
Structural Re-weighting Improves Graph Domain Adaptation

Shikun Liu 1 Tianchun Li 2 Yongbin Feng 3 Nhan Tran 3 Han Zhao 4 Qiu Qiang 2 Pan Li 1

Abstract
In many real-world applications, graph-structured
data used for training and testing have differences
in distribution, such as in high energy physics
(HEP) where simulation data used for training
may not match real experiments. Graph domain
adaptation (GDA) is a method used to address
these differences. However, current GDA primar-
ily works by aligning the distributions of node rep-
resentations output by a single graph neural net-
work encoder shared across the training and test-
ing domains, which may often yield sub-optimal
solutions. This work examines different impacts
of distribution shifts caused by either graph struc-
ture or node attributes and identifies a new type
of shift, named conditional structure shift (CSS),
which current GDA approaches are provably sub-
optimal to deal with. A novel approach, called
structural reweighting (StruRW), is proposed to
address this issue and is tested on synthetic graphs,
four benchmark datasets, and a new application in
HEP. StruRW has shown significant performance
improvement over the baselines in the settings
with large graph structure shifts, and reasonable
performance improvement when node attribute
shift dominates. 1

1. Introduction
Graph neural networks (GNNs) have recently become the
de facto tool to learn the representations of graph-structured
data (Scarselli et al., 2008; Kipf & Welling, 2017). De-

1Department of Electrical and Computer Engineering, Georgia
Institute of Technology, Georgia, U.S.A 2Department of Electrical
and Computer Engineering, Purdue University, West Lafayette,
U.S.A 3Fermi National Accelerator Laboratory, Batavia, U.S.A
4Department of Computer Science, University of Illinois Urbana-
Champaign, Champaign, U.S.A. Correspondence to: Shikun Liu
<shikun.liu@gatech.edu>, Pan Li <panli@gatech.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1Our code is available at: https://github.com/
Graph-COM/StruRW

Figure 1: Examples of pileup events in two different PU levels:
PU30 (Left) and PU10 (Right). Charged particles can be labeled
as LC or OC, as highlighted by red or blue dots, while the labels
of neutral particles are often unknown. Graph methods are often
used here (Bertolini et al., 2014; Li et al., 2022c), where KNN
graphs can be built and one can leverage nearby particle features
and labels to make inference, highlighted by e.g. the two circles
in the figure. In either of the two circles, there are two 2 labeled
OC’s and 1 labeled LC, while the ground-truth label of the neutral
particle in the center may be different from each other.

spite their exceptional performance on benchmarks (Hu
et al., 2020a; 2021), GNNs have been found to struggle in
high-stakes real-world applications where there is a data-
distribution shift between the training and test phases (Li
et al., 2022b; Hu et al., 2020b; Gaudelet et al., 2021).

This study is motivated by applications in high energy
physics (HEP) (Shlomi et al., 2020), where GNNs are often
trained on simulated data with an abundance of labels and
then applied to real experiments with limited labels (Nach-
man & Shimmin, 2019). However, real experiments have
complex, time-varying environments that may differ from
simulated setups. One such example is the change in pile-
up (PU) levels in Large Hadron Collider (LHC) experi-
ments (Highfield, 2008). PU level refers to the number of
collisions around the main collision of interest, which can
change over time and differ from the levels used to gener-
ate simulation data. Modeling the data using graphs, the
connection patterns between particles in different PU lev-
els will significantly change, as depicted in Fig. 1. This
poses a major challenge for GNNs to distinguish particles
from the leading collision (class LC) from those from other
collisions (class OC), which is a crucial task in HEP data
analysis (Perloff et al., 2012; Li et al., 2022c). Similar shifts
also occur in social and biological networks, where the in-
teraction patterns between nodes with different labels can
change over time (Wang et al., 2021a) or across different
species (Cho et al., 2016), as listed in Table 1.

1

https://github.com/Graph-COM/StruRW
https://github.com/Graph-COM/StruRW

Structural Re-weighting Improves Graph Domain Adaptation

Table 1: Conditional Structure Shift (CSS, computed according
to Eq. (6)) across real datasets that are used for evaluation in this
work. CSS will be explained in Sec. 4.1.

DBLP and ACM Cora Arxiv

Domains A → D D → A Word Degree Time1 Time2 Degree

ĈSS 7.4276 7.4276 0.5583 0.9980 1.0106 1.2148 2.6131

Graph domain adaptation (GDA) has been proposed to deal
with such distribution shift problems. Current GDA methods
frequently utilize GNNs as a means of creating dense node
representations, and then implement regularization in order
to ensure these representations remain consistent across both
the training (source) and test (target) domains (Wu et al.,
2020; Xiao et al., 2022; Zhu et al., 2021a). However, this
approach largely overlooks the distinct effects of distribution
shifts caused by graph structures and node representations,
and as a result, may not yield optimal solutions.

In this work, we investigate different types of distribution
shifts of graph-structured data and offer significant under-
standing into GDA for node classification problems. First,
we show that if the objective is to acquire node representa-
tions with distributions that remain invariant across domains,
adding regularization to the last-layer node representations
is adequate. Imposing regularization on intermediate node
representations or matching node initial attributes across
two domains may actually induce extra loss.

Though with the above observation, we further show that
it is suboptimal in many cases to achieve such distribution
invariance via a single stand-alone GNN encoder shared
across domains. To illustrate the problem, we revisit the
HEP example in Fig. 1: when the PU level is high (PU30),
an unlabeled particle that is connected to one LC particle
and two OC particles is more likely to be classified as LC.
Conversely, in instances where the PU level is low (PU10),
the particle with the same neighborhood may be more likely
to be classified as LC due to the expectation of more OC
particles in the vicinity of an OC particle. Under these
scenarios, the optimal node representations with the same
neighborhood should actually change to fit different do-
mains rather than keep invariant. In this work, we formally
define this new type of distribution shift as conditional struc-
ture shift (CSS). The CSS not only exists under the HEP
setting but in other real applications, like social networks.
For instance, different periods of time in citation networks
may present different citation relations across fields due
to the change of focus on interdisciplinary work or related
work over time. We will discuss the detailed degree of
CSS with other real datasets in Section 4.1. Current GDA
methods fail to address CSS properly.

To deal with CSS, we propose a novel GDA algorithm
named structural re-weighting (StruRW) as shown in Fig.
2. StruRW computes the edge probabilities between differ-

2). GNN
Encoder
!

Reweighting

Classification
ℒ#(%&', &')

3). StruRW-Adv

*'
*+

RW(*')

1). StruRW

,'
,+

%&'
%&+

-:prediction

3). StruRW-Mix or StruRW-ERM

∗ &' is
mixed for
StruRW-Mix

0: Domain
Discriminator

4).
Pseudo
labeling

With pseudo-labels
With real-labels

OR

ℒ12 0 ,' , 0 ,+
+ ℒ#(%&', &')

Conditional Structure Shift

Figure 2: This diagram demonstrates the model pipeline by com-
bining the StruRW module, GNN encoder, then the generalized
loss calculation block that supports StruRW-Adv, StruRW-Mix,
and StruRW-ERM. The pseudo codes are presented in Algorithm 1.

ent classes based on the pseudo node labels estimated on
the target graphs, and then uses these probabilities to guide
bootstrapping of neighbors used in GNN computation on
the source graphs, which eventually reduces the conditional
shift of neighborhoods. The GNN composed with StruRW
differentiates the encoding processes across the domains,
which breaks the limitation.

We conduct extensive experiments on synthetic graphs, four
real-world benchmarks and one HEP dataset to verify our
theory and the effectiveness of StruRW. Across the cases,
StruRW has achieved significant improvements over base-
lines under the settings with obvious graph structure shifts,
and slight improvements for other settings dominated by
node attribute shifts. Due to the page limitation, we leave
the proofs of all propositions in this work in the appendix.

2. Preliminaries and Related Works
In this section, we introduce basic concepts and notations to
set up the problem and review related works along the way.

Domain Adaptation (DA). This work studies unsupervised
DA, where the model has access to labeled data from the
source domain and unlabeled data from the target domain,
and the goal is to train the model to achieve small classifica-
tion error on the target domain.

To review the general idea of DA methods, denote PX as
the distribution of the feature x ∈ X . We always use sub-
scripts/superscripts U ∈ {S, T } to denote the source and
target domains respectively. Denote fU as the true label-
ing function that maps x to labels y ∈ Y for domain U .
For simplicity, we temporarily assume binary classifica-
tion Y = {0, 1} to show theoretical insights, while the
proposed algorithm can be applied to other cases. Sup-
pose the model has a composition form g ◦ ϕ that first
maps the features to a latent space ϕ : X → H and then
performs classification g : H → Y . Then, the classifi-
cation error of the model in domain U can be denoted
as ϵU (g, ϕ) = Ex∈PU

X
[|g(ϕ(x)) − fU (x)|]. By adopting

a derivation similar to (Wu et al., 2019; Ben-David et al.,
2010), the error in the target domain can be bounded as

2

Structural Re-weighting Improves Graph Domain Adaptation

follows. The detailed derivation is shown in Appendix A.

ϵT (g, ϕ) ≤ ϵS(g, ϕ) +

∫
h

dPT
X(h)

∣∣∣fϕ
S (h)− fϕ

T (h)
∣∣∣

+

∫
h

|dPT
ϕ (h)− dPS

ϕ(h)rS(h, ϕ, g) (1)

where rU (h, ϕ, g) ≜
∫
x:ϕ(x)=h

|g(h) − fU (x)|dPU
X(x),

fϕ
U (h) ≜

∫
x:ϕ(x)=h

fU (x)dPU
X(x) is the labeling function

from the latent space, and dPU
ϕ (h) =

∫
x:ϕ(x)=h

dPU
X(x).

To minimize the target error, one common way in DA is
to push the encoder ϕ to output representations with the
distribution invariant across domains by minimizing the
third term while minimizing the source error, i.e., the first
term. The second term is often overlooked as it is hard to
control.

Previous methods to learn invariant representations adopt
some regularization methods, including adversarial training
with domain discriminator (Ganin et al., 2016; Zellinger
et al., 2017), or minimizing some distribution-distance mea-
sures (Long et al., 2015) such as Maximum Mean Discrep-
ancy (MMD) (Saito et al., 2018) between the source and
target latent representations.

Graph Neural Networks (GNNs). Let G = (V, E ,x) de-
note an undirected graph with a node set V , an edge set E and
node attributes x = [· · ·xv · · ·]v∈V . The graph structure
can also be denoted as the adjacency matrix A where its en-
try Auv = 1 if edge uv ∈ E and otherwise Auv = 0. GNNs
encode A and x into node representations {hv|v ∈ V}. Ini-
tialize h(0)

v = xv and standard GNNs (Hamilton et al., 2017;
Gilmer et al., 2017) follow a message passing procedure.
Specifically, for each node v and for l = 0, 1, ..., L− 1,

h(l+1)
v = UDT (h(l)

v ,AGG ({{h(l)
u : u ∈ Nv}})), (2)

where Nv denotes the set of neighbors of node v and {{·}}
denotes a multiset. The AGG function aggregates messages
from the neighbors, and the UPT function updates the node
representations. In node classification tasks, the last-layer
node representation h

(L)
v is used to predict the label yv ∈ Y .

Graph Domain Adaptation (GDA). GDA extends DA
to the setting with graph-structured data. Specifically, we
have one or several graphs GS = (VS , ES ,xS) from the
source domain with node labels yS and one or several
graphs GT = (VT , ET ,xT) from the target domain. The
goal is to predict node labels yT in the target domain. Dif-
ferent from traditional DA with independent data points,
features and labels are coupled due to the graph structure.
Existing graph methods address the problem by first adopt-
ing a GNN to encode the graph into node representations
h(L) = [· · ·h(L)

v · · ·]v∈V , and then enforcing invariance on
the representations in h(L) across domains.

Related Works. For the related works with specific imple-
mentations of above GDA idea, DANE (Zhang et al., 2019)
introduces adversarial training of domain classifier based
on those node representations. UDAGCN (Wu et al., 2020)
further imposes some inter-graph attention mechanism on
top of the adversarial training. SR-GNN (Zhu et al., 2021a)
aims to minimize the moment distance between the node-
representation distributions across domains. DGDA (Cai
et al., 2021) aims to disentangle semantic, domain, and noise
variables and uses semantic variables that are better aligned
with target graphs for prediction. All these works did not
analyze the potential distribution shifts for node classifica-
tion tasks and may therefore suffer from the CSS problem.
A very recent work (You et al., 2023) proposes to use graph
spectral regularization to address GDA problems. Although
this work extends the generalization bound in (Zhao et al.,
2019) for the case with the conditional shift in the scenario
of GDA, their algorithm is not designed to address the issue
of conditional shift.

In addition to GDA, many works aim to train GNNs for
out-of-distribution (OOD) generalization. Different from
GDA, they do not assume the availability of unlabeled test
data and expect to train a GNN that learns representations
invariant to generic domain change. Hence, they cannot
address the problem in Fig. 1 as well. For node classifica-
tion tasks, EERM (Wu et al., 2022b) minimizes the variance
of representations across different generated environments.
Ma et al. (2019) and Liu et al. (2020) extract invariant fea-
tures by disentangling the entries of node representations.
Verma et al. (2021); Wang et al. (2021b) mixup node repre-
sentations across different classes for training to flatten the
decision boundary (Zhang et al., 2018). Qiu et al. (2020);
Wu et al. (2022a); Park et al. (2021); Liu et al. (2022); You
et al. (2020) adopt data augmentation to achieve betteer
generalization. Other works study OOD graph classification
tasks and can be categorized similarly as above (Zhu et al.,
2021b; Miao et al., 2022; Chen et al.; Li et al., 2022a; Han
et al., 2022; Yang et al., 2022; Suresh et al., 2021).

Other Notations In the following, we use capital letters
e.g., X, X to denote random variables (r.v.) and the lower-
case letters, e.g., x, x to denote specific values, except the
adjacency matrix A that will be used to denote both. Use
Π to denote a permutation matrix with a proper dimension.

3. Optimality of Last-layer Domain Invariance
In this section, we disentangle the types of distribution
shifts in graph-structured data and look into the question
of whether regularizing only the last-layer node representa-
tions, as commonly adopted, is optimal to learn node repre-
sentations invariant across domains under various types of
shifts.

3

Structural Re-weighting Improves Graph Domain Adaptation

3.1. Distribution Shifts in Graph-structured Data

We categorize different types of distribution shifts in graph-
structured data for node classification problems.

Structure shift. Consider the joint distribution of the
adjacency matrix and node labels PA×Y. Structure dis-
tribution has internal symmetry where PA×Y(A,y) =
PA×Y(ΠAΠ⊤,y) for any Π s.t. y = Πy. Structure shift
is defined for the case when PS

A×Y ̸= PT
A×Y.

Attribute shift. We assume that without the graph struc-
ture, the attributes xv, v ∈ V are IID sampled from PX|Y
given node labels yv . Therefore, the conditional distribution
of x|y satisfies PX|Y(x|y) =

∏
v∈V PX|Y (xv|yv), which

satisfies PX|Y(x|y) = PX|Y(Πx|y) for any Π such that
Πy = y. Then, Attribute shift refers to PS

X|Y ̸= PT
X|Y .

We use the joint distribution to define structure shift while
the conditional distribution to define attribute shift because
it better aligns with practice: Graph structure captures the
correlation between nodes including their labels while node
attributes are often independent given their labels.

3.2. Analysis for GDA with Different Types of Shifts

Our analysis is built upon the error bound in Eq. (1) that
reveals the goal of learning domain-invariant node repre-
sentations while minimizing the error in the source domain
ϵS(g, ϕ). For GDA, the GNN is denoted as ϕ to transform
the graph into node representations h(L) = ϕ(x,A) and
the downstream node classifier is g. Note that in GDA, the
entries of h(L) are not independent of each other. The com-
mon practice to deal with this issue is to use a sampling
procedure to marginalize the joint distribution:

Definition 3.1 (Marginalization). For domain U , given node
representations h(l), marginalization is to uniformly sample
one of them h

(l)
v . Denote the distribution of h(k)

v as PU
ϕ .

With marginalization, the goal of learning domain-invariant
node representations for GDA can be reduced to

min
g,ϕ

ϵS(g, ϕ) s.t. PS
ϕ = PT

ϕ . (3)

We break the GNN into two parts ϕ = ϕ>l ◦ ϕ≤l where
ϕ≤l denotes the encoder of the first l(< L) layers h(l) =
ϕ≤l(x,A) and h(L) = ϕ>l(h

(l),A). With some abuse of
notation, let ϕ≤0 denote the first-layer transformation of
node attributes before passing them to the neighbors. We
use PS

ϕ≤l
= PT

ϕ≤l
to indicate that the distributions of the

marginalization of h(l) are invariant across domains.

Given these notations, our question reduces to whether im-
posing PS

ϕ = PT
ϕ is optimal for Eq. (3) and whether im-

posing PS
ϕ≤l

= PT
ϕ≤l

for some l < L − 1 can be better.
We consider two cases with or without structure shift by

assuming there always exists of attribute shift because other-
wise structure shift can be transformed into a shift of node
representations (similar to attribute shift).

Case I: Without structure shift. As we only have attribute
shift in this case, an interesting question is whether aligning
the distributions of node attributes can do better since the
structure has no shift.

1

0

1

0

1

0

1

0

Source Target 1
0

With label 1
With label 0
Type 1 attribute
Type 2 attribute

Figure 3: An example for
PS
ϕ≤0

= PT
ϕ≤0

̸⇒ PS
ϕ = PT

ϕ .

First, we argue that just
aligning the distribu-
tions of node attributes
PS
ϕ≤0

= PT
ϕ≤0

is insuf-
ficient to achieve final
invariance PS

ϕ = PT
ϕ

even without structure shift. This can be illustrated with
an example shown in Fig. 3: The marginal distribution
of node attributes are the same across the domains
PS
ϕ≤0

= PT
ϕ≤0

and there is no structure shift. However, after
one layer of GNN, there will be a distribution shift in node
representations.

Second, as shown in Proposition 3.2, aligning the condi-
tional distributions of node attributes PS

ϕ≤0|Y = PT
ϕ≤0|Y

may be sufficient under some independence assumption.
This seems to give a chance to outperform previous meth-
ods that impose PS

ϕ = PT
ϕ in the last layer.

Proposition 3.2. Suppose the node attributes and the graph
structures are independent given the node labels in the two
domains PU

(X,A)|Y(X,A|y) = PU
X|Y(X|y)PU

A|Y(A|y). If
there is no structure shift PS

A,Y(A,y) = PT
A,Y(A,y), a

transformation ϕ≤0 of the node attributes that can achieve
PS
ϕ≤0|Y = PT

ϕ≤0|Y is sufficient to make the distributions of
last-layer node representations invariant across domains,
i.e., PS

ϕ = PT
ϕ without the need of further regularization.

However, we hardly see such improvement in practice be-
cause it is challenging to align such conditional distributions
since the target labels YT are unknown. More advanced ap-
proaches are often needed, which we will review in Sec. 4.1.
Given such, keeping regularization in the last layer is often
needed in practice to (approximately) achieve PS

ϕ = PT
ϕ .

Case II: With structure shift. With structure shift
PS
A×Y ̸= PT

A×Y, each layer of the GNN will induce distri-
bution shift in node representations even if the distributions
in the previous layer get aligned across domain, so regular-
ization on the last-layer node representations is generally
needed to achieve PS

ϕ = PT
ϕ . Then, the question in this

case is that if extra regularizations for PS
ϕ≤l

= PT
ϕ≤l

, for
l < L− 1 are further helpful. Unfortunately, with a simple
proof, as Prop. 3.3 shows, adding such regularizations will
not improve objective Eq. (3), which thus cannot improve
the bound of the error in the target domain (Eq. (1)).

Proposition 3.3. Suppose regularization on the last-layer

4

Structural Re-weighting Improves Graph Domain Adaptation

node representations is always adopted to achieve PS
ϕ = PT

ϕ .
Then, adding regularization to the intermediate node repre-
sentations PS

ϕ≤l
= PT

ϕ≤l
, for l < L−1 cannot further reduce

the optimal error indicated by the objective of Eq. (3).

Combining Case I and Case II, we claim that optimizing the
error bound Eq. (1) for the target domain by solving Eq. (3)
is necessary and typically optimal to regularize only the
last-layer node representations to make their distributions
invariant across domains.

Although the above analysis justifies some rationale of pre-
vious GDA approaches, we observe its big limitation, that is
we entirely ignore the second term in Eq. (1). As shown in
Fig. 1, the ground-truth labeling functions in many real-
world applications with graph-structured data may shift
across domains. Ignoring such a shift yields suboptimal
solutions. Our next section is to formalize the above issue
and propose a principled algorithm to address it.

4. The Structural Re-weighting Algorithm
In this section, we first introduce the issue of conditional
structure shift (CSS). Then, we propose our structural re-
weighting algorithm StruRW to remove this shift for GDA.
As a generic approach to align graph distributions for node
classification tasks, StruRW can also improve the vanilla
training of GNNs and approaches for OOD generalization
such as Mixup (Wang et al., 2021b; Verma et al., 2021).

4.1. The Issue of Conditional Structure Shift

The conditional shift has been recently investigated in the
setting without graph structure (Zhang et al., 2013; Zhao
et al., 2019; Tachet des Combes et al., 2020). It describes
the label-conditional distribution of features shifts across do-
mains, which corresponds to Attribute Shift PS

X|Y ̸= PT
X|Y

in our context as defined in Sec. 3.1. This problem can be
addressed in principle only with some proper assumptions,
e.g., the features in the target domain can be written as a
location-scale transformation of the features in the source
domain (Zhang et al., 2013; Gong et al., 2016). Recent
works have also adopted adversarial training to align the
estimated conditional distributions based on pseudo labels
ŶT in the target domain (Long et al., 2018) or combined
with instance-re-weight approaches (Tachet des Combes
et al., 2020) to address both of the issues of conditional shift
and label shift (i.e., PS

Y ̸= PT
Y by using our notation).

However, none of the previous works have considered con-
ditional structural shift (CSS) for graph-structured data:

Definition 4.1 (Conditional Structure Shift). PS
A|Y ̸=

PT
A|Y, where PU

A|Y is a conditional distribution induced
from PU

A×Y = PU
A|YPU

Y .

According to the definition, the structure shift defined in

Sec. 3.1 may be caused by either CSS or label shift. Here,
we study CSS, as it happens a lot in real-world graph data but
cannot be addressed by simply extending previous methods.
We leave its combination with label shift PS

Y ̸= PT
Y and

attribute shift PS
X|Y ̸= PT

X|Y for the future studies.

We first use an example to show the sub-optimality of
previous GDA methods as their goal of pursuing domain-
invariant distributions of node representations. We are in-
spired by the observation in Fig. 1 and propose the following
example with CSS based on the Contextual Stochastic Block
Model (CSBM) (Deshpande et al., 2018).

Definition 4.2 (Contextual Stochastic Block Model).
CSBM is the model that combines the stochastic block
model and node attributes for the random graph generation.
CSBM with nodes from k classes is defined with parameters
(n,B,P0, . . . ,Pk−1). Here, n is the number of nodes. B is
a k × k edge connection probability matrix. Pi, 0 ≤ i < k,
characterizes the distribution of node attributes of a node
from class i. For any node u from class i and any node v
from class j in a graph generated from the model, the prob-
ability of an edge connecting them is denoted by Bij , an
entry of B. B = B⊤ for undirected graphs. For the CSBM,
all node attributes and edges are generated independently
given node labels.

Example 4.3. Suppose graphs in the source and target
domains are generated from CSBM(n,BS ,P0,P1) and
CSBM(n,BT ,P0,P1), respectively. Suppose either class
in either model contains n/2 nodes. With some constants
p, r ∈ (0, 1/2) and δ ∈ [−p, p]/{0}, for i ∈ {0, 1}, let
Pi(X) = r if X = i and Pi(X) = 1 − r if X is M.V.
(denoting a default value other than 1 or 0), and

BS =

[
p p
p p− δ

]
,BT =

[
p+ δ p
p p

]
, (4)

So, there is no label shift or attribute shift but contains CSS.
The nodes with attribute M.V. on the graphs generated from
the above two CSBMs are used to formulate the training
and test datasets, respectively.

Given this example, we can quantitatively show the subopti-
mality of using a single shared encoder ϕ to learn domain-
invariant node representations in the following proposition.

Proposition 4.4. One-layer GNNs are adopted to solve
the GDA task in Example 4.3. By imposing PS

ϕ = PT
ϕ

through a GNN encoder ϕ shared across the two domains,
the classification error in the target domain ϵT (g, ϕ) ≥
0.25, while if without such a constraint, there exists a GNN
encoder ϕ such that ϵT (g, ϕ) → 0 as n → ∞.

4.2. StruRW to Reduce Conditional Structure Shift

The previous example inspires our algorithm StruRW to ad-
dress CSS for node classification tasks. Note that one layer

5

Structural Re-weighting Improves Graph Domain Adaptation

Algorithm 1 StruRW with different training pipelines

1: Input One or several source graphs GS with node labels
YS ; One or several target graphs GT ; A GNN ϕ, a
domain discriminator q, and a classifier g; The total
epoch number n, the epoch index m to start StruRW,
the epoch period t for weight update and λ.

2: while epoch < n or not converged do
3: if epoch ≥ m then
4: When epoch ≡ m (mod t), get target node

representations hT = ϕ(GT), and update
estimation B̂T with ŶT = g(hT) (Eq. (5))

5: Add edge weights to GS according to
(1− λ)11⊤ + λB̂T ./BS

6: end if
7: Get hS = ϕ(GS), ŶS = g(hS) in the source domain
8: Case 1: StruRW-Adv
9: Update ϕ, q via minq maxϕ LADV(q(hS), q(hT))

10: Case 2: StruRW-Mix
11: Get mixed-up predictions ŶS and labels YS
12: Case 3: StruRW-ERM
13: Nothing to do
14: Update ϕ and g as minϕ,g LERM(ŶS ,YS),
15: end while

of message passing in a GNN (Eq. (2)) encodes the informa-
tion of a tuple (h

(l)
v ,Ξ

(l)
Nv

), where Ξ
(l)
Nv

= {{h(l)
u |u ∈ Nv}}

denotes the multiset of the representations of the neigh-
bors. The graph structure here determines the cardinality
of the multiset Ξ(l)

Nv
and the distribution of the elements

in Ξ
(l)
Nv

. Our key idea is to down-sample or re-sample the
elements in such multisets (i.e., bootstrapping) from the
source domain so that the distribution of such multi-sets can
(approximately) match that in the target domain.

Specifically, consider the first layer of a GNN ϕ that runs on
graphs sampled from k-class CSBM(n,BU ,P0, ...,Pk−1)
for domain U ∈ {S, T }. Here, BS ̸= BT , which indicates
that there exists a CSS comparing a class-i node v in the
target domain and a class-i node v′ in the source domain.
In the multiset Ξ(0)

Nv
(or Ξ(0)

Nv′), there will be in expectation
nBT

ij (or nBS
ij resp.) many node attributes sampled from

Pj for j ∈ [k]. Therefore, to align the cardinality and the
distribution of elements of the multiset Ξ(0)

Nv′ with those of

Ξ
(0)
Nv

, we propose to resample (if BT
ij > BS

ij) or downsample
(BT

ij < BS
ij) the elements of the class-j neighbors of v′

to nBT
ij many. The following-up layers adopt the same

sampling strategy.

In practice, GNNs often adopt sum/mean pooling (also in
our experiments) to aggregate these multisets. Then, the
above sampling strategy reduces to adding a weight for each
element in the source domain during message aggregation.

The weight is BT
ij/B

S
ij for the element passed from a class-j

node to a class-i node. For other aggregation methods, a
similar type of analysis can be adopted to determine the
weights. To compute such weights, BS can be estimated
based on Eq. (5) by using the node labels in the source
domain. To estimate BT , we propose to use the pseudo
labels estimated by the model during the training process,
i.e., using (ŷu, ŷv) instead of (yu, yv) in Eq. (5).

Bij =
|{euv ∈ E|yu = i, yv = j}|

|{v ∈ V|yv = i}| × |{v ∈ V|yv = j}|
. (5)

As the edge weights are based on the estimation of pseudo
labels in practice that may have errors, we introduce a hy-
perparameter λ to control the degree of reliance on this
weight, i.e., the weight to be used in practice follows
(1− λ) + λ ∗BT

ij/B
S
ij .

Furthermore, to better understand model performance in
practice, we would like to quantify the degree of CSS in each
real dataset to help better understand the model performance.
The metric we developed is as follows:

ĈSS =
1

k ∗ k
∑
i,j

∆Bij , where (6)

∆Bij =
1

2

(
|BS

ij −BT
ij |

BS
ij

+
|BS

ij −BT
ij |

BT
ij

)
. (7)

where k is the number of classes. This metric measures
the relative level of difference between the edge connection
probability matrix, which reflects the degree of CSS. There
is no CSS when the metric is equal to 0. We calculate the
degree of CSS for each real dataset we use for experiments
in Table 1.

Lastly, we should note that the above analysis has limita-
tions. First, we did not consider attribute shift. Attribute
shift, if exists, can often be (approximately) addressed by
traditional DA approaches to handle conditional shift for
non-graph data (Long et al., 2018; Tachet des Combes et al.,
2020). In our experiments, we have not tried these more
advanced approaches but our methods have already outper-
formed the baselines. Second, the above analysis is based on
CSBM, so the derived weights are shared across the edges
when the pairs of the labels of the two end nodes are the
same. We believe this constraint can be further relaxed and
improved.

4.3. StruRW Combined with Different Approaches

StruRW is a generic approach to reduce CSS and should
be widely applicable. Therefore, we combine StruRW with
three different GNN training pipelines, including StruRW-
Adv with adversarial-based training (Ganin et al., 2016),
StruRW-Mix with mixup training on graphs (Wang et al.,
2021b) and StruRW-ERM with vanilla GNN training. These

6

Structural Re-weighting Improves Graph Domain Adaptation

different combinations can be viewed as options that handle
the attribute shift and CSS at different levels that vary across
applications. For instance, StruRW-ERM or StruRW-Mix
often performs well if there is no or only small attribute
shift, respectively, while StruRW-Adv will perform better
with larger attribute shifts.

The algorithm is summarized in Algorithm 1, where StruRW
is a separate module before the GNN encodes the data,
which is compatible with different training pipelines. After
m training epochs, StruRW calculates the edge weights for
the source graphs to reduce CSS (lines 3-6). Different train-
ing pipelines may have different training losses. Besides
the traditional empirical risk minimization (ERM) loss (via
minϕ,g LERM in Eq. (8)) in line 14, StruRW-Adv follows
DANN (Ganin et al., 2016) that trains the GNN ϕ and a
domain discriminator q (via maxϕ minq LADV in Eq. (9)) in
line 9. Adversarial training comes into play where q tries
to correctly identify the source and target samples, while
ϕ seeks to align the distributions of the source and target
samples to confuse q.

LERM ≜
∑
u∈VS

cross-entropy(yv, g(hv)) (8)

LADV ≜ −(
∑
u∈VS

log[q(hu)] +
∑
u∈VT

log[1− q(hv)]) (9)

where hu, hv are node from hS and hT . StruRW-Mix also
adopts the loss minϕ,g LERM while the output hS and label
Y for loss calculation are the post-mixup features and labels.
The details can be found in (Wang et al., 2021b).

5. Experiments
We evaluate StruRW with the combination with the three
training pipelines introduced in Sec. 4.3 and compare them
with existing GDA and Graph OOD baselines. The exper-
iments are done on one synthetic dataset, one real dataset
from the HEP scientific application, and four real-world
benchmark networks under various types of distribution
shifts. We will briefly introduce the datasets, baselines, and
experiment settings. More details such as the statistics of
the datasets and hyperparameter tuning can be found in
Appendix E.

5.1. Datasets

CSBM is the synthetic dataset we use that consists of graphs
generated from 3-class CSBMs. Each class in each graph
contains 1000 nodes. We do not consider attribute shift
but only structure shift to directly demonstrate the effec-
tiveness of StruRW. The node attributes in three classes in
both domains satisfy Gaussains P0 = N ([−1, 0], I),P1 =
N ([1, 0], I),P2 = N ([3, 2], I). The intra-class edge proba-
bilities are both 0.02 for the two domains. The inter-class
edge probability (q in table 2) in the target domain is 0.002

while that in the source domain varies from 0.001 to 0.016.

DBLP and ACM are two paper citation networks obtained
from DBLP and ACM respectively. Each node represents
a paper, and each edge indicates a citation between two
papers. The goal is to predict the research topic of a paper.
Here, we train the GNN on one network and test it on the
other, which is denoted by D → A or A → D. The original
networks are provided by ArnetMiner (Tang et al., 2008).
We use the processed versions from (Wu et al., 2020).

Arxiv introduced in (Hu et al., 2020a) is another citation
network between all Computer Science (CS) Arxiv papers
from 40 classes on different subject areas. Attributes are the
embeddings of words in titles and abstracts. The domain can
be split based on either publication times or node degrees.
For evaluation with different levels of publication time shift,
we use papers published between 2018 to 2020 to test while
using papers published in other time periods for training:
Time 1 is from 2005 to 2007 and Time 2 is from 2011 to
2014. We follow (Gui et al., 2022) to partition the network
into two domains based on node degrees.

Cora is the fourth citation network with 70 classes (Bo-
jchevski & Günnemann, 2018). Two domain splits are con-
sidered, named Word and Degree. The Word split is based
on the diversity of words of a paper and the Degree split is
based on node degrees, where we follow (Gui et al., 2022).

Pileup Mitigation is a dataset to evaluate the approaches
for a critical data processing step in HEP named pileup mit-
igation (Bertolini et al., 2014). Particles are generated by
the proton-proton collisions in the Large Hadron Collider
with primary collisions (LC) and nearby bunch crossings
(OC). There are multiple graphs used for training and test-
ing. Each graph corresponds to a beam of proton-proton
collisions. The particles generated from the collisions give
the nodes in the graph. We connect the particles with edges
if they are close in the η − ϕ space as shown in Fig. 1. As
mentioned in the introduction, the task is to identify whether
a neutral particle is from LC or OC. The labels of charged
particles are often known. In this application, the distribu-
tion shifts may come from two sources, the shift of the types
of particle decay between pp → Z(νν)+ and pp → gg
(Martı́nez et al., 2019) generated from LC (mostly attribute
shift with slightly structural shift), and the shift of pile-up
(PU) conditions (mostly structural shift). PUk means the
number of collisions in the beam other than LC is k, where
our dataset includes the cases k ∈ {10, 30, 50, 140}.

5.2. Baselines and Settings

Baselines StruRW is combined with the training pipelines of
adversarial training, mixup and ERM. Therefore, we choose
the corresponding baselines DANN (Ganin et al., 2016),
graph Mixup (Wang et al., 2021b) and the vanilla ERM with

7

Structural Re-weighting Improves Graph Domain Adaptation

Table 2: Synthetic CSBM results. The bold font and the underline indicate the first and second best model respectively, †
indicates the significant improvement, where the mean-1*std of a method > the mean of its corresponding backbone model.

q = 0.016 q = 0.014 q = 0.012 q = 0.01 q = 0.006 q = 0.001

ERM 36.52± 3.76 41.62± 5.92 48.66± 6.31 57.29± 5.28 89.72± 2.62 100± 0
DANN 64.25± 5.69 72.56± 8.54 79.63± 6.84 86.29± 8.14 96.88± 1.35 100± 0
CDAN 67.53± 4.98 75.38± 7.46 82.51± 6.95 89.73± 7.44 97.03± 1.09 100± 0
UDAGCN 51.98± 1.31 57.83± 3.05 59.74± 1.52 65.97± 1.66 98.25± 0.52 100± 0
EERM 57.36± 4.52 65.88± 3.09 70.12± 10.26 72.87± 13.70 95.01± 3.88 100± 0
MIXUP 62.54± 2.77 69.21± 2.03 74.92± 1.56 82.87± 3.45 96.89± 0.38 100± 0

STRURW-ERM 85.24† ± 1.63 87.92† ± 1.77 90.26† ± 1.05 93.84† ± 0.98 98.28† ± 0.14 100± 0
STRURW-ADV 86.37† ± 3.92 89.22† ± 1.83 91.53† ± 2.41 94.08† ± 0.98 98.40† ± 0.34 100± 0
STRURW-MIX 88.48† ± 1.93 89.76† ± 1.15 92.08† ± 1.13 94.26† ± 0.99 98.35† ± 0.23 100± 0

Table 3: Performance on real datasets. The bold font and underline indicate the first and second best model respectively, †
indicates the significant improvement, where the mean-1*std of a method > the mean of its corresponding backbone model.

DBLP AND ACM CORA ARXIV
DOMAINS A → D D → A WORD DEGREE TIME1 TIME2 DEGREE

ERM 62.48± 3.58 64.70± 1.18 64.35± 0.44 53.28± 0.38 28.08± 0.24 49.52± 0.22 57.41± 0.14
DANN 59.02± 7.79 65.77± 0.46 63.92± 0.70 49.61± 0.74 24.33± 1.19 48.67± 0.37 56.13± 0.18
CDAN 60.56± 4.38 64.35± 0.83 62.46± 0.94 52.50± 0.96 25.85± 1.15 49.22± 0.75 56.43± 0.45
UDAGCN 59.62± 2.86 64.74± 2.51 64.23± 2.19 58.37± 0.72 25.64± 3.04 48.84± 1.48 55.77± 0.83
EERM 40.88± 5.10 51.71± 5.07 67.43± 2.86 58.63± 1.12 OOM OOM OOM
MIXUP 49.93± 0.89 63.36± 0.66 67.73± 0.38 58.18± 0.52 28.04± 0.18 49.98± 0.34 59.22± 0.22

STRURW-ERM 70.19† ± 2.10 65.07± 1.98 64.34± 0.43 55.27† ± 0.48 28.46† ± 0.18 48.78± 0.40 57.45† ± 0.15
STRURW-ADV 66.56† ± 9.44 66.57† ± 0.42 63.92± 0.75 52.69† ± 0.36 24.35± 1.25 49.01± 0.38 56.36† ± 0.22
STRURW-MIX 50.42± 1.13 66.33† ± 0.91 67.73± 0.39 60.37† ± 0.39 28.28† ± 0.52 50.34† ± 0.31 59.99† ± 0.09

GCN (Kipf & Welling, 2017) as the backbone for direct
comparisons. We also adopt UDAGCN (Wu et al., 2020),
EERM (Wu et al., 2022b) and CDAN (Long et al., 2018)
with the same backbone for further comparisons. CDAN
was proposed to handle the conditional shift and the label
shift of the distributions of last-layer node representations.
We choose GCN as most baselines use this backbone in their
original literature.

Settings and Metric. By the definition of GDA, the graphs
in the source domain are used for training, while the graphs
in the target domain are used for validation and testing.
Specifically, we use 20 percent of node labels in the target
domain for validation, and the rest 80 percent are held out
for testing. The estimation of B̂T in the target domain for
StruRW uses the ground-truth labels of the target validation
nodes (as assumed to be known) and the pseudo labels for
the hold-out target testing nodes. The final evaluation scores
included in the tables are based on the accuracy score for
the node classification tasks on the hold-out target testing
nodes. The selection of the best model is based on the score
on the target validation nodes. All results are summarized
based on 5 times independent experiments.

5.3. Result Analysis

The experiment results over the synthetic datasets are in Ta-
ble 2. As the performance of ERM shows, CSS may cause
significant performance decay. All baseline methods can
deal with CSS to some extent while still performing sig-

nificantly worse than StruRW-based approaches. Also, the
improvement of StruRW increases with how much CSS the
data holds. Particularly, StruRW is able to boost the perfor-
mance by more than 20% over the best baseline. The results
match our expectations well since the synthetic datasets are
precisely aligned with the motivation of StruRW.

Table 3 includes the results for four real-world citation
datasets. For all the datasets, StruRW-ERM, StruRW-Adv,
and StruRW-Mix outperform their corresponding baseline
models ERM, DANN, and Mixup, respectively. More-
over, across all the datasets, one of StruRW-ERM, StruRW-
Adv and StruRW-Mix achieves the best performance, and
over six of the seven settings, StruRW based methods have
achieved significant improvement, i.e., the differences in
means greater than one times the std of our models. Note
that it is hard to expect a significant improvement of StruRW
in the GDA setting without much CSS, e.g., the setting
of Word (Cora) whose distribution shift is mostly due to
attribute shift. In comparison, in the settings of Degree
(Cora) and Degree (Arxiv), and DBLP and ACM, the
improvements based on reweighting are more significant.
The results match our intuition and are supported by the
quantitative CSS we calculated in Table 1. Over the datasets
with larger CSS scores, StruRW demonstrates more signif-
icant improvement over the baselines. The StruRW-based
methods performance largely relies on the corresponding
baseline performances. StruRW-Adv tends to be less stable
and works better when there is a large distribution shift.
StruRW-ERM and StruRW-Mix are much more stable and

8

Structural Re-weighting Improves Graph Domain Adaptation

Table 4: HEP dataset with different PU conditions and Physical process. The bold font indicate the best model, † indicates
the significant improvement, where the mean-1*std of a method > the mean of its corresponding backbone model.

PU CONDITIONS PHYSICAL PROCESSES
DOMAINS PU30 → 10 PU10 → 30 PU140 → 50 PU50 → 140 gg → Z(νν) Z(νν) → gg

ERM 69.83± 0.43 70.73± 0.46 68.70± 0.56 68.28± 0.65 63.09± 0.48 66.53± 1.04
DANN 70.14± 0.52 71.29± 0.58 69.01± 0.42 68.98± 0.63 63.15± 0.66 66.24± 0.97

STRURW-ERM 71.35† ± 0.76 71.95† ± 0.24 69.43† ± 0.65 69.05± 0.36 63.55± 0.40 67.73± 0.93
STRURW-ADV 70.77† ± 0.52 71.96± 0.73 69.88† ± 0.71 70.54± 0.84 64.36† ± 0.58 66.91± 0.67

have close performances when the distribution shift is small.

Finally, for the HEP datasets, we compare StruRW-ERM
and StruRW-Adv with the corresponding baselines ERM
and DANN. Note that the current pipelines of StruRW-Mix
and Mixup are not suitable for this dataset as these HEP
datasets contain multiple graphs for either training or testing
since how to properly mix up node attributes across graphs
needs a non-trivial design, which is left for future study. A
similar issue comes with other baselines such as UDAGCN
originally proposed for single graphs used for training and
testing. Under the domain shift caused by different PU con-
ditions, we have often observed significant improvements
over the case adapting from the higher PU levels to lower
PU levels, while when being trained on lower PU levels
and tested on higher PU levels, there are some but marginal
improvements. These results match previous findings in
the studies on this HEP application with ML technique(Li
et al., 2021; Komiske et al., 2017). We suspect the reason is
that the model learned with low PU levels tends to be more
robust to the distribution shift. StruRW-based methods also
help with the cases with shifts in particle types, although
the improvements are not significant.

Besides the difficulty of the physics task itself that causes
marginal performance in absolute accuracy scores, we sus-
pect two additional reasons that may diminish the StruRW
performance for HEP datasets. The first reason is that this
pileup mitigation task is a binary classification, which is
often easier than multi-class classification tasks due to the
simpler decision boundary. The second reason may come
from the multi-graph training and testing procedure, where
the average overweight calculations in StruRW technique
can limit the model performance.

Hyperparameters. Besides the normal hyperparameter tun-
ing including learning rate, model architecture, and epoch
as some basic setups, our StruRW relies on three hyperpa-
rameters: the epoch m to start StruRW, the time period t
to calculate weights, and the λ for the degree to adopt the
reweighted message. A general rule to select λ is that if the
original CSS is large, we may want to pay attention to the
reweighted message more so as to alleviate the CSS. The
hyperparameter study over λ is demonstrated in Fig. 4 under
the settings with ACM → DBLP and DBLP → ACM. The
specific values of these hyperparameters and some baselines

0.0 0.2 0.4 0.6 0.8 1.0
50

55

60

65

70

75

ta
rg

et
_a

cc
ur

ac
y

StruRW_Mix
StruRW_Adv
StruRW_ERM

0.0 0.2 0.4 0.6 0.8 1.0

64

65

66

67

68

69

ta
rg

et
_a

cc
ur

ac
y

StruRW_Mix
StruRW_Adv
StruRW_ERM

Figure 4: The hyperparameter study of λ for three StruRW
models over the datasets ACM→DBLP and DBLP→ACM.

hyperparameters are reported in Appendix E.

6. Conclusion
This work studies graph domain adaptation for node classifi-
cation problems. We analyze the effects of different types of
distribution shifts in graph-structured data. We have shown
the advantages of the common solution to align last-layer
node representations for GDA while disclosing the issues
of using a shared GNN encoding pipeline to achieve so. We
show that such a limitation can be caused by a newly identi-
fied type of distribution shift, named conditional structural
shift, which widely shows up in practice. To reduce CSS
in the data, we have proposed a new approach StruRW that
asks to reweight the graphs in the source domain during
GNN encoding. Extensive evaluation over synthetic graphs,
real-world graphs, and the pileup-mitigation application in
HEP has demonstrated the effectiveness of StruRW.

Acknowledgement
We greatly thank all the reviewers for their valuable feed-
back and thank Mia Liu for discussing relevant applica-
tions. S. Liu, T. Li, and P. Li are partially supported by
NSF award OAC-2117997. Q.Qiu is partially supported by
NIH. The work of HZ was supported in part by the Defense
Advanced Research Projects Agency (DARPA) under Coop-
erative Agreement Number: HR00112320012, a Facebook
Research Award, and Amazon AWS Cloud Credit. YF and
NT are supported by Fermi Research Alliance, LLC under
Contract No. DE-AC02-07CH11359 with the Department
of Energy (DOE), Office of Science, Office of High Energy
Physics and the DOE Early Career Research Program under
Award No. DE-0000247070.

9

Structural Re-weighting Improves Graph Domain Adaptation

References
Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A.,

Pereira, F., and Vaughan, J. W. A theory of learning
from different domains. Machine learning, 79(1):151–
175, 2010.

Bertolini, D., Harris, P., Low, M., and Tran, N. Pileup per
particle identification. Journal of High Energy Physics,
2014(10):1–22, 2014.

Bojchevski, A. and Günnemann, S. Deep gaussian embed-
ding of graphs: Unsupervised inductive learning via rank-
ing. In International Conference on Learning Represen-
tations, 2018. URL https://openreview.net/
forum?id=r1ZdKJ-0W.

Cai, R., Wu, F., Li, Z., Wei, P., Yi, L., and Zhang, K. Graph
domain adaptation: A generative view. arXiv preprint
arXiv:2106.07482, 2021.

Chen, Y., Zhang, Y., Bian, Y., Yang, H., KAILI, M., Xie, B.,
Liu, T., Han, B., and Cheng, J. Learning causally invariant
representations for out-of-distribution generalization on
graphs. In Advances in Neural Information Processing
Systems.

Cho, H., Berger, B., and Peng, J. Compact integration of
multi-network topology for functional analysis of genes.
Cell systems, 3(6):540–548, 2016.

Deshpande, Y., Sen, S., Montanari, A., and Mossel, E. Con-
textual stochastic block models. Advances in Neural
Information Processing Systems, 31, 2018.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle,
H., Laviolette, F., Marchand, M., and Lempitsky, V.
Domain-adversarial training of neural networks. The
journal of machine learning research, 17(1):2096–2030,
2016.

Gaudelet, T., Day, B., Jamasb, A. R., Soman, J., Regep,
C., Liu, G., Hayter, J. B., Vickers, R., Roberts, C., Tang,
J., et al. Utilizing graph machine learning within drug
discovery and development. Briefings in bioinformatics,
22(6):bbab159, 2021.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International conference on machine learning,
pp. 1263–1272. PMLR, 2017.

Gong, M., Zhang, K., Liu, T., Tao, D., Glymour, C., and
Schölkopf, B. Domain adaptation with conditional trans-
ferable components. In International conference on ma-
chine learning, pp. 2839–2848. PMLR, 2016.

Gui, S., Li, X., Wang, L., and Ji, S. GOOD: A
graph out-of-distribution benchmark. In Thirty-sixth
Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2022. URL https://
openreview.net/forum?id=8hHg-zs_p-h.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. Advances in neural
information processing systems, 30, 2017.

Han, X., Jiang, Z., Liu, N., and Hu, X. G-mixup: Graph
data augmentation for graph classification. In Interna-
tional Conference on Machine Learning, pp. 8230–8248.
PMLR, 2022.

Highfield, R. Large hadron collider: Thirteen ways to
change the world. The Daily Telegraph. London. Re-
trieved, pp. 10–10, 2008.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133,
2020a.

Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande, V.,
and Leskovec, J. Strategies for pre-training graph neu-
ral networks. In International Conference on Learning
Representations, 2020b.

Hu, W., Fey, M., Ren, H., Nakata, M., Dong, Y., and
Leskovec, J. Ogb-lsc: A large-scale challenge for ma-
chine learning on graphs. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2), 2021.

Kipf, T. N. and Welling, M. Semi-supervised classi-
fication with graph convolutional networks. In In-
ternational Conference on Learning Representations,
2017. URL https://openreview.net/forum?
id=SJU4ayYgl.

Komiske, P. T., Metodiev, E. M., Nachman, B., and
Schwartz, M. D. Pileup mitigation with machine learn-
ing (pumml). Journal of High Energy Physics, 2017(12):
1–20, 2017.

Li, H., Zhang, Z., Wang, X., and Zhu, W. Learning invari-
ant graph representations for out-of-distribution general-
ization. In Advances in Neural Information Processing
Systems, 2022a.

Li, K., DeCost, B., Choudhary, K., Greenwood, M., and
Hattrick-Simpers, J. A critical examination of robustness
and generalizability of machine learning prediction of
materials properties. arXiv preprint arXiv:2210.13597,
2022b.

10

https://openreview.net/forum?id=r1ZdKJ-0W
https://openreview.net/forum?id=r1ZdKJ-0W
https://openreview.net/forum?id=8hHg-zs_p-h
https://openreview.net/forum?id=8hHg-zs_p-h
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

Structural Re-weighting Improves Graph Domain Adaptation

Li, T., Liu, S., Feng, Y., Tran, N., Liu, M., and Li, P. Semi-
supervised graph neural network for particle-level noise
removal. In NeurIPS 2021 AI for Science Workshop,
2021. URL https://openreview.net/forum?
id=kTIngiqLU-X.

Li, T., Liu, S., Feng, Y., Paspalaki, G., Tran, N., Liu, M.,
and Li, P. Semi-supervised graph neural networks for
pileup noise removal. The European Physics Journal C,
2022c.

Liu, S., Ying, R., Dong, H., Li, L., Xu, T., Rong, Y., Zhao,
P., Huang, J., and Wu, D. Local augmentation for graph
neural networks. In International Conference on Machine
Learning, pp. 14054–14072. PMLR, 2022.

Liu, Y., Wang, X., Wu, S., and Xiao, Z. Independence
promoted graph disentangled networks. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 34, pp. 4916–4923, 2020.

Long, M., Cao, Y., Wang, J., and Jordan, M. Learning
transferable features with deep adaptation networks. In
International conference on machine learning, pp. 97–
105. PMLR, 2015.

Long, M., Cao, Z., Wang, J., and Jordan, M. I. Condi-
tional adversarial domain adaptation. Advances in neural
information processing systems, 31, 2018.

Ma, J., Cui, P., Kuang, K., Wang, X., and Zhu, W. Disen-
tangled graph convolutional networks. In International
conference on machine learning, pp. 4212–4221. PMLR,
2019.

Martı́nez, J. A., Cerri, O., Spiropulu, M., Vlimant, J., and
Pierini, M. Pileup mitigation at the large hadron collider
with graph neural networks. The European Physical
Journal Plus, 134(7):333, 2019.

Miao, S., Liu, M., and Li, P. Interpretable and generaliz-
able graph learning via stochastic attention mechanism.
In International Conference on Machine Learning, pp.
15524–15543. PMLR, 2022.

Nachman, B. and Shimmin, C. Ai safety for high energy
physics. arXiv preprint arXiv:1910.08606, 2019.

Park, H., Lee, S., Kim, S., Park, J., Jeong, J., Kim, K.-M.,
Ha, J.-W., and Kim, H. J. Metropolis-hastings data aug-
mentation for graph neural networks. Advances in Neural
Information Processing Systems, 34:19010–19020, 2021.

Perloff, A. et al. Pileup measurement and mitigation tech-
niques in cms. In Journal of Physics: Conference Series,
volume 404, pp. 012045. IOP Publishing, 2012.

Qiu, J., Chen, Q., Dong, Y., Zhang, J., Yang, H., Ding, M.,
Wang, K., and Tang, J. Gcc: Graph contrastive coding
for graph neural network pre-training. In Proceedings
of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1150–1160,
2020.

Saito, K., Watanabe, K., Ushiku, Y., and Harada, T. Max-
imum classifier discrepancy for unsupervised domain
adaptation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3723–3732,
2018.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
transactions on neural networks, 20(1):61–80, 2008.

Shlomi, J., Battaglia, P., and Vlimant, J.-R. Graph neural
networks in particle physics. Machine Learning: Science
and Technology, 2(2):021001, 2020.

Suresh, S., Li, P., Hao, C., and Neville, J. Adversarial
graph augmentation to improve graph contrastive learning.
Advances in Neural Information Processing Systems, 34:
15920–15933, 2021.

Tachet des Combes, R., Zhao, H., Wang, Y.-X., and Gordon,
G. J. Domain adaptation with conditional distribution
matching and generalized label shift. Advances in Neural
Information Processing Systems, 33:19276–19289, 2020.

Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., and Su, Z.
Arnetminer: extraction and mining of academic social
networks. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pp. 990–998, 2008.

Verma, V., Qu, M., Kawaguchi, K., Lamb, A., Bengio, Y.,
Kannala, J., and Tang, J. Graphmix: Improved training of
gnns for semi-supervised learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35,
pp. 10024–10032, 2021.

Wang, Y., Chang, Y.-Y., Liu, Y., Leskovec, J., and Li, P.
Inductive representation learning in temporal networks
via causal anonymous walks. In International Conference
on Learning Representations, 2021a.

Wang, Y., Wang, W., Liang, Y., Cai, Y., and Hooi, B. Mixup
for node and graph classification. In Proceedings of the
Web Conference 2021, pp. 3663–3674, 2021b.

Wu, L., Lin, H., Huang, Y., , and Li, S. Z. Knowledge
distillation improves graph structure augmentation for
graph neural networks. Advances in Neural Information
Processing Systems, 2022a.

11

https://openreview.net/forum?id=kTIngiqLU-X
https://openreview.net/forum?id=kTIngiqLU-X

Structural Re-weighting Improves Graph Domain Adaptation

Wu, M., Pan, S., Zhou, C., Chang, X., and Zhu, X. Unsu-
pervised domain adaptive graph convolutional networks.
In Proceedings of The Web Conference 2020, pp. 1457–
1467, 2020.

Wu, Q., Zhang, H., Yan, J., and Wipf, D. Handling distri-
bution shifts on graphs: An invariance perspective. In
International Conference on Learning Representations,
2022b. URL https://openreview.net/forum?
id=FQOC5u-1egI.

Wu, Y., Winston, E., Kaushik, D., and Lipton, Z. Domain
adaptation with asymmetrically-relaxed distribution align-
ment. In International conference on machine learning,
pp. 6872–6881. PMLR, 2019.

Xiao, J., Dai, Q., Xie, X., Dou, Q., Kwok, K.-W., and
Lam, J. Domain adaptive graph infomax via conditional
adversarial networks. IEEE Transactions on Network
Science and Engineering, 2022.

Yang, N., Zeng, K., Wu, Q., Jia, X., and Yan, J. Learning
substructure invariance for out-of-distribution molecu-
lar representations. In Advances in Neural Information
Processing Systems, 2022.

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen,
Y. Graph contrastive learning with augmentations. Ad-
vances in Neural Information Processing Systems, 33:
5812–5823, 2020.

You, Y., Chen, T., Wang, Z., and Shen, Y. Graph domain
adaptation via theory-grounded spectral regularization.
In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.
net/forum?id=OysfLgrk8mk.

Zellinger, W., Grubinger, T., Lughofer, E., Natschläger,
T., and Saminger-Platz, S. Central moment discrepancy
(CMD) for domain-invariant representation learning. In
International Conference on Learning Representations,
2017. URL https://openreview.net/forum?
id=SkB-_mcel.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D.
mixup: Beyond empirical risk minimization. In Interna-
tional Conference on Learning Representations, 2018.

Zhang, K., Schölkopf, B., Muandet, K., and Wang, Z. Do-
main adaptation under target and conditional shift. In
International conference on machine learning, pp. 819–
827. PMLR, 2013.

Zhang, Y., Song, G., Du, L., Yang, S., and Jin, Y. Dane:
Domain adaptive network embedding. In IJCAI Inter-
national Joint Conference on Artificial Intelligence, pp.
4362–4368, 2019.

Zhao, H., Des Combes, R. T., Zhang, K., and Gordon, G. On
learning invariant representations for domain adaptation.
In International Conference on Machine Learning, pp.
7523–7532. PMLR, 2019.

Zhu, Q., Ponomareva, N., Han, J., and Perozzi, B. Shift-
robust gnns: Overcoming the limitations of localized
graph training data. Advances in Neural Information
Processing Systems, 34:27965–27977, 2021a.

Zhu, Q., Yang, C., Xu, Y., Wang, H., Zhang, C., and Han,
J. Transfer learning of graph neural networks with ego-
graph information maximization. Advances in Neural
Information Processing Systems, 34:1766–1779, 2021b.

12

https://openreview.net/forum?id=FQOC5u-1egI
https://openreview.net/forum?id=FQOC5u-1egI
https://openreview.net/forum?id=OysfLgrk8mk
https://openreview.net/forum?id=OysfLgrk8mk
https://openreview.net/forum?id=SkB-_mcel
https://openreview.net/forum?id=SkB-_mcel

Structural Re-weighting Improves Graph Domain Adaptation

A. Derivation of The Error Bound in The Target Domain Eq. (1)

We follow the derivation in (Wu et al., 2019). Let fϕ
U (x) =

∫
x:ϕ(x)=h

fU (x)dPU
X(x). First, we have rU (h, ϕ, g) =∫

x:ϕ(x)=h
|g(h)− fU (x)|dPU

X(x) = |g(h)− fϕ
U (h)| for U ∈ {S, T }. And thus,

rS(h, ϕ, g)− rT (h, ϕ, g) = |g(h)− fϕ
S (h)| − |g(h)− fϕ

T (h)| ≤ |fϕ
S (h)− fϕ

T (h)|. (10)

Therefore, the target error can be bounded as

ϵT (g, ϕ) = ϵT (g, ϕ) + ϵS(g, ϕ)− ϵS(g, ϕ) (11)

= ϵS(g, ϕ) +

∫
x

|g(ϕ(x))− fT (x)|dPT
X(x)−

∫
x

|g(ϕ(x))− fS(x)|dPS
X(x) (12)

= ϵS(g, ϕ) +

∫
h

rT (h, ϕ, g)dPT
ϕ (h)−

∫
h

rS(h, ϕ, g)dPS
ϕ(h) (13)

= ϵS(g, ϕ) +

∫
h

dPT
ϕ (h)(rT (h, ϕ, g)− rS(h, ϕ, g)) +

∫
h

(dPT
ϕ (h)− dPS

ϕ(h))rS(h, ϕ, g) (14)

≤ ϵS(g, ϕ) +

∫
h

dPT
ϕ (h)|rT (h, ϕ, g)− rS(h, ϕ, g)|+

∫
h

|dPT
ϕ (h)− dPS

ϕ(h)|rS(h, ϕ, g) (15)

a)

≤ ϵS(g, ϕ) +

∫
h

dPT
ϕ (h)|f

ϕ
S (h)− fϕ

T (h)|+
∫
h

|dPT
ϕ (h)− dPS

ϕ(h)|rS(h, ϕ, g) (16)

where a) uses Eq. (10).

B. Proof for Proposition 3.2
Proof. The initial node attributes xv, v ∈ V are independently sampled from the conditional distribution PX|Y given the
node labels yv. No matter whether attribute shift PS

X|Y ̸= PT
X|Y exists, our condition is that the transformation ϕ≤0 maps

the attributes xv to h
(0)
v and satisfies PS

ϕ≤0|Y = PT
ϕ≤0|Y . The goal is to prove that if PS

ϕ≤0|Y = PT
ϕ≤0|Y , then the after the

GNN, node representations will reach PS
ϕ = PT

ϕ .

Since the message-passing process at each GNN layer relies on the same adjacency matrix A for neighborhood aggregation,
we can prove this by induction. However, it is hard to prove PS

ϕ≤l|Y = PT
ϕ≤l|Y ⇒ PS

ϕ≤l+1|Y = PT
ϕ≤l+1|Y because h

(l)
v ’s

are not independent. So, we are to consider the joint distribution of {h(l)
v |v ∈ V} and graph structure A given node

labels, i.e., PS
H(l)×A|Y , and prove PS

H(l)×A|Y = PT
H(l)×A|Y ⇒ PS

H(l+1)×A|Y = PT
H(l+1)×A|Y . If this is true, we have

PS
H(L)×A|Y = PT

H(L)×A|Y . By integrating over PU
A|Y , we achieve PS

H(L)|Y = PT
H(L)|Y .

First, when l = 0, since PS
ϕ≤0|Y = PT

ϕ≤0|Y and all h(0)
v ’s are mutually independent. We have PS

H(0)|Y = PT
H(0)|Y. Also,

since there is no structure shift PS
A|Y = PT

A|Y and A and X are independent given Y, we have PS
H(0)×A|Y = PT

H(0)×A|Y

For l > 0, consider the lth layer of GNN that takes h(l)
v , v ∈ V and A as input and follows Eq. (2) as:

h(l+1)
v = UDT(h(l)

v ,AGG({{h(l)
v : u ∈ Nv}})). (17)

which depends on H(l) and A. So, we have PS
H(l+1)×A|Y = PS

H(l+1)|Y,APS
A|Y

a)
= PT

H(l+1)|Y,APS
A|Y = PT

H(l+1)×A|Y . where
a) is due to the induction condition PS

H(l)×A|Y = PT
H(l)×A|Y , which concludes the proof.

C. Proof for Proposition 3.3
Proof. Actually, this proposition is easy to obtain from the perspective of optimization. Since the goal is always with
the constraint PS

ϕ = PT
ϕ , adding an intermediate-layer regularization, say PS

ϕ≤l
= PT

ϕ≤l
, which makes the optimization

13

Structural Re-weighting Improves Graph Domain Adaptation

problem (1) as
min

ϕ>l,ϕ≤l

ϵS(ϕ) s.t. PS
ϕ≤l

= PT
ϕ≤l

,PS
ϕ = PT

ϕ (18)

Comparing the objective function and constraints from Eq. (3) and Eq. (18), we find the same objective but with additional
invariant representation constraints in the intermediate layer of GNN. As for both the constraints on the final layer of
representations are imposed, additional constraints will only restrict the feasible region for GNN parameters to further reduce
the source error. Therefore, Eq. (3) has an optimal solution no worse than Eq. (18) in terms of a lower source classification
error, which ultimately determines the bound in Eq. (3).

D. Proof for Proposition 4.4
Recall that node attributes in both domains follow:

P0(X) =

{
r if X = 0

1− r if X = Missing Value (M.V.)
, P1(X) =

{
r if X = 1

1− r if X = Missing Value (M.V.)
(19)

To classify a node v with M.V. as its attribute, if we use one-layer GNN, the classification essentially reduces to classify the
multi-set Ξv of attributes from its neighbors. Let us analyze this multi-set.

This multi-set Ξv has the following equivalent representation: It contains at most n− 1 elements that have values chosen
from {0, 1,M.V.}. Therefore, Ξv can be represented as a 3-dim vector (c0, c1, c2) where c0, c1, c2 represent the multiplicity
of each type of element 0, 1,M.V. in the multiset and satisfy c1 + c2 + c3 ≤ n − 1. Our analysis is based on analyzing
PU (Ξv = (c0, c1, c2)|Yv) for U ∈ {S, T } and Yv ∈ {0, 1}.

Case 1: Let us first prove that when we use a shared GNN encoder ϕ to impose PS
ϕ = PT

ϕ , ϵT (g, ϕ) ≥ 0.25.

Given a GNN model ϕ and the classifier g, we partition the feature space into the 0-space Ξ0(g, ϕ) = {(c1, c2, c3) :
g ◦ ϕ(c1, c2, c3) = 0, c1 + c2 + c3 ≤ n − 1, ci ∈ Z≥0} and the 1-space Ξ1(g, ϕ) = {(c1, c2, c3) : g ◦ ϕ(c1, c2, c3) =
1, c1 + c2 + c3 ≤ n− 1, ci ∈ Z≥0}.

Recall the CSBM models for source and target domains have structures:

BS =

[
p p
p p− δ

]
,BT =

[
p+ δ p
p p

]
, (20)

We know PS(Ξv|Yv = 0) = PT (Ξv|Yv = 1) because in the source domain, if for v with Yv = 0, the edge probability
between v and any node with label 0 is p, and the edge probability between v and any node with label 1 is also p. In the target
domain, if for v with Yv = 1, the edge probability between v and any node with label 0 is p, and the edge probability between
v and any node with label 1 is also p. Therefore, no matter what ϕ, g are chosen, PS [Ξi(g, ϕ)|Y = 0] = PT [Ξi(g, ϕ)|Y = 1].
Therefore,

1 = PS [Ξ0(g, ϕ)|Y = 0]+PS [Ξ1(g, ϕ)|Y = 0] = PT [Ξ0(g, ϕ)|Y = 1]+PS [Ξ1(g, ϕ)|Y = 0] ≤ 2(ϵT (g, ϕ)+ϵS(g, ϕ)).

The last inequality is because

ϵU (g, ϕ) = PU [Ξ0(g, ϕ)|Y = 1]PU [Y = 1] + PU [Ξ1(g, ϕ)|Y = 0]PU [Y = 0]

≥ 1

2
max{PU [Ξ0(g, ϕ)|Y = 1],PU [Ξ1(g, ϕ)|Y = 0]}.

So, ϵT (g, ϕ) + ϵS(g, ϕ) ≥ 0.5. It is also a reasonable assumption that ϵT (g, ϕ) ≥ ϵS(g, ϕ) in practice. So, we have
ϵT (g, ϕ) ≥ 0.25.

Case 2: Case 1 implies that we should not impose domain invariant distributions via the GNN encoding process shared
across domains. We may prove that if the GNN encoding process ϕ for the target domain can be chosen differently from
that for the source domain, then there is a ϕ ϵT (g, ϕ) → 0 as n → ∞. Here, we assume n is large enough and ignore the
difference between n and n− 1.

14

Structural Re-weighting Improves Graph Domain Adaptation

Given a node v with the multiset feature Ξv = (c0, c1, c2), suppose the GNN encoder ϕ follows ϕ(Ξv) = (c0 − c1)/n.

Recall that we have the following two cases

• If v is from class 0 in the target domain, c1 ∼ Bin(n/2, pr), c0 ∼ Bin(n/2, (p+ δ)r)

• If v is from class 1 in the target domain, c1 ∼ Bin(n/2, pr), c0 ∼ Bin(n/2, pr).

As c1 and c0 are always independent, if v is from class 0 in the target domain, ϕ(Ξv) =
1
n (
∑n/2

i=1 Zi −
∑n/2

i=1 Z
′
i), where

Zi ∼ Bern((p+ δ)r) and Z ′
i ∼ Bern(pr), and all Zi’s and Z ′

i’s are independent. Here, Bern(·) is the Bernoulli distribution.
Therefore, using Hoeffding’s inequality, we have

P (ϕ(Ξv)− E[ϕ(Ξv)] < t) ≤ exp(−nt2

2
) (21)

If pick t = δr
4 , P

(
ϕ(Ξv) < pr + δr

4

)
≤ exp(−nδ2r2

32). Similarly, if v is from class 0 in the target domain, we have
P
(
ϕ(Ξv) > pr + δr

4

)
≤ exp(−nδ2r2

32).

Therefore, by setting the classifier as g(h) = 0 if h > pr + δr
4 or 1 if h < pr + δr

4 . Then, the error rate in the target domain
will be less than 2 exp(−nδ2r2

32), which goes to 0 as n goes to ∞.

E. Supplement for Experiments
E.1. Datasets

E.1.1. DATASET STATISTICS FOR ACM, DBLP, CORA, ARXIV

Below is the summary of our real datasets with the number of nodes, number of edges, node feature dimension and number
of class labels.

Table 5: real dataset statistics

ACM DBLP CORA ARXIV

#NODES 7410 5578 19793 169343
#EDGES 22270 14682 126842 2315598
NODE FEATURE DIMENSION 7537 7537 8710 128
#LABELS 6 6 70 40

E.1.2. DETAILS FOR HEP DATASETS

Next, we detail some statistics and setup for the HEP datasets For our studies, simulated datasets have been generated of
different physical processes under different pileup conditions. In this study, we select four pileup conditions where the
numbers of other interactions (nPU) are 10, 30, 50, 140 respectively, and two hard scattering signal processes, pp → Zνν+
jets and pp → gg jets. Later on, we will shorten as Z(νν) and gg for the two signals.

These HEP datasets for pileup mitigation tasks are node classification tasks but with multiple graphs. Each node represents a
particle and we construct the graph based on a threshold of the relative distance between two particles in the η and ϕ space
as demonstrated in fig. 1. The number of graphs we used for training is 70 and the rest of 30 are left for testing. The number
of labels is 2 for all the datasets and the node feature dimension is 28. Besides, the particles can be split into charged and
neutral where neutral particles do not encode ground truth label information. Under our setting, we choose to encode the
ground truth of charged particles into node features so as to help with classification. The node features then contain the η, pt,
pdgID one hot encoding (feature to indicate the type of particle, like Hadron and Photon), and charged label encoding. The
table below includes some detailed statistics associated with this HEP dataset, which is averaged over a total of 100 graphs.

E.2. Hyperparameter Analysis

In this section, we will introduce our hyperparameter analysis. As mentioned in the experiment section, our StruRW mainly
depends on three hyperparameters to calculate and apply the edge reweighting on the source graphs. The epoch m we plan

15

Structural Re-weighting Improves Graph Domain Adaptation

Table 6: HEP dataset statistics

PU10 gg PU30 gg PU50 gg PU50 Z(νν) PU140 gg PU140 Z(νν)

#NODES 185.17 417.84 619 570.90 1569.04 1602.14
#EDGES 1085.17 3518.43 7169.51 5894.8 42321.71 44070.80
LC/OC RATIO 2.8600 0.2796 0.1650 0.0927 0.0575 0.0347

Table 7: Optimal λ value for each real dataset
DOMAIN SPLITS A → D D → A CORA WORD CORA DEGREE ARXIV TIME1 ARXIV TIME2 ARXIV DEGREE

STRURW-ERM 0.8 1 0.8 0.8 0.1 0.1 0.2
STRURW-ADV 1 0.6 0.1 1 0.1 0.1 0.2
STRURW-MIX 1 0.6 0.6 1 0.1 0.1 0.2

to start calculating the reweighting, the frequency we update the edge weights from the last calculation t, and the degree
we integrate the reweighted message λ with the original message. Based on our hyperparameter tuning process, we found
λ and starting epoch m tend to be important factors that impact our reweighting performance. We may want to start the
reweighting early and with low lambda to rely more on the reweighted information when the CSS shift is large and has more
room for improvements. Regarding the case with small CSS, we set larger λ and update with low frequency.

Other important hyperparameters are associated with the coefficient α for the gradient reversal layer in the adversarial
training pipeline StruRW-Adv. The two hyperparameters we can tune are the scale added in front of α and the max value
that α can take when propagating the reverse gradients. It generally helps with the stability of adversarial training.

Model Architecture Our backbone model is based on GCN (Kipf & Welling, 2017) and for all the baselines. For the DBLP
and ACM datasets, we follow the hidden dimension used in the original (Wu et al., 2020) paper two layers of GNN with
hidden dimension 128, encode the embeddings into 16 and followed by the classifier with hidden dimension 40. Both the
Arxiv and Cora datasets use 300 hidden dimensions with 2 GNN layers. The HEP datasets use hidden dimension 50 and
CSBM adopts hidden dimension 20.

learning rate and epochs We select some space to tune the learning rate, where the models mostly take the learning rate as
0.007, 0.004, and 0.001. The adversarial-based model will prefer a learning rate of 0.007 and mixup-based models will
prefer a learning rate of 0.001 and 0.004. For the adversarial-based training model DANN and StruRW-Adv, we set the
epochs to be 300 and for the mixup model, we will take the epochs to be 200.

GRL coefficient α This value will scale the gradient when we propagate the gradient back. The original calculation is
based on the epochs where α is equal to the current epoch divided by the total epochs. Also, it can follow the calculation
implemented in DANN (Ganin et al., 2016). Here we add two additional hyperparameters to tune this α for more stable
performance. One is a constant that is multiplied in front of this alpha The search space we set for this parameter is mainly
{1, 1.5, 2}. The other is the max value this α can take, with search space {0.1, 0.5, 1}.

starting epoch m and the StruRW time period t The starting epoch means that we will start imposing edge weights on
the source graph after epoch m and the StruRW freq means we update the edge weights calculated every t epochs. However,
note that in the middle of the t epochs, we will still keep the edge weights calculated from the last time until a new update.
The search space for m is {100, 150, 200, 250} for experiments with 300 epochs and {50, 100, 150} for epoch 200 trainings.
The search space for t is {1, 5, 10, 15}, we found this parameter does not affect the performance as much as the starting
epoch. For the experiment that already has good ERM results with smaller shift like Cora, we tend to start later. For the
cases where the effect of StruRW is significant, it generally starts early at epoch 50.

λ in StruRW This is a ratio to guide message aggregation, 0 stands for the case that completely adopts the reweighted
message and 1 corresponds to the GNN original message. It is discussed in the paper’s main text and in Fig.4 that we choose
large λ when CSS is large and small λ when CSS is small. The specific λ for each different dataset is shown in Table 7.

Baseline hyperparameters For the baseline models, we use the same GNN backbone and the same model architecture as
discussed above. The baseline DANN, ERM and Mixup share the same set of hyperparameters as StruRW-Adv, StruRW-
ERM and StruRW-Mix respectively. For the UDAGCN baseline, we keep the original set of hyperparameters published in
their work. For EERM baselines, I kept the original setting suggested in their paper.

16

