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Abstract

Deep graph clustering, which aims to group the
nodes of a graph into disjoint clusters with deep
neural networks, has achieved promising progress
in recent years. However, the existing methods
fail to scale to the large graph with million nodes.
To solve this problem, a scalable deep graph clus-
tering method (Dink-Net) is proposed with the
idea of dilation and shrink. Firstly, by discrim-
inating nodes, whether being corrupted by aug-
mentations, representations are learned in a self-
supervised manner. Meanwhile, the cluster cen-
ters are initialized as learnable neural parameters.
Subsequently, the clustering distribution is opti-
mized by minimizing the proposed cluster dila-
tion loss and cluster shrink loss in an adversarial
manner. By these settings, we unify the two-step
clustering, i.e., representation learning and cluster-
ing optimization, into an end-to-end framework,
guiding the network to learn clustering-friendly
features. Besides, Dink-Net scales well to large
graphs since the designed loss functions adopt the
mini-batch data to optimize the clustering distri-
bution even without performance drops. Both ex-
perimental results and theoretical analyses demon-
strate the superiority of our method. Compared
to the runner-up, Dink-Net achieves 9.62% NMI
improvement on the ogbn-papers100M dataset
with 111 million nodes and 1.6 billion edges. The
source code is released: Dink-NetI. Besides, a
collection (papers, codes, and datasets) of deep
graph clustering is shared on GitHubII.
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1. Introduction
Attribute graph clustering, which aims to separate the nodes
in an attribute graph into different groups, has become a fast-
growing research direction in recent years. As a pure unsu-
pervised mission, promising achievements are made by mod-
els based on deep neural networks, especially graph neural
networks (GNN) (Kipf & Welling, 2017; 2016; Veličković
et al., 2018). Multiple models are proposed (Wang et al.,
2017; Hassani & Khasahmadi, 2020; Peng et al., 2021; Liu
et al., 2022b; Gong et al., 2022; Devvrit et al., 2022), which
generally first embed nodes into the hidden space and then
perform clustering algorithms on them. Although proven
effective, most existing models in such a manner suffer
from scalability issues, i.e., poor scalability on large graphs.
Such a problem is one of the most critical challenging tasks
in deep graph clustering (Liu et al., 2022c), and our work
attempts to seek a breakthrough according to it.

Based on our observations, there are three main reasons for
the poor scalability of existing models on large graphs with
millions of nodes. Firstly, some methods (Cui et al., 2020;
Hassani & Khasahmadi, 2020; Liu et al., 2022b; Gong et al.,
2022) need to process the N ⇥N dense graph diffusion ma-
trix (Klicpera et al., 2019), where N is the number of nodes.
Secondly, unlike other tasks like node classification or link
prediction, clustering requires the method to estimate the
whole sample distribution at once. Therefore, when the node
number grows to a considerable value, e.g., 100 million, it
easily leads to out-of-memory failure or long-running time
problems. Thirdly, current attempts for this problem, such
as S3GC (Devvrit et al., 2022), usually separate the opti-
mization of representation learning and clustering, leading
to sub-optimal performance.

To solve this problem, we present a scalable deep graph clus-
tering method termed dilation shrink network (Dink-Net).
The guidance idea is motivated by the dilation and shrink of
many galaxies in the universe. Concretely, it mainly consists
of the node discriminate module and the neural clustering
module. At first, in the node discriminate module, node rep-
resentations are learned by telling apart the original samples
and augmented samples. After the pre-training, the cluster
centers are initialized and assigned as optimizable neural
parameters with gradients. Additionally, at fine-tuning stage,
the neural clustering module optimizes the clustering dis-
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tribution by minimizing the proposed dilation and shrink
loss functions. Concretely, in an adversarial manner, the
dilation loss attempts to expand clustering distribution by
pushing away different clusters, while the shrink loss aims
to compress the clustering distribution by pulling samples
back to cluster centers.

With the above designs, Dink-Net learns the clustering-
friendly representations via unifying the representation
learning and clustering optimization into an end-to-end
framework. In addition, the proposed loss functions ef-
fectively optimize clustering distribution on mini-batch data.
Therefore, it endows the scalability of our method without
performance drops. Notably, Dink-Net is scaled on a large
graph like ogbn-papers100M with 111 million nodes and
1.6 billion edges. The main contributions are summarized
as follows.

• A scalable deep graph clustering method named dila-
tion shrink network (Dink-Net) is proposed to expand
the deep graph clustering to large-scale graphs.

• We are the first to optimize the clustering distribution
via the designed dilation and shrink loss functions in
an adversarial manner. The method only relies on the
mini-batch data, thus, endowing promising scalability.

• We unify the representation learning and clustering op-
timization procedures into an end-to-end framework
for better clustering-friendly features, leading to supe-
rior clustering performance.

• Both experimental results and theoretical analyses are
provided to verify the capability of Dink-Net from six
aspects, i.e., superiority, effectiveness, scalability, effi-
ciency, sensitivity, and convergence.

2. Related Work
2.1. Deep Graph Clustering

Graph Neural Networks (Kipf & Welling, 2017; Veličković
et al., 2018; Kipf & Welling, 2016; Liu et al., 2022a) become
popular in different graph scenarios (Liang et al., 2022b;a;
Meng et al., 2023; Liang et al., 2023b; Liu et al., 2023a;
Liang et al., 2023a). Among these, attribute graph clustering
is a fundamental yet challenging task to separate the nodes
in the attribute graph into different clusters without human
annotations.

The early methods (Tian et al., 2014; Cao et al., 2016) adopt
auto-encoders to learn node embeddings and then perform
K-Means on them. Subsequently, motivated by the suc-
cess of graph neural networks (GNNs) (Kipf & Welling,
2016; 2017), MGAE (Wang et al., 2017) is proposed to
encode nodes with graph-auto-encoders and then group the

nodes into clusters with the spectral clustering algorithm.
(Pan et al., 2018) propose ARGA by enforcing the latent
representations to align a prior distribution. To design a
clustering-directed method, they propose a unified frame-
work termed DAEGC (Wang et al., 2019) with the attention-
based graph encoder and clustering alignment loss adopted
in deep clustering methods (Xie et al., 2016). SDCN (Bo
et al., 2020) verifies the effectiveness of integrating struc-
tural and attribute information. Then, to avoid the expensive
costs of spectral clustering, (Bianchi et al., 2020) formulate
a continuous relaxation of the normalized minCUT problem
and optimize the clustering objective with the GNNs. More
recently, the contrastive learning (Mo et al., 2022; 2023;
Zheng et al., 2022a;c) become hot research hot in deep
graph clustering domain (Yang et al., 2023; 2022b;a). Con-
cretely, AGE (Cui et al., 2020) filters the high-frequency
noises in node attributes and then trains the encoder by
adaptively contrasting the positive and negative samples.
MVGRL (Hassani & Khasahmadi, 2020) generates an aug-
mented structural view and contrasts node embeddings from
one view with graph embeddings of another view and vice
versa. Although the effectiveness of the contrastive learning
paradigm is verified, there are still many open technical
problems. Specifically, (Zhao et al., 2021) proposes GDCL
to correct sampling bias in contrastive deep graph clustering.
Moreover, (Liu et al., 2022b;e) design the dual correlation
reduction strategy in the DCRN model to alleviate the rep-
resentation collapse problem. Besides, HSAN (Liu et al.,
2023d) mines the hard sample pairs via the dynamic weight-
ing strategy. And SCGC (Liu et al., 2023c) simplifies the
graph augmentation with parameter-unshared Siamese en-
coders and embedding disturbance. TGC (Liu et al., 2023b)
present a general framework for deep node clustering on
temporal graphs. For more details about deep graph cluster-
ing, refer to the survey paper (Liu et al., 2022c). However,
most previous methods fail to scale to large graphs with
millions of nodes. In order to alleviate this problem, a scal-
able deep graph clustering method termed S3GC (Devvrit
et al., 2022) is proposed by contrastive learning along with
GNNs. Although verifying the effectiveness, they separate
the optimization of representation learning and clustering,
leading to sub-optimal performance. This paper presents a
new scalable method that unifies embedding and clustering
into an end-to-end framework. Therefore, our method not
only scales to the large graphs but also learns the clustering-
friendly representations.

2.2. Salable Graph Neural Network

Graph Neural Networks (GNNs) (Kipf & Welling, 2017;
Veličković et al., 2018) become one of the most effective
tools for learning over graph data. Many scalable GNNs
have been proposed to scale to large graphs in recent years.
For example, GraphSAGE (Hamilton et al., 2017) develops
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a general inductive framework by sampling and aggregating
features from the local neighborhood of the nodes. Fast-
GCN (Chen et al., 2018) avoids the recursive neighborhood
expansion by the layer-wise sampling to nodes in each layer
independently. Additionally, SGC (Wu et al., 2019) decou-
ples the transformation and propagation in GCN (Kipf &
Welling, 2017). Besides, Graphsaint (Zeng et al., 2019) and
Cluster-GCN (Chiang et al., 2019) are proposed to better
maintain graph structure by sub-graph sampling. Moreover,
(Li et al., 2019; 2020; 2021a; Liu et al., 2020) aim to design
a sequence of works to make GCNs deeper. And various
normalization and regularization techniques like DropEdge
(Rong et al., 2019) and ParNorm (Zhao & Akoglu, 2019) are
proposed to avoid over-fitting and over-smoothing. Further-
more, (Bojchevski et al., 2019; 2020; Rossi et al., 2020) at-
tempt to propose more efficient propagation schemes. More
recently, (Zhang et al., 2022) have designed a new efficient
graph convolution via channel-wise scale transformation.
(Zheng et al., 2022b) scale up the graph contrastive learning
by simplifying DGI (Velickovic et al., 2019) and designing
discriminate tasks. Sketch-GNN (Ding et al.) is proposed
by training GNNs atop a few compact sketches of graph
structure and node features. At the same time, (Wu et al.,
2022; Rampášek et al., 2022) propose the scalable graph
transformer model. However, the scalable GNNs for cluster-
ing tasks are few. It is challenging since the clustering task
needs the model to estimate the whole sample distribution
at once. Therefore, this paper aims to extend deep graph
clustering methods to large-scale graphs.

3. Methodology
The methodology of Dink-Net is introduced in this section.
We first define the problem and summary the basic notation.
Then, the challenges of scaling deep graph clustering meth-
ods to large graphs are carefully illustrated. In addition, our
solution to this problem is provided with the reasons.

3.1. Basic Notation

Given an attribute graph G, V = {v1, v2, ...vN} denotes
a set of vertices, and E ✓

�
(x, y)

��(x, y) 2 V 2 denotes a
set of edges between vertices, where each vertex attaches
the corresponding D-dimension attributes. X 2 RN⇥D and
A 2 RN⇥N are defined as the node attribute matrix and
adjacency matrix, separately. Here, N and D denote the
number of vertices and dimension number of the attributes,
respectively. The basic notation table is presented in Table 1
of Appendix.

3.2. Problem Definition

For an attribute graph G, the deep graph clustering algo-
rithm aims to group the vertices into disjoint clusters. Specif-
ically, the self-supervised neural network F embeds the

nodes in G into the latent space as follows.

H = F(G) = F(X,A), (1)

where H 2 RN⇥d denotes the node embeddings and d is
the dimension number of latent features. Here, the self-
supervised network F is trained with the pre-text tasks like
reconstructive task, contrastive task, discriminative task, etc.
In addition to encoding, the clustering method C is designed
to group the nodes into different clusters as follows.

ŷ = C(H,K), (2)

where K is the number of clusters, which can be a hyper-
parameter or a learnable parameter in the clustering method
C. The result ŷ 2 RN is the clustering assignment vector.

Models suitable for large-scale graphs are always the goal
researchers pursue. Unlike node classification and link pre-
diction tasks, performing node clustering on a large-scale
graph is more challenging. To this end, we aim to propose
a method, which can empower the deep graph clustering
algorithms to perform well on large-scale graphs, e.g., the
graph with ⇠111 million nodes and ⇠10 billion edges. The
detailed reasons are analyzed in the following sub-section.

3.3. Challenge Analyses

This section carefully analyzes the challenges of large-scale
deep graph clustering. It begins with the differences be-
tween deep graph clustering and other tasks like node classi-
fication and link prediction. For the node classification task,
instead of processing the whole graph data at once, algo-
rithms can divide data into mini-batches (Li et al., 2014) and
merely classify samples in each mini-batch. Similarly, mod-
els adopt the mini-batch technique for the link prediction
task for the paired nodes and predict the probability of the
links between paired nodes in mini-batches. The mini-batch
technique works because the predictions of each node or
link are relatively independent, and they will not influence
each other at the inference stage. However, in the node
clustering task, the methods need to group all nodes into
disjoint clusters at once. In this process, the cluster assign-
ment of each node will influence each other, and therefore
the mini-batch technique easily fails.

Due to the above concerns, most existing deep graph clus-
tering methods fail to use the mini-batch technique and
process the whole data at once in the clustering process.
Concretely, one class of methods first embeds nodes into the
latent space and then directly performs the traditional clus-
tering algorithm (Hartigan & Wong, 1979; Von Luxburg,
2007) on the learned node representations. We first ana-
lyze the complexity of traditional clustering methods. For
example, the time complexity and space complexity of K-
Means algorithm (Hartigan & Wong, 1979) is O(tNKD)
and O(NK +ND +KD). Here, t, N , K, and D denote
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the iteration times, node number, cluster number, and at-
tribute dimension number, respectively. In addition, the
time complexity and space complexity of spectral clustering
algorithm (Von Luxburg, 2007) is O(N3) and O(N2).

Besides, the above methods separate the embedding and
clustering optimization process, leading to sub-optimal per-
formance. Differently, another class of methods (Wang
et al., 2019; Bo et al., 2020; Liu et al., 2022b) unify the
representation learning and clustering optimization into a
joint framework by minimizing the KL divergence loss (Xie
et al., 2016; Guo et al., 2017) as follows.

minLKL = min
X

i

X

j

Pij log

✓
Pij

Qij

◆
, (3)

where Qij is the original clustering distribution and Pij is
the sharpened clustering distribution. This loss function opti-
mizes the clustering distribution with the whole data. Thus,
the calculation and optimization process is complex and
resource-consuming, leading to O(NKd) time complexity
and O(NK +Nd+Kd) space complexity.

Therefore, when the number of nodes N reaches a consid-
erable value like ⇠111 million on the ogbn-papers100M
dataset, the previous two types of methods lead to unaccept-
able running time and out-of-memory problems. Besides,
some methods (Hassani & Khasahmadi, 2020; Zhao et al.,
2021; Liu et al., 2022b; Gong et al., 2022) need to process
the N ⇥ N dense graph diffusion matrix (Klicpera et al.,
2019), which also hinders the efficiency. To this end, we
develop a scalable end-to-end deep graph clustering method
with the guidance of divide-and-rule.

3.4. Proposed Solution

Through careful analyses in the previous section, we con-
clude that it is challenging to expand existing deep graph
clustering methods to large-scale graphs. To solve this prob-
lem, we propose a scalable end-to-end method named dila-
tion shrink network (Dink-Net) with the idea of dilation and
shrink of galaxies in the universe. Intuitively, our method
optimizes the clustering distribution with the mini-batch
data in an adversarial manner, therefore scaling to the large
graph. Dink-Net mainly comprises the following node dis-
criminate module and neural clustering module.

Node Discriminate Module. Given an attribute graph
G, we first apply the graph data augmentations ⌧ , like at-
tribute disturbance and edge dropout, on the node attribu-
tions X 2 RN⇥D and graph structure A 2 RN⇥N . As
the result, a augmented view graph view G0 is constructed
with X0 and A0. Subsequently, the parameter-share graph
neural network encoder F(·) embeds the nodes of G,G0

to the latent embeddings H,H0
2 RN⇥d. Then, a small

parameter-shared neural network projection head P(·) maps

Algorithm 1 Dilation Shrink Network (Dink-Net)
Input: Attribute graph G; cluster number K; epoch number T, T 0;
learning rate �,�0; batch size B; trade-off parameter ↵.
Output: Predicted cluster-ID ŷ.
1: Initialize model parameters ⇥ in encoder F and projection P ;
2: # Model pre-training stage
3: for epoch = 1, 2, ..., T do
4: Obtain new graph G0 = {X0,A0} via data augmentations;
5: Node encoding: H = F(G), H0 = F(G0);
6: Representation projection: Z = P(H), H0 = P(H0);
7: Node summary: g = Z.sum(1), g0 = Z0.sum(1);
8: Calculate discrimination loss Ldiscri. in Eq. (4);
9: Adam optimizer with learning rate � updates parameters ⇥

by minimizing Ldiscri.;
10: end for
11: # Model fine-tuning stage
12: Initialize the cluster center embeddings C in the K-means++

manner based on the learned node embeddings H;
13: for epoch = 1, 2, ..., T 0 do
14: Generate batched graph data B with shuffle;
15: for GB in B do
16: Node encoding: H = F(GB);
17: Calculate discrimination loss Ldiscri. in Eq. (4);
18: Calculate dilation loss Ldilation in Eq. (5);
19: Calculate shrink loss Lshrink in Eq. (6);
20: Calculate the total loss L in Eq. (7);
21: Adam optimizer with learning rate �0 updates parameters

⇥ and cluster centers C by minimizing L;
22: end for
23: end for
24: # Model inference stage
25: Generate batched graph data B without shuffle;
26: for GB in B do
27: Node encoding: H = F(GB);
28: Predict cluster-ID of batch data ŷB by Eq. (8);
29: end for
30: Concatenate batched cluster-ID and obtain ŷ;
31: Return ŷ

the nodes embeddings into a new latent space, where the
self-supervised learning loss will be applied. It outputs
Z,Z0

2 RN⇥d. After that, our method pools the new node
embeddings into the node summaries g, g0 2 RN⇥1 by the
feature aggregation operation. To train the encoder F(·) and
projection head P(·), a binary cross entropy loss function is
minimized to tell apart the original node and the augmented
node summaries below.

minLdiscri. =min

"
1

N

NX

i=1

✓
1 · log

1

gi
+ 0 · log

1

1� gi

◆
+

1

N

NX

i=1

✓
0 · log

1

g0i
+ 1 · log

1

1� g0i

◆#
=

min
1

N

NX

i=1

✓
log

1

gi
+ log

1

1� g0

◆
.

(4)
where the first term aims to classify the original node sum-
mary embeddings to class 1 and the second term attempt to
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classify the augmented node summary embeddings to an-
other class 0. With this discriminative pre-text task, encoder
F and projection head P are trained to extract discrimina-
tive features. Besides, this discriminate loss is compatible
to batch training techniques on large graphs.

Neural Clustering Module. This module aims to guide our
network to learn clustering-friendly representations. Con-
cretely, based on the learned node representations H, clus-
ter center embeddings C 2 RK⇥d are initialized in the
K-Means++ manner (Hartigan & Wong, 1979), where K
denotes the cluster number. It is worth mentioning that the
cluster center embeddings are assigned as the optimizable
neural parameters with the gradients. Motivated by the dila-
tion and shrink of galaxies in the universe, we design two
loss functions to optimize the clustering distribution jointly.

Firstly, since the universe is expanding, the centers of differ-
ent galaxies are pushed away from each other. Similarly, we
attempt to push away different cluster centers by minimizing
the proposed cluster dilation loss as follows.

minLdilation =

min
�1

(K � 1)K

K�1X

i=0

K�1X

j=0,j 6=i

kCi � Cjk
2
2 ,

(5)

where K denotes the cluster number. This cluster dilation
loss will not bring high time or memory costs even when
the sample number N is large. The idea of dilation loss
comes from the universe expansion theory (Linder, 2003).
The cluster centers are like stars with huge masses, and the
samples are like planets around the cluster centers. The
universe is expanding, and stars are moving apart from each
other. Similarly, our cluster dilation loss pushes the cluster
centers away from each other.

In addition to universe dilation, the galaxy’s center will
pull together the planets with gravity. From this observa-
tion, a cluster shrink loss is designed to optimize clustering
distribution by pulling together samples to cluster centers.
Considering the considerable sample number, our shrink
loss is compatible with using the mini-batch samples. It is
formulated as follows.

minLshrink = min
1

BK

B�1X

i=0

K�1X

j=0

kHi � Cjk
2
2 , (6)

where B denotes the batch size. Also, this objective will not
bring large time or memory cost since it is linear to batch
size B rather than sample number N . For this cluster shrink
loss, if the clustering algorithm was perfect, we should force
the samples close to the nearest cluster center since the
perfect clustering algorithm can group the samples with
the same ground truth into one cluster. However, for the
practical clustering method, this operation easily leads to the

confirmation bias problem (Nickerson, 1998). To alleviate
this problem, a compromise cluster shrink loss is proposed
in Eq. (6). to guide the samples to be close to all cluster
centers. These two intuitive clustering losses optimize the
clustering distribution with mini-batch data in shrink and
dilation manners, thus endowing scalability and sample
discriminative capability of Dink-Net.

The overall workflow of our proposed Dink-Net is demon-
strated in Algorithm 1 and the PyTorch-style pseudo-code
is given in Appendix.E. Detailed implement about Dink-Net
can be found in Appendix.C. Next sub-section explores why
our method works well on large-scale graphs.

3.5. Why Dink-Net Works Well on Large Graph?

By comparing with the existing methods, this section high-
lights the advantages of our proposed method from two
aspects, including model training and model inference.

Model Training. As illustrated in Algorithm 1, the train-
ing process of Dink-Net contains the pre-training and fine-
tuning stages. At the pre-train stage, the encoder F and
the projection head P are optimized by minimizing the dis-
criminate loss Ldiscri. in Eq. (4). For this loss function, the
mini-batch technique can be applied since the discrimination
process of each sample is independent. Therefore, given
embeddings Z,Z0, the time complexity and space complex-
ity of calculating Ldiscri. is O(Bd) and O(Bd), where B, d
denote batch size and dimensions of latent features.

In the fine-tuning procedure, the total loss is formulated
below.

minL = min (Ldilation + Lshrink + ↵Ldiscri.) , (7)

where ↵ is the trade-off hyper-parameter. We analyze the
time and space complexity at this stage as follows. Firstly,
given embeddings, the time and space complexity of calcu-
lating clustering dilation loss Ldilation in Eq. (5) is O(K2d)
and O(Kd), where K denotes the cluster number. Since
the K ⌧ N , Ldilation do not expend too much time and
space resource even when the sample number grows to a
large value. Secondly, the clustering shrink module pulls
together the samples to the cluster centers. Considering
the large sample space, it optimizes the clustering distri-
bution with mini-batch data rather than operating on all
samples. Therefore, in Eq. (6), it only brings O(BKd)
time complexity and O(BK + Bd + Kd) space com-
plexity when given the embeddings. Thirdly, calculating
Ldiscri. takes O(Kd) time complexity and O(Kd) space
complexity. To summarize, at the fine-tune stage, LC takes
O(BKd + K2d + Kd) ! O(BKd + K2d) time and
O(BK + Bd + Kd) space costs given the embeddings.
Referring to Section 3.3, it is obvious that our method’s
time and space costs are much less than that of the exist-
ing methods. We attribute this advantage to our proposed
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cluster dilation and shrink loss functions since they allow
our method to optimizing the clustering distribution with
mini-batch samples even without performance drops. The
experimental evidence can be found in Appendix D.2.

Model Inference. In the model inference process, with
the well-learned cluster center embeddings C 2 RK⇥d, the
assignment of i-th sample can be calculated as follows.

ŷi = argmin
j

kHi � Cjk2, (8)

where ŷ 2 RN denotes the clustering assignment vector.
Note that the inference of our method also can be carried
out in a mini-batch manner. Therefore, when given embed-
dings, the time and space complexity of model inference is
O(BKd) and O(BK +Bd+Kd), where B is batch size.

The above complexity analyses demonstrate time and space
efficiency in theory. Compared with the existing state-of-
the-art methods, the main advantages of our method are
summarized as follows. 1) Dink-Net gets rid of from pro-
cessing N ⇥ N graph diffusion matrix. 2) Our proposed
loss functions allow Dink-Net to optimize the clustering
distribution with mini-batch data even without performance
drops. 3) Dink-Net unifies embedding learning and cluster-
ing optimization, resulting in clustering-friendly representa-
tions. Therefore, this sub-section illustrates that Dink-Net
can scale well to large-scale graphs in theory. The next sec-
tion aims to verify the superiority, effectiveness, scalability,
and efficiency of Dink-Net by extensive experiments.

4. Experiment
In this section, we comprehensively evaluate our proposed
Dink-Net by answering the main questions as follows.

• Q1: Superiority. Does Dink-Net outperforms the ex-
isting state-of-the-art deep graph clustering methods?

• Q2: Effectiveness. Are the proposed node discrimi-
nate and neural clustering modules effective?

• Q3: Scalability. Can the proposed method endow the
deep graph clustering method scale to large graphs?

• Q4: Efficiency. How about the time and memory
efficiency of the proposed method?

• Q5: Sensitivity. What is the performance of the pro-
posed method with different hyper-parameters?

• Q6: Convergence. Will the proposed loss function, as
well as the clustering performance, converge well?

The answers of Q1-Q4 are illustrated in Section 4.2-4.5. In
addition, sensitivity analyses (Q5) and convergence analyses
(Q6) of Dink-Net can be found in Appendix.D.1 and D.2.

4.1. Experimental Setup

4.1.1. ENVIRONMENT

Experimental results are obtained from the server with four
core Intel(R) Xeon(R) Platinum 8358 CPUs @ 2.60GHZ,
one NVIDIA A100 GPU (40G), and the PyTorch platform.

4.1.2. DATASET

To evaluate the node clustering performance, we use
seven attribute graph datasets, including Cora, CiteSeer,
Amazon-Photo, ogbn-arxiv, Reddit, ogbn-products, ogbn-
papers100M (Hu et al., 2020). The node numbers of graphs
range from ⇠3 kilo to ⇠100 million, and the edge numbers
of graphs range from ⇠5 kilo to ⇠1 billion. The statistical
information is summarized in Table 2 of Appendix.

4.1.3. EVALUATION PROTOCOL

To evaluate the clustering methods, the predicted clus-
tering assignment vector is firstly mapped to the ground
truth by the Kuhn-Munkres algorithm (Plummer & Lovász,
1986). Then, the clustering performance is evaluated by
four widely-used metrics (Liu et al., 2022b), including ac-
curacy (ACC), normalized mutual information (NMI), ad-
justed rand index (ARI), and F1-score (F1). All results are
obtained under three runs with different random seeds.

4.1.4. COMPARED BASELINE

To demonstrate the superiority of the proposed method, we
conduct comprehensive experiments to compare our Dink-
Net with a variety of baseline methods. Concretely, the clas-
sical clustering method K-Means (Hartigan & Wong, 1979)
uses the idea of exception maximum to separate samples.
Additionally, the deep clustering methods (Xie et al., 2016;
Guo et al., 2017; Yang et al., 2017; Li et al., 2021b) apply
the deep neural networks to assist clustering. Moreover, the
deep graph clustering methods (Grover & Leskovec, 2016;
Velickovic et al., 2019; Cui et al., 2020; Bianchi et al., 2020;
Hassani & Khasahmadi, 2020; Thakoor et al., 2021; Zhu
et al., 2020; Gong et al., 2022; Liu et al., 2022b; Devvrit
et al., 2022; Wang et al., 2017; 2019; Pan et al., 2019; Bo
et al., 2020; Zhao et al., 2021; Tu et al., 2020; Lee et al.,
2021) utilize graph neural networks to reveal graph structure
and then group nodes into different clusters.

4.2. Superiority

This section answers the question Q1. To illustrate the
superiority of the proposed method, extensive experiments
are carried out to compare Dink-Net with the existing state-
of-the-art methods. Four conclusions are demonstrated by
carefully analyzing the results in Table 1.

1) The performance of the traditional method K-Means
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Dataset Metric K-Means DEC DCN node2vec DGI AGE MinCutPool MVGRL BGRL GRACE ProGCL AGC-DRR DCRN S3GC Ours

Cora

ACC 33.80 46.50 49.38 61.20 72.60 73.50 49.00 76.30 74.20 73.90 57.13 40.62 61.93 74.20 78.10
NMI 14.98 23.54 25.65 44.40 57.10 57.58 41.00 60.80 58.40 57.00 41.02 18.74 45.13 58.80 62.28
ARI 8.60 15.13 21.63 32.90 51.10 50.10 30.80 56.60 53.40 52.70 30.71 14.80 33.15 54.40 61.61
F1 30.26 39.23 43.71 62.10 69.20 69.28 51.80 71.60 69.10 72.50 45.68 31.23 49.50 72.10 72.66

CiteSeer

ACC 39.32 55.89 57.08 42.10 68.60 69.73 53.70 62.83 67.50 63.10 65.92 68.32 69.86 68.80 70.36
NMI 16.94 28.34 27.64 24.00 43.50 44.93 29.50 40.69 42.20 39.90 39.59 43.28 44.86 44.10 45.87
ARI 13.43 28.12 29.31 11.60 44.50 45.31 26.20 34.18 42.80 37.70 36.16 45.34 45.64 44.80 46.96
F1 36.08 52.62 53.80 40.10 64.30 64.45 51.60 59.54 63.10 60.30 57.89 64.82 64.83 64.30 65.96

Amazon-
Photo

ACC 27.22 47.22 48.25 27.58 43.03 75.98 54.67 41.07 66.54 67.66 51.53 76.81 79.94 75.15 81.71
NMI 13.23 37.35 38.76 11.53 33.67 65.38 50.02 30.28 60.11 53.46 39.56 66.54 73.70 59.78 74.36
ARI 5.50 18.59 20.80 4.92 22.15 55.89 34.43 18.77 44.14 42.74 34.18 60.15 63.69 56.13 68.40
F1 23.96 46.71 47.87 21.52 35.17 71.74 53.02 32.88 63.08 60.30 31.97 71.03 73.82 72.85 73.92

ogbn-arXiv

ACC 18.11 21.25 19.91 29.00 31.40

OOM

24.20

OOM

22.70

OOM

29.86

OOM OOM

35.00 43.68
NMI 22.13 25.14 23.81 40.60 41.20 38.00 32.10 37.51 46.30 43.73
ARI 7.43 10.28 8.25 19.00 22.30 13.90 13.00 25.74 27.00 35.22
F1 12.94 15.57 13.06 22.00 23.00 19.80 16.60 21.79 23.00 26.92

ogbn-
products

ACC 18.11 23.79 24.50 35.70 32.00

OOM

25.70

OOM OOM OOM

35.21

OOM OOM

40.20 41.09
NMI 22.13 24.47 21.92 48.90 46.70 43.00 46.59 53.60 50.78
ARI 7.43 9.05 10.96 17.00 17.40 13.00 19.87 23.00 21.08
F1 12.94 13.54 13.95 24.70 19.20 18.00 21.55 25.00 25.15

Reddit

ACC 8.90

OOM OOM

70.90 22.40

OOM - OOM OOM OOM

65.41

OOM OOM

73.60 76.03
NMI 11.40 79.20 30.60 70.48 80.70 78.91
ARI 2.90 64.00 17.00 63.42 74.50 71.34
F1 6.80 55.10 18.30 51.45 56.00 67.95

ogbn-
papers100M

ACC 14.60

OOM OOM

17.50 15.10

OOM OOM OOM OOM OOM OOM OOM OOM

17.30 26.67
NMI 37.33 38.00 41.60 45.30 54.92
ARI 7.54 11.20 9.60 11.00 18.01
F1 10.45 11.10 11.10 11.80 19.48

Table 1. Clustering performance (%) of our method and fourteen state-of-the-art baselines. The bold and underlined values are the best and
the runner-up results. “OOM” indicates that the method raises the out-of-memory failure. “-” denotes that the methods do not converge.

Raw Attribute DEC MVGRL MinCutPool DCRN S3GC Ours

Figure 1. t-SNE visualization of seven methods on the Cora dataset.

is limited. For example, on the Reddit dataset, K-Means
merely achieves 8.90% ACC. The main reason is that it lacks
representation learning, leading to indiscriminate samples.

2) The deep clustering methods DEC (Xie et al., 2016)
and DCN (Yang et al., 2017) achieve an un-promising per-
formance because they merely extract features from node
attributes but ignore the structural information. For example,
on Cora dataset, our method Dink-Net outperforms DEC by
about 38.74% NMI.

3) For the deep graph clustering method, node2vec (Grover
& Leskovec, 2016) merely takes care of the graph struc-
ture and overlooks the node attributes. Besides, the graph
representation learning methods (Velickovic et al., 2019;
Cui et al., 2020; Hassani & Khasahmadi, 2020; Thakoor
et al., 2021; Zhu et al., 2020; Xia et al., 2022) can not op-
timize embedding and clustering in a unified framework.
Therefore, these methods gain the sub-optimal clustering

performance compared to our proposed method. For ex-
ample, on the CiteSeer dataset, compared with BGRL, our
method achieves about 2.86% ACC improvement.

4) Our proposed method outperforms the recent state-of-
the-art deep graph clustering methods. For example, on
the ogbn-papers100M dataset, Dink-Net achieves 9.62%
NMI increment compared to the runner-up method S3GC
(Devvrit et al., 2022). The reason contains two aspects
as follows. Firstly, the discriminate pre-text task in the
representation learning process enhances the discriminative
capability of samples. Secondly, the clustering modules
unify the representation learning and the clustering process,
guiding models to learn clustering-friendly representations.

Moreover, in order to intuitively demonstrate the superiority
of our proposed Dink-Net, we visualize the learned node
representations via the t-SNE algorithm (Van der Maaten
& Hinton, 2008). As shown in Figure 1, we find that our
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Figure 2. Ablation studies of the proposed modules on four
datasets. “(w/o) NDM” denotes Dink-Net without the node dis-
criminate module. “(w/o) NDM” denotes Dink-Net without the
neural clustering module. “Ours” denotes our proposed Dink-Net.

proposed method better reveals cluster structure in the latent
space. Due to the page limitation, the additional experimen-
tal results and analyses are presented in Appendix D.4.

4.3. Effectiveness

The question Q2 is answered in this section. To verify the
effectiveness of the proposed modules, we carefully conduct
ablation studies on four datasets. Specifically, as shown in
Figure 2, our method is denoted as “Ours”. Additionally, our
method without the node discriminate module and without
the neural clustering module is denoted as “(w/o) NDM” and
“(w/o) NCM”, respectively. From the experimental results
in Figure 2, three observations are presented as follows.
1) “(w/o) NDM” can not achieve expected clustering per-
formance since it lacks the strong representation learning
capability of the node discriminate module.

2) The results indicate that “(w/o) NCM” becomes the
runner-up. Although the node discriminate module endows
strong representation capability, it can not learn clustering-
friendly features since the process of embedding, and clus-
tering is detached.

3) Our Dink-Net achieves the best clustering performance
because it unifies representation learning and clustering
optimization to extract clustering-friendly features.

The above results and observations prove the effectiveness
of the node discriminate and neural clustering module in
Dink-Net. Both of them can boost performance.

4.4. Scalability

This section attempts to answer the question Q3. To verify
the scalability of the proposed method, we conduct exper-
iments on seven graph datasets with different scales. For
instance, the Cora dataset contains 2708 nodes, and ogbn-
papers100M contains ⇠111 million nodes. The statistics of
these datasets can be found in Table 2 in Appendix. Table 1
provides the clustering performance on these datasets. From
these results, we have four observations as follows.

1) The traditional clustering method K-Means can complete
the clustering process on seven datasets. However, there are
two drawbacks as follows. Firstly, it fails to achieve promis-
ing performance since it lacks the representation learning
process. For example, on the Reddit dataset our method
outperforms K-Means 67.13% from the aspect of ACC.
Secondly, it takes a long running time on large-scale graph
datasets, e.g., ⇠5 days for papers100M dataset on CPU.

2) The deep clustering methods raise the out-of-memory
failure on the Reddit and ogbn-papers100M datasets. The
main reason for enormous memory costs is that the KL di-
vergence loss (Xie et al., 2016; Guo et al., 2017) estimates
and sharpens the cluster distribution with all samples, lead-
ing to enormous memory costs. Also, they neglect the graph
structure leading to worse performance.

3) The most of deep graph clustering methods easily lead
to the out-of-memory problem because some methods (Has-
sani & Khasahmadi, 2020; Liu et al., 2022b; Gong et al.,
2022) need to process N ⇥N dense graph diffusion matrix,
which is inefficient on time and memory. For the scalable
methods like node2vec (Grover & Leskovec, 2016), DGI
(Velickovic et al., 2019), and S3GC (Devvrit et al., 2022),
they separate the embedding and clustering, leading to sub-
optimal performance.

4) Our proposed Dink-Net scales well to all seven datasets
and achieves promising performances. The reasons and
analyses are demonstrated in Section 3.5.

Through the above observations, we conclude that the exist-
ing methods easily lead to the out-of-memory problem or
the long ruining time problem. But our method can endow
the models with excellent scalability to large-scale graphs.

4.5. Efficiency

This section attempts to answer the question Q4. To verify
the efficiency of Dink-Net, we test the time and memory
costs of various methods on the Cora and ogbn-papers100M
datasets. The main observations (See Table 1 and Table 2 )
and analyses are illustrated.

1) For the time costs, on ogbn-papers100M dataset, the
scalable baselines node2vec(Grover & Leskovec, 2016),
DGI(Velickovic et al., 2019), and S3GC(Devvrit et al., 2022)
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Method Time Complexity (per iteration) Space Complexity Time Cost (s) Memory Cost (MB)

DGI O(ED +Nd2) O(E +Nd+ d2) 19.03 3798
MVGRL O(N2d+Nd2) O(N2 +Nd+ d2) 168.20 9466

S3GC O(NSd2) O(Nd+BSd+ d2) 508.21 1474
Dink-Net (Ours) O(BKd+K2d) O(BK +Bd+Kd) 35.09 1248

Table 2. Time and space analyses of various methods. The experimental GPU memory costs and time costs are obtained on Cora dataset.

run in ⇠24 hours. Differently, our proposed method takes
⇠9 hours for model pre-training and ⇠3 hours for model
fine-tuning. From the theoretical view, at the pre-training
stage, the time complexity of calculating discriminative
loss is O(Bd), which is linear to batch size. Moreover,
at fine-tuning state, calculating the clustering loss takes
O(BKd + K2d + Kd) time complexity, which is also
linear to batch size.

2) For the memory costs on ogbn-papers100M dataset, most
baseline methods raise the out-of-memory problem on 40GB
GPU. But our method takes ⇠20GB GPU memory during
training. In addition, from a theoretical perspective, calcu-
lating discriminative loss and clustering loss take O(Bd)
and O(BK +Bd+Kd) space complexity, which are both
linear to node number in a mini-batch.

These results and analyses demonstrate the efficiency of our
proposed method in both the time and memory aspects. Due
to page limitation, the additional experiments and complex-
ity analyses can be found in Appendix.B.

5. Conclusion
This work aims to scale deep graph clustering to large
graphs. It begins with analyzing the drawbacks of existing
methods. Firstly, part of the method must process a space-
consuming graph diffusion matrix. Secondly, some algo-
rithms must optimize clustering distribution with all nodes,
easily resulting in the out-of-memory problem. Thirdly, the
scalable S3GC achieves sub-optimal performance since it
separates representation and clustering. To solve this prob-
lem, a novel scalable deep graph clustering termed Dink-Net
is proposed under the guidance idea of dilation and shrink.
Our method contains the node discriminate and neural clus-
tering module. With these designs, we unify representa-
tion learning and clustering optimization into an end-to-end
framework, guiding network to learn clustering-friendly fea-
tures. Also, cluster dilation and shrink loss functions allow
our method to optimize clustering distribution with mini-
batch data. Extensive experiments and theoretical analyses
verify the superiority. In the future, it is worth to extending
Dink-Net to heterogeneous graphs (Zheng et al., 2021), het-
erophily graphs(Liu et al., 2022d), knowledge graphs (Liang
et al., 2022a), and molecular graphs (Xia et al., 2023).
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Appendix of “Dink-Net: Neural Clustering on Large Graph”

A. Notations & Datasets
The basic notations are summarized in Table 1. Table 2 lists the statistical information about seven datasets. These datasets
have various scales. For example, CiteSeer has about 3.3K nodes and 4.6K edges, while ogbn-papers100M has about 111M
nodes and 1.6B edges. In addition, the network densities of these graphs are various. Concretely, the density of Cora is
0.07% while the density of Amazon-Photo is 0.25%.

Notation Meaning
G Attribute Graph
N Sample Number
D Attribute Dimension Number
d Latent Feature Dimension Number
F Encoding Network
C Clustering Method

X 2 RN⇥D Attribute Matrix
A 2 RN⇥N Adjacency Matrix
H 2 RN⇥d Node Embedding Matrix
g 2 RN⇥1 Node Summary Vector
C 2 RK⇥d Cluster Center Embedding Matrix
ŷ 2 RN⇥1 Clustering Assignment Vector
y 2 RN⇥1 Sample Label Vector

Table 1. Basic Notations

Dataset Type # Nodes # Edges # Feature Dims # Classes
Cora Attributed Graph 2,708 5,278 1,433 7

CiteSeer Attributed Graph 3,327 4,614 3,703 6
Amazon-Photo Attributed Graph 7,650 119,081 745 8

ogbn-arxiv Attributed Graph 169,343 1,166,243 128 40
Reddit Attributed Graph 232,965 23,213,838 602 41

ogbn-products Attributed Graph 2,449,029 61,859,140 100 47
ogbn-papers100M Attributed Graph 111,059,956 1,615,685,872 128 172

Table 2. The statistical information of seven datasets.

B. Time and Space Analyses
In this section, we analyze and summarize the time and space complexity of the various baseline methods, including spectral
clustering (Von Luxburg, 2007), K-Means (Hartigan & Wong, 1979), DEC (Xie et al., 2016), node2vec (Grover & Leskovec,
2016), DGI (Velickovic et al., 2019), MVGRL (Hassani & Khasahmadi, 2020), GRACE (Zhu et al., 2020), BGRL (Thakoor
et al., 2021), S3GC (Devvrit et al., 2022), and our proposed Dink-Net in Table 3. Here, N denotes the node number in the
graph, B denotes the batch size, K denotes the cluster number, E denotes the edges number of the graph, S denotes the
average degree of the graph, D denotes the dimensions of node attributes, and d denotes the dimensions of latent features.
From these analyses, we find that the complexity of most methods will become unacceptable when the sample number
reaches a tremendous value. Different, our method’s time and memory complexity is linear to the batch size, alleviating the
out-of-memory and long-running time problems. In addition, we also test the memory and time costs of these methods via
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experiments on the Cora dataset. From these experimental results, we find that our proposed Dink-Net also achieves efficient
results even without batch-training techniques on a small dataset. More importantly, Dink-Net is compatible with the
mini-batch training technique even without performance drops. Therefore it scales well with the large graphs. Experimental
evidence can be found in Figure 2.

Method Time Complexity (per iteration) Space Complexity GPU Memory Cost (MB) Time Cost (s)
Spectral Clustering O(N3) O(N2) - 29.31

K-Means O(NKD) O(NK +ND +KD) - 6.01
DEC O(NKd) O(NK +Nd+Kd) 1294 14.59

node2vec O(Bd) O(Nd) - 111.03
DGI O(ED +Nd2) O(E +Nd+ d2) 3798 19.03

MVGRL O(N2d+Nd2) O(N2 +Nd+ d2) 9466 168.20
GRACE O(N2d+ Ed+ d2) O(E +Nd) 1292 44.77
BGRL O(Ed+Nd2) O(E +Nd+ d2) 1258 44.18
S3GC O(NSd2) O(Nd+BSd+ d2) 1474 508.21

Dink-Net O(BKd+K2d) O(BK +Bd+Kd) 1248 35.09

Table 3. Time and space analyses of various methods. The experimental costs are obtained on the Cora dataset. “-” means ruining on CPU.

C. Design Details & Hyper-parameter Settings
In this section, we introduce the design details of our proposed method and summarize the hyper-parameter settings.
Following the existing works (Zheng et al., 2022; Velickovic et al., 2019), for the encoder F , we adopt the graph convolutional
network (GCN) (Kipf & Welling, 2017). Besides, we use multilayer perceptron (MLP) (Pal & Mitra, 1992) as the projector
in Dink-Net. Next, we report the hyper-parameter settings of our method in Table 4. Here, T is the epoch number of
pre-training, T 0 is the epoch number of fine-tuning, � is the learning rate of pre-training, �0 is the learning rate of fine-tuning,
↵ is the trade-off parameter, B is the batch size, and d is the dimension number of latent features.

T � T 0 �0 ↵ B d

Cora 200 1e-3 200 1e-2 1e-10 - 512
CiteSeer 100 5e-4 200 1e-2 1e-10 - 1536

Amazon-Photo 2000 5e-4 100 1e-2 1e-10 - 512
ogbn-arXiv 1 1e-4 100 1e-4 1e-10 8192 1500

ogbn-products 10 1e-3 10 1e-2 1e-10 8192 1024
Reddit 10 1e-4 1 1e-5 1e-10 10240 512

ogbn-papers100M 1 1e-4 1 1e-5 1e-10 10240 256

Table 4. Hyper-parameter settings of our proposed method. “-” denotes that it does not use mini-batch training.

D. Additional Experimental Result
D.1. Compare Experiment

Due to the limited regular paper pages, the additional compare experimental results are demonstrated in Table 5. We further
compare our proposed Dink-Net with the nine baselines, including IDEC (Guo et al., 2017), AdaGAE(Li et al., 2021),
MGAE (Wang et al., 2017), DAEGC (Wang et al., 2019), ARGA (Pan et al., 2019), DMoN (Tsitsulin et al., 2020), SDCN
(Bo et al., 2020), GDCL (Zhao et al., 2021), and DFCN (Tu et al., 2020). These additional experimental results further
verify the superiority and scalability of our proposed Dink-Net.

D.2. Sensitivity Analyses

This section aims to answer Q5: Is the performance of the proposed method sensitive to hyper-parameters? This section
analyzes the sensitivity of our proposed Dink-Net. Firstly, we analyze the trade-off parameter ↵ on Cora and CiteSeer
datasets. As shown in Figure 2 (a) and Figure 2(b), we find that our Dink-Net can achieve good performance with different
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Dataset Metric IDEC AdaGAE MGAE DAEGC ARGA DMoN SDCN GDCL DFCN Ours

Cora

ACC 51.61 50.06 43.38 70.43 71.04 51.70 35.60 70.83 36.33 78.10
NMI 26.31 32.19 28.78 52.89 51.06 47.30 14.28 56.60 19.36 62.28
ARI 22.07 28.25 16.43 49.63 47.71 30.10 7.78 48.05 4.67 61.61
F1 47.17 53.53 33.48 68.27 69.27 57.40 24.37 52.88 26.16 72.66

CiteSeer

ACC 60.49 54.01 61.35 64.54 61.07 38.50 65.96 66.39 69.50 70.36
NMI 27.17 27.79 34.63 36.41 34.40 30.30 38.71 39.52 43.90 45.87
ARI 25.70 24.19 33.55 37.78 34.32 20.00 40.17 41.07 45.50 46.96
F1 61.62 51.11 57.36 62.20 58.23 43.70 63.62 61.12 64.30 65.96

Amazon-Photo

ACC 47.62 67.70 71.57 75.96 69.28 24.77 53.44 43.75 76.82 81.71
NMI 37.83 55.96 62.13 65.25 58.36 7.69 44.85 37.32 66.23 74.36
ARI 19.24 46.20 48.82 58.12 44.18 3.81 31.21 21.57 58.28 68.40
F1 47.20 62.95 68.08 69.87 64.30 17.98 50.66 38.37 71.25 73.51

ogbn-arXiv

ACC 22.67

OOM OOM OOM OOM

25.00

OOM OOM OOM

43.68
NMI 27.54 35.60 43.73
ARI 12.15 12.70 35.22
F1 17.58 19.00 26.92

ogbn-products

ACC 20.53

OOM OOM OOM OOM

30.40

OOM OOM OOM

41.09
NMI 22.15 42.80 50.78
ARI 9.87 13.90 21.08
F1 12.48 21.00 25.15

Reddit

ACC

OOM OOM OOM OOM OOM

52.90

OOM OOM OOM

76.03
NMI 62.80 78.91
ARI 50.20 71.34
F1 26.00 67.95

ogbn-papers100M

ACC

OOM OOM OOM OOM OOM OOM OOM OOM OOM

26.67
NMI 54.92
ARI 18.01
F1 19.48

Table 5. Clustering performance (%) of our method and nine state-of-the-art baselines. The bold values are the best results. “OOM”
indicates that the method raise the out-of-memory failure.

Raw Attribute DEC MVGRL MinCutPool DCRN S3GC Ours

Figure 1. t-SNE visualization of seven methods on Cora dataset.

values of ↵. Therefore it is not sensitive to ↵. Secondly, we analyze another important hyper-parameter batch size B on the
ogbn-papers100M dataset. As shown in Figure 2 (c), we find that the performance of Dink-Net is not sensitive to batch size
B, therefore our proposed loss functions allow our method to optimizing clustering distribution with mini-batch data even
without performance drops. Besides, training model with a larger batch size will bring some extent of ACC improvement.

D.3. Convergence Analyses

This section aims to answer Q6: Can the proposed loss functions and the clustering performance converge well? To
verify the convergence of our proposed Dink-Net, we conduct experiments on two datasets, including Cora and CiteSeer.
Specifically, as shown in Figure 3, the NMI and loss values are recorded per epoch in the training process. From these
experimental results, we observe that the loss values gradually decrease and tend to converge. Meanwhile, the clustering
performance NMI increases. Therefore, our proposed method converges well.
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(b) trade-off parameter ↵ on CiteSeer
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Figure 2. Sensitivity analyses of hyper-parameters.
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Figure 3. Convergence analyses on the Cora and CiteSeer datasets.

E. PyTorch-style Pseudo Code
We give the PyTorch-style pseudo code of our proposed Dink-Net in Code 1. The source codes are released on GitHub
platform: https://github.com/yueliu1999/Dink-Net.

F. Open Resource Supports
F.1. Awesome Deep Graph Clustering

This paper is supported by the Awesome Deep Graph Clustering 1 project at GitHub. Awesome Deep Graph Clustering
project summarize a comprehensive collection of the state-of-the art deep graph clustering methods, including papers, codes,
and datasets. In addition, based on this GitHub project, we make a comprehensive survey about deep graph clustering (Liu
et al., 2022). Firstly, we give the formulaic definition of deep graph clustering and introduce the milestone baselines in this
field. Secondly, the taxonomy of deep graph clustering methods is presented based on four different criteria, including graph
type, network architecture, learning paradigm, and clustering method. Thirdly, we carefully analyze the existing methods
via extensive experiments and summarize the challenges and opportunities from five perspectives. Besides, the applications
of deep graph clustering methods in four domains are presented. We hope this work can serve as a quick guide and help
researchers to overcome challenges in this vibrant field.

F.2. A Unified Framework of Deep Graph Clustering

In addition, this paper is supported by a unified framework of deep graph clustering2 on GitHub. This GitHub project
provides a practical unified framework of deep graph clustering methods. Concretely, it refactored the codes of recent
state-of-the-art deep graph clustering methods to make them achieve a higher level of unification. The architecture of these
codes is redesigned so that the researchers can run the open-source code efficiently. In addition, the defined tool classes and

1https://github.com/yueliu1999/Awesome-Deep-Graph-Clustering
2https://github.com/Marigoldwu/A-Unified-Framework-for-Deep-Attribute-Graph-Clustering
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functions simplify the code and clarify the settings’ configuration.

G. URLs of Used Datasets
This section gives the URLs of the used benchmark datasets in Table 2.

• Cora: https://docs.dgl.ai/#CoraGraphDataset

• CiteSeer: https://docs.dgl.ai/#dgl.data.CiteseerGraphDataset

• Amazon-Photo: https://docs.dgl.ai/#dgl.data.AmazonCoBuyPhotoDataset

• ogbn-arxiv: https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv

• Reddit: https://docs.dgl.ai/#dgl.data.RedditDataset

• ogbn-products: https://ogb.stanford.edu/docs/nodeprop/#ogbn-products

• ogbn-papers100M: https://ogb.stanford.edu/docs/nodeprop/#ogbn-papers100M
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Thakoor, S., Tallec, C., Azar, M. G., Munos, R., Veličković, P., and Valko, M. Bootstrapped representation learning on
graphs. In ICLR 2021 Workshop on Geometrical and Topological Representation Learning, 2021.

Tsitsulin, A., Palowitch, J., Perozzi, B., and Müller, E. Graph clustering with graph neural networks. arXiv preprint
arXiv:2006.16904, 2020.

Tu, W., Zhou, S., Liu, X., Guo, X., Cai, Z., Cheng, J., et al. Deep fusion clustering network. arXiv preprint arXiv:2012.09600,
2020.
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Algorithm 1 PyTorch-style Pseudo Code of Dink-Net.
1 # G: attribute graph

2 # F: GNN encoder

3 # P: MLP projector

4 # discriminate_loss: loss in Eq. (4)

5 # dilation_loss: loss in Eq. (5)

6 # shrink_loss: loss in Eq. (6)

7 # K_Means_plus_plus: initialization of K-Means++

8 # alpha: trade-off parameter

9
10 # Model Pre-training Stage

11 pre_optimizer = Adam(lr=pretrain_lr, parameter=Dink_net.parameters())

12 for epoch in range(pretrain_epochs):

13 sub_G_list = sub_graph_sampling(G)

14 # batch training

15 for sub_G in sub_G_list:

16 sub_G_augmented = data_augmentation(sub_G)

17 H = F(sub_G)

18 H_ = F(sub_G_augmented)

19 Z = P(H)

20 Z_ = P(H_)

21 dis_loss = discriminate_loss(Z.sum(-1), Z_.sum(-1))

22 pre_optimizer.zero_grad()

23 dis_loss.backward()

24 pre_optimizer.step()

25 H_all = F(G)

26 C = K_Means_plus_plus(H_all)

27
28 # Model Fine-tuning Stage

29 fine_optimizer = Adam(lr=finetune_lr, parameter=Dink_net.parameters())

30 for epoch in range(finetune_epochs):

31 sub_G_list = sub_graph_sampling(G)

32 # batch training

33 for sub_G in sub_G_list:

34 sub_G_augmented = data_augmentation(sub_G)

35 H = F(sub_G)

36 H_ = F(sub_G_augmented)

37 Z = P(H)

38 Z_ = P(H_)

39 dis_loss = discriminate_loss(Z.sum(-1), Z_.sum(-1))

40 dil_loss = dilation_loss(H, C)

41 shr_loss = shrink_loss(H, C)

42 total_loss = dil_loss + shr_loss + alpha * dis_loss

43 fine_optimizer.zero_grad()

44 total_loss.backward()

45 fine_optimizer.step()

46
47 # Model Inference Stage

48 y_hat = []

49 sub_G_list = sub_graph_sampling(G)

50 for sub_G in sub_G_list:

51 H = F(sub_G)

52 y_hat_batch = argmin(distance(H, C))

53 y_hat.append(y_hat_batch)

54 return y_hat
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