
Graph Switching Dynamical Systems

Yongtuo Liu 1 Sara Magliacane 1 2 Miltiadis Kofinas 1 Efstratios Gavves 1

Abstract

Dynamical systems with complex behaviours, e.g.
immune system cells interacting with a pathogen,
are commonly modelled by splitting the behaviour
into different regimes, or modes, each with sim-
pler dynamics, and then learning the switching
behaviour from one mode to another. Switch-
ing Dynamical Systems (SDS) are a powerful
tool that automatically discovers these modes and
mode-switching behaviour from time series data.
While effective, these methods focus on indepen-
dent objects, where the modes of one object are
independent of the modes of the other objects.
In this paper, we focus on the more general in-
teracting object setting for switching dynamical
systems, where the per-object dynamics also de-
pends on an unknown and dynamically changing
subset of other objects and their modes. To this
end, we propose a novel graph-based approach
for switching dynamical systems, GRAph Switch-
ing dynamical Systems (GRASS), in which we
use a dynamic graph to characterize interactions
between objects and learn both intra-object and
inter-object mode-switching behaviour. We in-
troduce two new datasets for this setting, a syn-
thesized ODE-driven particles dataset and a real-
world Salsa Couple Dancing dataset. Experiments
show that GRASS can consistently outperforms
previous state-of-the-art methods.

1. Introduction
Complex time series are pervasive both in daily life and
scientific research, usually consisting of sophisticated
behaviours and interactions between entities or objects
(Pavlovic et al., 2000; Shi et al., 2021). Consider for exam-
ple emotion contagion in a crowd and how it might affect the
crowd dynamics (Xu et al., 2021), or the differentiation of T

1University of Amsterdam 2MIT-IBM Watson AI Lab. Corre-
spondence to: Yongtuo Liu <y.liu6@uva.nl>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

cells, a crucial type of immune cell, into different subtypes
with different roles after interacting with certain pathogens.

A common way of modelling complex behaviour, e.g. rep-
resented by a discontinuous function, is by considering it
as a sequence of simpler modes, e.g. represented by a set
of smooth functions. For example, the behaviour of a ball
bouncing on the floor can be represented by two simple
modes of falling and bouncing back. In many cases, the
challenge is to identify the mode at each time point based on
observations. The state-of-the-art approaches for this task
are Switching Linear Dynamical Systems (SLDS) (Acker-
son & Fu, 1970; Ghahramani & Hinton, 2000; Oh et al.,
2005) and their non-linear extensions, e.g. Switching Non-
linear Dynamical Systems (SNLDS) (Dong et al., 2020) and
REDSDS (Ansari et al., 2021). While effective, these ap-
proaches either model the mode of a single object, including
modelling different objects as a “super object” (Dong et al.,
2020; Glaser et al., 2020), or assume independent objects,
i.e. they model the mode of each object as independent from
the others, e.g. dancing bees in (Ansari et al., 2021).

In this paper, we focus on the more general setting in which
there are multiple interacting objects, and in which the
mode of an object can be influenced by the mode of the
other objects. This is a more realistic setting for mod-
elling many real-world systems, from crowds of people,
to groups of immune cells and swarms. For this setting, we
propose GRAph Switching dynamical Systems (GRASS)
(described at high level in Fig. 1), a framework that learns a
dynamic graph to model interactions between objects and
their modes across time, and can be combined with previ-
ously developed independent-objects switching dynamical
systems methods. To evaluate this new setting, we also
propose two new datasets for benchmarking interacting ob-
ject systems: a synthetic ODE-driven Particle dataset, and a
Salsa Couple Dancing dataset, inspired by real-world bench-
marks (Dong et al., 2020). Experiments show that GRASS
outperforms the baselines and identifies mode-switching
behaviors with higher accuracy and fewer switching errors.

2. Multi Object Switching Dynamical Systems
We start from a collection of time series of observations
y := y1:N

1:T for T time steps and N objects. The N objects
move and their motions can be categorized to one out of K

1

Graph Switching Dynamical Systems

Object 1

... ...

Object 2

Object 3

TIME

mode 1 mode 2 mode 3

switching dynamics switching dynamics

Observations

Interaction
graph

...

Figure 1. Illustration of Graph Switching Dynamical Systems (GRASS). As opposed to independent objects Switching Dynamical Systems,
where objects are processed independently, Graph Switching Dynamical Systems discover modes and mode-switching behaviours that
can depend on object interactions. Interactions are modelled by a latent dynamic graph, which is inferred jointly with the other variables
by maximizing the evidence lower bound. Activated interaction edges and mode switching are highlighted with red arrows, while inactive
edges (no interactions) are visualized with grayed-out dashed lines in the interaction graph at each timestep.

possible modes. For instance, an object might be moving
in a spiral trajectory (mode 1) or it might bouncing on a
wall (mode 2). The N objects interact with each other, and
their motions change according to these interactions. For
instance, after a collision, an object might switch from a
spiral to a sinusoidal motion. The dynamics of these objects
are governed by three types of variables: mode variables,
count variables and state variables. Mode variables are
categorical variables z := z1:N1:T = {z1t , . . . , zNt }Tt=1, where
znt ∈ {0, . . . ,K − 1} denotes the mode for each time step
t ∈ (1, . . . , T) and for each object n ∈ (1, . . . , N). For
instance, zn=2

t=10 = 3 and zn=5
t=10 = 4 mean that, at time

step 10, the second object moves according to the third dy-
namic mode (for instance a spiral trajectory), while the fifth
object moves according to the fourth dynamic mode (for
instance a sinusoidal trajectory). Count variables are cate-
gorical variables c := c1:N1:T = {c1t , . . . , cNt }Tt=1, where each
cnt ∈ (1, . . . ,M) explicitly models the durations between
switching modes for each object n and each timestep t and
M is the maximum number of steps before a switch. These
variables help us avoid frequent mode switching, caused
by the fact that durations typically follow a geometric dis-
tribution, biasing unfavourably towards shorter durations
(Ansari et al., 2021). State variables are continuous vari-
ables x := x1:N

1:T = {x1
t , . . . ,x

N
t }Tt=1, where each xn

t ∈ Rd

encodes the dynamics content per object and time step. For
instance, at time step t, xn

t could encode the position and
velocity of the trajectory of the n-th object.

2.1. Interactions between all objects

We formulate a probabilistic graphical model to describe our
system of multiple interacting objects. We first start with a

formulation in which the modes of each object are affected
by the modes of all other objects. Then, in Section 4.1 we
extend our system within a dynamic graph, with which we
can learn at which time steps there exist interactions and
between which objects as described in Section 3. Assuming
Markovian dynamics and extending the standard Switching
Dynamical Systems (Linderman et al., 2016; Ansari et al.,
2021) paradigm to the case of N objects, we assume the
joint probability distribution is

p(y,x, z, c) =

N∏
n=1

p(yn
1 |xn

1) p(x
n
1 |zn1) p(zn1)︸ ︷︷ ︸

Initial States

·

T∏
t=2

p(z1:Nt |z1:Nt−1,x
1:N
t−1, c

1:N
t)︸ ︷︷ ︸

Interacting Modes

·

N∏
n=1

T∏
t=2

(
p(yn

t |xn
t)p(x

n
t |xn

t−1, z
n
t)p(c

n
t |znt−1, c

n
t−1)

)
︸ ︷︷ ︸

Per−object dynamics

(1)

We start by describing the per-object dynamics. In this
case, we model for each object n an observation probabil-
ity p(yn

t |xn
t), a state transition probability p(xn

t |xn
t−1, z

n
t)

and a count transition probability p(cnt |znt−1, c
n
t−1). The ob-

servation probability p(yn
t |xn

t) models how the continuous
state variables for this object xn

t map into the observations
yn
t . The state transition probability p(xn

t |xn
t−1, z

n
t) models

how the continuous state variables at time t are influenced
by their previous values at time t− 1 conditioned on mode
variable for this object znt . The count transition probability
p(cnt |znt−1, c

n
t−1) models how the count variables at time t

2

Graph Switching Dynamical Systems

depend on their previous values at time t − 1 and on the
mode for this object at the previous time step znt−1. The
initial states have a similar setup, but in this case the state
transition probability does not have an input from the previ-
ous timestep and the count variables are initialized at 1. The
mode transition probability p(z1:Nt |z1:Nt−1,x

1:N
t−1, c

1:N
t) mod-

els how the modes of objects are affected by the modes of all
other objects z1:Nt−1, conditioned on the state variables x1:N

t−1

and count variables c1:Nt . In the absence of any knowledge
on what interactions take place, this probability considers
that all objects may potentially influence all other objects.

In Eq. (1) except for the mode transition probability in the In-
teracting Modes term, all other terms p(yn

1 |xn
1), p(x

n
1 |zn1),

p(zn1), p(yn
t |xn

t), p(xn
t |xn

t−1, znt), p(cnt |znt−1, c
n
t−1) are

factorized per object and thus similar independent-object
dynamical systems treating all N objects independently. We
refer to (Dong et al., 2020; Ansari et al., 2021) for details.

2.2. Learning an amortized transition dynamics

To simplify the modelling of switching dynamics, we as-
sume that current dynamics for each object at time t is
independent from other objects given the complete latent
state at t − 1. By further adopting a mixture representa-
tion for the marginal transition probabilities (Raftery, 1985;
Saul & Jordan, 1999), we assume we can explicitly model
pairwise mode-to-mode and object-to-object effects:

p(z1:Nt |z1:Nt−1,x
1:N
t−1, c

1:N
t)=

N∏
n=1

p(znt |z1:Nt−1,x
1:N
t−1, c

n
t)

=

N∏
n=1

N∑
m=1

wm→n
t p(znt |zmt−1,x

m,n
t−1 , c

n
t), (2)

where xm,n
t−1 = fe(x

m
t−1,x

n
t−1) is a representation that ag-

gregates the continuous states of objects m and n, for in-
stance concatenation and wm→n

t is the local dynamic fac-
tor for objects m and n, which satisfies wm→n

t ≥ 0 and∑N
m=1 w

m→n
t = 1. This mixture assumption implies that

the dynamics of object m at time t depends only on pair-
wise interactions with all other objects n = 1, . . . , N , at
time t − 1, ignoring higher-order interactions. The local
dynamic factors allow dropping interactions between ob-
jects when none exist, since in multi-object systems, objects
often affect one another at sparse points in time and space.

The amortized transition dynamics benefits our modelling,
because they allow us to model a larger number of objects
and their switching dynamics (whether there exist or not)
by simply extending the respective products and sums. In
the next section, we show how we can learn and use these
local dynamic factors to ensure interaction sparsity more
effectively when we learn a dynamic graph.

3. Graph Switching Dynamical Systems
Since our system consists of multiple objects, which may or
may not interact at random points in time, we can model the
system with a dynamic graph Gt = (Vt, Et), whose structure
and information varies across time. The nodes Vt are all
latent variables and observations related to each object m
at time step t, that is vm

t = {zmt ,xm
t ,ym

t , cmt } ∈ Vt. The
edges em→n

t ∈ Et denote whether there is an interaction
between objects m and n at time t, which include self loops,
i.e., em→m

t ∈ Et,∀m ∈ (1, . . . , N).

Embedding the switching dynamical system into a graph
topology, we want messages to be passed between graph
nodes vm and vn via edges to signal interactions between
objects. Since we cannot know when interactions take place,
how do they take place, and between what objects, we set the
latent edge variables to be one-hot vectors of L+ 1 dimen-
sions, em→n

t = [em→n
t,1 , ..., em→n

t,L+1], where em→n
t,l ∈ {0, 1}.

Setting the l-th dimension to 1, em→n
t,l = 1, indicates the l-th

type of interaction is active between objects m and n at time
t, with em→n

t,l=1 = 1 standing for “no interaction”. Further, we
set the prior edge distribution pθ(et) =

∏
m ̸=n pθ(e

m→n
t)

to be a factorized object-to-object uniform distribution over
edge types. We set the prior probability to be higher for “no
interaction” edges, thus encouraging sparse graphs.

We enable two types of messages to be passed via the edges.
First, we want the latent edges to signal whether there is an
interaction between two objects. Thus, for objects m and n
we set the unnormalized local dynamic factor w̃m→n

t to be
the sum of L possible types of interaction:

w̃m→n
t =

L+1∑
l=2

em→n
t,l , wm→n

t =
w̃m→n

t∑N
m=1 w̃

m→n
t

(3)

Note that since the count starts from l = 2 (l = 1 stands for
no interaction), w̃m→n

t sums up to either 0 (no interaction)
or 1. w̃m→n

t is a local influence weight from object m to
object n. For the local dynamic factor, we normalize the
weights over m to get the weighted influence from all m to
n that we use in the interacting modes term of Eq. (2).

We also want the edges to influence how the continuous state
of a pair of objects xm,n

t−1 changes in case of an interaction.
To attain this, rather than simply concatenating features in
xm
t−1 and xn

t−1 in Eq. (2), we use the edges as weights:

xm,n
t−1 =

∑
l

em→n
t,l · f l

e([x
m
t−1,x

n
t−1]), (4)

where f l
e means a function for edge type l that aggregates

continuous states between any object pair into a single repre-
sentation. These L functions represent different interaction
types indexed by the edge type l = 2, . . . , L+ 1, similar to
Kipf et al. (2018). Note that there is no need for a specific
function for the ‘no interaction’ case.

3

Graph Switching Dynamical Systems

(a) Generative Model (b) Inference

Figure 2. (a) Generative model of GRASS. (b) Left: Amortized approximate inference for the continuous states x1:N
t and discrete

edge variable e1:N2

t by inference networks. Temporal dependence is modeled by an intermediate latent embedding h1:N
t which is

given by directional RNNs. Right: Exact inference of discrete mode and count variables z1:Nt and c1:Nt based on the approximate
pseudo-observations and pseudo-interactions x1:N

t and e1:N2

t . Orange circles denote observations or approximate pseudo-observations.

Taking into account the latent edge variables that are part of
our probabilistic model, the joint probability becomes:

p(y,x, z, c, e) =

N∏
n=1

p(yn
1 |xn

1) p(x
n
1 |zn1) p(zn1)︸ ︷︷ ︸

Initial States

·

T∏
t=2

N∏
n=1

N∑
m=1

wm→n
t p(znt |zmt−1,x

m,n
t−1 , c

n
t , e

m→n
t)︸ ︷︷ ︸

Pairwise Interacting Modes

·

N∏
n=1

T∏
t=2

(
p(yn

t |xn
t)p(x

n
t |xn

t−1, z
n
t)p(c

n
t |znt−1, c

n
t−1)

)
︸ ︷︷ ︸

Per−object dynamics

, (5)

The overall generative model and inference stages of
GRASS are detailed in Fig. 2. We show a more detailed
version with the complete factorization in App. A.2.

4. Neural Network Implementation
We use neural networks to model the terms in the joint like-
lihoods of our Switching Dynamical Systems, specifically
of Eq. (1) for the Multiple-Object Switching Dynamical
System (MOSDS) of Section 2, and of Eq. (5) for Graph
Switching Dynamical Systems (GRASS) of Section 3.

Since the mode variables z1:Nt take one out of K possi-
ble values for dynamic modes, we model them as categori-
cal variables, parameterized by transition probabilities Tt.
Specifically, for pairs of objects in our system, we have:

p(znt |znt−1,x
m,n
t−1, c

n
t , e

m→n
t)=

{
δzn

t =zn
t−1

if cnt > 1

Cat(znt ;Tt) if c
n
t = 1

(6)

where we resample the dynamic modes of objects or pre-
serve them via a Kronecker δ function depending on whether
our count variable is reset or not.

For MOSDS, we model the parameters Tt of the categorical
distributions in Eq. (6) with a neural network Tt = fz(x

1:N
t)

that takes as input the continuous states of all objects. In
this case, the neural network returns a NK × NK transi-
tion matrix per time step t, where rows correspond to past
modes z1:Nt−1 and columns correspond to current modes z1:Nt .
The shape of the matrix NK ×NK is because the neural
network must predict in one forward pass the likelihoods
for all possible combinations of (object m, object n, mode
i, mode j). Clearly, such a neural network is prohibitively
expensive as it scales exponentially with the number of ob-
jects N and modes K, and also wasteful to optimize, as it
assumes object pairs do not share any dynamics at all. So
for GRASS, we instead model the parameters Tt in Eq. (6)
with an amortized neural network Tt = f l

z(x
m,n
t−1) that takes

as input only pairs of continuous states (the weights of the
neural network are shared for any pair of objects).

For both MOSDS and GRASS, the neural network fz is
a simple MLP. To satisfy the positivity Tt,i,j > 0 ∀i, j =
1, ...,K and ℓ1 constraints

∑
j Tt,i,j = 1 ∀i = 1, ...,K for

Tt, we apply a tempered softmax on fz , Sτ ◦ fz(·). The
latent edges also take one out of L+ 1 possible values for
different types of interactions. Thus, we model them by an
L+ 1-way categorical distribution as well.

4.1. Inference

Due to the exponential complexity of the state space, ex-
act inference of latent variables in Switching Dynamical
Systems is intractable. Similar to Ansari et al. (2021), we
resort to approximate variational inference with neural net-
works for the continuous latent variable. Furthermore, we
modify the original forward-and-backward algorithm by Yu
(2010) to perform exact inference for the discrete mode and
count variables, as we will detail below. The variational
approximation of the true posterior is p(x, e, z, c |y) ≈

4

Graph Switching Dynamical Systems

q(x, e, z,c |y) = qϕx
(x|y)qϕe

(e|x) pθ(z, c|y,x, e). The
qϕx and qϕe correspond to neural networks for the approxi-
mate inference of the continuous state and discrete edge vari-
ables, respectively, and parameterized accordingly. We now
describe the exact and approximate inference for each vari-
able. To summarize our setup, we provide a flowchat of the
inference algorithm of GRASS in App. A.1. The network
architecture and implementation details are in App. A.2.

Approximate inference of continuous state x. Follow-
ing (Dong et al., 2020; Ansari et al., 2021), we factor-
ize the approximate posterior of x as qϕx(x

1:N
1:T |y1:N

1:T) =∏N
n=1 qϕx

(xn
1:T |yn

1:T). In particular, we first process ob-
servations yn

1:T by a bi-RNN to accumulate temporally
smoothed embedding hn

1:T . Then, we feed the embedding
of the bi-RNN into a causal (i.e. forward uni-directional)
RNN, which outputs the overall posterior distribution
qϕx(x

1:N
1:T |y1:N

1:T) =
∏

n

∏
t qϕx(x

n
t |xn

1:t−1,h
n
1:t−1).

Approximate inference of discrete edge e. Given the
inferred x̃1:N

1:T ∼ qϕx(x
1:N
1:T |y1:N

1:T), we next infer the latent
interaction graph structure of our graph Gt. We use a graph
neural network fϕz

(x̃1:N
1:T), which is potentially fully con-

nected and with self loops, where the node embeddings
are the sampled continuous states x̃m

t . We obtain relational
edge embeddings h2

m→n by two rounds of message passing:

h1
m = f emb

ϕz
(x̃m

t) (7)

v → e : h1
m→n = fe,1

ϕz
([h1

m,h1
n]) (8)

e → v : h2
m = fv,1

ϕz
(

N∑
n=1

h1
n→m) (9)

v → e : h2
m→n = fe,2

ϕz
([h2

m,h2
n]) (10)

Assuming conditional independence between edges
given all the inferred states, the approximate pos-
terior for edge types becomes qϕe

(e1:N
2

1:T |x̃1:N
1:T) =∏

t qϕe
(e1:N

2

t |x̃1:N
1:t) =

∏
t

∏
m,n qϕe

(em→n
t |x̃1:N

1:t) =∏
t

∏
m,n softmax((h2

m→n + g)/τ), where g is a vec-
tor sampled from a Gumbel(0, 1) distribution for the
reparametrization trick and τ is a temperature to control
relaxation smoothness (Maddison et al., 2016).

Exact inference of discrete mode z and count c.
Given the inferred states x̃1:N

1:T ∼ qϕx
(x1:N

1:T |y1:N
1:T)

and edges ẽ1:N
2

1:T ∼ qϕe
(e1:N

2

1:T |x̃1:N
1:T), we do exact

inference of the discrete mode and count variables
pθ(z

1:N
1:T , c1:N1:T |y1:N

1:T , x̃1:N
1:T , ẽ1:N

2

1:T). We modify the forward-
backward algorithm used with hidden Markov mod-
els (Collins, 2013) by introducing the additional continuous
state x̃1:N

1:T and discrete edge ẽ1:N
2

1:T variables, where the

forward part αt and backward part βt are defined as:

αt(zt, ct) = p(y1:t, x̃1:t, ẽ1:t, z1:t, c1:t) (11)
βt(zt, ct) = p(yt+1:T , x̃t+1:T | x̃t, ẽt, zt, ct), (12)

where we drop for clarity superscripts from zt, ct,yt,xt,
and ẽt. We describe the details in App. A.3.3.

4.2. Learning

The overall network is jointly learned by maximizing the
evidence lower bound (Kingma & Welling, 2013),

log pθ(y)−DKL [qϕ(x, z, c, e|y) ∥ pθ(x, z, c, e|y)]
= Eqϕ(x|y) [log pθ(x,y)] +H(qϕ(x|y)) (13)

The joint likelihood p(x,y) is computed by marginalizing
z, c, e from the forward variable αt(zt, ct), and the approxi-
mate posterior distribution q(x|y) is computed by the amor-
tized inference network. The detailed training object of
GRASS is described in App. A.3.

5. Experiments
Most datasets for switching dynamical systems focus on
scenarios with a single object switching dynamics, such
as a one-dimensional bouncing ball, dubins path, a single
dancer in Salsa Dancing from CMU MoCap (Dong et al.,
2020), and a 3 mode system (Ansari et al., 2021). While
there are a few cases with multiple objects, these objects
do not interact with one another. For instance, the dancing
bees by Ansari et al. (2021) are considered a single “super
object” comprising of all objects simultaneously. The two-
dimensional reacher task by Dong et al. (2020) and neural
populations by Glaser et al. (2020) are similarly constructed.

By contrast, we focus on the generalized setting of having
multiple objects that interact with one another, where inter-
acting objects are considered simultaneously and depend-
ing on another with the objective of discovering dynamic
modes and switching behaviours. To evaluate the proposed
methods and compare against baselines, we introduce two
datasets for benchmarking, inspired by the single-object
literature: the synthesized ODE-driven particle dataset, and
the Salsa Couple dancing dataset. The code and datasets are
available at https://github.com/yongtuoliu/Graph-Switching-
Dynamical-Systems..

ODE-driven particle dataset. We introduce three Or-
dinary Differential Equation (ODE) systems as the three
modes to generate time-evolving trajectories of particles,
i.e., Lotka-Volterra, Spiral and Bouncing Ball ODE:

Lotka−Volterra : x′ = x− xy; y′ = −y + xy (14)

Spiral : x′ = −0.1x3 + 2y3; y′ = −2x3 − 0.1y3 (15)
Bouncing Ball : x′ = 0; y′ = 2 (or y′ = −2) (16)

5

https://github.com/yongtuoliu/Graph-Switching-Dynamical-Systems
https://github.com/yongtuoliu/Graph-Switching-Dynamical-Systems

Graph Switching Dynamical Systems

TIME

Figure 3. Visualization of ODE-driven particle dataset. Yellow and blue ball in the third frame switch their equations when they collide.

Figure 4. 3D skeletons in Salsa Couple Dancing dataset.

To simulate trajectories, we draw balls with radius r, ran-
domly initialized and driven by different ODEs on a squared
2d canvas of size 64*64. Specifically, we consider three par-
ticle balls driven by three different ODE modes unless stated
otherwise (e.g., in the experiments increasing the number
of particles or the number of modes). Numerical values of
ODEs are mapped to the canvas. For mode-switching inter-
actions among objects, we switch the driven ODE modes of
two objects when they collide in the canvas. Each sample
has 100 time steps, and with 10 frames per second. We fol-
low the sample splitting proportion of synthesized datasets
in REDSDS (Ansari et al., 2021) (i.e. test data is around 5%
of training data) and create 4,928 samples for training, 191
samples for validation, and 204 samples for testing. Analy-
ses on new splitting strategy (i.e. test data is around 10% of
training data) and larger dataset are in App. B.1. A sample
visualization of this dataset is shown in Fig. 3.

Salsa Couple dancing dataset. Dong et al. (2020) experi-
ment with salsa dancing sequences, which, however, feature
a single dancer only from CMU MoCap. We collect 17 real-
world Salsa dancing videos from the Internet, containing
8,672 frames. Among them, 3 videos are for testing and
the remaining videos are for training. We extract 3D skele-
tons of dancers by a pretrained model (Moon et al., 2019)
and conduct temporal Gaussian smoothing afterward. As
Dong et al. (2020), we annotate four modes, i.e., “moving
forward”, “moving backward”, “clockwise turning”, and
“counter-clockwise turning”. Each sample has 100 time
steps with 5 frames per second. We have 1,321 samples for
training and 156 samples for testing. The coordinates of 3D

skeletal joints serve as input for each dancer, and the modes
of each dancer at each time step are the output. In Fig. 4 we
show the 3D skeletons extracted from the videos.

Evaluation metrics. Following Dong et al. (2020); Ansari
et al. (2021), we evaluate using frame-wise segmentation ac-
curacy, i.e. accuracy and F1 after matching the labels using
the Hungarian algorithm (Kuhn, 1955), Normalized Mutual
Information (NMI) and Adjusted Rand Index (ARI) to mea-
sure similarity between two labellings. We conduct each
experiment for five random seeds and report the average
performance and standard deviation of the results.

Baselines. We compare MOSDS and GRASS with three
state-of-the-art methods: rSLDS (Linderman et al., 2016),
SNLDS (Dong et al., 2020), and REDSDS (Ansari et al.,
2021). For our implementation, we use REDSDS (Ansari
et al., 2021) as the base for MOSDS and GRASS. We in-
clude in the comparisons GRASS-GT as an “upper bound”
oracle method, for which we use the ground-truth graph
edges rather to learn mode transition behaviours.

5.1. ODE-driven Particle

We summarize results for the ODE-drive particles in Ta-
ble 1. We see that just by considering interactions between
multiple objects with MOSDS, we achieve significant and
consistent performance increases across all metrics. When
further using graphs to model the switching dynamics in our
interacting system of objects, GRASS improves by more
than 9-10% over the previous state-of-the-art, REDSDS,
across all metrics. We also observe that GRASS performs
similarly to GRASS-GT using ground truth edges, show-
casing the accuracy of inferring the latent object-to-object
interactions. In Fig. 5, we show also the qualitative results
of GRASS compared to REDSDS, which is the top perform-
ing baseline. GRASS discovers mode-switching behaviours
between objects effectively and with fewer switching errors.

5.2. Salsa Couple Dancing

We summarize the results for Salsa Couple Dancing dataset
in Table 2. We observe similar findings in this real-world
video dataset, as with the ODE-driven particles. GRASS
achieves significantly higher accuracy across all metrics,
including REDSDS and our simpler method MOSDS.

6

Graph Switching Dynamical Systems

Ground
Truth

REDSDS

GRASS
(Ours)

mode 2 mode 3mode 1 Observation Reconstruction

TIME

Figure 5. Qualitative results of our GRASS model compared to previous state-of-the-art method REDSDS (Ansari et al., 2021). Each row
contains three sub-rows which denote the mode segmentation of multiple objects. We can see that with explicit interaction modeling by
GRASS, mode-switching behaviors among objects are discovered effectively with fewer switching errors and better segmentation results.

Table 1. Comparisons on ODE-driven Particle Dataset.

Method NMI ↑ ARI ↑ Accuracy ↑ F1 ↑
rSLDS 0.257±0.023 0.231±0.016 0.450±0.033 0.443±0.041
SNLDS 0.368±0.027 0.349±0.021 0.681±0.067 0.664±0.053
REDSDS 0.418±0.016 0.397±0.028 0.708±0.037 0.702±0.027
MOSDS (this paper) 0.469±0.020 0.474±0.015 0.766±0.045 0.757±0.032
GRASS (this paper) 0.528±0.014 0.519±0.008 0.794±0.030 0.790±0.021

GRASS-GT (Oracle) 0.537±0.012 0.526±0.010 0.805±0.028 0.801±0.016

Table 2. Comparisons on the Salsa Couple Dancing dataset.
Method NMI ↑ ARI ↑ Accuracy ↑ F1 ↑
rSLDS 0.118±0.028 0.102±0.043 0.373±0.066 0.360±0.053
SNLDS 0.145±0.047 0.133±0.031 0.420±0.113 0.413±0.096
REDSDS 0.156±0.032 0.152±0.036 0.504±0.052 0.467±0.074
MOSDS (this paper) 0.162±0.053 0.165±0.072 0.537±0.091 0.508±0.063
GRASS (this paper) 0.174±0.031 0.176±0.043 0.569±0.065 0.524±0.046

5.3. Ablation experiments

Due to limited space, we report the average performance in
each table. Results with standard deviations are in App. B.2.

Sensitivity to the number of interactions. We evaluate
how sensitive is GRASS in the presence of an increasing
number of interactions. First, we extend the normal ODE-
driven Particle dataset to more particles, i.e. 3 particles,
5 particles, and 10 particles. The number of interactions
naturally increases with the number of particles in a space-
constrained canvas. For different numbers of particles, we
count the average number of interactions per object per time
series and they are 2.3 interactions for 3 particles, 6.1 for 5
particles, and 12.5 for 10 particles. We present the results
in Table 3, where we conclude that GRASS is not adversely

Table 3. Analyses on different numbers of objects on ODE-driven
Particle dataset, while increasing the average number of interac-
tions per object per time series, i.e, 2.3 interactions for 3 particles,
6.1 for 5, and 12.5 for 10. */* denotes NMI / F1.

Number of Particles 3 5 10

rSLDS 0.257 / 0.443 0.252 / 0.437 0.246 / 0.430
SNLDS 0.368 / 0.664 0.361 / 0.656 0.354 / 0.651
REDSDS 0.418 / 0.701 0.411 / 0.692 0.405 / 0.687
MOSDS (this paper) 0.469 / 0.757 0.461 / 0.752 0.456 / 0.748
GRASS (this paper) 0.528 / 0.790 0.524 / 0.784 0.519 / 0.781

Table 4. Analyses on different numbers of objects on ODE-driven
Particle, while fixing the average number of interactions per object
per time series, i.e, 2.3 interactions. */* denotes NMI / F1.

Number of Particles 3 5 10

rSLDS 0.257 / 0.443 0.262 / 0.444 0.253 / 0.437
SNLDS 0.368 / 0.664 0.365 / 0.666 0.362 / 0.659
REDSDS 0.418 / 0.701 0.423 / 0.706 0.413 / 0.694
MOSDS (this paper) 0.469 / 0.757 0.471 / 0.763 0.464 / 0.754
GRASS (this paper) 0.528 / 0.790 0.530 / 0.792 0.524 / 0.786

affected by an increasing number of objects and interactions.

Sensitivity to the number of objects. We further test
increasing the number of objects, while fixing the number
of interactions. We achieve this by controlling the sizes of
objects, as with smaller balls we have fewer collisions (and
thus interactions). We roughly fix the number of interactions
per object per time series to be 2.3 and change the number
of objects to 3, 5, and 10 as in the previous trial. We present
results in Table 4. GRASS is robust to different numbers of
objects, no matter whether we fix the number of interactions.

7

Graph Switching Dynamical Systems

Table 5. Analyses of robustness to datasets without interactions on
ODE-driven Particle dataset. */* denotes NMI / F1.

Method dataset w/ interaction dataset w/o interaction

rSLDS 0.257 / 0.443 0.471 / 0.686
SNLDS 0.368 / 0.664 0.534 / 0.772
REDSDS 0.418 / 0.701 0.579 / 0.838
MOSDS (this paper) 0.469 / 0.757 0.563/ 0.817
GRASS (this paper) 0.528 / 0.790 0.573 / 0.826

Table 6. Analyses on robustness to different maximal numbers of
predefined modes. */* denotes NMI / F1.

Number of Modes 3 5 10

rSLDS 0.257 / 0.443 0.253 / 0.438 0.248 / 0.436
SNLDS 0.368 / 0.664 0.365 / 0.661 0.362 / 0.657
REDSDS 0.418 / 0.701 0.415 / 0.696 0.413 / 0.694
MOSDS (this paper) 0.469 / 0.757 0.466 / 0.759 0.462 / 0.754
GRASS (this paper) 0.528 / 0.790 0.532 / 0.794 0.527 / 0.784

Sensitivity to absence of interactions. GRASS is built
for systems of multiple objects that interact with one another.
We test whether the method generalizes even in the case
when the objects are independent and do not interact, as with
single-object Switching Dynamical Systems. We create a
dataset with three particles driven by three different ODEs,
and set them so that they do not interact with each other.
We present results in Table 5. In the presence of interac-
tions, GRASS is considerably more accurate than REDSDS,
while in the absence of interactions, it scores comparably. In
this case MOSDS observes a higher drop in accuracy. The
reason is that with its dynamic graph, GRASS can still pre-
dict correctly that there exist no interaction edges between
objects, while MOSDS always assumes all objects interact.

Sensitivity to number of dynamic modes. Like previous
methods (Linderman et al., 2016; Dong et al., 2020; Ansari
et al., 2021), GRASS requires a predefined maximum num-
ber of modes. We test its robustness to different maximum
numbers of modes, that is 3, 5, and 10, while the true num-
ber of modes is 3. We present results in Table 6. We observe
that GRASS is impervious to this misspecification, which
suggests that we can set a large number of possible modes
and GRASS will still use only those needed.

6. Related Work
Switching Linear Dynamical Systems (SLDS) (Ackerson
& Fu, 1970; Ghahramani & Hinton, 2000; Oh et al., 2005)
introduce both discrete states to represent motion modes
and continuous states to characterize motion dynamics of
each mode, but assume linear state transitions. Switch-
ing Non-linear Dynamical Systems, implemented by neural
networks, extend these methods to the nonlinear case, pro-
viding a better expressiveness of complex system dynamics.
Among them, SNLDS (Dong et al., 2020) and REDSDS

(Ansari et al., 2021) are two representative methods that can
consistently outperform their linear counterparts. While ef-
fective, previous methods and datasets are usually limited to
single-object scenarios where only one object exist. When
multiple objects exist, objects are processed independently
or considered as one single super-object with a single mode.
For example, in (Glaser et al., 2020), multiple neural popu-
lations exist in the brain, while the only mode behaviours of
the whole brain only are modelling and discovered. By con-
trast, in this paper we focus on the general setting where our
systems comprise multiple objects interacting and changing
their behaviour accordingly.

Graph Neural Networks are the de facto choice for learning
relational representations over graphs. Recently, there are
some methods focusing on neural relational inference (Kipf
et al., 2018; Graber & Schwing, 2020; Kofinas et al., 2021)
over temporal sequences, whose dynamics are encoded by
continuous latent states. These methods focus on systems
with multiple objects, whose dynamics, however, do not
change of time and, therefore, are not a good fit for discover-
ing mode-switching behaviours over time. In this work, we
start from the framework of Switching Dynamical Systems,
and integrate them within a graph neural network formalism.
In particular, we extend neural relational graphs and rela-
tional inference (Kipf et al., 2018; Graber & Schwing, 2020)
to incorporate latent interaction variables, one per pair of
objects, and model the potential dynamic interactions be-
tween objects. The proposed Graph Switching Dynamical
Systems can thus handle systems with increased complexity
with a significantly better accuracy. This is true even in
the presence of sparse interactions in both space and time,
which cause sudden and complex dynamic mode switches.

7. Conclusion and Future work
We investigate the setting of interacting objects switching
dynamical systems, when objects interact with each other
and influence each other’s modes. We propose a graph-
based approach for these systems, GRAph Switching dy-
namical Systems (GRASS), in which we use a dynamic
graph to model interactions and mode-switching behaviors
between objects. We also introduce two datasets, i.e. a syn-
thesized ODE-driven Particle dataset and a real-world Salsa
Couple dancing dataset. Experiments show that GRASS
improves considerably the state-of-the-art. Future work in-
cludes exploring learning switching dynamical systems with
multiple objects directly from videos.

Acknowledgements
This work is financially supported by NWO TIMING
VI.Vidi.193.129. We also thank SURF for the support in
using the National Supercomputer Snellius.

8

Graph Switching Dynamical Systems

References
Ackerson, G. and Fu, K. On state estimation in switching

environments. IEEE transactions on automatic control,
15(1):10–17, 1970.

Ansari, A. F., Benidis, K., Kurle, R., Turkmen, A. C., Soh,
H., Smola, A. J., Wang, B., and Januschowski, T. Deep
explicit duration switching models for time series. Ad-
vances in Neural Information Processing Systems, 34:
29949–29961, 2021.

Collins, M. The forward-backward algorithm. Columbia
Columbia Univ, 2013.

Dong, Z., Seybold, B., Murphy, K., and Bui, H. Collapsed
amortized variational inference for switching nonlinear
dynamical systems. In International Conference on Ma-
chine Learning, pp. 2638–2647, 2020.

Ghahramani, Z. and Hinton, G. E. Variational learning for
switching state-space models. Neural computation, 12
(4):831–864, 2000.

Glaser, J., Whiteway, M., Cunningham, J. P., Paninski, L.,
and Linderman, S. Recurrent switching dynamical sys-
tems models for multiple interacting neural populations.
Advances in neural information processing systems, 33:
14867–14878, 2020.

Graber, C. and Schwing, A. G. Dynamic neural relational
inference. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
2020.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel,
R. Neural relational inference for interacting systems.
In International Conference on Machine Learning, pp.
2688–2697, 2018.

Kofinas, M., Nagaraja, N., and Gavves, E. Roto-translated
local coordinate frames for interacting dynamical systems.
Advances in Neural Information Processing Systems, 34:
6417–6429, 2021.

Kuhn, H. W. The hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2):83–
97, 1955.

Linderman, S. W., Miller, A. C., Adams, R. P., Blei, D. M.,
Paninski, L., and Johnson, M. J. Recurrent switching lin-
ear dynamical systems. arXiv preprint arXiv:1610.08466,
2016.

Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete
distribution: A continuous relaxation of discrete random
variables. arXiv preprint arXiv:1611.00712, 2016.

Moon, G., Chang, J. Y., and Lee, K. M. Camera distance-
aware top-down approach for 3d multi-person pose esti-
mation from a single rgb image. In Proceedings of the
IEEE/CVF international conference on computer vision,
pp. 10133–10142, 2019.

Oh, S. M., Ranganathan, A., Rehg, J. M., and Dellaert,
F. A variational inference method for switching linear
dynamic systems. Technical report, Georgia Institute of
Technology, 2005.

Pavlovic, V., Rehg, J. M., and MacCormick, J. Learning
switching linear models of human motion. Advances in
neural information processing systems, 13, 2000.

Raftery, A. E. A model for high-order markov chains. Jour-
nal of the Royal Statistical Society: Series B (Method-
ological), 47(3):528–539, 1985.

Saul, L. K. and Jordan, M. I. Mixed memory markov models:
Decomposing complex stochastic processes as mixtures
of simpler ones. Machine learning, 37(1):75–87, 1999.

Shi, C., Schwartz, S., Levy, S., Achvat, S., Abboud, M.,
Ghanayim, A., Schiller, J., and Mishne, G. Learning
disentangled behavior embeddings. Advances in Neural
Information Processing Systems, 34:22562–22573, 2021.

Xu, M., Xie, X., Lv, P., Niu, J., Wang, H., Li, C., Zhu, R.,
Deng, Z., and Zhou, B. Crowd behavior simulation with
emotional contagion in unexpected multihazard situations.
IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 51(3):1567–1581, 2021. doi: 10.1109/TSMC.
2019.2899047.

Yu, S.-Z. Hidden semi-markov models. Artificial intelli-
gence, 174(2):215–243, 2010.

9

Graph Switching Dynamical Systems

Appendix

A. More details of GRASS model
A.1. Inference Algorithm of GRASS

The inference algorithm of GRASS is in Alg. 1. As inputs, we have a time series y1:T and an interaction edge prior
distribution p(e1:T). First, we initialize distributions of continuous state and discrete mode variables as p(x1) and
p(z1). Besides, the range of discrete count variable is initialized as {dmin, ..., dmax}. For each time step t in the time
series, the continuous state and discrete edge are first inferred by posterior approximation, i.e. x̃t ∼ qϕx

(xt|y1:T) and
ẽt ∼ qϕe

(et|x̃t). Then we calculate continuous state and discrete mode transition probabilities, i.e. pθxtr
(xt|x̃t−1, zt)

and pθztr (z
1:N
t |z1:Nt−1, x̃

1:N
t−1, c

1:N
t), which are used for exact inference of discrete mode and count by calculating forward

and backward variables αt(zt, ct) and βt(zt, ct) in Forward-and-Backward algorithm. Besides, two consistency losses
are introduced by calculating the loglikelihood between x̃t and x̂t, ỹt and yt. We finally derive the ELBO optimization
objective to optimize the parameters of networks. Details of the derivatives of ELBO are in Section A.3. An illustration
of the inference stage is in Fig. 6. Besides, the overall generative model and inference stages of GRASS which factorize
objects are detailed in Fig. 7.

Algorithm 1 Inference algorithm for GRASS.
Input: Time series y1:T , interaction edge prior distribution p(e1:T)
Output: Learned parameters ϕ and θ.

1 Initialize prior continuous state and discrete mode distributions as p(x1), p(z1); Initialize the range of discrete count variable
{dmin, ..., dmax} ;

2 for t in [1, . . . , T] do
// State Inference

3 Infer continuous state x̃t ∼ qϕx(xt|y1:T);
4 Infer discrete edge ẽt ∼ qϕe(et|x̃t);

// Calculate continuous state transition
5 Calculate continuous state transition x̂t ∼ pθxtr

(xt|x̃t−1, zt);
// Calculate discrete mode transition

6 for n, m ∈ [1, . . . , N] do
7 Calculate interaction weights wm→n

t =
∑L+1

l=2 ẽm→n
t,l ;

8 Calculate x̃m,n
t−1 =

∑
l ẽ

m→n
t,l · f l

e([x̃
m
t−1, x̃

n
t−1]);

9 Calculate pθztr (z
n
t |zmt−1, x̃

m,n
t−1 , c

n
t , ẽ

m→n
t);

10 Calculate discrete mode transition pθztr (z
1:N
t |z1:Nt−1, x̃

1:N
t−1, c

1:N
t) =

∏N
n=1

∑N
m=1w

m→n
t pθztr (z

n
t |zmt−1, x̃

m,n
t−1 , c

n
t , ẽ

m→n
t);

// Reconstruct input
11 Emit reconstructed input ỹt ∼ pθy (yt|x̃t);

// Log-likelihood Calculation
12 Calculate LogLikelihood(ỹt, yt);
13 Calculate LogLikelihood(x̃t, x̂t);

// Exact inference of discrete mode and count
14 Calculate Forward algorithm variable: αt(zt, ct) = p(y1:t, x̃1:t, ẽ1:t, z1:t, c1:t)
15 Calculate Backward algorithm variable: βt(zt, ct) = p(yt+1:T , x̃t+1:T | x̃t, ẽt, zt, ct);

// ELBO optimization
16 argmaxϕ,θ log pθ(y)−DKL [qϕ(x, z, c, e|y) ∥ pθ(x, z, c, e|y)]

A.2. Implementation Details

In the following, we show the network details as well as embedding dimensions. biGRU [a] denotes a bidirectional GRU with
a single-layer of a hidden units. MLP [b] denotes a single-layer MLP with b hidden units and ReLU non-linearity. RNN [c]
denotes a single-layer RNN with c hidden units. Inference networks for continuous state x: biGRU [4], RNN [16], and MLP [8];
Inference networks for discrete edge e: MLP [128] (i.e. f emb

ϕz
), MLP [128] (i.e. fe,1

ϕz
), MLP [128] (i.e. fv,1

ϕz
), and MLP [2] for

ODE-driven particle dataset or MLP [5] for Salsa-couple dancing dataset (i.e. fe,2
ϕz

); Continuous transition network: MLP [8]

10

Graph Switching Dynamical Systems

y1:T
Bi-RNN

h1:T
Causal RNN

qφx(x1:T |y1:T) x̃1:T pθy (y1:T |x̃1:T) ỹ1:T

pθxtr (xt|x̃t−1, zt)

y1:T

pθztr (zt|zt−1, x̃t−1, ct, ẽt)

Gaussian Distribution

x̂2:Tx̃2:T

x̃1 p(x1)
qφe(e1:T |x̃1:T) ẽ1:T p(e1:T)

pθc(ct|ct−1, zt−1)
Discrete Count Transition

Sample MLP

Gaussian Distribution

Sample Loss

Input Bi-temporal Embedding Continuous State Reconstruction

MLP

Categorical Distribution

Sample Loss

Discrete Edge Edge Prior Distribution

MLP

Continuous State Transition

SampleLoss

Loss

State Prior Distribution

Input

MLP

Discrete Mode Transition

Ones Vector
MLP

Figure 6. Illustration of inference algorithm of Graph Switching Dynamical Systems. After the approximate inference of continuous state
x̃1:T and discrete edge ẽ1:T , we further calculate continuous state transition probability pθxtr (xt|x̃t−1, zt), discrete mode transition
probability pθztr (zt|zt−1, x̃t−1, ct, ẽt), and discrete count transition probability pθc(ct|ct−1, zt−1), which are utilized by the forward
and backward algorithm to conduct exact inference of discrete mode z1:T and count c1:T to finally derive ELBO optimization objective.

(a) Generative Model (b) Inference

Figure 7. (a) Generative model of GRASS. (b) Left: Amortized approximate inference for the continuous states (e.g. x1
t and x2

t) and
discrete edge variable (e.g. e1→2

t and e2→1
t) by inference networks. Temporal dependence is modeled by an intermediate latent embedding

(e.g. h1
t and h2

t) which is given by directional RNNs. Right: Exact inference of discrete mode (e.g. z1t and z2t) and count variables and
(e.g. c1t and c2t) based on the approximate pseudo-observations (e.g. x1

t and x2
t) and pseudo-interactions (e.g. e1→2

t and e2→1
t). Orange

circles denote observations or approximate pseudo-observations. Here, we assume there exist two objects in the scenario.

11

Graph Switching Dynamical Systems

(i.e. p(xn
t |xn

t−1, z
n
t)); Discrete transition network: MLP [22] for ODE-driven particle dataset or MLP [44] for ODE-driven

particle dataset (i.e. p(znt |zmt−1,x
m,n
t−1 , c

n
t , e

m→n
t)); Emission network: MLP [2] for ODE-driven particle dataset or MLP [45]

for ODE-driven particle dataset (i.e. p(yn
t |xn

t)).

We train both datasets with a fixed batch size of 20 for 60,000 training steps. We use the Adam optimizer with 10−5

weight-decay and clip gradients norm to 10. The learning rate is warmed up linearly from 5× 10−5 to 2× 10−4 for the
first 2,000 steps, and then decays following a cosine manner with a rate of 0.99. Each experiment is running on one Nvidia
GeForce RTX 3090 GPU.

A.3. Detailed Optimization Objective of GRASS

A.3.1. DERIVATION OF ELBO

The evidence lower bound objective (ELBO) of Graph Switching Dynamical System (GRASS) is defined as follows. For
brevity, x, y, z, c, and e represents x1:N

1:T , y1:N
1:T , z1:N1:T , c1:N1:T , and e1:N

2

1:T respectively. N is the number of objects. T is the
number of timestamps.

ELBO = log pθ(y)−DKL [qϕ(x, z, c, e|y) ∥ pθ(x, z, c, e|y)]

=

∫
qϕ(x, z, c, e|y) log pθ(y) d(x, z, c, e)−

∫
qϕ(x, z, c, e|y) log

qϕ(x, z, c, e|y)
pθ(x, z, c, e|y)

d(x, z, c, e)

=

∫
qϕ(x, z, c, e|y) [log pθ(x, z, c, e,y)− log qϕ(x, z, c, e|y)] d(x, z, c, e)

= Eqϕ(x,z,c,e|y) [log pθ(x, z, c, e,y)− log qϕ(x, z, c, e|y)]
= Eqϕ(x|y)qϕ(e|x)pθ(z,c|x,y,e) [log pθ(x,y)qϕ(e|x)pθ(z, c|x,y, e)− log qϕ(x|y)qϕ(e|x)pθ(z, c|x,y, e)]
= Eqϕ(x|y)qϕ(e|x)pθ(z,c|x,y,e) [log pθ(x,y)− log qϕ(x|y)]
= Eqϕ(x|y) [log pθ(x,y)− log qϕ(x|y)]
= Eqϕ(x|y) [log pθ(x,y)] +H(qϕ(x|y)),

where the first term is a model likelihood, and the second term is conditional entropy for variational posterior of continuous
latent state x. With the proper assumption of conditional independence of continuous latent states among objects, the
conditional entropy is expanded through space and time as:

H(qϕ(x|y)) = H(qϕ(x
1:N
1:T |y1:N

1:T))

= H

(
N∏

n=1

qϕ(x
n
1:T |yn

1:T)

)

=

N∑
n=1

H(qϕ(x
n
1:T |yn

1:T))

=

N∑
n=1

H

[
(qϕ(x

n
1 |yn

1)

T∏
t+2

qϕ(x
n
t |x̃n

1:t−1,y
n
t))

]

=

N∑
n=1

[
H(qϕ(x

n
1 |yn

1)) +

T∑
t=2

H(qϕ(x
n
t |x̃n

1:t−1,y
n
t))

]

where x̃n
1:t−1 contains x̃n

1 , x̃n
2 , ..., x̃n

t−1, in which x̃n
t−1 ∼ qϕ(x

n
t−1|x̃n

1:t−2,y
n
t−1) is sampled from the variational posterior

distribution. In practice, we utilize causal RNN to model the temporal dependence.

12

Graph Switching Dynamical Systems

A.3.2. TRAINING OF ELBO

For training, we utilize mini-batch stochastic gradient descent algorithm. The gradients with respect to θ or ϕ in ELBO are
calculated as:

∇θELBO = ∇θ

[
Eqϕ(x|y)log pθ(x,y)

]
= Eqϕ(x|y)∇θlog pθ(x,y),

∇ϕELBO = ∇ϕ

[
Eqϕ(x|y)log pθ(x,y) +H(qϕ(x|y))

]
= ∇ϕ

[
Eqϕ(x|y)log pθ(x,y)

]
+∇ϕH(qϕ(x|y))

= E ϵ∼N [∇ϕlog pθ(x,yϕ(x, ϵ))] +∇ϕH(qϕ(x|y)),

where we use the reparameterization trick (Kingma & Welling, 2013) to calculate gradient of ∇ϕ

[
Eqϕ(x|y)log pθ(x,y)

]
.

Analyzing both ∇θELBO and ∇ϕELBO, the challenging part is ∇θ,ϕlog pθ(x,y). Following (Ansari et al., 2021), the
derivative of the log-joint likelihood ∇log p(x,y) is calculated as:

∇log p(x,y) = Ep(z,c,e|x,y) [∇log p(x,y)]

= Ep(z,c,e|x,y) [∇log p(x,y, z, c, e)]− Ep(z,c,e|x,y) [∇log p(z, c, e|x,y)]
= Ep(z,c,e|x,y) [∇log p(x,y, z, c, e)] ,

where Ep(z,c,e|x,y) [∇log p(z, c, e|x,y)] is calculated as:

Ep(z,c,e|x,y) [∇log p(z, c, e|x,y)] =
∫

p(z, c, e|x,y)∇log p(z, c, e|x,y)
p(z, c, e|x,y) d(z, c, e)

= ∇
∫

log p(z, c, e|x,y)d(z, c, e) = ∇1 = 0,

With Markovian property, we rewrite ∇log p(x,y, z, c, e) as:

∇log p(x,y, z, c, e)

= ∇ log p(x1:N
1:T ,y1:N

1:T , z1:N1:T , c1:N1:T , e1:N
2

1:T)

= ∇ log
[
p(y1:N

1 |x1:N
1)p(x1:N

1 |z1:N1)p(z1:N1)
]
+

T∑
t=2

∇ log
[
p(y1:N

t |x1:N
t)p(x1:N

t |x1:N
t−1, z

1:N
t)

]
+

T∑
t=2

∇ log
[
p(z1:Nt |z1:Nt−1,x

1:N
t−1, c

1:N
t−1, e

1:N2

t−1)p(e1:N
2

t |e1:N2

t−1 , z1:Nt ,x1:N
t)p(c1:Nt |c1:Nt−1, z

1:N
t−1)

]
= ∇ log

[
N∏

n=1

p(yn
1 |xn

1) ·
N∏

n=1

p(xn
1 |zn1) · p(z1:N1)

]
+

T∑
t=2

∇ log

[
N∏

n=1

p(yn
t |xn

t) ·
N∏

n=1

p(xn
t |xn

t−1, z
n
t)

]

+

T∑
t=2

∇ log

[
N∏

n=1

N∏
m=1

p(znt |zmt−1,x
m,n
t−1 , c

n
t , e

m→n
t) ·

N∏
n=1

N∏
m=1

p(em→n
t |em→n

t−1 , zm,n
t ,xm,n

t) ·
N∏

n=1

p(cnt |cnt−1, z
n
t−1)

]

where we model the interactions among objects via p(znt |zmt−1,x
m,n
t−1 , c

n
t , e

m→n
t) without instantaneous dependences. Thus,

13

Graph Switching Dynamical Systems

∇log p(x,y) can be written as:

∇log p(x,y) = Ep(z,c,e|x,y) [∇log p(x,y, z, c, e)]

= E
p(z1:N

1:T ,c1:N
1:T ,e1:N2

1:T |x1:N
1:T ,y1:N

1:T)

[
∇log p(x1:N

1:T ,y1:N
1:T , z1:N1:T , c1:N1:T , e1:N

2

1:T)
]

=
∑
k

p(z1:N1 = k|x1:N
1:T ,y1:N

1:T)∇ log

[
N∏

n=1

p(yn
1 |xn

1) ·
N∏

n=1

p(xn
1 |zn1) · p(z1:N1 = k)

]

+

T∑
t=2

∑
k,j,q,p,s,t

ξ(k, j,q,p, s,t)∇ log

[
N∏

n=1

p(yn
t |xn

t) ·
N∏

n=1

p(xn
t |xn

t−1, z
n
t = kn)

]

+

T∑
t=2

∑
k,j,q,p,s,t

ξ(k, j,q,p, s, t)∇ log

[
N∏

n=1

N∏
m=1

p(znt =kn|zmt−1=jm,xm,n
t−1 , c

n
t =qn, em→n

t =sm→n)

]

+

T∑
t=2

∑
k,j,q,p,s,t

ξ(k, j,q,p, s, t)∇ log

[
N∏

n=1

N∏
m=1

p(em→n
t = sm→n|em→n

t−1 = tm→n, zm,n
t = jm,n,xm,n

t)

]

+

T∑
t=2

∑
k,j,q,p,s,t

ξ(k, j,q,p, s, t)∇ log

[
N∏

n=1

p(cnt =qn|cnt−1=pn, znt−1=jn)

]
=
∑
k

γ(k)∇ log[B1(k
n) · π(k)]

+

T∑
t=2

∑
k,j,q,p,s,t

ξ(k, j,q,p, s, t)∇ log[Bt(k) ·At(k, j,q, s) · Et(j, s, t) · Ct(q,p, j)]

where

π(k) = p(z1:N1 = k),

γ(k) = p(z1:N1 = k|x1:N
1:T ,y1:N

1:T),

ξ(k, j,q,p, s, t) = p(z1:Nt =k, z1:Nt−1= j, c1:Nt =q, c1:Nt−1=p, e1:N
2

t =s, e1:N
2

t−1 =t|x1:N
1:T ,y1:N

1:T),

Bt(k) =

N∏
n=1

p(yn
t |xn

t) ·
N∏

n=1

p(xn
t |xn

t−1, z
n
t = kn),

At(k, j,q, s) =

N∏
n=1

N∏
m=1

p(znt =kn|zmt−1=jm,xm,n
t−1 , c

n
t =qn, em→n

t =sm→n),

Et(j, s, t) =

N∏
n=1

N∏
m=1

p(em→n
t = sm→n|em→n

t−1 = tm→n, zm,n
t = jm,n,xm,n

t)

Ct(q,p, j) =

N∏
n=1

p(cnt =qn|cnt−1=pn, znt−1=jn).

π(k) is the initial joint discrete mode probability.
∏N

n=1 p(y
n
1 |xn

1) and
∏N

n=1 p(y
n
t |xn

t) are emission probability.∏N
n=1 p(x

n
1 |zn1) and

∏N
n=1 p(x

n
t |xn

t−1, z
n
t =kn) are continuous state transition probability conditioned on different types

of discrete modes kn. At(k, j,q, s) is the discrete mode transition probability. Besides, p(z1:N1 = k|x1:N
1:T ,y1:N

1:T) and
ξ(k, j,q,p, s) can be calculated similarly to the forward and backward algorithm in HMMs (Collins, 2013), which is
detailed in the next section.

14

Graph Switching Dynamical Systems

A.3.3. FORWARD AND BACKWARD ALGORITHM

In this section, we aim at calculating the posterior probability of discrete mode, count, and edge variables z, c, and e
conditioned on observation y and approximate continuous state x:

p(zt, ct, et|x1:T ,y1:T) ∝ p(zt, ct, et,x1:T ,y1:T)

= p(zt, ct, et,x1:t,y1:t)︸ ︷︷ ︸
Forward

p(xt+1:T ,yt+1:T |xt, zt, ct, et)︸ ︷︷ ︸
Backward

= αt(zt, ct) · βt(zt, ct).

The forward part αt(zt, ct) can be expanded as:

α1(z1, c1) = p(z1, c1, e1,x1,y1)

= p(z1:N1 , c1:N1 , e1:N
2

1 ,x1:N
1 ,y1:N

1)

= δc1:N
1 =1p(z

1:N
1)p(e1:N

2

1)p(x1:N
1 |z1:N1)p(y1:N

1 |x1:N
1)

= δc1:N
1 =1p(z

1:N
1)p(e1:N

2

1)

N∏
n=1

p(xn
1 |zn1)

N∏
n=1

p(yn
1 |xn

1)

αt(zt, ct) = p(zt, ct, et,x1:t,y1:t)

= p(z1:Nt , c1:Nt , e1:N
2

t ,x1:N
1:t ,y1:N

1:t)

=
∑

z1:N
t−1,c

1:N
t−1

p(z1:Nt , c1:Nt , e1:N
2

t ,x1:N
1:t ,y1:N

1:t , z1:Nt−1, c
1:N
t−1)

=
∑

z1:N
t−1,c

1:N
t−1

p(z1:Nt−1, c
1:N
t−1, e

1:N2

t−1 ,x1:N
1:t−1,y

1:N
1:t−1)p(c

1:N
t |c1:Nt−1, z

1:N
t−1)p(z

1:N
t |z1:Nt−1,x

1:N
t−1, c

1:N
t−1, e

1:N2

t−1)

· p(e1:N2

t |e1:N2

t−1 , z1:Nt ,x1:N
t)p(x1:N

t |x1:N
t−1, z

1:N
t)p(y1:N

t |x1:N
t)

=
∑

z1:N
t−1,c

1:N
t−1

αt−1(zt−1, ct−1)
N∏

n=1

p(cnt |cnt−1, z
n
t−1)

N∏
n=1

N∏
m=1

p(znt |zmt−1,x
m,n
t−1 , c

n
t , e

m→n
t)

·
N∏

n=1

N∏
m=1

p(em→n
t |em→n

t−1 , zm,n
t ,xm,n

t)

N∏
n=1

p(xn
t |xn

t−1, z
n
t)

N∏
n=1

p(yn
t |xn

t),

where αt(zt, ct) can be expressed by αt−1(zt−1, ct−1) recursively with variable transitions and emissions.

The backward part βt(zt, ct) can be expanded as:

βT (zT , cT) = 1

βt(zt, ct) = p(xt+1:T ,yt+1:T |xt, zt, ct, et)

= p(x1:N
t+1:T ,y

1:N
t+1:T |x1:N

t , z1:Nt , c1:Nt , e1:N
2

t)

=
∑

z1:N
t+1,c

1:N
t+1

p(x1:N
t+1:T ,y

1:N
t+1:T , z

1:N
t+1, c

1:N
t+1|x1:N

t , z1:Nt , c1:Nt , e1:N
2

t)

=
∑

z1:N
t+1,c

1:N
t+1

p(c1:Nt+1|c1:Nt , z1:Nt)p(z1:Nt+1|z1:Nt ,x1:N
t , c1:Nt , e1:N

2

t)

· p(x1:N
t+1|x1:N

t , z1:Nt+1)p(e
1:N2

t+1 |e1:N2

t , z1:Nt+1,x
1:N
t+1)p(y

1:N
t+1 |x1:N

t+1)p(x
1:N
t+2:T ,y

1:N
t+2:T |x1:N

t+1, z
1:N
t+1, c

1:N
t+1, e

1:N2

t+1)

=
∑

z1:N
t+1,c

1:N
t+1

N∏
n=1

p(cnt+1|cnt , znt)
N∏

n=1

N∏
m=1

p(znt+1|zmt ,xm,n
t , cnt+1, e

m→n
t+1)

·
N∏

n=1

p(xn
t+1|xn

t , z
n
t+1)

N∏
n=1

N∏
m=1

p(em→n
t+1 |em→n

t , zm,n
t+1 ,x

m,n
t+1)

N∏
n=1

p(yn
t+1|xn

t+1) βt+1(zt+1, ct+1),

15

Graph Switching Dynamical Systems

Table 7. Analyses on different numbers of objects on ODE-driven Particle dataset, while increasing the average number of interactions per
object per time series, i.e, 2.3 interactions for 3 particles, 6.1 for 5, and 12.5 for 10. */* denotes NMI / F1.

Number of Particles 3 5 10

rSLDS 0.257±0.023 / 0.443±0.041 0.252±0.033 / 0.437±0.039 0.246±0.027 / 0.430±0.045
SNLDS 0.368±0.027 / 0.664±0.053 0.361±0.031 / 0.656±0.042 0.354±0.035 / 0.651±0.059
REDSDS 0.418±0.016 / 0.701±0.027 0.411±0.023 / 0.692±0.029 0.405±0.024 / 0.687±0.022
MOSDS (this paper) 0.469±0.020 / 0.757±0.032 0.461±0.024 / 0.752±0.027 0.456±0.029 / 0.748±0.035
GRASS (this paper) 0.528±0.014 / 0.790±0.021 0.524±0.019 / 0.784±0.025 0.519±0.021 / 0.781±0.018

Table 8. Analyses on different numbers of objects on ODE-driven Particle, while fixing the average number of interactions per object per
time series, i.e, 2.3 interactions. */* denotes NMI / F1.

Number of Particles 3 5 10

rSLDS 0.257±0.023 / 0.443±0.041 0.262±0.034 / 0.444±0.037 0.253±0.028 / 0.437±0.042
SNLDS 0.368±0.027 / 0.664±0.053 0.365±0.030 / 0.666±0.047 0.362±0.028 / 0.659±0.051
REDSDS 0.418±0.016 / 0.701±0.027 0.423±0.023 / 0.706±0.031 0.413±0.022 / 0.694±0.028
MOSDS (this paper) 0.469±0.020 / 0.757±0.032 0.471±0.025 / 0.763±0.036 0.464±0.021 / 0.754±0.035
GRASS (this paper) 0.528±0.014 / 0.790±0.021 0.530±0.012 / 0.792±0.019 0.524±0.017 / 0.786±0.024

where βt(zt, ct) can be computed via βt+1(zt+1, ct+1) recursively with variable transitions and emissions.

A.4. Further Model Interactions between Continuous Variables

In the main paper, we model interactions between objects by dependence on discrete mode variables only. This means
that based on the derived discrete mode transition, the continuous state transition p(xn

t |xn
t−1, z

n
t) and observation emission

p(yn
t |xn

t) are per-object dynamics only without interactions. However, in some real-world scenarios, the interactions
between objects also happen to continuous variables. For example, in each motion type, object A still influences the detailed
motion of object B. We show some preliminary results in this section and leave more comprehensive experiments as future
work.

B. More Experiments
B.1. New splitting and larger ODE-driven particle datasets

In our original ODE-driven particle dataset we used around 5k samples for training, around 200 samples for validation and
testing. We tested the scalability of our method in terms of scaling to one larger (approximately 20x larger) dataset. The
original dataset takes 37,000 epoches to achieve convergence and the final performance of our GRASS model is: 0.528,
0.519, 0.794, and 0.790 for NMI, ARI, Accuracy, and F1, respectively. The 20x larger dataset takes 39,000 epochs and the
final performance of our GRASS model is 0.525, 0.531, 0.814, and 0.802. We find the training time before convergence and
the performance of our model are almost the same, which shows the scalability of our method to larger datasets.

The splitting strategy of the synthesized dataset follows the recent SOTA method, REDSDS (Ansari et al., 2021). REDSDS
has 10,000 and 500 samples for training and testing of the 3-mode system (test data is around 5% of training data). We
follow the proportion and have 4,928 samples for training and 204 samples for testing (around 5%). For the ODE-driven
particle dataset, we also conduct a new splitting (4200/420/420 for training/validation/testing). The results of our GRASS
model on the new splitting dataset are 0.522, 0.518, 0.809, and 0.805 for NMI, ARI, Accuracy, and F1, respectively, which
shows almost the same performance as the original splitting in the main paper.

B.2. Ablation studies with standard derivations

Ablations studies with standard derivations are in Tables 7, 8, 9, and 10. We can see that the conclusions remain the same as
in the main paper for ablation studies of different numbers of objects, different numbers of interactions, with or without
interactions, and different numbers of predefined modes. Note that in Table 7 and Table 8, we can see that with different
number of objects or interactions, GRASS has consistently better performance with the lowest variances.

16

Graph Switching Dynamical Systems

Table 9. Analyses of robustness to datasets without interactions on ODE-driven Particle dataset. */* denotes NMI / F1.

Method dataset w/ interaction dataset w/o interaction

rSLDS 0.257±0.023 / 0.443±0.041 0.471±0.024 / 0.686±0.035
SNLDS 0.368±0.027 / 0.664±0.053 0.534±0.032 / 0.772±0.046
REDSDS 0.418±0.016 / 0.701±0.027 0.579±0.013 / 0.838±0.022
MOSDS (this paper) 0.469±0.020 / 0.757±0.032 0.563±0.027 / 0.817±0.039
GRASS (this paper) 0.528±0.014 / 0.790±0.021 0.573±0.008 / 0.826±0.018

Table 10. Analyses on robustness to different maximal numbers of predefined modes. */* denotes NMI / F1.

Number of Modes 3 5 10

rSLDS 0.257±0.023 / 0.443±0.041 0.253±0.025 / 0.438±0.043 0.248±0.032 / 0.436±0.047
SNLDS 0.368±0.027 / 0.664±0.053 0.365±0.032 / 0.661±0.047 0.362±0.036 / 0.657±0.059
REDSDS 0.418±0.016 / 0.701±0.027 0.415±0.023 / 0.696±0.035 0.413±0.026 / 0.694±0.031
MOSDS (this paper) 0.469±0.020 / 0.757±0.032 0.466±0.028 / 0.759±0.037 0.462±0.033 / 0.754±0.042
GRASS (this paper) 0.528±0.014 / 0.790±0.021 0.532±0.020 / 0.794±0.025 0.527±0.022 / 0.784±0.026

17

