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Abstract
There are strong incentives to build classification
systems that show outstanding performance on
various datasets and benchmarks. This can en-
courage a narrow focus on models and the per-
formance metrics used to evaluate and compare
them—resulting in a growing body of literature to
evaluate and compare metrics. This paper strives
for a more balanced perspective on binary clas-
sifier performance metrics by showing how un-
certainty in these metrics can easily eclipse dif-
ferences in empirical performance. We empha-
sise the discrete nature of confusion matrices and
show how they can be well represented in a 3D
lattice whose cross-sections form the space of re-
ceiver operating characteristic (ROC) curves. We
develop novel interactive visualisations of perfor-
mance metric contours within (and beyond) ROC
space, showing the discrete probability mass func-
tions of true and false positive rates and how these
relate to performance metric distributions. We
aim to raise awareness of the substantial uncer-
tainty in performance metric estimates that can
arise when classifiers are evaluated on empirical
datasets and benchmarks, and that performance
claims should be tempered by this understanding.

1. Introduction
Today’s algorithmic modeling culture (Breiman, 2001) re-
wards those whose models outperform all others. Perfor-
mance optimisation is central to statistical, ML and AI mod-
els (Thomas & Uminsky, 2020), and numerical metrics are
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often regarded as objective, valid indicators of performance;
a model’s performance on a test dataset or benchmark task
is seen as indicative of its ability to perform “in the wild”
on new, real-world data. This paper strives for a more
balanced perspective on classifier performance metrics by
visualising their distributions under different models of un-
certainty. We aim to draw attention towards the role of more
data—and data that is more representative of a classifier’s
intended application—to characterise and improve different
classifiers, rather than judging them through performance
shoot-outs alone.

Confusion matrices summarise the empirical performance
of classifiers. Simplest are those that tally the four outcomes
of binary decisions (Figure 1). A desire to further sum-
marise each matrix with one number—which, necessarily
loses information because the matrices have three degrees of
freedom—has led to many metrics with different meanings,
interpretations and ranges (Appendix A).

These different performance metrics produce different clas-
sifier performance rankings, and there are often strong in-
centives to top these ranks (Maier-Hein et al., 2018). Those
seeking to develop or promote “the best classifier” may
wonder which is “the best performance metric”; several
studies argue the merits of different metrics, even though
what is “best” in practice depends on a classifier’s specific
real-world application (Hand, 2006; Rudin & Radin, 2019).
Others have sought to understand and characterise the be-
haviour and interpretation of these different metrics; we
follow this philosophy to reveal further insight.

In essence, we show how uncertainty in (discrete) confusion
matrices manifests in various (continuous) performance.
Our aim is to encourage more attention towards reducing
uncertainty in performance estimates before attempting to
argue the merits of a particular classifier or metric.

2. Prior motivating work
2.1. Studies that argue the merits of specific metrics

Our research was stimulated by a series of papers whose
titles suggest that Matthews Correlation Coefficient (MCC)
is better than other metrics (Chicco & Jurman, 2020; Chicco
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Figure 1: (Left) A binary confusion matrix shows the counts of a classifier’s predictions in response to a set of examples
whose actual classes are known. With fixed total (N ), these four-element matrices have 3 degrees of freedom.
(Right) 3D projections of confusion matrices with N = 100. Each point corresponds to a unique confusion matrix and
is coloured by its Matthews Correlation Coefficient. We label the four extreme points (TP = 100,FN = 100, etc.) of
the regular simplex. Rather than show all 176 851 possible points, we show three slices corresponding to matrices where
p = 20, 50, 90, from back to front. This graphic is a composite from our interactive visualisationour interactive visualisation
(see Appendix D.1).

et al., 2021a;b). While the story in these papers is more
nuanced than their titles suggest, their high citation rates
suggest that they have caught people’s attention, especially
in bioinformatics (Chicco, 2017). A recent opinion piece
may see MCC’s popularity rise in robotic vision (Chicco &
Jurman, 2022). However, Zhu (2020) challenges the idea
that MCC should be “generally regarded as a balanced
measure which can be used even if the classes are of very
different sizes”. Note that Chicco et al. (2021b) clearly state
that MCC is perhaps not the best measure in all situations.

Instead of arguing for specific metrics, we seek to enable
practitioners to explore and understand the behaviour of
performance metrics and the uncertainty in their empirical
values. “Several rates that summarize. . . the confusion ma-
trix exist nowadays; none of them, however, has reached
consensus in the computer science” (Chicco et al., 2021a).
The idea of “the best” metric oversimplifies the fact that

“each of the indicators serves a different purpose” (Glas
et al., 2003). Practitioners have a responsibility to under-
stand the strengths and limitations of different indicators for
the task at hand, and that metrics only summarise empirical
performance; they do not provide more precise estimates
of performance—that demands more data, representative of
the context into which a classifier would be deployed.

2.2. Studies that relate various performance metrics

Powers (2011) describes algebraic relationships between
several metrics before using simulation to explore their be-
haviour; Ferri et al. (2009) use cluster analysis to group
metrics that behave similarly. It is difficult to draw strong

conclusions from the values metrics take on simulated or ex-
perimental data, especially when comparisons are averaged
or clustered across different datasets.

Other authors seek to characterise performance metrics more
directly by exploring how they satisfy various properties.
Sokolova & Lapalme (2009) consider how the values of
different metrics change as the counts in a confusion ma-
trix change; Brzezinski et al. (2018) consider ten desirable
properties of metrics on confusion matrices with fixed totals,
but different prevalence. Gösgens et al. (2021) consider
further desirable properties and show that some of them
are incompatible. Luque et al. (2019) characterise different
performance metrics as class balance changes.

2.3. Studies that visualise performance metric geometry

Broadly speaking, there have been two main approaches to
visualising the values that performance metrics take over
the space of possible binary confusion matrices. The first
uses the rates that characterise different confusion matrices
(e.g., true positive rate, false positive rate, prevalence (Flach,
2003; Luque et al., 2019)). This yields visualisations that are
essentially “a collection of stacked-up ROC spaces, with the
z-coordinate corresponding to the proportion of the positive
class” (Brzezinski et al., 2018).

The second approach uses projections that preserve dis-
tances between confusion matrices. To explain the notion
of distance here, consider the confusion matrix in Figure 1.
By adding 1 to one element and subtracting 1 from another,
we can construct 12 different adjacent confusion matrices,
equidistant from the original matrix. Barycentric projection
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(Brzezinski et al., 2018) ensures these adjacent confusion
matrices are equidistant in 3D projection. Rather than pro-
ducing a cubic stack of square ROC spaces, this projection
maps confusion matrices to points that are tetrahedrally
packed—different class imbalance ratios yield rectangular
cross-sections of this tetrahedron.

2.4. Studies that consider uncertainty

Classifier performance is estimated using finite amounts of
test data; the more data we use, and the more representative
that data is, the more certain we are about the classifier’s per-
formance on new data. Also, in multinomial classification
(Lovell et al., 2021), it is important to consider the amounts
of test data we have for each class of interest; while the total
amount of test data can be large, a specific class can be rare,
and our estimates of a classifier’s ability to correctly detect
it become less certain.

Confusion matrices summarise the performance of binary
classifiers by counting TP, the number of positive examples
(p) correctly classified, and TN, the number of negative
examples (n) correctly classified. Bayesian statistics pro-
vides an elegant framework for incorporating prior belief
into modeling the predictive distribution of these counts
(i.e., the distribution of counts we may expect to see in fu-
ture trials) through the beta-binomial model (Murphy, 2012;
Navarro & Perfors, 2010; Agresti, 2013). This approach is
used by Tötsch & Hoffmann (2021) who refine Caelen’s
(2017) Dirichlet-multinomial model of confusion matrices.

Having reviewed prior relevant research, we now present
our approach to visualising the distributions of these metrics
so that practitioners can put empirical classifier performance
statistics into perspective.

3. Viewing binary confusion matrices in 3D
When the four elements of binary confusion matrices sum to
a fixed total, these matrices have only three degrees of free-
dom and can therefore be represented in three dimensions.
Chicco et al. (2021a) do this by dividing each element of the
confusion matrix by its total and using three of these ratios
(TP/N , TN/N and FP/N ) to project the confusion matrix
into a confusion tetrahedron with vertices A = (1, 0, 0),
B = (0, 1, 0), C = (0, 0, 1) and O = (0, 0, 0) Note that
this is not an isometric projection. More importantly, this
projection carries only relative information. By dividing by
N , this projection loses information about how many times
we have observed a classifier make predictions, and thus,
how certain we can be about its predictive performance.
With these issues in mind, we propose an isometric projec-

tion that preserves information about the underlying counts:

[
a b c d

] 
1 0 0
0 1 0
0 0 1
− 1

3 − 1
3 − 1

3

 =
[
x y z

]
. (1)

We refer to the projected points as a confusion simplex, to
distinguish it from the confusion tetrahedron of (Chicco
et al., 2021a). The vertices of a confusion simplex for matri-
ces of size N are TP = (N, 0, 0),FP = (0, N, 0),FN =
(0, 0, N) and TN = (−N

3 ,−
N
3 ,−

N
3 , ) as shown in Fig-

ure 1(b). The Euclidean distance between each pair of ver-
tices is N

√
2. This projection preserves information about

the counts of confusion matrices and, hence, how certain
we can be about classifier performance.

While drafting this paper, we learned that a similar isometric
projection had been previously proposed by Brzezinski et al.
(2018) which maps the extreme confusion matrices with a
given total (i.e., the matrices where TP = N , FP = N ,
etc.) to four of the corners of the cube [−1,+1]3. Like
the confusion tetrahedron, Brzezinski et al.’s projection
carries only relative information about confusion matrices
but could be rescaled to provide a rotated, translated version
of Equation (1).

4. Slicing the 3D confusion simplex into ROCs
Classifiers are often evaluated and compared by presenting
them with a fixed set of N examples, p positive, and n
negative. Interest centres on how many actual positives are
correctly identified (TP) and how many actual negatives
are correctly identified (TN). Thus, the performance of
classifiers can be represented in two dimensions using a
rectangular lattice of (p+ 1)× (n+ 1) points.

Figure 1(b) shows perspective views of three different 2D
slices (rectangular lattices) of points in a confusion simplex:
a tall, skinny lattice (p = 90, n = 10); a square lattice
where classes are balanced (p = 50, n = 50); and a short,
wide lattice (p = 20, n = 80). These slices can be shown
in rectangular 2D orthographic projections (Figure 2(a)).
When the axes of these projections are scaled so that they
plot the true positive rate (TPR) against the false positive
rate (FPR) of each point, we see these points in the space of
the receiver operating characteristic (ROC) curve (Figure 2).

ROC curves provide a compact summary of empirical true
and false positive rates but, by using rates, they omit in-
formation about the underlying numbers of positive and
negative examples classified. These numbers indicate how
certain we are about a classifiers’ performance: the more
positive and negative cases the classifier has seen, the more
certain we are about its performance: true and false pos-
itive rates alone do not carry this information. To inject
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Figure 2: (a) Orthographic projection of the slice of points from the confusion simplex of Figure 1(b) where p = 20 and
n = 80, coloured by MCC value. Continuous lines indicate the contours of MCC, ranging from −0.9, . . . , 0.9. While MCC
can be calculated for continuous arguments, confusion matrices map to (p+ 1)× (n+ 1) discrete points in this 2D lattice.
(b) ROC curves plot a classifier’s true positive rate against its false positive rate. This is equivalent to re-scaling the x-axis
of (a) by a factor of 1

n and the y-axis by 1
p .

that information back into visualisations, we could use or-
thographic projection (Figure 2(a)) so that the aspect ratio
clearly shows the balance of positive and negative examples.
However, when classes are highly imbalanced, this approach
becomes challenging to print and inspect. To deal with this,
we suggest faintly plotting all possible points in the ROC
space for reference (as in Figure 2(b)) to reveal when there
are few positive or negative examples. This approach can
also be used with precision-recall plots (Davis & Goadrich,
2006) and we provide an interactive visualisation at to show
how reference points in ROC and Precision-Recall plots
relate (Appendix D.2). When p or n are so large that the
lattice of ROC points appears continuous, we suggest label-
ing the axis ticks with the numbers (not rates) of false and
true positives to show the amount of underlying data (as in
Figure 5).

Having visualised the discrete lattice of points achievable
in ROC space, we now show how to visualise continuous
performance metrics in that space, and beyond

5. The geometry of performance metrics
There are many confusion matrix performance metrics to
make sense of (Appendix A). It is not obvious how these
metrics behave when the four entries of the confusion matrix
are not zero, which is typically of interest when people want
to rank or compare the performance of different classifiers.

One way to better understand these metrics is to plot their
contours, the isolines along which they take a particular
value k. We have used this to illustrate the curved contours
of the MCC above (Figure 2) and we go further by deriving
algebraic expressions for the exact contours of many popu-
lar metrics—both prevalence-dependent (Appendix B) and
independent (Appendix C). We provide interactive visualisa-

tions of these contours (Appendix D.3) and animations that
show how contours change with prevalence for Accuracy,
Balanced Accuracy, F1 score and Matthews Correlation Co-
efficient (Appendix D.4). The advantage of these algebraic
expressions is that they can show the exact performance
metric contours for any size of confusion matrix.

The algebraic expressions of these contours also allow us
to appreciate the geometry of performance metrics beyond
ROC space. For example, MCC can be understood as a set
of elliptical contours, whose eccentricity depends on class
imbalance (Figure B.2). These contours show how perfor-
mance metrics vary (and also their symmetries (Brzezinski
et al., 2018; Luque et al., 2019)) in a way that our visual
system can readily apprehend. To complete the picture, we
need to model how confusion matrices are likely to vary. . .

6. Modeling uncertainty in confusion matrices
Using the notation in Figure 1, suppose a classifier is pre-
sented with p1 positive examples to classify and that it
gets a1 of these correct (true positives) and the remain-
der c1 = p1 − a1 incorrect (false negatives). On the basis
of these observations, what do we believe is the proba-
bility (θa) that this classifier correctly identifies positive
examples? A frequentist approach would estimate that
θa = a1/p1 = TPR is the empirical true positive rate
of the classifier and that the distribution of a future correct
classifications with p new examples is

a|p, θa ∼ Binomial(p, θa) (2)

so that

P (a|p, θa) =
(
p

a

)
θaa(1− θa)

p−a. (3)
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A Bayesian approach (Navarro & Perfors, 2010; Murphy,
2012; Agresti, 2013) allows us to express our prior uncer-
tainty about a classifier’s true positive rate—this is particu-
larly important when we have small amounts of data. We
can assign a prior distribution to θa, and it is mathematically
convenient to do that with a beta distribution:

θa|u, v ∼ Beta(u, v).

As this prior is conjugate to the binomial distribution, after
observing a1 true positive (and c1 false negative) classifica-
tions of p1 examples, the posterior distribution of θa remains
a beta distribution:

θa|a1, p1, u, v ∼ Beta(u+ a1, v + c1)

and the posterior predictive distribution of seeing a correct
classifications of p further examples is

P(a | p, a1, c1, u, v) =
(
p

a

)
Beta(u+ a1 + a, v + c1 + c)

Beta(u+ a1, v + c1)
.

(4)

a is distributed according to a beta-binomial distribution:

a | p, a1, c1, u, v ∼ BB(a, p, u+ a1, v + c1). (5)

Equations (2) and (3) give us the basis of a binomial model
for uncertainty in confusion matrices and Equations (4)
and (5) give us the basis of a beta-binomial model. Using
the same logic, we can express models for the number of
true negatives (d) returned by classifier presented with n
negative examples when the probability of the classifier
correctly identifying these negative examples is θd.

Using beta-binomial models for true positives and true neg-
atives demands that we declare our prior uncertainty about
θa and θd. For demonstration, and in the absence of other
relevant information, we choose the uninformative uniform
priors: θa ∼ Beta(1, 1) and θd ∼ Beta(1, 1).

A common scenario in classifier development and evaluation
is to present a classifier with a test set of p1 positive and n1

negative examples. In this situation, we can assume that the
probabilities of correctly classifying a further a positive and
d negative examples are statistically independent, so that

P (a, d|a1, p1, d1, n1) = P (a|a1, p1) · P (d|, d1, n1) (6)

for the binomial model, where d1 is the number of true neg-
ative classifications observed. The joint distribution of true
positives and negatives under a beta-binomial model can be
factored similarly, enabling confusion matrix uncertainty
to be visualised. We note that there are potential situations
where this independence assumption may not hold, for ex-
ample in cytopathology analysis, if apparently normal cells
are extracted from a sample obtained from a positive patient
in addition to abnormal cells (Burger et al., 1981).

7. Visualising confusion matrix variation
The ideas set out in the previous section are the same as
those set out by Tötsch & Hoffmann (2021) who proceed to
use simulation to estimate the posterior distribution of vari-
ous performance metrics under beta-binomial models of true
positives and negatives. However, as Tötsch & Hoffmann
point out, “the posterior distribution can be derived analyti-
cally. There is no need for Markov chain Monte Carlo sam-
pling”. So, rather than using time-consuming simulation,
we have used the pmfs of Equations (3) and (4) to develop
an interactive visualisation of the impact of uncertainty on
confusion matrices and their performance metrics in ROC
space and in Precision-Recall space (Appendix D.5).

Figure 3 shows two screenshots from this visualisation. Un-
like the histograms of samples from the posterior predic-
tive distributions of true positive and true negative rates in
Tötsch & Hoffmann (2021), Figure 3 exposes the underly-
ing discreteness of ROC space. Note that the pmfs of the
beta-binomial model are broader than those of the binomial,
reflecting the additional uncertainty in true and false positive
rates embodied in this Bayesian model. Appendix E uses
a real-world example to illustrate the differences between
these models when data are scarce (Rodrigues et al., 2013).

8. Visualising performance metric variation
We can now visualise the distribution of a given performance
metric by summing the probability masses that lie along
each contour of the performance metric in ROC space. The
geometry of performance metric contours in conjunction
with the layout of the (n + 1) × (p + 1) possible points
in ROC space determines which probability masses are
summed together (as illustrated in Appendix F).

Figure 4 shows the posterior predictive pmfs of MCC, BA
and F1 values, given observations of

[
16 8
4 32

]
. Note the

spread of these pmfs about the maximum a posteriori (MAP)
value of each performance metric. This corresponds to the
distributions of true and false positive rates shown in Fig-
ure 3 and puts performance comparisons into perspective:
MCC, BA and F1 each show substantial uncertainty about
their observed values.

Note also the shape of the pmfs in Figure 4 and that both
BA and F1 have a few points lying above that bell-curve.
These occur where several ROC points lie on the same
performance metric contour (e.g., F1 = 4

10 and F1 = 2
3 ,

Figure F.1). The numbers of points on each contour are
shown in the bottom row of Figure 4. Adding one extra
negative example markedly changes the confluence of ROC
points and performance metric contours for MCC and BA,
less so for F1 (Figure F.2). The discrete nature of confusion
matrices can lead to jumps in performance metrics pmfs,
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even though those metrics are smooth continuous functions.

The more labelled data evaluated by a classifier, the more
certain we can be about its true and false positive rates.
Figure 5 shows this with the posterior predictive pmfs of
confusion matrices of increasing totals but constant true and
false positive rates: more data yields more precise estimates.
Roughly speaking, under the binomial and beta-binomial
models of uncertainty, the standard deviation of the true and
false positive rate pmfs will be proportional to 1√

N
.

Our interactive visualisations aim to foster understanding
of how uncertainty in the discrete domain of confusion ma-
trices gives rise to distributions of continuous performance
metrics. Armed with that understanding, practitioners can
then use more compact summaries (e.g., box plots, violin
plots) to report estimated performance metric distributions.
The main point to note is that there can be significant uncer-
tainty in performance metrics, uncertainty which depends
on the amount of data used in evaluating empirical perfor-
mance, not the performance metrics themselves. To reduce
that uncertainty requires more data that is representative of
the cases the classifier will see in production.

9. Discussion
Our goal is to ensure that practitioners can understand, vi-
sualise and put into perspective the magnitude and nature
of uncertainty in classifier performance estimates to inform
more meaningful discussion of the strengths and limitations
of specific classification systems. This work has its limita-
tions. We appreciate that performance evaluation and model
selection can involve a host of competing considerations
beyond predictive performance, such as model transparency
and fairness to different groups affected by model predic-
tions; these are not within the scope of our work here. Nor
do we address the common assumption that evaluation data
is representative, i.e., that future data are expected to come
from the same process as past data and have roughly the
same range of values (McElreath, 2016).

Related to that last point is the question of how data diversity
and representativeness may manifest in confusion matrix
uncertainty. Obviously, the more representative data we can
use for evaluation the more accurate and precise our clas-
sifier performance estimates (Figure 5). But whether more
diverse data results in higher or lower performance depends
on how separable the two classes are by the classification
system at hand. Here both data quality and quantity are
important: creating synthetic data points through perturbing
or interpolating real data (Chawla et al., 2002)will certainly
increase the quantity of of data, it won’t necessarily increase
its quality, i.e., how well it represents future examples.

The Bayesian approach we have described combines prior
beliefs with observed data to form posterior distributions

of plausible classifier performance metrics. A frequentist
approach would hold that uncertainty is a consequence of
sampling variation, leading to a focus on the sampling dis-
tribution of classifier performance metrics. Murphy (2012)
contrasts and critiques these two paradigms, mentioning the
bootstrap as a means to approximate the sampling distribu-
tion and confidence intervals as a way to characterise its
spread. The Bayesian approach however is ideal for the
situation we want to highlight: where a lack of data cre-
ates substantial uncertainty about the future performance
of a classifier. Frequentist approaches are challenged by
small data sets, as illustrated in Appendix E. Furthermore
the Bayesian approach can yield a the functional form of a
posterior (e.g., beta-binomial) enabling us to visualise its
pmf precisely, whereas a frequentist approach would involve
empirical approximations to the sampling distribution.

We began by mentioning the strong incentives to build clas-
sification systems that show outstanding performance and
we acknowledge the frequent use of evaluation metrics se-
lecting the “best” model. Unfortunately, uncertainty in per-
formance metrics does not make this task any easier. Rather,
it forces us to confront the limitations arising from restricted
data, and the need to balance multiple competing considera-
tions, including issues beyond predictive performance such
as system fairness and transparency.

While we clearly don’t believe that there is one “best” per-
formance metric, one could argue that the best classifier
minimises the expected costs (or maximizes the benefits)
of its future decisions (Section B.5). This is a conceptu-
ally appealing way to describe classifier performance with
a single number but, in practice, adds further uncertainty
into the evaluation process, i.e., uncertainty about the costs
or benefits of different decisions. Eliciting and quantifying
these costs is difficult, subjective and generally ignored.

Much attention has been given to the “problem” of class
imbalance (Luque et al., 2019; Mullick et al., 2020; Lovell
et al., 2021). We use quotes to emphasise that class imbal-
ance is mainly problematic to those trying to build auto-
mated decision making systems—the real problem of rare
but highly adverse cases (e.g., life threatening disease) is
that they occur at all; we would not want them to happen
more frequently. Also, class imbalance is a necessary con-
sequence of multinomial classification: with C possible
classes and N examples, at least one class will have equal
or fewer than N/C examples.

There are two types of confusion matrix performance metric:
prevalence-independent (or balanced) metrics, whose val-
ues depend only on rates of true positives and negatives (Ap-
pendix C); and prevalence-dependent metrics whose values
depend on these rates and prevalence (Appendix B). (Note
that balanced versions of prevalence dependent metrics can
be derived—see Luque et al. (2019) and Section C.12 .)
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(a) Posterior predictive pmfs: binomial model.
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(b) Posterior predictive pmfs: beta-binomial model

Figure 3: Joint and marginal posterior predictive pmfs under different models of uncertainty for the confusion matrix
[
16 8
4 32

]
.

These are the distributions we would expect to see if the classifier that produced that confusion matrix was given a further
20 positive and 40 negative examples to classify. Top left panels show the pmfs of the false positive rate; bottom right
panels show the pmfs of the true positive rate; bottom left panels show the joint pmfs of true and false positive rates in ROC
space. Point areas in the joint distribution plots are proportional to the probability masses they are centred on. These are
screenshots from our interactive visualisation (see Appendix D.5).
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Figure 4: There is potential for substantial variation about the performance metric values of the observed confusion matrix
as shown by these posterior predictive pmfs of MCC, BA, F1 (left to right) under beta-binomial (red) and binomial models
(blue) of uncertainty, given the observed confusion matrix used in Figure 3. Vertical lines show the MAP performance metric
values. The green points show the number of times each value of a particular performance metric is observed: these counts
are proportional to the prior pmfs of performance metric values. F1 values of 4

10 and 2
3 are observed 11 times (Figure F.1).

These are screenshots from our interactive visualisation (Appendix D.5).
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Figure 5: Reducing uncertainty in performance metrics requires more data to increase the precision of the predictive
distribution of confusion matrices. These contour plots show the posterior predictive pmfs (under a beta-binomial model of
uncertainty) after observing confusion matrices of increasing size but with the same false and true positive rates (0.2, 0.8).
As confusion matrix totals (N ) increase by a factor of 4, the heights and widths of the contours decrease by a factor of 1

2 .

This has led to discussion about which metrics are best
for scenarios where classes are balanced or imbalanced.
However, neither balanced nor prevalence-dependent per-
formance metrics reduce the uncertainty arising from finite
amounts of evaluation data—only additional data can do
that. We note that augmenting examples of rare classes to
assist with learning and performance evaluation will distort
class prior probabilities, and the trained classifier’s outputs
will have to be adjusted to provide accurate predictions for
real-world class abundance (Saerens et al., 2002).

The ideas we have presented for binary confusion matrices
could be extended to multinomial classification by treating
a C × C multinomial confusion matrix as a set of C bi-
nary classification problems. This one-versus-all strategy
is common in multinomial classification and has been used
to provide compact, informative visualisations of confusion
matrices in terms of their prior and posterior odds (Lovell
et al., 2021). The models of uncertainty we have presented
could be applied to each class versus all others, yielding pos-
terior predictive pmfs of various performance metrics. One
advantage of this approach would be to reveal the degree of
uncertainty associated with each class so that those devel-
oping classification systems could consider where best to
direct their attention in making improvements. An alternate
approach would be to change the probabilistic model of con-
fusion matrix distributions from binomial (or beta-binomial)
to multinomial (or Dirichlet-multinomial) (Murphy, 2012).
But with C > 2 classes, we can no longer visualise the
space of C × C confusion matrices in 3 dimensions, nor
their performance metrics. Handling uncertainty in multi-
nomial or multi-label (Görtler et al., 2022) classification
scenarios is certainly an open challenge.

10. Conclusion
Publications advocating specific performance metrics have
motivated us to study the (continuous) geometry of perfor-
mance metrics and the (discrete) geometry of the space of
confusion matrices they are applied to. Through this, we
have gained a clearer understanding of the cause and effect
of uncertainty in performance metrics: the primary cause is
uncertainty about the confusion matrices that will be pro-
duced by a trained classifier; this depends on the numbers of
actual positive and negative examples we have observed the
classifier determine. Using binomial and (more conserva-
tive) beta-binomial models of uncertainty, we can calculate
the exact pmfs of the predictive distribution of confusion
matrices, given the classifications we have observed.

Using the contours of various performance metrics, we have
demonstrated how the posterior predictive pmfs of confusion
matrices can be transformed into posterior predictive pmfs
of different performance metrics. We have provided a range
of static and interactive visualisations for researchers and
practitioners to explore uncertainty in confusion matrices
and various performance metrics derived from them. These
contributions aim to put performance metrics and their un-
certainty into perspective, specifically, when observations
of positive or negative classes are few, uncertainty in perfor-
mance metrics can easily eclipse differences in performance
between classifiers. Arguments about which classifier per-
forms best, or which performance metric is best, need to
take this uncertainty into account, and the visualisations we
provide enable researchers to do that.

Our work also provides a useful perspective on performance
evaluation where classes are imbalanced—a common sce-
nario in binary decision making and a necessary situation in
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multinomial classification. Some metrics depend on class
imbalance; others do not; and “balanced” metrics can be
created from prevalence-dependent ones. However, the fun-
damental issue in performance evaluation is not so much
the relative abundance of different classes as their absolute
abundance: our estimates of a classifier’s ability to correctly
detect a class will be highly uncertain when there are few
instances that class, regardless of balance. Performance met-
rics can’t address this: ore data is needed and, until it arrives,
we must acknowledge the uncertainty in our findings.

Finally, and with a view to the ethical dimensions of this
work, we acknowledge that classifier performance evalua-
tion goes far beyond purely quantitative metrics. It is heart-
ening to see the breadth of issues in performance evaluation,
benchmarking and datasets gaining more attention. Still,
quantitative metrics will always play a prominent role in
considering the strengths and limitations of classification
systems. We hope that this visualisation of confusion matrix
performance metrics and their uncertainties will inform their
use in practice.
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A. Performance metrics and other definitions
Many sums, products, ratios and functions of the four elements of a binary confusion matrix have been defined. Unfortunately,
the notation varies between authors as does the row and column layout of the confusion matrix itself. We define performance
metrics using the notation and layout of the confusion matrix in Figure 1 in the main paper:

Total actual class
N = p+ n positive negative

predicted class p = a+ c n = b+ d

positive
p̂ = a+ b

TP
True

Positives
(a)

FP
False

Positives
(b)

negative
n̂ = c+ d

FN
False

Negatives
(c)

TN
True

Negatives
(d)

The following equations define performance metrics and other quantities used in this paper. We use an asterisk (∗) to indicate
quantities that depend on prevalence (Eq. (12)).

Here are the definitions of the row, column and overall totals of the confusion matrix:

Total N = TP+ FN+ FP + TN (7)
Condition Positive p = TP+ FN (8)

Condition Negative n = FP + TN (9)
Predicted Positive∗ p̂ = TP+ FP (10)

Predicted Negative∗ n̂ = FN+ TN. (11)

Prevalence refers to the proportion of positive cases in a dataset:

Prevalence∗ Prev =
p

N
. (12)

True and False Positive rates form the Positive Likelihood Ratio:

True Positive Rate TPR =
TP

p
= 1− FNR

Sensitivity,
Recall

(13)

False Positive Rate FPR =
FP

n
= 1− TNR (14)

Positive Likelihood Ratio LR+ =
TPR

FPR
(15)

while True and False Negative rates form the Negative Likelihood Ratio:

True Negative Rate TNR =
TN

n
Specificity (16)

False Negative Rate FNR =
FN

p
(17)

Negative Likelihood Ratio LR− =
FNR

TNR
(18)

and these Likelihood Ratios form the Diagnostic Odds Ratio:

Diagnostic Odds Ratio DOR =
LR+

LR−
=

TP · TN
FP · FN

. (19)
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To help visualise LR+, LR− and DOR in comparison to other performance metrics, we introduce the following scaled
versions of their logarithms

scaled log LR+ slLR+ =
1

log(n(p− 1)/p)
log

(
TP

p

n

FP

)
Section C.4 (20)

scaled log LR− slLR− =
1

log(pn/(n− 1))
log

(
FN

p

n

TN

)
Section C.5 (21)

scaled log DOR slDOR =
1

log(p− 1)(n− 1)
log

(
TP · TN
FP · FN

)
Section C.8 (22)

True Positive and True Negative rates are the basis of the following prevalence-independent performance metrics:

Balanced Accuracy BA =
TPR+ TNR

2
=

BM+ 1

2
(23)

Bookmaker Informedness BM = TPR+ TNR− 1
Youden’s J ,
Delta P

(24)

Geometric Mean GM =
√
TPR · TNR (25)

Prevalence Threshold PT =

√
FPR√

TPR+
√
FPR

See (Balayla, 2020) (26)

Next come ratios that relate to a classifier’s predictions. These depend on prevalence, but (Luque et al., 2019) have proposed
prevalence-independent (“balanced”) versions:

Positive Predictive Value∗ PPV =
TP

p̂
Precision (27)

Balanced PPV PPVbal =
TPR

1 + TPR− TNR
See (Luque et al., 2019) (28)

Negative Predictive Value∗ NPV =
TN

n̂
See (Powers, 2011) (29)

Balanced NPV NPVbal =
TNR

1 + TNR− TPR
. See (Luque et al., 2019) (30)

and these predictive values form Markedness and its balanced version:

Markedness∗ MK = PPV +NPV − 1 (31)
Balanced Markedness MKbal = PPVbal +NPVbal − 1. See (Luque et al., 2019) (32)

Accuracy refers to the proportion of correctly classified examples and is prevalence-dependent, unlike BA and BM:

Accuracy∗ Acc =
TP + TN

N
. (33)

Like Accuracy, both F1 and Threat Score involve ratios of sums of confusion matrix elements:

F1
∗ F1 =

2PPV · TPR
PPV + TPR

Sørensen–Dice
coefficient

=
2TP

2TP + FP + FN
(34)

Balanced F1 F1bal =
2TPR

2 + TPR− TNR
See (Luque et al., 2019) (35)

Threat Score∗ TS =
TP

TP + FN+ FP

Jaccard index,
Critical Success
index

(36)

Balanced Threat Score TSbal =
TPR

2− TNR
. Section C.13 (37)
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We define Decision Benefits as a weighted sum of confusion matrix elements:

Decision Benefits∗ DB = βa · TP + βb · FP+
βc · FN + βd · TN. Section B.5 (38)

The remaining metrics combine the four elements of the confusion matrix in more complex ways:

Matthews Correlation
Coefficient

∗ MCC =
TP · TN− FP · FN√

p̂ · p · n · n̂
phi coefficient (39)

= sgn(BM)
√
BM ·MK See (Powers, 2011) (40)

Balanced MCC MCCbal =
BM√

1− (TPR− TNR)2
See (Luque et al., 2019) (41)

Fowlkes-Mallows Index∗ FM =
√
PPV · TPR See (Fowlkes & Mallows, 1983) (42)

Balanced FM FMbal =
TPR√

1 + TPR− TNR
Section C.12 (43)

Cohen’s kappa∗ κ =
2(TP · TN− FN · FP)

p̂ · n+ p · n̂
. Section C.16 (44)
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(a) MCC with Prev = 0.1 (b) MCC with Prev = 0.5 (c) MCC with Prev = 0.9

Figure B.1: Contours of the Matthews Correlation Coefficient in the ROC space.

B. Performance metric contours that depend on prevalence
B.1. Matthews Correlation Coefficient

Using the notation of Figure 1, the Matthews Correlation Coefficient (Eq. (39)) can be rewritten in terms of a, d, p, n as

MCC(a, b, c, d) =
ad− bc√

(a+ b)(a+ c)(b+ d)(c+ d)

=
ad− (n− d)(p− a)√

(a+ n− d)pn(p− a+ d)
.

For given numbers of positives (p) and negatives (n), this performance metric achieves a value of −1 ≤ k ≤ 1 along the
contour lines with

a(k, p, n, d) =
1

2(k2p+ n)

(
+

√
k2p(n+ p)2(4d(n− d) + k2np)

n
+ 2dp(k2 − 1) + k2p(p− n) + 2np

)
k ≥ 0

1

2(k2p+ n)

(
−
√

k2p(n+ p)2(4d(n− d) + k2np)

n
+ 2dp(k2 − 1) + k2p(p− n) + 2np

)
k < 0

(45)

or, in terms of true positive rate α = a/p and true negative rate δ = d/n

α(k, p, n, δ) =
1

2p(k2p+ n)

(
+

√
k2p(n+ p)2(4n2δ(n− δ) + k2np)

n
+ 2nδp(k2 − 1) + k2p(p− n) + 2np

)
k ≥ 0

1

2p(k2p+ n)

(
−
√

k2p(n+ p)2(4n2δ(n− δ) + k2np)

n
+ 2nδp(k2 − 1) + k2p(p− n) + 2np

)
k < 0

(46)

in which case, all contours where k < 0 intersect at (α, δ) = (0, 1) and all contours where k > 0 intersect at (α, δ) = (1, 0),
as is the case for Markedness. These intersections become apparent when we visualise the contours of the Matthews
Correlation Coefficient within and beyond the ROC space (Figure B.2) which reveals that the contours describe a series of
concentric ellipses whose eccentricity depends on prevalence.
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(a) MCC with Prev=0.1

(b) MCC with Prev=0.5

(c) MCC with Prev=0.9

Figure B.2: Contours of the Matthews Correlation Coefficient within and beyond the ROC space describe a series of
concentric ellipses whose eccentricity depends on prevalence and which intersect where (FPR,TPR) = (0, 0) and
(FPR,TPR) = (1, 1)
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(a) F1 score with Prev = 0.1 (b) F1 score with Prev = 0.5 (c) F1 score with Prev = 0.9

Figure B.3: Contours of the F1 score in the ROC space.

B.2. F1 Score

Using the notation of Figure 1, the F1 score (Eq. (34)) can be rewritten in terms of a, d, p, n as

F1(a, b, c, d) =
2a

2a+ b+ c

=
2a

2a+ n− d+ p− a
.

For given numbers of positives (p) and negatives (n), this performance metric achieves a value of 0 ≤ k ≤ 1 along the
contour lines with

a(k, p, n, d) =
k(d− n− p)

k − 2
(47)

or, in terms of true positive rate α = a/p and true negative rate δ = d/n

α(k, p, n, δ) =
k(nδ − n− p)

p(k − 2)
(48)

in which case, all contours intersect at (α, δ) = (0, (p+ n)/n). These intersections become apparent when we visualise the
contours of the F1 score within and beyond the ROC space (Figure B.4) which reveals how the slopes of the linear contours
depend on prevalence, similar to those of the Threat Score.
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Never mind the metrics—what about the uncertainty?

(a) F1 with Prev=0.1

(b) F1 with Prev=0.5

(c) F1 with Prev=0.8

Figure B.4: Contours of the F1 score in and beyond the ROC space are straight lines that intersect at (α, δ) = (0, (p+n)/n)
or, equivalently (FPR,TPR) = (1− (p+ n)/n, 0).
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Never mind the metrics—what about the uncertainty?

(a) Threat Score with Prev = 0.1 (b) Threat Score with Prev = 0.5 (c) Threat Score with Prev = 0.9

Figure B.5: Contours of the Threat Score (Jaccard Index, Critical Success Index) in the ROC space.

B.3. Threat Score (Jaccard Index, Critical Success Index)

Using the notation of Figure 1, the Threat Score (Eq. (36)) can be rewritten in terms of a, d, p, n as

TS(a, b, c, d) =
a

a+ b+ c

=
a

p+ n− d
.

For given numbers of positives (p) and negatives (n), this performance metric achieves a value of 0 ≤ k ≤ 1 along the
contour lines with

a(k, p, n, d) = k(p+ n− d) (49)

or, in terms of true positive rate α = a/p and true negative rate δ = d/n

α(k, p, n, δ) = k(p+ n(1− δ))/p (50)

in which case, all contours intersect at (α, δ) = (0, (p+ n)/n). These intersections become apparent when we visualise the
contours of the F1 score within and beyond the ROC space (Figure B.6) which reveals how the slopes of the linear contours
depend on prevalence, similar to those of the F1 Score.
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Never mind the metrics—what about the uncertainty?

(a) Threat Score with Prev=0.1

(b) Threat Score with Prev=0.5

(c) Threat Score with Prev=0.8

Figure B.6: Contours of the Threat Score score in and beyond the ROC space are straight lines that intersect at (α, δ) =
(0, (p+ n)/n) or, equivalently (FPR,TPR) = (1− (p+ n)/n, 0).
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Never mind the metrics—what about the uncertainty?

(a) Accuracy with Prev = 0.1 (b) Accuracy with Prev = 0.5 (c) Accuracy with Prev = 0.9

Figure B.7: Contours of accuracy in the ROC space.

B.4. Accuracy

Using the notation of Figure 1, the Accuracy (Eq. (33)) can be rewritten in terms of a, d, p, n as

TS(a, b, c, d) =
a+ d

a+ b+ c+ d

=
a+ d

p+ n
.

For given numbers of positives (p) and negatives (n), this performance metric achieves a value of 0 ≤ k < 1 along the
contour lines with

a(k, p, n, d) = k(p+ n)− d (51)

or, in terms of true positive rate α = a/p and true negative rate δ = d/n

α(k, p, n, δ) =
k(p+ n)− nδ

p
. (52)

These contour lines are parallel and planar.
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Never mind the metrics—what about the uncertainty?

(a) Decision Benefits with Prev = 0.1 (b) Decision Benefits with Prev = 0.5 (c) Decision Benefits with Prev = 0.9

Figure B.8: Contours of Decision Benefits in the ROC space using β =
[
7 3
1 4

]
.

(a) Decision Benefits with Prev = 0.1 (b) Decision Benefits with Prev = 0.5 (c) Decision Benefits with Prev = 0.9

Figure B.9: Contours of Decision Benefits in the ROC space using β =
[
4 1
1 7

]
.

B.5. Decision Costs (Benefits)

While it is common to refer to the costs of correct and incorrect classifications, we work here equivalently in terms of
benefits in keeping with other performance metrics in this paper where “bigger is better” and to ensure the colour scales
used in our graphics can be interpreted consistently (“blue is better”).

We define the matrix of benefits associated with the confusion matrix of Figure 1 as

β =

[
βa βb

βc βd

]
.

Literature that concentrates on decision costs for a fixed prevalence treats this matrix as having only two degrees of freedom,
e.g., the ratio (or difference) of costs for true positive and false negative classifications, and the ratio (or difference) of costs
for true negative and false positive classifications. This paper considers confusion matrices with fixed totals, but varying
prevalence, so our parameterisation of the benefits matrix affords three degrees of freedom.
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Never mind the metrics—what about the uncertainty?

Using the notation of Figure 1, the Decision Benefits (Eq. (38)) can be rewritten in terms of a, d, p, n and benefits β as

DB(a, b, c, d,β) = a · βa + b · βb + c · βc + d · βd

= a · βa + (n− d)βb + (p− a)βc + d · βd

= a(βa − βc) + d(βd − βb) + p · βc + n · βd

For given numbers of positives (p) and negatives (n), this performance metric achieves a value of k along the contour lines
with

a(k, p, n, d,β) = −d
βd − βb

βa − βc
+

k − p · βc − n · βd

βa − βc
(53)

or, in terms of true positive rate α = a/p and true negative rate δ = d/n

α(k, p, n, δ,β) = −δ
n(βd − βb)

p(βa − βc)
+

k − p · βc − n · βd

p(βa − βc)
. (54)

These contour lines are parallel and planar.

To help with plotting the contours for all confusion matrices of size N , we use a shifted and scaled version of the benefits
matrix, β∗, whose minimum element is 0 and whose maximum element is 1

N

β∗ =
1

N
· β −min(β)

max(β)
.

This ensures feasible contours range between [0, 1]. In interactive plotting, we enforce the constraints

βa > βc ≥ 0

βd > βb ≥ 0

to ensure that the contours have finite, positive slope.

When

β =

[
β 0
0 β

]
for some positive β, the Decision Cost contours are the same as those of Accuracy.
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Never mind the metrics—what about the uncertainty?

(a) Positive Predictive Value with Prev = 0.1 (b) Positive Predictive Value with Prev = 0.5 (c) Positive Predictive Value with Prev = 0.9

Figure B.10: Contours of Positive Predictive Value in the ROC space.

B.6. Positive Predictive Value (Precision)

Using the notation of Figure 1, the Positive Predictive Value (Eq. (27)) can be rewritten in terms of a, d, p, n as

PPV(a, b, c, d) =
a

a+ b

=
a

a+ n− d
.

For given numbers of positives (p) and negatives (n), this performance metric achieves a value of 0 ≤ k ≤ 1 along the
contour lines with

a(k, p, n, d) =
k(d− n)

k − 1
(55)

or, in terms of true positive rate α = a/p and true negative rate δ = d/n

α(k, p, n, δ) =
kn(δ − 1)

p(k − 1)
(56)

in which case, all contours intersect at (α, δ) = (0, 1).
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Never mind the metrics—what about the uncertainty?

(a) Negative Predictive Value with Prev = 0.1 (b) Negative Predictive Value with Prev = 0.5 (c) Negative Predictive Value with Prev = 0.9

Figure B.11: Contours of Negative Predictive Value in the ROC space.

B.7. Negative Predictive Value

Using the notation of Figure 1, the Negative Predictive Value (Eq. (27)) can be rewritten in terms of a, d, p, n as

NPV(a, b, c, d) =
d

c+ d

=
d

p− a+ d
.

For given numbers of positives (p) and negatives (n), this performance metric achieves a value of 0 ≤ k ≤ 1 along the
contour lines with

a(k, p, n, d) = p+
d(k − 1)

k
(57)

or, in terms of true positive rate α = a/p and true negative rate δ = d/n

α(k, p, n, δ) = 1 +
nδ(k − 1)

pk
(58)

in which case, all contours intersect at (α, δ) = (1, 0).
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Never mind the metrics—what about the uncertainty?

(a) Markedness with Prev = 0.1 (b) Markedness with Prev = 0.5 (c) Markedness with Prev = 0.9

Figure B.12: Contours of Markedness in the ROC space.

B.8. Markedness

Using the notation of Figure 1, Markedness (Eq. (31)) can be rewritten in terms of a, d, p, n as

MK(a, b, c, d) =
a

a+ b
+

d

c+ d
− 1

=
a

a+ n− d
+

d

p− a+ d
− 1.

For given numbers of positives (p) and negatives (n), this performance metric achieves a value of 0 ≤ k ≤ 1 along the
contour lines with

a(k, p, n, d) =


√
(kn+ kp+ n)2 − 4dk(n+ p) + 2dk − kn+ kp− n

2k
k ≥ 0

−
√

(kn+ kp+ n)2 − 4dk(n+ p)− 2dk + kn− kp+ n

2k
k < 0

(59)

or, in terms of true positive rate α = a/p and true negative rate δ = d/n

α(k, p, n, δ) =


√
(kn+ kp+ n)2 − 4nδk(n+ p) + 2nδk − kn+ kp− n

2pk
k ≥ 0

−
√
(kn+ kp+ n)2 − 4nδk(n+ p)− 2nδk + kn− kp+ n

2pk
k < 0

(60)

in which case, all contours where k < 0 intersect at (α, δ) = (0, 1) and all contours where k > 0 intersect at (α, δ) = (1, 0),
as is the case for the Matthews Correlation Coefficient.
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Never mind the metrics—what about the uncertainty?

(a) Markedness with Prev=0.1

(b) Markedness with Prev=0.5

(c) Markedness with Prev=0.9

Figure B.13: Contours of Markedness within and beyond the ROC space describe a series of polynomial curves whose shape
depends on prevalence and which intersect where (FPR,TPR) = (0, 0) and (FPR,TPR) = (1, 1)
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Never mind the metrics—what about the uncertainty?

(a) Cohen’s kappa with Prev = 0.1 (b) Cohen’s kappa with Prev = 0.5 (c) Cohen’s kappa with Prev = 0.9

Figure B.14: Contours of Cohen’s kappa in the ROC space.

B.9. Cohen’s kappa

Using the notation of Figure 1, Cohen’s kappa (Eq. (44)) can be rewritten in terms of a, d, p, n as

κ(a, b, c, d) =
2(ad− bc)

(a+ b)(b+ d) + (a+ c)(c+ d)

=
2(ad− (n− d)(p− a))

(a+ n− d)n+ p(p− a+ d)
.

For given numbers of positives (p) and negatives (n), this performance metric achieves a value of 0 ≤ k ≤ 1 along the
contour lines with

a(k, p, n, d) =
dk(n− p) + 2dp− k(n2 + p2)− 2np

(k − 2)n− kp
(61)

or, in terms of true positive rate α = a/p and true negative rate δ = d/n

α(k, p, n, δ) =
nδk(n− p) + 2nδp− k(n2 + p2)− 2np

p((k − 2)n− kp)
(62)

=
nδk(n− p)− 2np(1− δ)− k(n2 + p2)

p(k(n− p)− 2n)
(63)

in which case, all contours intersect at

(α, δ) =

(
n

n− p
, 1− n

n− p

)
when p ̸= n.
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Never mind the metrics—what about the uncertainty?

(a) Fowlkes-Mallows index with Prev = 0.1 (b) Fowlkes-Mallows index with Prev = 0.5 (c) Fowlkes-Mallows index with Prev = 0.9

Figure B.15: Contours of Fowlkes-Mallows index in the ROC space.

B.10. Fowlkes-Mallows index

Using the notation of Figure 1, the Fowlkes-Mallows Index (Eq. (42)) can be rewritten in terms of a, d, p, n as

FM(a, b, c, d) =

√
a

a+ b
· a

a+ c

=

√
a

a+ n− d
· a
p

For given numbers of positives (p) and negatives (n), this performance metric achieves a value of 0 ≤ k ≤ 1 along the
contour lines with

a(k, p, n, d) =
1

2

(√
k2p(−4d+ k2p+ 4n) + k2p

)
(64)

or, in terms of true positive rate α = a/p and true negative rate δ = d/n

α(k, p, n, δ) =
1

2p

(√
k2p(−4nd+ k2p+ 4n) + k2p

)
. (65)
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Never mind the metrics—what about the uncertainty?

Figure C.1: Contours of True Positive Rate in the ROC space.

C. Performance metric contours that are independent of prevalence
C.1. True Positive Rate (Sensitivity)

Using the notation of Figure 1, the True Positive Rate (Eq. (13)) can be rewritten in terms of a, d, p, n as

TPR(a, b, c, d) =
a

a+ c

=
a

p
.

For given numbers of positives (p), this performance metric achieves a value of 0 ≤ k ≤ 1 along the contour lines with

a(k, p) = pk (66)

or, in terms of true positive rate α = a/p and true negative rate δ = d/n

α(k) = k (67)
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Never mind the metrics—what about the uncertainty?

Figure C.2: Contours of True Negative Rate in the ROC space.

C.2. True Negative Rate (Specificity)

Using the notation of Figure 1, the True Negative Rate (Eq. (16)) can be rewritten in terms of a, d, p, n as

TNR(a, b, c, d) =
d

b+ d

=
d

n
.

For given numbers of negatives (n), this performance metric achieves a value of 0 ≤ k ≤ 1 along the contour lines with

d(k, n) = nk (68)

or, in terms of true negative rate δ = d/n

δ(k) = k (69)
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Never mind the metrics—what about the uncertainty?

Figure C.3: Contours of the geometric mean of true positive rate (sensitivity) and
true negative rate (specificity) in the ROC space.

C.3. Geometric Mean

Using the notation of Figure 1, the Geometric Mean (Eq. (25)) can be rewritten in terms of a, d, p, n as

GM(a, b, c, d) =

√
a

a+ c
· d

b+ d

=

√
a

p
· d
n
.

For given numbers of positives (p) and negatives (n), this performance metric achieves a value of 0 ≤ k ≤ 1 along the
contour lines with

a(k, p, n, d) =
k2np

d
(70)

or, in terms of true positive rate α = a/p and true negative rate δ = d/n

α(k, δ) =
k2

δ
(71)
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Never mind the metrics—what about the uncertainty?

Figure C.4: Contours of the scaled logarithm of the positive likelihood ratio in the
ROC space.

C.4. Positive Likelihood Ratio (LR+) and scaled log Positive Likelihood Ratio

Using the notation of Figure 1, the logarithm of the Likelihood Ratio of a positive outcomes (Eq. (15)) can be rewritten in
terms of a, d, p, n as

log LR+(a, b, c, d) = log

(
a

p

n

b

)
= log

(
a

p

n

n− d

)
.

For given numbers of positives (p) and negatives (n), this performance metric achieves a value of k along the contour lines
with

a(k, p, n, d) =
ekp(n− d)

n
(72)

or, in terms of true positive rate α = a/p and true negative rate δ = d/n

α(k, δ) = ekp(1− δ) (73)

log LR+ has range (−∞,∞). To visualise the finite values of this function, it is convenient to work with a scaled version of
this function whose contours lie between [−1, 1]. The largest finite value of LR+ is n(p− 1)/p so we can produce a scaled
version of Eq. 72 by dividing log LR+(a, b, c, d) by

M = log(n(p− 1)/p) (74)

to give

scaled log LR+(a, b, c, d) =
1

log(n(p− 1)/p)
log

(
a

p

n

b

)
(75)

which yields the contour equations

a(k, p, n, d) =
eMkp(n− d)

n
(76)

and

α(k, δ) = eMkp(1− δ) (77)
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Never mind the metrics—what about the uncertainty?

Figure C.5: Contours of the scaled logarithm of the negative likelihood ratio in the
ROC space.

C.5. Negative Likelihood Ratio (LR−) and scaled log Negative Likelihood Ratio

Using the notation of Figure 1, the logarithm of the Likelihood Ratio of a negative outcomes (Eq. (18)) can be rewritten in
terms of a, d, p, n as

log LR−(a, b, c, d) = log

(
c

p

n

d

)
= log

(
p− a

p

n

d

)
.

For given numbers of positives (p) and negatives (n), this performance metric achieves a value of k along the contour lines
with

a(k, p, n, d) = p− dekp

n
(78)

or, in terms of true positive rate α = a/p and true negative rate δ = d/n

α(k, δ) = 1− δek (79)

log LR− has range (−∞,∞). To visualise the finite values of this function, it is convenient to work with a scaled version of
this function whose contours lie between [−1, 1]. The largest finite value of LR− is pn/(n− 1) so we can produce a scaled
version of Eq. 78 by dividing log LR−(a, b, c, d) by

M = log(pn/(n− 1)) (80)

to give

scaled log LR−(a, b, c, d) =
1

log(pn/(n− 1))
log

(
c

p

n

d

)
(81)

which yields the contour equations

a(k, p, n, d) = p− deMkp

n
(82)

and

α(k, δ) = 1− δeMk (83)
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Never mind the metrics—what about the uncertainty?

Figure C.6: Contours of Bookmaker Informedness in the ROC space.

C.6. Bookmaker Informedness, BA

Using the notation of Figure 1, the Bookmaker Informedness (Eq. (24)) can be rewritten in terms of a, d, p, n as

BM(a, b, c, d) =
a

a+ c
+

d

b+ d
− 1

=
a

p
+

d

n
− 1.

For given numbers of positives (p) and negatives (n), this performance metric achieves a value of 0 ≤ k ≤ 1 along the
contour lines with

a(k, p, n, d) = p

(
k + 1− d

n

)
(84)

or, in terms of true positive rate α = a/p and true negative rate δ = d/n

α(k, δ) = k + 1− δ (85)
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Never mind the metrics—what about the uncertainty?

Figure C.7: Contours of Prevalence Threshold in the ROC space.

C.7. Prevalence Threshold

Using the notation of Figure 1, the Prevalence Threshold (Eq. (26)) can be rewritten in terms of a, d, p, n as

PT(a, b, c, d) =

√
b/(b+ d)√

a/(a+ c) +
√
b/(b+ d)

=

√
(n− d)/n√

a/p+
√
(n− d)/n

.

For given numbers of positives (p) and negatives (n), this performance metric achieves a value of 0 ≤ k ≤ 1 along the
contour lines with

a(k, p, n, d) =
(k − 1)2p(n− d

k2n
(86)

or, in terms of true positive rate α = a/p and true negative rate δ = d/n

α(k, δ) =
(k − 1)2(1− δ)

k2
(87)
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Never mind the metrics—what about the uncertainty?

Figure C.8: Contours of scaled log Diagnostic Odds Ratio in the ROC space.

C.8. log Diagnostic Odds Ratio and scaled log Diagnostic Odds Ratio

Using the notation of Figure 1, the logarithm of the Diagnostic Odds Ratio (Eq. (19)) can be rewritten in terms of a, d, p, n
as

logDOR(a, b, c, d) = log

(
ad

bc

)
(88)

= log

(
ad

(p− a)(n− d)

)
.

For given numbers of positives (p) and negatives (n), this performance metric achieves a value of k along the contour lines
with

a(k, p, n, d) =
ek(d− n)p

d(ek − 1)− ekn
(89)

or, in terms of true positive rate α = a/p and true negative rate δ = d/n

α(k, δ) =
ek(δ − 1)

δ(ek − 1)− ek
(90)

logDOR has range (−∞,∞). To visualise the finite values of this function, it is convenient to work with a scaled version
of this function whose contours lie between [−1, 1]. The largest finite value of DOR is (p− 1)(n− 1) so we can produce a
scaled version of Eq. 90 by dividing logDOR(a, b, c, d) by

M = log(p− 1)(n− 1) (91)

to give

scaled logDOR(a, b, c, d) =
1

log(p− 1)(n− 1)
log

(
ad

bc

)
(92)

which yields the contour equations

a(k, p, n, d) =
eMk(d− n)p

d(eMk − 1)− eMkn
(93)

and

α(k, δ) =
eMk(δ − 1)

δ(eMk − 1)− eMk
. (94)
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Never mind the metrics—what about the uncertainty?

Figure C.9: Contours of the balanced Matthews Correlation Coefficient in the ROC
space.

C.9. Balanced Matthews Correlation Coefficient

Using the notation of Figure 1, the balanced Matthews Correlation Coefficient (Eq. (41)) can be rewritten in terms of
a, d, p, n as

MCCbal =
a/p+ d/n− 1√
(1−

(
a
p · d

n

)2 (95)

For given numbers of positives (p) and negatives (n), this performance metric achieves a value of k along the contour lines
with

a(k, p, n, d) =
p

n
· k

√
−4d2 + 4dn+ k2n2 + n+ d(k2 − 1)

k2 + 1
(96)

or, in terms of true positive rate α = a/p and true negative rate δ = d/n

α(k, δ) =
k
√
−4δ2 + 4dδ + k2 + 1 + δ(k2 − 1)

k2 + 1
(97)
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Never mind the metrics—what about the uncertainty?

Figure C.10: Contours of the balanced Markedness in the ROC space.

C.10. Balanced Markedness

Using the notation of Figure 1, balanced Markedness (Eq. (32)) can be rewritten in terms of a, d, p, n as

MKbal =
a/p

a/p+ 1− d/n
+

d/n

d/n+ 1− a/p
− 1 (98)

=
a

a+ p− pd/n
+

d

d+ n− na/p
− 1 (99)

For given numbers of positives (p) and negatives (n), this performance metric achieves a value of k along the contour lines
with

a(k, p, n, d) = p

(
d

n
+

√
(2k + 1)2 − 8dk/n− 1

2k

)
(100)

or, in terms of true positive rate α = a/p and true negative rate δ = d/n

α(k, δ) = δ +

√
(2k + 1)2 − 8δk − 1

2k
(101)
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Never mind the metrics—what about the uncertainty?

Figure C.11: Contours of F1bal in the ROC space.

C.11. Balanced F1 (F1bal )

Using the notation of Figure 1, balanced F1 (Eq. (35)) can be rewritten in terms of a, d, p, n as

F1bal =
2a/p

2 + a/p− d/n
(102)

For given numbers of positives (p) and negatives (n), this performance metric achieves a value of k along the contour lines
with

a(k, p, n, d) =
kp(d− 2n)

(k − 2)n
(103)

or, in terms of true positive rate α = a/p and true negative rate δ = d/n

α(k, δ) =
k(δ − 2)

k − 2
(104)

in which case, all contours intersect at (α, δ) = (0, 2).
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Never mind the metrics—what about the uncertainty?

Figure C.12: Contours of FMbal in the ROC space.

C.12. Balanced Fowlkes-Mallows index

Using the notation of Figure 1 and the same approach as (Luque et al., 2019), a balanced version of the Fowlkes-Mallows
Index (Eq. (43)) can be rewritten in terms of a, d, p, n as

FMbal(a, b, c, d) =

a
p√

1 + a
p − d

n

For given numbers of positives (p) and negatives (n), this performance metric achieves a value of 0 ≤ k ≤ 1 along the
contour lines with

a(k, p, n, d) =
kp

2

(√
k2 + 4− 4d/n+ k

)
(105)

or, in terms of true positive rate α = a/p and true negative rate δ = d/n

α(k, δ) =
k

2

(√
k2 + 4− 4δ + k

)
. (106)
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Never mind the metrics—what about the uncertainty?

Figure C.13: Contours of TSbal in the ROC space.

C.13. Balanced Threat Score

Using the notation of Figure 1 and the same approach as (Luque et al., 2019), a balanced version of the Threat Score
(Eq. (37)) can be rewritten in terms of a, d, p, n as

TSbal(a, b, c, d) =

a
p

2− d
n

For given numbers of positives (p) and negatives (n), this performance metric achieves a value of 0 ≤ k ≤ 1 along the
contour lines with

a(k, p, n, d) = kp

(
2− d

n

)
(107)

or, in terms of true positive rate α = a/p and true negative rate δ = d/n

α(k, δ) = k (2− δ) (108)
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Never mind the metrics—what about the uncertainty?

Figure C.14: Contours of PPVbal in the ROC space.

C.14. Balanced Positive Predictive Value

Using the notation of Figure 1, the balanced Positive Predictive Value (Eq. (28)) can be rewritten in terms of a, d, p, n as

PPVbal(a, b, c, d) =

a
p

a
p +

(
1− d

n

)
For given numbers of positives (p) and negatives (n), this performance metric achieves a value of 0 ≤ k ≤ 1 along the
contour lines with

a(k, p, n, d) =
kp(d− n)

(k − 1)n
(109)

or, in terms of true positive rate α = a/p and true negative rate δ = d/n

α(k, δ) =
k(δ − 1)

k − 1
. (110)
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Figure C.15: Contours of NPVbal in the ROC space.

C.15. Balanced Negative Predictive Value

Using the notation of Figure 1, the balanced Negative Predictive Value (Eq. (30)) can be rewritten in terms of a, d, p, n as

NPVbal(a, b, c, d) =
d
n

d
n +

(
1− a

p

)
For given numbers of positives (p) and negatives (n), this performance metric achieves a value of 0 ≤ k ≤ 1 along the
contour lines with

a(k, p, n, d) =
dp(k − 1)

kn
+ p (111)

or, in terms of true positive rate α = a/p and true negative rate δ = d/n

α(k, δ) =
δ(k − 1)

k
+ 1. (112)
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C.16. Balanced Cohen’s Kappa is Bookmaker Informedness

Using the relationships:

TP = p · TPR FP = n(1− TNR)

FN = p(1− TPR) TN = n · TNR

we can rewrite Cohen’s Kappa (Eq. (44)) as

κ =
2(p · TPR · n · TNR− p(1− TPR)n(1− TNR))

(p · TPR+ n(1− TNR))n+ p(p(1− TPR) + n · TNR)
.

Using the same approach as (Luque et al., 2019), we can create a class-balanced version of this metric by setting p = n to
give an expression in terms of the true positive and true negative rate alone:

κbal =
2(TPR · TNR− (1− TPR)(1− TNR))

TPR + 1− TNR+ 1− TPR+ TNR

=
2(TPR · TNR− 1 + TPR + TNR− TPR · TNR)

2
= TPR+ TNR− 1

which is the same as Bookmaker Informedness (Eq. (24)).
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D. Links to interactive visualisations, animations and source code
We have used R and its plotly and tidyverse libraries (R Core Team, 2020; Sievert, 2020; Wickham et al., 2019), as
well as Desmos’ Graphing Calculator (Desmos, Inc., n.d.) to provide interactive visualisations for several key concepts in
this paper. These visualisations are described in this section along with links to specific figures in the main paper. Desmos
automatically ensures that the underlying code is available to copy and develop further and we provide RMarkdown for all
other figures.

Source code (Rmarkdown) is available from Github at https://github.com/DavidRLovell/
Never-mind-the-metrics under the GNU General Public License v3.0.
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Figure D.1: Screenshot of the interactive
3D confusion simplex (http://bit.ly/
see-confusion-simplex).

D.1. Interactive 3D confusion simplex

http://bit.ly/see-confusion-simplex shows an interactive visualisation of the 3D projection of binary
confusion matrices of size 100. Each point corresponds to a unique confusion matrix and is coloured by the value of that
matrix’s Matthews Correlation Coefficient (MCC). In total, there are

(
100+4−1

4−1

)
= 176 851 different binary confusion

matrices of size 100. Rather than show all of these, we have taken three slices through the lattice: from back to front, the
rectangular lattices of points correspond to confusion matrices where p = 20, 50, 90, respectively.

Users can mouse over the tetrahedron, then click and drag to change its orientation. Clicking on the text ‘Pos==20‘ will
toggle that slice of the confusion matrix.
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Figure D.2: Screenshot of the Desmos vi-
sualisation of possible points in ROC and
Precision-Recall spaces (http://bit.ly/
see-ROC-reference-points).

D.2. All possible ROC and Precision-Recall reference points

http://bit.ly/see-ROC-reference-points shows all possible (p+1)× (n+1) points in ROC and Precision-
Recall spaces corresponding to confusion matrices of size N = p+ n, coloured from red (low) to blue (high) Balanced
Accuracy. Users can change N and p by adjusting the sliders in the left hand side of the Desmos window.

This pointillist approach can be used with ROC curves and Precision-Recall plots (Davis & Goadrich, 2006) which map
(FPR,TPR) points in ROC space to (TPR,PPV) according to

(x, y) 7→

(
y,

(
1 +

n

p
· x
y

)−1
)
, (113)

a mapping which clearly depends on class balance through the factor n
p . While (Saito & Rehmsmeier, 2015) regard these

precision-recall plots as more informative than ROC curves because their achievable shape depends on prevalence, we find
them hard to interpret without reference points.
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(a) All possible ROC and Precision-
Recall points with 10 positive and 40 neg-
ative cases (Prev = 0.2).

(b) All possible ROC and Precision-
Recall points with 25 positive and 25 neg-
ative cases (Prev = 0.5).

(c) All possible ROC and Precision-
Recall points with 40 positive and 10 neg-
ative cases (Prev = 0.8).

Figure D.3: Using reference points in the background of ROC and Precision-Recall plots can indicate the number of positive
and negative examples used in a confusion matrix while maintaining a 1:1 plot aspect ratio. The points on these plots
correspond to confusion matrices of size 50. We have used colours and reference contours corresponding to Balanced
Accuracy (see Section C.6) to show the mapping between ROC and Precision-Recall plots, but when plotting actual data,
these reference points could be made faint and unobtrusive. These screenshots are taken from our interactive visualisation of
ROC and Precision-Recall reference points.
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Figure D.4: Screenshot of the Desmos
visualisation of confusion matrix perfor-
mance metric contours (http://bit.ly/
see-confusion-metrics). There are
many things that users can switch on and off
in this visualisation by clicking on the small
round circles at the left edge of the screen.

D.3. Confusion matrix performance metric contours

http://bit.ly/see-confusion-metrics enables us to interactively visualise a range of confusion matrix per-
formance metrics by plotting their contours, coloured from red (low) to white (middle) to blue (high). This visualisation was
used to produce all of the figures in Appendices B and C.

Users can change N and p by adjusting the sliders in the left hand side of the Desmos window, and can set the position of a
test point by adjusting the a1 and d1 sliders. There are many things that users can turn on and off by clicking on the small
round circles at the left edge of the screen:

Contours of prevalence-dependent and prevalence independent metrics. These switches are titled Show Accuracy,
Show MCC, through to Show Geometric Mean and, when activated, display the contours of the chosen performance
metrics

Additional information and decoration switches allow users to show all possible ROC points; a movable test point whose
corresponding confusion matrix and performance metric values can be displayed; and various titles. Importantly, users
can toggle the limits of what is displayed, so that performance metric contours beyond ROC space can be visualised (as
in Figure B.2).
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Figure D.5: Screenshot of animation of
Matthews Correlation Coefficient perfor-
mance metric contours (http://bit.ly/
see-animated-MCC).

D.4. Animated performance metric contours

These animated plots show how the contours of various performance metrics change with class balance, i.e., as the number
of negative examples (n) and positive examples (p) vary in confusion matrices of fixed size (N ).

We have created animations of

• Accuracy: https://bit.ly/see-animated-accuracy

• Balanced Accuracy: https://bit.ly/see-animated-BA

• F1 Score: https://bit.ly/see-animated-F1

• Matthews Correlation Coefficient: https://bit.ly/see-animated-MCC

Each animation frame shows a two dimensional slice through the tetrahedral confusion simplex, a projection of the four
dimensional confusion matrices of size 100 into three dimensions. The animation shows slices sweeping from the edge of
the simplex where TP = p,TN = n through to the edge where FN = p,FP = n.

Each coloured point corresponds to a specific confusion matrix in which[
TP FP
FN TN

]
=

[
TP FP

p− TP n− FP

]
and N = p+ n = 100. Hence, for a given p and n, we can plot the (p+ 1)× (n+ 1) points whose TP values range from
0 to p and whose FP values range from 0 to n while overlaying the contours of the ‘r metric.name‘ performance metric
ranging from −0.9,−0.8, . . . , 0.9.

Note that

• The contours of the performance metrics are defined continuously, but empirical confusion matrices can only take on
values at the discrete points in these plots.

• The left hand plot shows these points and performance metric contours in ROC space in which a classifier’s true
positive rate is plotted against its false positive rate in the space of rational numbers from [0, 1]× [0, 1].
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• The right hand plot shows these points and ‘r metric.name‘ contours as an orthographic projection of the slice of points
from the confusion simplex.

• The left hand ROC plot is is equivalent to re-scaling the x-axis of the right hand plot by a factor of 1
n and the y-axis by

1
p .
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Figure D.6: Screenshot of the Desmos
visualisation of confusion matrix un-
certainty models (http://bit.ly/
see-confusion-uncertainty). There
are many things that users can switch on and
off in this visualisation by clicking on the
small round circles at the left edge of the
screen.

D.5. Uncertainty in confusion matrices and their performance metrics

http://bit.ly/see-confusion-uncertainty enables interactive exploration of the posterior predictive pmfs
of confusion matrices and three performance metrics (MCC, BA, F1) under binomial and beta-binomial models of uncertainty.
This visualisation was used to produce Figures 3, E.1, 4 and F.2.

Users can change N and p by adjusting the sliders in the left hand side of the Desmos window, and can set the position of a
test point by adjusting the a and d sliders. There are many things that users can turn on and off by clicking on the small
round circles at the left edge of the screen:

Marginal and joint pmfs of True and False Positive rates. Users can show these posterior predictive probability mass
functions for confusion matrices of size N = p+ n under binomial and beta-binomial models of uncertainty, given
that a True Positives and d True Negatives have been observed.

Posterior predictive pmfs of MCC, BA and F1 can be shown using the Show PMF... switches for each performance
metric. There are also switches to show the unique performance metric values (Show rug...), the number of times
these unique values are observed (Show count...) and a histogram summary of the probability mass functions (Show
histogram...).

Additional information and decoration switches allow users to show all possible ROC points; a movable test point whose
corresponding confusion matrix and performance metric values can be displayed; and various labels.

Axis and point size scales are sliders that allow users to adjust the size of the points used in the joint pmf display, the
maximum of the performance metric pmfs y-axis (Pmax), and the maximum of the performance metric counts y-axis
(Cmax).

As noted on the visualisation, Desmos supports lists of up to 10 000 elements, so np must be < 10 001 for the joint
probability mass distributions to plot. This visualisation runs in your web browser and interaction becomes slow with larger
values of np: we recommend starting with N = 60, p = 20.
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(a) Posterior predictive pmfs: binomial model. (b) Posterior predictive pmfs: beta-binomial model

Figure E.1: Joint and marginal posterior predictive probability mass functions (pmfs) of the cocaine purity classifier
confusion matrix reported by (Rodrigues et al., 2013) and used by (Tötsch & Hoffmann, 2021) to illustrate confusion matrix
uncertainty. These are screenshots from our interactive visualisation (see Appendix D.5).

E. Differences between binomial and beta-binomial models of uncertainty when data are scarce
To further illustrate the differences between the uncertainties conveyed by binomial and beta-binomial models, we consider
the drug purity data from Rodrigues et al. (2013) used by Tötsch & Hoffmann (2021). Figure E.1 visualises the confusion
matrix of 26 positive examples and 8 negative examples in which no false negatives were observed. The binomial model of
the true positive rate places the entire probability mass at TPR = 1 (Figure E.1a, bottom right), while the beta-binomial is
more moderate, suggesting that a range of true positive values from 0.8–1.0 are plausible (Figure E.1b, bottom right). Tötsch
& Hoffmann (2021)[Figure 4] explored uncertainty in this data by simulating 20 000 draws from the posterior predictive
distribution of the beta-binomial model and using histograms to summarise the true positive and negative rates that were
sampled. This work and the foundation that Caelen (2017) provided highlight the importance of modeling uncertainty in
interpreting confusion matrices. We think that calculating and visualising the exact discrete probability mass functions
conveys an even more meaningful and accurate appreciation of that uncertainty.

Do situations of data scarcity arise in the present era of “big data”? We believe so, and see two possible causes. The first is
when the phenomenon of interest is genuinely (and often, mercifully) rare, as might occur in medical or health settings. The
second arises in multinomial classification where the number of classes is relatively large in comparison to the total number
of observations, leading to some classes with relatively few examples. Certainly, the number of publications devoted to
learning from rare events and class-imbalanced data suggests that there are many researchers who are interested in working
with scarce data (Haixiang et al., 2017). And, in the absence of additional information, the performance estimates of the
classification models they build will be uncertain as a result of this scarce data, regardless of the performance metrics used.
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Figure F.1: Two ways to show confusion matrix pmfs and performance metric contours in ROC space. Both plots show
the posterior predictive pmf of confusion matrices under a beta-binomial model of uncertainty for a classifier observed to
produce the confusion matrix

[
16 8
4 32

]
(the same as in Figure 4(b)). Like Figure 4, the left plot uses circle areas to represent

probability mass; the right plot uses ridge lines. In the background are the contours of the F1 performance metric and in
black are the contours F1 = 4

10 and F1 = 2
3 , along each of which lie 11 points in ROC space.

F. Visualising the conjunction of ROC points and metric contours
Having calculated and visualised the posterior predictive pmf of confusion matrices of size N = p + n after observing
a classifier’s empirical performance, we can visualise the distribution of a given performance metric. Let C represent
the confusion matrix random variable whose pmf is PC(c), and let M = µ(C) represent the random variable we get by
applying a performance metric function µ(·) to a confusion matrix. The distribution of that performance metric is

PM (m) = P (µ(C) = m) =
∑

C:µ(C)=m

PC(c)

i.e., the probability mass at performance metric value m is sum of the probability masses where µ(C) = m. In other words,
we find the pmf of the performance metric by summing the probability masses that lie along each contour of the performance
metric in ROC space.

The geometry of performance metric contours in conjunction with the layout of the (n+ 1)× (p+ 1) possible points in
ROC space determines which probability masses are summed together. Using F1 for demonstration, Figure F.1 visualises
the posterior predictive pmfs of confusion matrices in relation to performance metric contours. Plotting these probability
masses against performance metric values gives posterior predictive distributions such as shown in the top and middle rows
of Figures 4 and F.2.

Figure F.3 counts the number of ROC points that occur on the same performance metric contour. With confusion matrices
of 20 positive and 40 negative examples (top row) certain MCC, BA and F1 contours intersect multiple points in ROC
space, most noticeably the 0 contours, which intersect 21 points with MCC and BA (along the (0, 0), (1, 1) diagonal), and
41 points with F1 (along the (0, 0), (1, 0) horizontal).

One additional negative example (Figure F.3, bottom row) removes this confluence of points and contours in ROC space for
MCC and BA, but not F1. The MCC and BA pmfs change smoothly, following bell-shaped curves as we sweep across each
row (i.e., true positive rate) of the joint pmfs in the bottom left panels of Figure 3 (a) and (b)—we emphasise this by using
lines to connect these probabilities in Figure F.2, just like the ridge line plot in Figure F.1. The posterior pmf of F1 remains
much the same, due to the particular linear relationship between its contours in ROC space and the values of p and n (see
Section B.2).
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Figure F.2: These plots visualise the same quantities as Figure 4 but with a slightly different observed confusion matrix of
20 positive and 41 negative examples:

[
16 9
4 32

]
, i.e., one more false negative. Note the changes in the counts of discrete MCC

and BA values in comparison to Figure 4. To emphasise the now smoothly-changing pmf functions for MCC and BA, we
use lines to connect points corresponding to the same true positive rate, (i.e., horizontal slices of the joint pmfs in Figure 3).
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Figure F.3: Each panel shows all the possible points in the ROC space of confusion matrices of 20 positive and 40 negative
examples (top row) and 20 positive and 41 negative examples (bottom row). Points are coloured by the number of times the
performance metric value at that point is observed in the confusion matrices of those totals. Three different performance
metrics are presented: MCC (left), BA (middle), F1 (right). Performance metric contours are shown in the background,
coloured by their value. Note that one additional negative example changes the configuration of possible points in ROC
space so that each possible MCC and BA value is unique (bottom left and middle); the multiplicity of different F1 values
remains much the same. (bottom right).
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