆M\ j, we have:

ψi j(WN,F ′)+ψi j(WN\i,F ′) = 0.

For inductive purposes, assume it has been shown that ψi j(S,F ′)+ψi j(S∪ i,F ′) = 0 for fixed F ′ ⊆M\ j and every
S⊆ N\i with |S| ≥ k ≥ 2. (The case k = n−1 has been proved.) Now take fixed S⊆ N\i with |S|= k−1, then

0 = ψi j(W ′S,F ′) = ∑
S⊆S1⊆N

ψi j(WS1,F ′)

= ψi j(WS∪i,F ′)+ψi j(WS,F ′)+ ∑
S1⊆N\i
S⊊S1

[ψi j(WS1∪i,F ′)+ψi j(WS1,F ′)]

= ψi j(WS∪i,F ′)+ψi j(WS,F ′).

Therefore, ψi j(WS∪i,F ′)+ψi j(WS,F ′) = 0 for all S⊆ N\i and fixed F ′ ⊆ N\ j with 0 < |S| ≤ n−1 and 0 < |F ′| ≤m−1.
Similarly, we have another conclusion that ψi j(WS′,F)+ψi j(WS′,F∪ j) = 0 for fixed S′ ⊆ N\i and all F ⊆ N\ j with
0 < |S′| ≤ n−1 and 0 < |F | ≤m−1 by simply defining another similar utility function W ′S′,F and repeat the process
above again.

Using the results above,

ψi j(h) = ∑
S⊆N
F⊆M

h(S,F)ψi j(WS,F)

= ∑
F⊆M

∑
S⊆N\i

h(S∪ i,F)ψi j(WS∪i,F)+h(S,F)ψi j(WS,F)

= ∑
S⊆N\i

∑
F⊆M

h(S∪ i,F)ψi j(WS∪i,F)−h(S,F)ψi j(WS∪i,F)

= ∑
S⊆N\i

∑
F⊆M\ j

ψi j(WS∪i,F∪ j)[h(S∪ i,F ∪ j)−h(S,F ∪ j)]

− ∑
S⊆N\i

∑
F⊆M\ j

ψi j(WS∪i,F∪ j)[h(S∪ i,F)−h(S,F)]

= ∑
S⊆N\i

∑
F⊆M\ j

ψi j(WS∪i,F∪ j)[h(S∪ i,F ∪ j)+h(S,F)

−h(S,F ∪ j)−h(S∪ i,F)].

For simplicity, denote ψi j(WS∪i,F∪ j) as pi j
S,F , then

ψi j(h) = ∑
S⊆N\i

∑
F⊆M\ j

pi j
S,F [h(S∪ i,F ∪ j)+h(S,F)−h(S∪ i,F)−h(S,F ∪ j)].
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Consider the utility function hi j,

hi j(W1,W2) =

{
1, i f i ∈W1, j ∈W2.
0,otherwise.

and we can check that i j is a dummy for hi j, and ψi j(hi j) = 1. Hence

1 = ψi j(hi j) = ∑
S⊆N\i

∑
F⊆M\ j

pi j
S,F .

■

Next, add the 2d-symmetry axiom to Lemma B.1 and we make the conclusion that pi j
S,F is only related to the

cardinality of S and F , which is not associated with the name of the blocks.
Lemma B.2. Assume Lemma B.1 holds. If ψi j also satisfies the 2d-symmetry axiom, then

pi j
S,F = ps, f ,

where ps, f is some common value for S⊆ N\i, F ⊆M\ j and 0≤ |S|= s≤ n−1, 0≤ |F |= f ≤ m−1.

Proof. Define a utility ĥS,F :

ĥS,F(W1,W2) =

{
1, i f S ⊊W1,F ⊊W2.
0,otherwise.

1. For i ∈ N and j ∈ M, let S1, F1 and S2, F2 be any two coalitions where S1,S2 ⊆ N\i and F1,F2 ⊆ M\ j with
0 < |S1| = |S2| < n− 1 and 0 < |F1| = |F2| < m− 1 respectively. Consider two permutation π1 and π2 which
satisfy π1(S1) = S2,π1(i) = i and π2(F1) = F2,π2( j) = j. Then,

pi j
S1,F1

= ψi j(ĥS1,F1) = ψi j(ĥS2,F2) = pi j
S2,F2

,

where the central equality is a consequence of the 2d-symmetry axiom.

2. For distinct i1, i2 ∈ N and j1, j2 ∈ M, let S ⊆ N\{i1, i2} and F ⊆ M\{ j1, j2}, and the permutations π1,π2
respectively interchange i1, i2 and j1, j2 while leaving other elements fixed. Then,

π1π2ĥS,F = ĥS,F ,

pi1 j1
S,F = ψi1 j1(ĥS,F) = ψi2 j2(ĥS,F) = pi2 j2

S,F ,

where the central equality is a consequence of the 2d-symmetry axiom. Combining with the previous result
in Step 1, we find that for every 0 < s < n−1 and 0 < f < m−1, there is a ps, f such that pi j

S,F = ps, f for every
i ∈ N and j ∈M, S⊆ N\i and F ⊆M\ j with |S|= s, |F |= f .

3. Similarly, by using different utility functions, we can find for ∀i ∈ N, j ∈M:

• a pn−1, f such that pi j
N\i,F = pn−1, f for F ⊆M\ j and 0≤ |F |= f < m−1,

• a ps,m−1 such that pi j
S,M\ j = ps,m−1 for S⊆ N\i and 0≤ |S|= s < n−1,

• a p0, f such that pi j
/0,F = p0, f for F ⊆M\ j and 0 < |F |= f < m−1,

• a ps,0 such that pi j
S, /0 = ps,0, for S⊆ N\i and 0 < |S|= s < n−1,

• a pn−1,m−1 such that pi j
N\i,M\ j = pn−1,m−1,

• a p0,0 such that pi j
/0, /0 = p0,0 which makes the sum of all the weights equals to 1.

■

Finally add the 2d-efficiency axiom and obtain the uniqueness of 2D-Shapley.
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Lemma B.3. Assume Lemma B.1 holds. Then ψi j(h) satisfies the 2d-efficiency axiom if and only if

∑
i∈N
j∈M

pi j
N\i,M\ j = 1, (16)

∑
i∈S
j∈F

pi j
S\i,F\ j + ∑

i/∈S
j/∈F

pi j
S,F −∑

i/∈S
j∈F

pi j
S,F\ j−∑

i∈S
j/∈F

pi j
S\i,F = 0, (17)

where S ⊊ N or F ⊊ M.

Proof. On the one hand, by Eq. (16) and Eq. (17),

h(N,M) = ∑
S⊆N
F⊆M

h(S,F)[∑
i∈S
j∈F

pi j
S\i,F\ j + ∑

i/∈S
j/∈F

pi j
S,F −∑

i/∈S
j∈F

pi j
S,F\ j−∑

i∈S
j/∈F

pi j
S\i,F ]

= ∑
i∈N
j∈M

∑
S⊆N\i

F⊆M\ j

pi j
S,F [h(S∪ i,F ∪ j)+h(S,F)−h(S∪ i,F)−h(S,F ∪ j)]

= ∑
i∈N
j∈M

ψi j(h).

On the other hand, recall:
ĥS,F(W1,W2) =

{
1, i f S ⊊W1,F ⊊W2.
0,otherwise.

and
hS,F(W1,W2) =

{
1, i f S⊆W1,F ⊆W2.
0,otherwise.

Consider two new utility functions

h̃S,F(W1,W2) =

{
1, i f S ⊊W1,F ⊆W2,
0,otherwise.

and
h̄S,F(W1,W2) =

{
1, i f S⊆W1,F ⊊W2,
0,otherwise.

Then for any S⊆ N, F ⊆M,

∑
i∈N
j∈M

ψi j(hS,F)+ ∑
i∈N
j∈M

ψi j(ĥS,F)− ∑
i∈N
j∈M

ψi j(h̃S,F)− ∑
i∈N
j∈M

ψi j(h̄S,F)

= ∑
i∈S
j∈F

pi j
S\i,F\ j + ∑

i/∈S
j/∈F

pi j
S,F −∑

i/∈S
j∈F

pi j
S,F\ j−∑

i∈S
j/∈F

pi j
S\i,F .

When S = N and F = M,

∑
i∈N
j∈M

ψi j(hN,M)+ ∑
i∈N
j∈M

ψi j(ĥN,M)− ∑
i∈N
j∈M

ψi j(h̃N,M)− ∑
i∈N
j∈M

ψi j(h̄N,M)

= hN,M(N,M)+ ĥN,M(N,M)− h̃N,M(N,M)− h̄N,M(N,M)

= 1,

Otherwise,

∑
i∈N
j∈M

ψi j(hS,F)+ ∑
i∈N
j∈M

ψi j(ĥS,F)− ∑
i∈N
j∈M

ψi j(h̃S,F)− ∑
i∈N
j∈M

ψi j(h̄S,F)

= hS,F(N,M)+ ĥS,F(N,M)− h̃S,F(N,M)− h̄S,F(N,M)

= 0.

Hence, Eq. (16) and Eq. (17) can be easily obtained. ■
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Now, let’s prove Theorem 3.3.

Proof of Theorem 3.3. By Lemma B.2,

ψi j(h) =
n−1

∑
s=0

m−1

∑
f=0

∑
S⊆N\i
|S|=s

∑
F⊆M\ j
|F |= f

ps, f [h(S∪ i,F ∪ j)+h(S,F)

−h(S∪ i,F)−h(S,F ∪ j)].

By Lemma B.1 and Lemma B.3, we have the following equations:
n−1

∑
s=0

m−1

∑
f=0

(n−1
s

)(m−1
f

)
ps, f = 1,

s f · ps−1, f−1 +(n− s)(m− f ) · ps, f = (n− s) f · ps, f−1

+ s(m− f )ps−1, f , 1≤ s≤ n−1,1≤ f ≤ m−1,
(m− f ) · p0, f = f · p0, f−1, 1≤ f ≤ m−1,
(n− s) · ps,0 = s · ps−1,0, 1≤ s≤ n−1,
nm · pn−1,m−1 = 1.

(18)

Actually, we can omit the first equation and the conditions are:

s f · ps−1, f−1 +(n− s)(m− f ) · ps, f = (n− s) f · ps, f−1

+ s(m− f )ps−1, f , 1≤ s≤ n−1,1≤ f ≤ m−1,
(m− f ) · p0, f = f · p0, f−1, 1≤ f ≤ m−1,
(n− s) · ps,0 = s · ps−1,0, 1≤ s≤ n−1,
nm · pn−1,m−1 = 1.

(19)

Hence, we have n ·m variables and (m−1)(n−1)+(m−1)+(n−1)+1 = n ·m equations.

Eq. (19) has a solution:

ps, f =
s!(n− s−1)!

n!
· f !(m− f −1)!

m!
. (20)

Therefore,

ψi j(h) =
n−1

∑
s=0

m−1

∑
f=0

∑
S⊆N\i
|S|=s

∑
F⊆M\ j
|F |= f

s!(n− s−1)!
n!

· f !(m− f −1)!
m!

[h(S∪ i,F ∪ j)+h(S,F)

−h(S∪ i,F)−h(S,F ∪ j)]

=
1

nm

n

∑
s=1

m

∑
f=1

∑
S⊆N\i
|S|=s−1

∑
F⊆M\ j
|F |= f−1

(s−1)!(n− s)!
(n−1)!

· ( f −1)!(m− f )!
(m−1)!

[h(S∪ i,F ∪ j)+h(S,F)

−h(S∪ i,F)−h(S,F ∪ j)]

=
1

nm

n

∑
s=1

m

∑
f=1

1(n−1
s−1

)(m−1
f−1

) ∑
(S,F)∈Di j

s f

[h(S∪ i,F ∪ j)+h(S,F)−h(S∪ i,F)−h(S,F ∪ j)]

=
1

nm

n

∑
s=1

m

∑
f=1

∆s f .

Now we prove the solution Eq. (20) is unique.

Convert the Eq. (19) to matrix equations in the form of

Ax = b,
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where

xT = (p0,0, p0,1, . . . , p0,m−1, p1,0, p1,1, . . . , p1,m−1, . . . , pn−1,0, . . . , pn−1,m−1)1×nm,

bT = (0,0,0, . . . ,0,1)1×nm,

and

A=

(
A1
A2

)
nm×nm

, (21)

where

A1 =



A0
(m−1)×m O(m−1)×m · · · · · · O(m−1)×m

A1
m×m B1

m×m Om×m · · · Om×m

Om×m A2
m×m B2

m×m · · · Om×m

...
... . . . . . . ...

Om×m Om×m · · · An−1
m×m Bn−1

m×m


(nm−1)×nm

,

A2 =
(

0,0, · · · ,0,nm
)

1×nm
.

And

A0
(m−1)×m =



1 −(m−1) 0 · · · · · · 0

0 2 −(m−2) 0 · · · 0

0 0 3 −(m−3) · · · 0
...

...
...

. . .
. . .

...

0 0 0 · · · m−1 −1


(m−1)×m

,

A
j
m×m =



j 0 0 · · · · · · 0

j − j · (m−1) 0 0 · · · 0

0 2 j − j · (m−2) 0 · · · 0

0 0 3 j − j · (m−3) · · · 0

...
...

...
. . .

. . .
...

0 0 0 · · · j · (m−1) − j


m×m

, 1≤ j ≤ n−1,

B
j
m×m =



−(n− j) 0 0 · · · · · · 0

−(n− j) (n− j) · (m−1) 0 0 · · · 0

0 −2 · (n− j) (n− j) · (m−2) 0 · · · 0

0 0 −3 · (n− j) (n− j) · (m−3) · · · 0

...
...

...
. . .

. . .
...

0 0 0 · · · −(m−1) · (n− j) n− j


m×m

, 1≤ j ≤ n−1.
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For example, if n = m = 3, then

A=



1 −2 0 0 0 0 0 0 0
0 2 −1 0 0 0 0 0 0
1 0 0 −2 0 0 0 0 0
1 −2 0 −2 4 0 0 0 0
0 2 −1 0 −4 2 0 0 0
0 0 0 2 0 0 −1 0 0
0 0 0 2 −4 0 −1 2 0
0 0 0 0 4 −2 0 −2 1
0 0 0 0 0 0 0 0 9


9×9

Convert A to Â by using the elementary column and row transformation,

Â=



1 −2 0 2 −4 0 1 −2 0
0 2 −1 0 4 −2 0 2 −1
1 0 0 0 0 0 0 0 0
1 −2 0 0 0 0 0 0 0
0 2 −1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 −2 0 0 0 0
0 0 0 0 2 −1 0 0 0
0 0 0 0 0 0 0 0 1


9×9

.

According to the property of the elementary row and column transformation,

Rank(A) = Rank(Â).

Consider equation
Âx = 0,

and the solution is only x = 0, hence
Rank(A) = Rank(Â) = 9.

In general, we can prove Rank(A) = nm always holds for any n≥ 1 and m≥ 1, (Make elementary column transfor-
mation for [A j

m×m,B
j
m×m] in the context of A with the order of j = 1,2, . . . ,n−1.) Hence the solution of Eq. (19)

is unique, which is shown in Eq. (20). And we can check Eq. (20) also satisfies Eq. (18), hence the solution of
Eq. (18) is unique. ■

C. Proof of Corollary 3.4
Proof. We use the same technique in the proof of Lemma B.3.

ψ1d
i· (h) = ∑

j∈M
∑

S⊆N\i
F⊆M\ j

ps, f [h(S∪ i,F ∪ j)+h(S,F)−h(S∪ i,F)−h(S,F ∪ j)]

= ∑
S⊆N\i
F⊆M

h(S∪ i,F)[∑
j∈F

ps, f−1−∑
j/∈F

ps, f ]+h(S,F)[∑
j/∈F

ps, f −∑
j∈F

ps, f−1]

= ∑
S⊆N\i
F⊆M

(∑
j∈F

ps, f−1−∑
j/∈F

ps, f )[h(S∪ i,F)−h(S,F)]

= ∑
S⊆N\i

( ∑
j∈M

ps,m−1)[h(S∪ i,M)−h(S,M)].

Substitute Eq. (20) into the above equation and we get the conclusion. The similar argument can be applied to
ψ1d
· j . ■
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D. Permutation-based 2D-Shapley Formulation
To compute 2D-Shapley more efficient, we propose the following corollary.
Corollary D.1. Eq. (8) has an equivalent form as follows:

ψ2d
i j =

1
nm ∑

S⊆N\i
F⊆M\ j

[h(S∪ i,F ∪ j)+h(S,F)−h(S∪ i,F)−h(S,F ∪ j)](n−1
|S|

)(m−1
|F |

) , (22)

or

ψ2d
i j =

1
n!m! ∑

π1∈Π(N)
π2∈Π(M)

[h(Pπ1
i ∪ i,Pπ2

j ∪ j)+h(Pπ1
i ,Pπ2

j )−h(Pπ1
i ∪ i,Pπ2

j )−h(Pπ1
i ,Pπ2

j ∪ j)], (23)

where Π(A) denotes a set of all permutations of A and Pπ
k a set of all elements of A that precede k ∈ A in the

permutation π ∈Π(A).

The formulation in Eq. (22) is a simple derivation from Eq. (8) that sums marginal contributions over all subsets.
Whereas, the second formulation in Eq. (23) sums over all sample and feature permutations, and the marginal
contribution of block (i, j) is weighted by a coefficient that measures all orderings of samples appearing before
and after sample i and all orderings of features appearing before and after feature j. This corollary gives a simple
expression of 2D-Shapley. Using this equivalent formulation, we can design efficient algorithms for 2D-Shapley
implementation.

E. Algorithm Details
Here, we explain the implementation of algorithms and explore ways to achieve efficient computation.

E.1. Saving Computation in 2D-Shapley-MC

First, we focus on 2D-Shapley-MC. Apart from Monte Carlo sampling on both sample and feature permutations
to reduce complexity, we also reduce the number of model training to a single time for each counterfactual
evaluation as opposed to 4, which is derived in Eq. 2. Let us observe that in the marginal contribution equation,
we have 4 utility terms, but actually, 3 of them are already computed, which we can reuse them. We take a
pair (i, j) as an example. For the marginal contribution of (i, j), we have 4 utility terms to compute: h(S∪ i,F ∪
j),h(S,F ∪ j),h(S∪ i,F),h(S,F). However, we notice that h(S,F ∪ j) was already computed for a pair (i− 1, j),
h(S∪ i,F) for a pair (i, j−1), and h(S,F) for (i−1, j−1). Therefore, by saving these evaluations, we can reduce
the total number of model training by 75%. Saving all model evaluations for every block might overflow the
memory. However, we only need to save the utilities of the previous and current rows (columns) if we are
looping horizontally downwards (vertically rightwards), which promotes efficient memory usage. Additionally,
our algorithm can be parallelized. In particular, every permutation can be computed independently and combined
at the last stage, which is the “while loop” in Algorithm 1.

E.2. Limitations of 2D-Shapley-MC and Possible Improvements

One limitation of the Monte Carlo method is time complexity which scales with the number of rows and columns
in an aggregate data matrix. To improve the efficiency of 2D-Shapley-MC, we can reduce the burden on model
retraining of 2D-Shapley-MC to lower the computation cost. For example, there exist highly efficient methods
for model re-training, such as FFCV [1,2], which has been applied in Datamodels [3] and can significantly reduce
computation complexity. Another limitation is that 2D-Shapley-MC relies on the performance scores associated
with models trained on different subsets to determine the cell values. However, these values are susceptible to
noise due to training stochasticity when the learning algorithm is randomized (e.g., SGD) (Wang & Jia, 2022).
To overcome these limitations, we proposed an efficient, nearest-neighbor-based method, 2D-Shapley-KNN, which
involves no model training and only requires sorting data. With this method, we also avoid the problem of model
training stochasticity, which 2D-Shapley-MC is facing with. Another advantage of 2D-Shapley-KNN is that it
has an explicit formulation for sample values and only requires permuting over features. This method not only
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beats 2D-Shapley-MC by an order of magnitude in terms of computational efficiency but is straightforward to
compute and only requires CPU resources.

E.3. Saving Computation in 2D-Shapley-KNN

Apart from removing the dependency on the sample permutations and all model training, 2D-Shapley-KNN can
further be reduced in computation. Similar to the 2D-Shapley-MC, we here also save the utility terms, as shown
in Algorithm 2. For each pair (i, j), we need to compute SVKNN(i,Pπ

j ∪ k) and SVKNN(i,Pπ
j ). However, the second

term was already calculated for the previous feature in π prior to j. Thus, we can reduce the total number of
SVKNN evaluations by 50%.

Algorithm 1 2D-Shapley-MC Valuation Algorithm.
Input: Training Set D, Learning Algorithm A , Test Set T , Utility Function h.
Output: Sample-Feature 2D Shapley Values ψ2d .
Ensure: ∀i, j, ψ2d

i j = 0; t = 0.
while ψ2d not converged do

πN ← Random Samples Permutation
πM ← Random Features Permutation
u← 0 // Utility Matrix
for i, j in range(πN),range(πM) do

s← πN(i), f ← πM( j)

u[s, f ]← h
(

PπN
s ∪{s},PπM

f ∪{ f}
)

ψnew
s f ← u[s, f ]+u[πN(i−1),πM( j−1)]−u[πN(i),πM( j−1)]−u[πN(i−1),πM( j)]

ψ2d
s f ←

t
t+1 ψ2d

s f + 1
t+1 ψnew

s f
end
Set t← t +1

end

Algorithm 2 2D-Shapley-KNN Valuation Algorithm.
Input: Training Set D, Test Set T , Top K.
Output: Sample-Feature 2D Shapley Values ψ2d .
Ensure: ∀i, j, ψ2d

i j = 0; t = 0.
while ψ2d not converged do

πM ← Random Features Permutation
u← 0 // SVknn values
for j in range(πM) do

f ← πM( j)

u[ f ]← SVKNN(N,PπM
m ∪{ f},T )

ψnew
s f ← u[ f ]s−u[πM( j−1)]s

ψ2d
s f ←

t
t+1 ψ2d

s f + 1
t+1 ψnew

s f
end
Set t← t +1

end

E.4. Actual Runtime Complexity

Time complexity is an important aspect when evaluating the efficiency of algorithms. In our case, we focus on
determining the runtime of our methods for different number of cell valuations on the Census dataset until the
values’ convergence is achieved. While computing the runtime for the exact 2D Shapley runtime, we encounter a
challenge due to the exponential growth of permutations with the cell size, making exact 2D Shapley intractable
to compute. To address this, we benchmark the exact 2D Shapley runtime, by measuring the runtime for a
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single permutation and scale it by the total number of permutations needed for the exact 2D Shapley. As we
observe in Table 1, 2D-Shapley-KNN, exhibits exceptional efficiency compared to 2D-Shapley-MC across various
cell valuations on the Census dataset. At 1,000 cells valuation, 2D-Shapley-KNN was at least 25 times faster
than 2D-Shapley-MC, showcasing a substantial advantage. Furthermore, as the number of cells increased to
100,000, 2D-Shapley-KNN demonstrates a remarkable speed advantage, being approximately 300 times faster
than 2D-Shapley-MC. These findings clearly establish an advantage of 2D-Shapley-KNN over 2D-Shapley-MC in
terms of runtime efficiency. Moreover, we observe that both 2D-Shapley-KNN and 2D-Shapley-MC outperform
the exact 2D Shapley method in terms of runtime. These results highlight the effectiveness and practicality of
our approach for computing 2D-Shapley in real-world cases.

Method 1K 5K 10K 20K 50K 100K
2D Shapley-Exact
(Theoretical) 1.5E+301s 2.0E+1505s 2.8E+3010s 5.6E+6020s 4.4E+15051s 1.4E+30103s

2D-Shapley-MC 280s 1,661s 3,127s 9,258s 17,786s 26,209s
2D-Shapley-KNN 11s 25s 37s 44s 53s 88s

Table 1: Actual runtime comparison between 2D-Shapley methods.

F. Implementation Details & Results
F.1. Details on Datasets and Models

For our experiments, we use the following datasets from Machine Learning Repository (Dua & Graff, 2017):

Dataset Training Data Test Data Features
Census Income 32561 16281 14
Default of Credit Card Clients 18000 12000 24
Heart Failure 512 513 13
Breast Cancer Wisconsin (Original) 242 241 10
Wine Dataset 106 72 13

Table 2: Details on datasets used in experiments.

In Breast Cancer Wisconsin dataset, we removed “ID number” from the list of features as it was irrelevant for
model training.

For methods requiring model training, 1D-Shapley, Random, and 2D-Shapley-MC, we implemented a decision
tree classifier on all of them.

Empirically, we verified that for each of the method, the cell values converge within 500 permutations and that
is the number we decide to use to run these methods.

Due to varying sizes of each dataset with different number of features, we set a different number of cells to be
removed at a time. For bigger datasets, Census Income and Credit Default, we remove ten cells at a time, and
for a smaller dataset, Breast Cancer, we remove one cell at a time.

F.2. Additional Results on Sanity check of cell-wise values experiment

We provide results on additional datasets, Heart Failure and Wine Dataset, to demonstrate the effectiveness of
2D-Shapley in cell-wise valuation. We additionally include the 2D LOO baseline for comparison. As we can
observe in Figure 8, 2D LOO performance is comparable to or worse than the Random baseline. One of the main
reasons is that 2D LOO only valuates a cell’s contribution when all other cells are present. This means that
after the sequential removal of some cells, the values obtained from 2D LOO may no longer accurately represent
the importance of the cells. In contrast, our method computes a cell’s value by averaging its contribution over
various sample and feature subset sizes, which ensures our cell values are informative even after the sequential
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Figure 8: 2D-Shapley values for benign patients in the original breast cancer dataset. The green border denotes
a cell before an outlier value has been injected to that cell.

removal of a certain amount of cells, thereby addressing the shortcomings of 2D LOO and leading to improved
performance in cell-wise valuation.

F.3. Additional Details and Results on Fine-Grained Outlier Localization experiment

F.3.1. Outlier Value Generation

Our outlier generation technique is inspired by (Du et al., 2022). Specifically, for a random cell with a sample
index i and a feature index j, we generate an outlier value based on its feature j. We first recreate a distribution
of the feature j and then sample a value from a low-probability-density region, below 5% in our experiment.

F.3.2. Heatmaps Comparison

To better understand the detection rate of outlier values, we visualize them through a heatmap. In Figure 9, we
provide a 2D-Shapley heatmap of the original dataset before outlier injection and compare with a 2D-Shapley
heatmap in Figure 10 after injecting outliers. Due to dimensional reasons, we transpose the heatmap, where the
rows represent features and the columns denote the samples.

We observe through the breast cancer dataset that the cells with injected outliers have changed their values and
lie mostly in the lower range of 2D-Shapley values. However, we can also notice that other cells are also affected
by the outliers and the overall range of values has increased in both directions.

In addition, we present a heatmap with injected outliers generated by 1D-Shapley to provide insights into the
1D-Shapley detection performance, which we show in Figure 5A). As we can observe the 1D-Shapley heatmap
in Figure 11, the values of injected outliers are scattered which explains why the detection rate by 1D-Shapley
was suboptimal.

F.3.3. Ablation Study on the Budget of Inserted Outliers

In Figure 5A), we injected outlier values to 2% of total cells. Here, we explore whether our 2D-Shapley method
can still detect outliers on various different amount of outliers. Thus, we randomly inject 1%,2%,5%,10%,15%
of outlier values to the original breast cancer dataset and plot the detection rate.

As we observe in Figure 12, the detection rate of outliers is very high within the first 200 inspected cells for
every outlier injection rate. Further, we observe that with more outliers added to the dataset, our detection rate
slightly decreases. It is indeed reasonable, since as we inject more outliers in the dataset, the less uncommon
these outliers are.
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Figure 9: 2D-Shapley values for benign patients in the original breast cancer dataset. The green border denotes
a cell before an outlier value has been injected to that cell.

Figure 10: 2D-Shapley values for benign patients in the breast cancer dataset with randomly inserted outliers.
The green border denotes a cell after an outlier value has been injected to that cell.

F.4. Additional Details on Sub-matrix Valuation experiment

For the plots in Figure 6, we have randomly split the Credit Default dataset into blocks. One of the random
split is pictured in Figure 13. We randomly moved the horizontal and vertical lines and permuted separately
rows and columns to create different possibilities for block splits.

F.5. Hardware

In this work, we used an 8-Core Intel Xeon Processor E5-2620 v4 @ 2.20Ghz CPU server as a hardware platform.

F.6. Code

The code repository is available via this link https://github.com/ruoxi-jia-group/2dshapley.
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Figure 11: 1D-Shapley values for benign patients in the breast cancer dataset with randomly inserted outliers.
The green border denotes a cell after an outlier value has been injected to that cell.

Figure 12: 2D-Shapley Detection rate of randomly inserted outliers in the breast cancer dataset over various
injection rates.
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Figure 13: An example of a dataset split into blocks.
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