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Abstract

Automatic quantum architecture search (QAS)
has been widely studied across disciplines with
different implications. In this paper, beyond a par-
ticular domain, we formulate the QAS problem
into two basic (and relatively even ideal) tasks: i)
arbitrary quantum circuit (QC) regeneration given
a target QC; ii) approximating an arbitrary unitary
(oracle). The latter can be connected to the setting
of various quantum machine learning tasks and
other QAS applications. Based on these two tasks,
we generate a public QAS benchmark including
900 random QCs and 400 random unitary matri-
ces which is still missing in the literature. We
evaluate six baseline algorithms including brute
force search, simulated annealing, genetic algo-
rithm, reinforcement learning, hybrid algorithm,
and differentiable algorithm as part of our bench-
mark. One characteristic of our proposed evalua-
tion protocol on the basic tasks is that it deprives
the domain-specific designs and techniques as
used in existing QAS literature, making a unified
evaluation possible and focusing on the vanilla
search methods themselves without coupling with
domain prior. In fact, the unitary approximation
task could be algorithmically more difficult than
the specific problems as it needs to explore the
whole matrix space to fit the unitary. While spe-
cific tasks often only need to fit a partial observa-
tion of the unitary as the objective for search. Data
and code are available at https://github.
com/Lucky-Lance/QAS-Bench.

1. Introduction
Quantum computing has shown its promising potential in
solving complex problems which are intractable for classical
computers, with successful quantum algorithms such as the
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Grover algorithm (Grover, 1996) for database search and
Shor algorithm (Shor, 1994) for prime factorization.

Especially with the arrival of the so-called Noisy
Intermediate-Scale Quantum (NISQ) era (Preskill, 2018),
more algorithms (Arute et al., 2019; Wu et al., 2018) are
proposed to explore quantum supremacy (Preskill, 2012) by
landing on a NISQ device. Designing a hardware-efficient
quantum circuit (QC) for a certain algorithm requires sub-
stantial human effort and takes a long time. Thus, lots of
quantum algorithms leave the oracle directly on the QCs,
which is a black box with the ability to yield certain solu-
tions but the internal circuit structure is not clearly stated.
Therefore, a series of works have focused on how to auto-
matically design a QC (Duong et al., 2022; He et al., 2022)
to ease the burden of manually designing QCs.

In this paper, we focus on the problem of automatically
designing QCs, namely QAS. The essence of searching for
a QC is to decide how to arrange different quantum gates
in the circuit. A QC is used to evolve a quantum system,
which can be described by a unitary matrix. Thus, QAS
can be mathematically defined as a unitary approximation
problem. The approximation of an arbitrary unitary is gen-
erally difficult (Nielsen & Chuang, 2002), since we need
exponentially many operations to generate an arbitrary state
of n qubits. Therefore, the unitary approximation is non-
polynomial in computational complexity, indicating that
there are no polynomial QAS algorithms.

Moreover, QAS has wide applications in quantum com-
puting. Firstly, it can automatically design circuits, such
as quantum adders (Li et al., 2017) or quantum oracles in
quantum algorithms such as those in Grover algorithm and
Quantum Fourier Transform (QFT) (Zhang et al., 2022).
Secondly, it can tackle quantum error correction in quantum
information (Rigby, 2021), which has been considered the
most important tool to exert quantum supremacy. Thirdly, it
is also capable of searching for VQE ansatze, which requires
optimizing both the architecture and the rotation parameters
at the same time. MaxCut in Combinatorial Optimization
(CO) (Guerreschi & Matsuura, 2019) and ground state en-
ergy estimation in quantum many-body problems (Barkout-
sos et al., 2018) has received lots of attention. Last but not
least, QAS can search for the Parameterized Quantum Cir-
cuit (PQC) in numerous quantum neural networks (QNN)
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(e.g. QCNN for image classification tasks) (Cong et al.,
2019). Different from VQE which evolves the quantum
system for the lowest eigenvalue, QNN is designed analog
to a classical neural network, resulting in more complicated
settings, such as supervised and unsupervised learning.

There are now a number of works available for each of the
applications of QAS. These works are used to measure the
performance of the algorithms on one or several tasks (e.g.
image classification, CO problems, etc). There still lacks
a benchmark for measuring the ability of these algorithms
across tasks, or under the general QAS task in a broad sense.

Even for a particular task, how to evaluate the performance
of a quantum search algorithm is not unified. Taking ground
state energy estimation as an example, we need to design
a QC given a molecule Hamiltonian and then evolve the
quantum state to the eigenstate with minimum eigenvalue,
which is the ground state energy of the molecule. The result
is considered admissible if the energy is within the chemical
accuracy (1 kcal/mol) (Klimeš et al., 2009). Whether achiev-
ing chemical accuracy is enough and then searching for a
shallower circuit or we should try to estimate the ground
state energy as close to the ground truth as possible still
remains a problem (Ostaszewski et al., 2021). (Du et al.,
2022; Wang et al., 2022b) test their search algorithms under
circuit noise, which results in energy much higher than the
chemical accuracy. Different metrics and perspectives of
the problem lead to strong difficulty in identifying which
searching approach is better even for this particular ground
state energy estimation task.

Current QAS algorithms are often designed to solve re-
lated cross-disciplinary problems through quantum com-
puting. For example, estimating the ground state en-
ergy of molecules requires knowledge of quantum chem-
istry (Levine et al., 2009), and solving CO problems
(e.g. MaxCut) with VQE requires knowledge of graph
theory (West et al., 2001). As illustrated in (Schatzki
et al., 2021), when benchmarking quantum machine learn-
ing methods, it is better to provide data in quantum form
which requires no embedding scheme, other than classical
data (e.g. MNIST, MaxCut). For quantum architecture
search problems, it is desirable that we are able to abstract
the most essential features from these cross-disciplinary
problems, thus getting rid of the need for other expertise.
Thus, we decide to use the unitary approximation problem
to evaluate the QAS algorithms. The proposed benchmark
is to examine the ability of different algorithms to search
for a QC given the unitary.

It is well worth noticing that the above-mentioned QAS
is similar to the concept of Neural Architecture Search
(NAS), which is a popular and important research field in
machine learning. NAS is a technique for automatically
designing neural networks and there have been lots of re-

cent works on how to design efficient search strategies for a
high-performance neural network (Liu et al., 2018b;a; Jaafra
et al., 2019; Liu et al., 2022). Having a good knowledge of
these approaches will be helpful for solving QAS problems.

In this paper, we propose a benchmark for QAS called QAS-
Bench, with two protocols to evaluate the effectiveness of
QAS: QC Regeneration from an arbitrary QC, and Unitary
Approximation from an arbitrary unitary matrix. Accord-
ingly, a dataset containing 900 QCs and 400 quantum uni-
tary matrices is provided. For the proposed QAS-Bench,
there is no open-source code that can be directly used, so we
re-implemented baseline algorithms in (Williams & Gray,
1999; Ostaszewski et al., 2021; Du et al., 2022; Zhang et al.,
2022) into PyTorch, forming a benchmark with traditional
search algorithms as well as emerging learning-based meth-
ods. The dataset as well as the source code will be made
publicly available. To sum up, the main contributions of our
work are:

1) We revisit the quantum architecture search (QAS) prob-
lem as widely studied in literature with different impli-
cations, and conclude with two general tasks for QAS:
QC Regeneration and Unitary Approximation whereby the
searched QC can either be parameterized or not.

2) For the above two tasks, by random generation with phys-
ically meaningful post-processing, we manage to provide a
benchmark dataset containing 900 QCs for QC Regenera-
tion and 400 unitary matrices for Unitary Approximation,
respectively. The evaluation protocols are also defined. Per-
haps more importantly our released source code can be used
by third-party to generate more diverse and challenging
benchmarks beyond the scope of our current version.

3) We further evaluate six representative baselines on our
benchmark. To our best knowledge, QAS-Bench is the first
public benchmark for QAS, which may well facilitate future
research in this field.

Remark on the QAS problem for QML:

To the broad machine learning community, readers may
show curiosity or even concern for the relation of the task
of QML (e.g. QNN for a tailored training dataset) to our
QAS-Bench.

Firstly, QAS is capable of searching QNN structures due
to its ability of designing PQCs. The original paper of the
hybrid algorithm (Du et al., 2022) (re-implemented in our
benchmark) searches a QNN for image classification tasks.
For our re-implemented baseline algorithms, they can search
QNNs by replacing the loss function related to the given
unitary with the one concerning training set labels.

Secondly, in the Unitary Approximation task we form a train
set by sampling input-output quantum state pairs, which can
be used for the search of QNNs.
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2. Quantum Architecture Search Background
QAS has been widely studied across disciplines and has
been referred in different settings with different implica-
tions and names (i.e. QC decomposition (Bharti et al.,
2022), adaptive circuit (Grimsley et al., 2019), quantum
ansatz search (Zhang et al., 2022), etc.). Therefore, we
review all the QAS-related definitions as well as their ap-
plications in this section. The essence of all these works is
to automatically design QCs for a certain problem. We can
divide these applications by whether the problem provides
a unitary matrix. Searching with a given unitary matrix is
more difficult since the unitary matrix is the strongest re-
striction compared to the input-output pairs or minimizing a
certain objective function under the given observation.

2.1. Applications with Unitary Matrices

Quantum oracle is a black box whose internal circuit struc-
tures are not clearly stated, but with the ability to yield
solutions to a certain problem. Quantum oracle is of fun-
damental significance in quantum computing and quantum
information, but implementing an arbitrary quantum ora-
cle requires exponentially many gates (Nielsen & Chuang,
2002). Most of the quantum oracles are designed on a cir-
cuit without parameterized gates but we can also use PQCs
to implement the oracles. Researchers have put continu-
ous efforts into manually designing quantum oracles (Bijwe
et al., 2022; Rahman & Paul, 2022), but the emergence of
QAS provides a more effective paradigm for quantum or-
acle implementation. The early work (Ding et al., 2006)
tries to evolve quantum oracles by search algorithms. (Li
et al., 2017; Deibuk & Biloshytskyi, 2015) design quantum
adders, as further leveraged for the construction of quantum
autoencoders in (Lamata et al., 2018). Recently the QFT
oracle is designed in (Zhang et al., 2022).

2.2. Applications without Unitary Matrices

Quantum error correction (QEC) is widely accepted as
the key to fault-tolerant quantum computation, as it can
protect quantum information from errors due to environ-
mental noise and experimental imperfections (Cai et al.,
2021). Quantum error correction code is one of the QEC
approaches which can be used to encode the quantum states
of qubits in case of potential errors during communication
over quantum channels. Typical QEC code includes bit flip
code (Peres, 1985) and Shor code (Shor, 1995), etc. With
the ability to automatically design circuits, QAS can effi-
ciently design QEC codes. There have been recent works
for automatically designing QEC codes and their decoders,
such as heuristic search methods (Rigby, 2021), machine
learning methods (Chen et al., 2019; Cong et al., 2019) as
well as reinforcement learning (RL) methods (Nautrup et al.,
2019; Zeng et al., 2022).

Variational quantum eigensolver (VQE) (Peruzzo et al.,
2014) is a quantum algorithm which has been widely used
for quantum chemistry, optimization problems, and quan-
tum simulation. It trains a PQC using a classical optimizer
to solve matrix eigenvalues and eigenvectors. The auto-
matic design of a VQE circuit involves searching both ar-
chitecture parameters (find a suitable gate arrangement for
a PQC) and rotation parameters (set the angles of rotation
gates on the PQC). QAS can search for a VQE circuit by
optimizing architecture and rotation parameters iteratively.
For ground state energy estimation in quantum chemistry,
Unitary Coupled-Cluster (UCC) theory uses Trotter-Suzuki
decomposition to obtain the QC for a given molecule Hamil-
tonian (Barkoutsos et al., 2018), which usually leads to large
circuits. There have been works on automatically improving
UCC ansatze (Grimsley et al., 2019; Sapova & Fedorov,
2022), or automatically searching for PQCs without given
ansatze (Ostaszewski et al., 2021; Wang et al., 2022b). For
MaxCut in CO problems, quantum approximate optimiza-
tion algorithm (QAOA) (Farhi et al., 2014) proposes an
ansatz using Ising model, and various methods have been
proposed to further optimize the QAOA ansatz for Max-
Cut (Majumdar et al., 2021a;b). Recently, (Duong et al.,
2022; Zhang et al., 2022) have tried to introduce QAS to
automatically search for VQE ansatze for MaxCut.

Quantum neural network (QNN) is a type of artificial
neural network that can be implemented by PQCs. Quan-
tum convolution neural networks (Cong et al., 2019) and
recurrent quantum neural networks (Bausch, 2020) have
been proposed in recent years, achieving comparable results
with classical neural networks. As opposed to the classical
neural network, QNN has faster training speed and higher
predicting accuracy (Huang et al., 2022). QNNs can han-
dle tasks such as image classification (Mathur et al., 2021;
Wang et al., 2021). There are some recently proposed auto-
matic QNN design methods (Zhang et al., 2021; Wang et al.,
2022b; Duong et al., 2022), expecting to improve flexibility
and accuracy by reducing human intervention.

2.3. QAS Algorithms

Here we briefly classify the current QAS baselines into four
main categories: evolutionary algorithms, differentiable
search, reinforcement learning (RL) methods, and hybrid
methods. We leave the detailed description in Appendix A.

3. Proposed Datasets and Metrics
We propose two datasets, namely QC Regeneration, and
Unitary Approximation, with evaluation protocols respec-
tively. Note that approximating an arbitrary unitary is more
difficult than regenerating an arbitrary QC, since regener-
ating an arbitrary QC only requires a bounded number of
quantum gates and we guarantee that there exists a valid cir-
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cuit structure. But for an arbitrary unitary matrix U with n
qubits, (Nielsen & Chuang, 2002) provides a method to ap-
proximate it within a distance ε by O(n24n logc(n24n/ε))
gates, and proves that the lower bound of needed gate num-
ber is Ω( 2n log(1/ε)

log(n) ). To test the search ability of different
QAS algorithms in real physical scenarios, we have now
also opened a new dataset in which we add unitary matrices
with practical meaning to the dataset (such as Bell state and
GHZ state). Users of QAS-Bench can further add more uni-
tary matrices into our dataset according to our instructions.

3.1. QC Regeneration

We provide randomly generated circuits as well as their
corresponding unitary matrices. An algorithm is required
to generate a circuit which is equivalent to the original
circuit given its unitary under the same candidate gate set.
We split this dataset into two folds, RandomCircuit-Single
(RC-S) and RandomCircuit-Clifford (RC-C), with different
candidate gate sets. To be more specific, RC-S is generated
with candidate gate set GS = {H,S, T, I} and RC-C with
GC = {H,S, T, I,CNOT}.

GC is a commonly used universal gate set (Clifford) which
can be used to approximate any unitary (Nielsen & Chuang,
2002). GS removes the CNOT gates from GC and forms a
relatively easier setting. We can further add new tasks to the
QC Regeneration dataset with other candidate gate sets.

3.1.1. DATASET GENERATION

We illustrate in detail how to randomly generate a QC
by a given candidate gate set G. Consider an n-qubit m-
layer circuit, assume there are N(j) gates in layer j, where
N(j) ≤ n, we denote the i-th gate in the j-th layer as Mij .
For the sake of clarity, we define Uij = σ(Mij) which
maps a quantum gate to a 2n × 2n unitary with all the irrel-
evant qubits kept as identity gates (I gates). The unitary of
this generated circuit is

Ut =

m∏
j=1

N(j)∏
i=1

Uij =

m∏
j=1

N(j)∏
i=1

σ(Mij) (1)

When generating a circuit, the qubit number and layer num-
ber should be specified first. Then given the candidate gate
set G, we need to give each gate g ∈ G a weight proportional
to its probability of occurrence in the circuit. Based on the
probability of each gate we randomly generate a QC.

After generating a circuit, we need to avoid circuit redun-
dancy, and thus, we apply a simple optimization for the
generated circuit. We mainly check for sequential gates
resulting in a new gate which is also in G (e.g. two CNOT
gates or two H gates are equivalent to one I gate, and two
T gates are equivalent to one S gate). For redundancy with
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Figure 1: Overview of dataset QC Regeneration

one-qubit gates, we maintain the first gate and regenerate
a new one-qubit gate to replace the second one. For those
with two-qubit gates (i.e. CNOT gate), we flip the control
and target bit of the second gate. Our optimization does
not necessarily guarantee the circuit to be optimal, but it
can reduce circuit redundancy to a large extent. Then the
unitary of the generated circuit can be calculated by Eq. 1.
Examples of our generated circuits are shown in Fig. 1

In the final dataset for QC re-generation, we provide 60
subtasks by generating QCs with qubits from 1 to 10 with
layers from 1 to 6. In each subtask, we provide 5 RC-S
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circuits and 10 RC-C circuits. The total number of circuits
sums up to 900. We give visualization of the generated
circuits by Qiskit (Aleksandrowicz et al., 2019), and the
corresponding unitary of each circuit is also provided.

3.1.2. EVALUATING METRIC

We present a protocol to judge whether two circuits are
equivalent. It involves a distance L to represent the differ-
ence between the target matrix Ut and matrix Us for the
searched circuit. The distance L is the same as the fitness
function provided in (Williams & Gray, 1999). For a matrix
of n qubits, L is calculated by

L =

2n−1∑
i=0

2n−1∑
j=0

|Usij −Utij |. (2)

where Us ∈ C2n×2n

, Ut ∈ C2n×2n

and | · | is the modulus
of a complex number.

If the distance L of two matrices is less than a given thresh-
old ε, we consider these two matrices are identical1.

3.2. Unitary Approximation

As stated in Sec. 2, there are various QAS applications
where the unitary matrices are not necessarily available (e.g.
QNN). Thus, randomly generated unitary matrices as well
as the sampled training sets are included in the dataset to fit
such cases. The sampling details are given in Sec. 3.2.1. A
new evaluation metric based on the test set is also provided.
In this dataset, an algorithm is required to search for a
QC which conforms to the given metric. We provide two
searching schemes, one can directly search for a QC given
unitary, or train the algorithm based on the train set.

3.2.1. DATASET GENERATION

All of the unitary matrices are generated arbitrarily by the
Python package SciPy (Virtanen et al., 2020) which uses
the algorithm proposed in (Mezzadri, 2006) to randomly
generate matrices. To be more specific, the real part and
imaginary part of matrices are generated separately. The
two matrices are summed up, and then convert to a uni-
tary by applying the QR decomposition (Gander, 1980).
Without loss of generosity, to ease the difficulty of the Uni-
tary Approximation dataset such that it can be effectively
searched by commonly used candidate gate sets such as
GR = {Rx(θ), Ry(θ), Rz(θ),CNOT} in (Du et al., 2022;
Ostaszewski et al., 2021), we set the determinants of the
matrices to 1. (proved in Lemma. C.1 and Lemma. C.2).

From 2 to 5 qubits, we generate 100 unitary matrices for
each number of qubits, and the total number of matrices sum
up to 400 in this dataset. The corresponding train set D and

1We set ε = 10−10 considering the precision limit in Python.
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Figure 2: Coefficient w.r.t Quantum state. The dots in each
curve represent the coefficient number of each state |j〉 in
Eq.5, and each curve corresponds to i (i means the index
of the sampled state |ψ〉). The peak is not necessarily at 1
since we normalize the coefficients.

the test set V contain input and output quantum state pairs.
We randomly sample the input states based on the following
three different sampling schemes. We first illustrate in detail
how to generate V .

Firstly, we add a set of computational basis states, where

|ψi〉 = |i〉 , i = 0, 1, · · · , 2n − 1 (3)

Secondly, we sample from other pure states, and the coeffi-
cient numbers of the state vector are sampled from a Gaus-
sian distribution. The center of the Gaussian distribution
transfers smoothly from state |00 · · · 0〉 to state |11 · · · 1〉.
The size of the Gaussian part NG is set to

NG =
|V| − 2n

2
(4)

Thus, each input state can be denoted as

|ψi〉 =

2n−1∑
j=0

N (µi, σ
2)(j)√

2n−1∑
k=0

N 2(µi, σ2)(k)

|j〉 (5)

where µi = i
NG
· 2n, σ = 0.6, and i = 0, 1, · · · , NG − 1.

The process of sampling the coefficient numbers in a 3-qubit
situation is shown in Fig. 2.

Thirdly, we add imaginary numbers to the coefficient num-
bers of the input state vector. The size of this part of test
sets NC is the same as NG. Each coefficient number is a
random complex number generated by Euler’s formula

Ci,j =
√
α · exp (βi) (6)

where i is the imaginary unit, α ∼ U(0, 1), β ∼ U(0, 2π).
U(·, ·) means the uniform distribution. We first sample all
the complex numbers from Ci,0 to Ci,2n−1, then normalize
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Figure 3: L w.r.t f . As we can see, distance L and f show a
symmetric pattern and reach the respective extremums after
certain iterations.

them. The state vector of each input state is

|ψi〉 =

2n−1∑
j=0

Ci,j√
2n−1∑
k=0

|Ci,k|2
|j〉 (7)

where i = 0, 1, · · · , NC−1. The output state is obtained by
multiplying the input state with the provided unitary matrix

|ψout〉 = Ut |ψin〉 (8)

For the different number of qubits, the size of the test set V
varies. We provide 32 pairs of quantum states for 2-4 qubits
each and 64 pairs for 5 qubits.

As for the train setD, we dismiss the basis states (Eq. 3), and
the sampling process of the input quantum states follows
Eq. 5 and Eq. 7. We set original NG = NC = 100 for 2-4
qubits, NG = NC = 200 for 5 qubits and then sample input
quantum states. We remove the duplicated states that appear
both in the train set and in the test set by replacing them
with randomly generated states by Eq. 7. The corresponding
output states can be calculated by Eq. 8.

All the unitary matrices and the corresponding D and V are
provided in this Unitary Approximation dataset. We will
add unitary matrices together with train and test sets for
more qubits in the future.

3.2.2. EVALUATING METRICS

Compared to the QC Regeneration dataset, it is much harder
for an algorithm to achieve a small ε distance with L (Eq. 2)
in the Unitary Approximation dataset. Moreover, L in-
creases exponentially with the qubit number n, which leads
to a huge distance and no evaluation criteria. Therefore we
define a metric with physical meaning in V to estimate the
approximation ability.

We define a new metric f to evaluate the similarity between
the predicted state |φ〉 and ground-truth state |ψ〉. For a

predicted state |φ〉 =
∑2n−1

j=0 (âj + b̂j i) |j〉 and ground-truth

state |ψ〉 =
∑2n−1

j=0 (aj + bj i) |j〉, f can be calculated by
the following equation:

f =

(2n−1∑
j=0

√
a2
j + b2j ·

√
â2
j + b̂2j

)2

(9)

If f = 1, then we have an equal possibility of getting the
same basis state when measuring the predicted and ground-
truth state. The relationship between L and f in one search-
ing process is shown in Fig. 3.

4. Experiment and Results
All experiments were carried out on a workstation with
Intel(R) Xeon(R) Platinum 8276 CPU and 4 NVIDIA A100-
PCIE-40G GPUs. The experiments are conducted under a
full amplitude quantum simulator without circuit noise, and
all codes are written in Python. We implement baseline algo-
rithms based on a revised version of simulator TorchQuan-
tum (Wang et al., 2022a) with a better support for PyTorch.

4.1. Baselines for Evaluation

We select and implement six baselines and provide them
along with the benchmark datasets:

1) Brute Force Search (BFS) is the most basic algorithm
used for the comparison among all baselines. Since brute
force search contains only enumeration and evaluation, it
is capable of reflecting the complexity of the dataset. We
design a naive BFS for both two datasets and add a bidirec-
tional version for QC Regeneration dataset.

2) Simulated Annealing (SA) is a commonly used heuristic
algorithm which simulates the process of minimizing the
energy of a material by heating then slowly lowering the
temperature. We adopt the simulated annealing algorithm
to compare different heuristic methods.

3) Genetic Algorithm (GA) is another heuristic algorithm
which views the search as the process of natural selection.
It uses generation updating methods to update searching
results iteratively. (Williams & Gray, 1999) uses genetic al-
gorithm to design QCs, we implement the genetic algorithm
based on this method.

4) Reinforcement learning (RL) in (Ostaszewski et al.,
2021) encodes quantum gate types and gate position into
tuples which represent valid actions at each step, using a
feedback-driven curriculum learning method to estimate the
ground state energy of LiH. We re-implement the code into
our QAS setting.

5) Hybrid Algorithm (HA) proposed in (Du et al., 2022)
automatically designs QNNs. It samples several ansatze
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Figure 4: QC Regeneration results of traditional searching algorithms. Top: results of 3 baselines on the RC-S dataset
which has 5 circuits for each layer (1-6) of each qubit (1-7); Bottom: results of baselines on the RC-C data which has 10
circuits for each layer of each qubit (BFS-naive as a reference).
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Figure 5: QC Regeneration results of machine learning related algorithms. The arrangement of figure is the same as Fig. 4.

(architecture parameters), optimizes the rotation parameters
in each ansatz, and ranks the searching results. The circuit
ranking first is then finetuned and selected as the output. We
re-implement it into PyTorch and make some revisions to
the code to fit our QAS setting.

6) Differentiable Algorithm (DA) in (Zhang et al., 2022)
transfers the sampling process into a differentiable part and

assembles it into the neural network. It designs a Monte
Carlo gradient for structure sampling and calculates it by a
mean-field probability model. Then the architecture param-
eters and rotation parameters can be updated by gradient
propagation iteratively. We change the code into PyTorch
and revise it to fit our QAS setting.

Further information and implementation details about the
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Figure 6: Result of Unitary Approximation. In the legend of the figure, (C) refers to the candidate gate set GC , and (R)
refers to the candidate gate set GR. The dashed box of DA with 4 and 5-qubit means we omit the designed Monte Carlo
gradient and just use Softmax over architecture parameters as discussed in Sec. B.5.

baseline algorithms will be introduced in Appendix B.

4.2. QC Regeneration

We test the above-mentioned baselines on both the RC-S and
RC-C datasets, and the results are illustrated in Fig. 4 and
5. Following the metric in Sec. 3.1.2, we set the candidate
gate set for RC-S as GS = {H, I, S, T} and RC-C as GC =
{H, I, S, T,CNOT}. Due to page limit of the paper, we
only report the results up to 7 qubits.

From Fig. 4, we can see that the BFS-naive algorithm has
set a standard about the edge of the searching space against
the computation power of our environment. We find it takes
more than 48 hours to iterate through all the possibilities
for a only 7-qubit 2-layer circuit. Notice that the proposed
bidirectional BFS in the baseline can have a squared speedup
than the naive breadth-first search algorithm, which leads to
a sharp increase in algorithm performance.

Two heuristic algorithms both outperform BFS-naive and
achieve reasonable results, showing similar performance
compared to the bidirectional BFS. This result proves why
genetic algorithm has been studied for QAS problems since
1999 and is still widely used as a robust solution to QAS. We
improve the chromosome selection and generation manage-
ment of the original genetic algorithm. The results from the
simulated annealing suggest that heuristic algorithms can
always be considered as reliable solutions and the genetic
algorithm is more suitable to the QAS problem.

RL shows a completely different pattern than the previous
ones. The results demonstrate that RL has a greater random-

ness, which might be related to the searching scheme of RL.
Moreover, the performance of RL algorithms is closely re-
lated to the reward system. We believe RL has the potential
to perform better with a better reward.

The hybrid algorithm surprisingly fails on this regeneration
dataset. The hybrid algorithm focuses on two steps opti-
mization for PQCs and the SOTA hybrid algorithm we use
here is sampling based. With no parameterized rotation
gates in the candidate gate set, the hybrid algorithm we
use degenerates to a simple sampling method, which leads
to poor performance. A similar circumstance is with the
differentiable algorithm which simply designs a gradient
for sampling. The differentiable search algorithm achieves
similar performance with hybrid algorithm. The results also
suggest that the circuit sampling part of the proposed base-
lines is not working well without further tuning the rotation
parameters, which indicates the architecture search part of
the baseline can be further improved.

4.3. Unitary Approximation

We further test our baselines on the proposed Unitary Ap-
proximation dataset, which is much harder than the QC
Regeneration dataset. We make direct use of the unitary for
search and test set for evaluation, and provide two indepen-
dent experimental settings with two candidate gate sets. The
first one uses the Clifford group GC = {H, I, S, T,CNOT}
to approximate the unitary matrices. All six baselines are
tested under this experimental setting. The second one uses
GR = {Rx(θ), Ry(θ), Rz(θ),CNOT} with parameterized
rotation gates. Since BFS and two heuristic algorithms are
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not capable of optimizing both architecture parameters and
rotation parameters together, we only test the RL, hybrid
algorithm and differentiable algorithm under this setting.
Thus, we have nine baseline results reported in Fig. 6.

The searching process for the Unitary Approximation
dataset differs from QC Regeneration as there is no infor-
mation of layer number provided. For brute force search,
we search from 1 gate, then iteratively add the gate number
until the circuit is found or the time limit is exceeded. For
other algorithms, we provide two ways of setting the layer
number. The first one is fixing a layer number for each algo-
rithm. Another is to set a layer number that grows linearly
with the number of qubits for each algorithm. In our setting,
for a n-qubit circuit, we set the initial layer number to 5n.

From Fig. 6 we can see that hybrid algorithm outperforms
all other baselines and achieves consistent results. BFS
still sets a standard for all baselines but the performance is
affected by the limitation of circuit depth. As the number
of qubits increases, BFS can only iterate through all the
possibilities for less deep circuits. Thus, the performance
of BFS has a substantial decline and f is around 0.2 for
5-qubit unitary matrices. Simulated annealing and genetic
algorithm show the same pattern as the BFS.

The slump continues for the RL from QC Regeneration
to Unitary Approximation. The results of RL are slightly
better than the BFS and still not comparable to the other 2
machine learning algorithms. Considering the performance
on ground state energy estimation, we still believe the RL
is a promising QAS approach but it overly depends on the
design of the reward system. However, the results exhibit
that using GR can slightly improve performance.

The hybrid algorithm and differentiable algorithm have
a huge rebound and demonstrate the power of updating
both architecture and rotation parameters. These two algo-
rithms can still achieve a result more than 0.6 with 5-qubit
unitary matrices. This explains why hybrid/differentiable
algorithms, especially those imitating the DARTS (Liu
et al., 2018b) framework, have achieved increasing atten-
tion. Sec. B.4 mentions that the hybrid algorithm samples
from predefined ansatz structures, so it can exceed the dif-
ferentiable algorithms (with no prior knowledge) to some
extent. Equipped with the ability to adjust rotation angles,
DA (R) outperforms DA (C) from 2-qubit tasks to 5-qubit
tasks, and HA (R) also outperforms HA (C), this shows the
importance of updating rotation parameters after sampling
structures. The result also implicates that the design of the
gradient for structural parameters is not yet very effective
(no better than simple sampling in our benchmark). From
this we conclude that architecture parameters that work bet-
ter may be more important than the rotation parameters, and
how to effectively search for the architecture parameters of
quantum circuits can be left as future work.

4.4. Results with Simulated Circuit Noise

TorchQuantum currently does not have complete support
for noise models, and we find it hard to take all common
noise models into consideration. For simplicity we add a
readout noise and details are showed in Appendix D. As
expected, all algorithms have a reduced performance after
adding circuit noise. We call for researchers to add more
noise models and improve our benchmark together.

4.5. Discussion

Based on the results we can conclude that: 1) Classical
search algorithms such as brute force search, heuristic al-
gorithms and genetic algorithms are by far competitive and
robust baselines. 2) In the QAS algorithms, the rotation pa-
rameters are quite important and can substantially improve
the search ability. 3) The large performance difference of hy-
brid algorithm and differentiable algorithm on two datasets
indicates that the sampling part of QAS algorithms may
well limit their performance. How to break the boundary
between discrete sampling and continuous optimization is
an important problem in quantum computation.

5. Conclusion
We introduce the QAS-Bench benchmark for Quantum Ar-
chitecture Search (QAS), a promising yet challenging way
of automatically generating QCs which already has wide
applications in quantum computing. We summarize the ap-
plications of QAS, classify the commonly used QAS meth-
ods, abstract the unitary approximation essence of QAS and
formulate it into two basic tasks: QC Regeneration given
arbitrary circuit and Unitary Approximation given arbitrary
unitary. To be specific, QAS-Bench provides 2 datasets
(containing 900 QCs and 400 unitary matrices) with evalua-
tion protocols respectively. we also design/re-implement 6
baseline algorithms and analyze their results.

There are still some limitations to our work. We have tem-
porarily not fully considered realistic instances and noise
models in our benchmark. The most popular metric to eval-
uate the similarity between quantum states is quantum state
fidelity calculated as | 〈ψ|φ〉 |2 for state |ψ〉 and |φ〉. How-
ever, with the qubit number grows, we find the results of all
algorithms degrade to nearly 0. Thus we define f with phys-
ical meaning to better distinguish these baselines. In future
work, we will design more efficient algorithms and include
state fidelity as an evaluation metric for better scalability.
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A. Detailed Description of Baselines
Evolutionary algorithms mainly include heuristic search approaches (Rigby, 2021; Ding & Spector, 2022; Li et al., 2017;
Deibuk & Biloshytskyi, 2015; Lamata et al., 2018; Ding et al., 2006; Williams & Gray, 1999) where genetic algorithms
account for a large part. In a genetic algorithm for QAS, the chromosome of a population is usually encoded by the type of
quantum gate and the wires to which it is connected. The fitness function is defined by the tasks to be completed, measuring
the quality of a chromosome, which can be the correctness of calculation result for a quantum adder (Deibuk & Biloshytskyi,
2015), or the distance value of the searched and target unitary (Williams & Gray, 1999) for a unitary approximation task.
Common operations over chromosomes such as crossover, and mutation can also be utilized in QAS algorithms.

Evolutionary algorithms are always limited to the design of QCs without rotation gates. For PQCs, the searching approaches
usually fit the following two-step paradigm: searching for a gate arrangement (architecture parameters), and optimizing
the parameters within the gates (rotation parameters). The design of PQCs requires optimizing architecture and rotation
parameters iteratively.

Differentiable search methods can optimize both architecture and rotation parameters in an end-to-end differentiable
manner. There are still relatively few works based on this method because it is difficult to design gradients for architecture
parameters. One possible solution is to approximate the gradient by sampling. A Monte Carlo gradient is designed in (Zhang
et al., 2022) to update the architecture parameters, and rotation parameters can be tackled by simple gradient descent.
However, sampling-based methods often face the problem of low sample efficiency, which may lead to slow search speed
and high resource consumption.

Reinforcement learning (RL) methods involve teaching an agent to take suitable actions to maximize the total reward in a
particular environment (Nautrup et al., 2019; Ostaszewski et al., 2021). In the QAS setting, the action taken by an agent is to
decide which gate to choose and which position to take. The reward is specified by different tasks, evaluating the actions
taken by the agent. Different RL methods can be used for QAS. (Ostaszewski et al., 2021) leverages Double Deep-Q network
(DDQN) (Mnih et al., 2013), and (Kuo et al., 2021) makes use of Proximal Policy Optimization (PPO) (Schulman et al.,
2017). (Wang et al., 2022c) leverages Monte Carlo Tree Search (MCTS) for the optimization of architecture parameters and
update rotation parameters by gradient descent.

Hybrid methods include all the other QAS approaches which follow the above-mentioned paradigm that optimizes
architecture and rotation parameters iteratively. For hybrid algorithms there may be several optimization methods for
architecture parameters. (Grimsley et al., 2019; Sapova & Fedorov, 2022) calculate the gradient of candidate operators at
each searching step to decide which operators to choose next. (Zhang et al., 2021) trains a neural network to choose better
candidate gates for future optimization. (Du et al., 2022) randomly samples architecture parameters, iterates the rotation
parameters. It leverages a genetic algorithm to rank the structures then finally finetune the circuit found.

Apart from the above four categories of baseline in QAS, we also mention the works on neural architecture search (NAS)
on classic computers, which is a booming research field in recent years. In general it aims to automatically search for
high-performance neural networks for any given task. Genetic algorithm (Real et al., 2017; 2019; Liu et al., 2021) and
RL (Zoph & Le, 2016; Jaafra et al., 2019) are two promising methods for NAS. The emergence of DARTS (Liu et al., 2018b)
relaxed the searching of discrete neural network components into a continuous domain and put forward a differentiable
searching paradigm for NAS, boosting following works such as (Liang et al., 2019; Casale et al., 2019; Xu et al., 2019).
However, the search process of DARTS contains parallel computation of each network component, which takes up a lot of
memory. Various methods have been proposed such as (Dong & Yang, 2019), which leverages Gumbel-Softmax (Jang et al.,
2016) to reduce computation and (Casale et al., 2019), which views the architecture parameters as probabilistic parameters
and sample certain subnet components for evaluation each time.

B. Technical Implementation Details of Baseline Algorithms
Six representative QAS baselines are introduced. We implement/change all the code into PyTorch version.

B.1. Brute Force Search

We design a naive BFS for both two datasets and add a bidirectional version for QC Regeneration dataset.
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For brute force search algorithm, we want to find M gates, whose matrices are A0, · · · ,AM−1 respectively, such that

M−1∏
i=0

Ai = Ut. (10)

The naive brute force search method is to sequentially enumerate all possible M and Ai until we find an answer. This
algorithm tends to take up a significant amount of time and space. To optimize the naive method, we come up with two
approaches, which can be further combined.

One approach is to use dynamic programming to remove duplicated matrices at each step.
Lemma B.1. We can use dynamic programming in the brute force search algorithm to reduce time complexity.

Proof. Assume Am represents the set of all possible circuits with m gates. If we randomly pick two matrices A,B ∈ A1,
then in some cases AB = BA. For this reason, |Am| is actually smaller than |A1|m. More generally, |Am1+m2

| ≤
|Am1 ||Am2 |. For example, if A0A1 = A1A0, then A0A1A2 · · ·Am−1 = A1A0A2 · · ·Am−1.

When we use Am = Am−1A1 to calculate Am for all m ≤M recursively, we can remove the duplicate matrices at each
step, and the time needed to remove duplicates Tremove is relatively shorter than the time needed to calculate results of matrix
multiplication. Now the time complexity of the calculation of Am is T (Am) = T (Am−1) + Tmul|Am−1||A1|+ Tremove ≈
Tmul|Am−1||A1|, which is significantly shorter than the original time Tmul|A1|m, where Tmul is the time one matrix
multiplication operation takes.

Another approach is to use bidirectional brute force search.

Notice that when M ≥ 2, Eq. 10 is equivalent to

bM/2c−1∏
i=0

Ai = Ut(

M−1∏
i=bM/2c

Ai)
−1 (11)

Note that A ∈ AbM/2c ∩UtA−1
dM/2e and the problem is solved. The brute force search is listed in Alg. 1. Concatenation

of circuit QC1 and QC2 means for a blank circuit, we first add gates g ∈ QC1 sequentially to the circuit, then add gates
g ∈ QC2 sequentially to the circuit. The time complexity is now only O(|AdM/2e|Tmul), with a squared speedup.

Algorithm 1 Bidirectional Brute Force Search for QC Regeneration

Input Ut

Initialize M = 1,A0 = {σ(I)},A1 = {σ(g)|g ∈ G}
while AbM/2c

⋂
UtA−1

dM/2e = ∅ do
1. M = M + 1
2. Calculate AbM/2c and AdM/2e respectively by dynamic programming
3. Calculate UtA−1

dM/2e
end while
Find ∀A ∈ AbM/2c

⋂
UtA−1

dM/2e, where A represents circuit QC1 in AbM/2c and circuit QC2 in UtA−1
dM/2e

Return concatenate QC1 and QC2.

As for the naive brute force search to solve the QC Regeneration and Unitary Approximation datasets, we only need to
enumerate m and find A ∈ Am that minimize Eq. 2.

B.2. Simulated Annealing

The initial circuit is filled with I gates. For the t-th step, we randomly pick i, replace Ai with the unitary matrix of a random
gate, and calculate the change of L, ∆Lt = Lt − Lt−1. If ∆Lt < 0, we accept this change, else we accept this change
at probability e−∆Lt/Tt , where Tt = αTt−1, T0 is called the initial temperature parameter, T0 and α are both changeable
hyperparameters. We repeat this process until the loss remains stable for a few iterations or the maximum iteration limit is
achieved, then A0, · · · ,AM−1 are submitted as our solution.
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B.3. Genetic Algorithm

Following (Williams & Gray, 1999), the quantum gates can be encoded by the quantum gate type and the qubit to which it is
connected. When searching for a certain quantum layout, gates are laid sequentially to form a chromosome. Implementation
details are not explained in the original paper such as the management method of the population and the code is not
open-sourced. We also refer to (Prins, 2004) for the concrete design of the genetic algorithm, which is a classical work for
designing an effective genetic algorithm for the vehicle routing problem (VRP).

The evaluation metric of genetic algorithm follows Eq. 2, which can serve as the fitness function.

Ranking-Based Scheme and Selection Probability Distribution are proposed in (Williams & Gray, 1999) for the selection of
children generation. However, there is something wrong with the equation of the Selection Probability Distribution method
and the Ranking-Based Scheme can be substituted with more effective roulette wheel selection and tournament algorithms.
In our algorithm, we use the roulette wheel selection algorithm for choosing the children generation.

Search operators are needed for the generation of new chromosomes. The mutation, substitution, crossover, transposition,
insertion, and deletion operations are implemented in our baseline genetic algorithm.

After generating enough children chromosomes, generation management is required to replace some items in the parent
generation with the newly generated chromosomes. In the baseline genetic algorithm of our benchmark, to compose the
next generation, parent chromosomes are sorted by fitness value, then the first half of chromosomes are kept. The second
half of parent chromosomes are substituted by children chromosomes using wheel selection. This method can maintain
population diversity, and alleviate the situation of rapidly converging to a locally optimal solution.

B.4. Hybrid Algorithm

The hybrid algorithm in (Du et al., 2022) combines gradient-based search with a classical search algorithm (genetic
algorithm). It can make use of GR as it is able to optimize the rotation angle parameters by gradient propagation.

Hybrid algorithm embeds quantum architecture search into an image classification over MNIST and decomposes QC into
layers. It divides the searching process into 2 steps. In the first step, it randomly samples ansatze from the pre-defined ansatz
pool for each layer. Then for each ansatz sampled, it optimizes the rotation angle parameters by autograd function provided
by PennyLane (Bergholm et al., 2018) for a few steps (20 in our setting). In the second step, it ranks the optimized ansatze
(leveraging genetic algorithm) and finetunes the rotation parameters of the best structure.

The original hybrid algorithm can not be directly used for Unitary Approximation. To qualify hybrid algorithm for the
dataset, we make a few revisions to the algorithm. Firstly, as genetic algorithm has been listed above as one baseline
algorithm, we remove the genetic part of the algorithm to compare these algorithms more fairly. Secondly, we get rid of the
restrictions over the pre-defined ansatz pool. The QC supernet of each layer is now composed of both single-qubit quantum
gates (Rotation gates) and multi-qubit quantum gates (CNOT gates). For a circuit with n qubits, the single-qubit quantum
gate set S and multi-qubit quantum gate setM can be calculated by

S = R0 ×R1 × · · ·Rk × · · ·Rn−1 (12)

M = P ({CNOTi,j |∀i, j ∈ [0, n− 1], i 6= j}) (13)

where × means Cartesian product, P means the operation that calculates the power set. Rk = {Rx(θ)k, Ry(θ)k, Rz(θ)k},
k denotes the qubit the gate is on. i, j denote the control qubit and the target qubit of CNOT gate respectively. But this
method will lead to a huge amount of CNOT gates. To alleviate such situation, we reduce the size ofM by only allowing
control bit and target bit in adjacent wires and the total ansatz pool is the Cartesian product of S andM. The third revision
is changing the loss function to Eq. 2. Then the algorithm can be tested for Unitary Approximation dataset.

We also test hybrid algorithm’s performance on Unitary Approximation using GC . Under this circumstance, the optimization
of rotation gate angles is removed. The single-qubit gate set S is changed to

S = GS0
× GS1

× · · · GSk
× · · · GSn−1

(14)

GSk
= {Hk, Sk, Tk, Ik}, k denotes the qubit the gate is on. The dataset of QC Regeneration is also tested under this setting.
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B.5. Differentiable Algorithm

The differentiable algorithm (Zhang et al., 2022) is similar with the hybrid algorithm. HA chooses the architecture parameters
by random sampling, whereas DA designs a Monte Carlo gradient for structure sampling and calculates it by a mean-field
probability model. For a n-qubit m-layer quantum circuit, DA chooses gates for each position of the O(m× n) space.

We re-implement DA by the tutorial of TensorCircuit 2. We make a few revisions. For the k-th qubit, the gates to choose for
GR is Rk ∪Mk, where Rk = {Rx(θ)k, Ry(θ)k, Rz(θ)k}, Mk = {CNOTi,k|∀i ∈ [0, n− 1], i 6= k}. The gates to choose
for GC is GSk

∪Mk, where GSk
= {Hk, Sk, Tk, Ik}. For rotation gate parameters, they are updated by simple gradient

propagation, for architecture parameters they are updated by a proposed Monte Carlo gradient using mean field theory. The
loss of the network is shifted to L of the searched matrix and the target matrix which can be calculated by Eq. 2.

However, we find the Monte Carlo method just samples with very low efficiency. It even fails to achieve reasonable results
for the 3-qubit case, and searching for a 5-qubit circuit in our setting will take up more than 4 hours. The tutorial of
TensorCircuit suggests that we can just use Softmax in the simulator (as there is no restriction for a unitary matrix during the
intermediate searching steps) and calculate the gradient for quicker speed and higher efficiency. Thus in our evaluating code,
for QC Generation task we test with Monte Carlo gradient, for Unitary Approximation task we test 2-qubit 3-qubit tasks
with Monte Carlo gradient and 4-qubit 5-qubit tasks with Softmax over architecture parameters.

B.6. Reinforcement Learning

Recently, reinforcement learning algorithms have also started to be used for quantum searching datasets to construct
VQE circuits (Ostaszewski et al., 2021). In our baselines, we also adapt it to an algorithm that can accomplish both QC
Regeneration and Unitary Approximation.

The original RL algorithm for VQE employs a DDQN (Mnih et al., 2013) with ε−greedy policy and an Adam optimizer.
The agent takes each action by adding a new gate from the candidate set GR on a certain qubit of the current circuit.

A QC is encoded into a list containing tuples of 4 elements, each tuple encodes the type and the position of gates. The first
two elements of the tuple represent rotation gates, where the first element means which qubit the gate is on and the second
element means the type of the rotation gate (1: Rx(θ), 2: Ry(θ), 3: Rz(θ)). The last 2 elements encode CNOT gates. The
third and fourth elements represent the control qubit and target qubit respectively. If the gate is a rotation gate, another
rotation angle parameter θ is set.

The original RL algorithm is designed for VQE problem which optimizes θ for each rotation gate to minimize the energy at
each state of one episode. We adjust it to adapt to our quantum architecture search datasets. The aim of our dataset is to
find the QC that minimizes L, so we define the energy by matrix distance L which can be calculated by Eq. 2. In this case,
minimizing the ground state energy changes into minimizing L.

We also adjust the origin reward function to

R =


5 Et < ε

−5 Et > ε and t > M

clip( Et−1−Et

max(Et−1,1) ,−1, 1) O.W.
(15)

where Et means the energy after step t. At each step, the agent lays a gate according to the policy, so t also represents the
total gate number after step t. ε is a parameter generated by a feedback-driven curriculum learning method to make energy
fall steadily. If Et < ε, the agent will obtain 5 reward, which means we have found a reasonable circuit. If Et > ε, and
t > M which is the maximum number of gates we have set, the agent will obtain -5 reward. Et−1 is the energy of the
previous step. If step t leads to a smaller energy, the agent will get a positive reward.

We also test RL’s performance on QC Regeneration and Unitary Approximation by using GC as the action candidate set.
Because GC has no parameter θ, there is no need to optimize the rotation angle parameter, but we have to change the
encoding policy. For the tuple of 4 elements, the gates occupying only one qubit are encoded by the first two elements of the
tuple, where the first element means the qubit position of the gate, and the second element means the type of gates (1: H , 2:
S, 3: T , 4: I).The encoding scheme of CNOT gates is the same as above.

2https://tensorcircuit.readthedocs.io/en/latest/tutorials/dqas.html
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Figure 7: QC for an arbitrary unitary

C. Lemma and Proof
Lemma C.1. By leveraging GR we can only generate circuits whose matrix determinant is ±1.

Proof. In the Unitary Approximation dataset, we use GR = {Rx(θ), Ry(θ), Rz(θ),CNOT} to approximate arbitrary
unitary matrices. Where

RP (θ) = exp(−iθP/2) = cos(θ/2)I − i sin(θ/2)P (16)

I is the identity gate and P = {X,Y, Z}, which is called Pauli rotation. Under this definition,

Rx(θ) =

(
cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

)
Ry(θ) =

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
Rz(φ) =

(
exp(−iφ/2) 0

0 exp(iφ/2)

)

and for a CNOT gate with 0-bit as the control bit and 1-bit as the target bit, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

.

Assume |A| calculates the determinant of a matrix A, we notice that |Rx(θ)| = |Ry(θ)| = |Rz(θ)| = 1, and |CNOT| =
−1. In the construction of quantum gates for QCs, we just use two operations: tensor product (Kronecker product) and
matrix multiplication.

For tensor product, we have |X
⊗

Y | = |X|n · |Y |m,X ∈ Cm×m,Y ∈ Cn×n, and for matrix multiplication, we have
|XY | = |X||Y |,X ∈ Cn×n,Y ∈ Cn×n. If we use GR, the determinants of whose matrices are all ±1 to construct QCs,
the determinant of the final circuit will be kept to ±1. In this case, we can only generate QCs whose determinants are ±1.

Lemma C.2. For a target unitary matrix with a determinant not equal to 1, we can construct a new matrix whose determinant
is 1, and the QC represented by the new matrix will have no difference with that of the target matrix when making an
observation of the output quantum state.

Proof. In Fig. 7, for a QC with n qubits, assume the unitary to approximate is U , and |U | = a+ bi, (s.t. a2 + b2 = 1). In
this case, we add a layer of gates to the circuit represented by U . For qubit from 0 to n− 2, we add I gates and for qubit
n− 1, we add a phase gate (P gate).

Firstly, we prove that the addition of this layer of gates will not influence the possibility of each state being measured.

Assume a state vector of |q〉 =
2n−1∑
i=0

αi |i〉 , (s.t.
2n−1∑
i=0

|αi|2 = 1) after U , and the rotation angle of gate P is φ. The unitary

of the last layer can be calculated by U−1 = In−1
⊗

P , where I is the unitary matrix of I gate (i.e. I =

(
1 0
0 1

)
), and P

is the matrix of P gate, which is P (φ) =

(
1 0
0 exp(iφ)

)
for a phase gate.
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Figure 8: Box-plot results of circuit with noise (BFS, SA, GA, RL)
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Figure 9: Box-plot results of circuit with noise (DA, HA)

Calculating U−1 will result in a matrix with elements on the diagonal. The elements on the diagonal are

(1, exp(iφ), 1, exp(iφ), · · · , 1, exp(iφ)). Passing state |q〉 through U−1 will get |q′〉 = U−1 |q〉 =
2n−1−1∑

i=0

α2i |2i〉 +

2n−1−1∑
i=0

exp(iφ) · α2i+1 |2i+ 1〉. When making an observation of the output quantum state, the possibility of observing |2i〉

is α2i · ᾱ2i, observing |2i+ 1〉 is exp(iφ)α2i+1 · exp(−iφ) ¯α2i+1 = α2i+1 · ¯α2i+1, which will not result in a difference.

Secondly, we need to calculate the determinant of the new matrix U ′ = UU−1. We already have |U−1| = exp(i2n−1φ) =
cos (2n−1φ) + i sin (2n−1φ) and |U | = a + bi, (s.t. a2 + b2 = 1). We only need to match the determinant of U−1 with
that of U . To be more specific, let cos(2n−1φ) = a and sin(2n−1φ) = −b, we solve the equations and the φ is set.

Following the above two steps, we can get a new matrix whose determinant is 1, and the QC represented by the new matrix
will have no difference from that of the target matrix when making an observation of the output quantum state.
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D. Results With Circuit Noise
We test 6 baseline algorithms on the Unitary Approximation dataset under a 4.77% readout circuit noise. We add a bit flip at
the end of the circuit to simulate the readout error. The error rate is obtained from two superconducting quantum devices
sycamore (Arute et al., 2019) and zuchongzhi (Wu et al., 2021). The results are showed in Fig. 8 and Fig. 9. In the two
figures, (Model)/N means we test the circuits under readout noise. All the algorithms show performance degradation in
noisy environments.
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