
A Unifying Framework to the Analysis of Interaction Methods using Synergy
Functions

Daniel Lundstrom 1 Meisam Razaviyayn 1

Abstract
Deep learning has revolutionized many areas of
machine learning, from computer vision to natural
language processing, but these high-performance
models are generally “black box.” Explaining
such models would improve transparency and
trust in AI-powered decision making and is neces-
sary for understanding other practical needs such
as robustness and fairness. A popular means of en-
hancing model transparency is to quantify how in-
dividual inputs contribute to model outputs (called
attributions) and the magnitude of interactions be-
tween groups of inputs. A growing number of
these methods import concepts and results from
game theory to produce attributions and interac-
tions. This work presents a unifying framework
for game-theory-inspired attribution and kth-order
interaction methods. We show that, given modest
assumptions, a unique full account of interactions
between features, called synergies, is possible in
the continuous input setting. We identify how var-
ious methods are characterized by their policy of
distributing synergies. We establish that gradient-
based methods are characterized by their actions
on monomials, a type of synergy function, and in-
troduce unique gradient-based methods. We show
that the combination of various criteria uniquely
defines the attribution/interaction methods. Thus,
the community needs to identify goals and con-
texts when developing and employing attribution
and interaction methods.

1. Introduction
Explainability has become an ever increasing topic of inter-
est among the Machine Learning (ML) community. Various
ML methods, including deep neural networks, have un-
precedented accuracy and functionality, but their models are
generally considered “black box” and unexplained. Without
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“explaining” a model’s workings, it can be difficult to trou-
bleshoot issues, improve performance, guarantee accuracy,
or ensure other performance criteria such as fairness.

A variety of approaches have been employed to address the
explainability issue of neural networks. Taking the taxon-
omy of (Linardatos et al., 2020), some methods are univer-
sal in application (called model agnostic) (Ribeiro et al.,
2016), while other are limited to specific types of models
(model specific) (Binder et al., 2016). Some model-specific
methods are limited to a certain data type, such as image
(Selvaraju et al., 2017) or tabular data (Ustun & Rudin,
2016). Some methods are global, i.e., they seek to explain a
model’s workings as a whole (Ibrahim et al., 2019), while
others are local, explaining how a model works for a specific
input (Zeiler & Fergus, 2014). Finally, some methods seek
to make models that are intrinsically explainable (Letham
et al., 2015), while others, called post hoc, are designed to
be applied to a black box model (Springenberg et al., 2014).
These post hoc methods may seek to ensure fairness, test
model sensitivity, or indicate which features are important
to a model’s prediction.

This paper focuses on the concept of attributions and in-
teractions. Attributions are local, post hoc explainbility
methods that indicate which features of an input contributed
to a model’s output (Lundberg & Lee, 2017), (Sundararajan
et al., 2017), (Sundararajan & Najmi, 2020), (Binder et al.,
2016), (Shrikumar et al., 2017). Interactions, on the other
hand, are methods that indicate which groups of features
may have interacted, producing effects beyond the sum of
their parts (Masoomi et al., 2021), (Chen & Ye, 2022), (Sun-
dararajan et al., 2020), (Janizek et al., 2021), (Tsai et al.,
2022), (Blücher et al., 2022), (Zhang et al., 2021), (Liu et al.,
2020), (Tsang et al., 2020a), (Hamilton et al., 2021), (Tsang
et al., 2020b), (Hao et al., 2021), (Tsang et al., 2017), (Tsang
et al., 2018). A common and fruitful approach to attribu-
tions and interactions is to translate and apply results from
game theoretic cost sharing (Shapley & Shubik, 1971), (Au-
mann & Shapley, 1974). This has the advantages of already
having a well-developed theory and producing methods that
uniquely satisfy identified desirable qualities.

This work utilizes a game theoretic viewpoint to analyze,
unify, and extend existing attribution and interaction meth-
ods. The contributions of this paper are as follows:
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• This paper offers a method of analysis for attribution
and kth order interaction methods of continuous-input
models through the concept of synergy functions. We
show that, given natural and modest assumptions, synergy
functions give a unique accounting of all interactions
between features. We also show any continuous input
function has a unique synergy decomposition.

• We highlight how various (existing) methods are governed
by rules of synergy distribution, and common axioms
constrain the distribution of synergies. With this in mind,
we highlight the particular strengths and weaknesses of
established methods.

• We show that under natural continuity criteria, gradient-
based attribution/interaction methods on analytic func-
tions are uniquely characterized by their actions on mono-
mials. This collapses the question “how should we define
interactions on analytic functions” to “how should we
define interactions of a monomial?” We then give two
methods that serve as potential answers to this question.

• We discuss the goal-dependent nature of attribution and in-
teraction methods. Based on this observation, we identify
a method for producing new attributions and interactions.

2. Background
2.1. Notation and Terminology
Let N = {1, ..., n} denote the set of feature indices in a
machine learning model (e.g. pixel indices in an image
classification model). For a, b ∈ Rn, let [a, b] = {x ∈ Rn :
ai ≤ xi ≤ bi for all i ∈ N} denote the hyper-rectangle
with opposite vertices a and b. Let F : [a, b] 7→ R denote a
machine learning model taking an input data point x ∈ [a, b]
and outputting a real number. For example, F (x) can be
viewed as the output of a softmax layer (for a specific class)
in a neural network classifier. We denote the class of such
functions by F(a, b), or F if a, b may be inferred. Define a
baseline attribution method as:

Definition 1 (Baseline Attribution Method). A baseline
attribution method is any function of the form A(x, x′, F ) :
D → Rn, where D ⊆ [a, b]× [a, b]×F . 1

Baseline attribution methods give the contribution of each
feature in an input feature vector, denoted x ∈ [a, b], to
a function’s output, F (x), with respect to some baseline
feature vector x′ ∈ [a, b].2We denote a general baseline
attribution by A, so that Ai(x, x

′, F ) is the attribution score
of feature xi to F (x), with respect to the baseline feature
values x′. The definition allows for attributions with more
restricted domains than [a, b]× [a, b]×F because baseline
attributions may require conditions on F or x in order to
be well defined. We will see a simple example of such

1Some attribution and interaction methods also incorporate the
internal structure of a model. We do not consider these here. In
other words, the attribution methods we consider only depends
on the function F (·) and does not depend on how this function is
implemented in practice.

conditions when we define Integrated Gradients method in
section 2.3. For the purpose of this paper, all attribution
methods are baseline attribution methods.

While attribution methods give a score to the contribu-
tion of each input feature, Interactions give a score to
a group of features based on the group’s contribution to
F (x) beyond the contributions of each feature (Grabisch
& Roubens, 1999). For ease of reference, we may speak
of a nonempty set S ⊆ N as being a group of features, by
which we mean the group of features with indices in S. Let
Pk = {S ⊆ N : |S| ≤ k}. Then we can define a kth-order
baseline interaction method by:

Definition 2 (kth-Order Baseline Interaction Method). A
kth-order baseline attribution method is any function of the
form Ik(x, x′, F ) : D → R|Pk|, where D ⊆ [a, b]× [a, b]×
F .

kth-order interaction methods are a sort of expansion of at-
tributions, giving a contribution for each group of features
in Pk. For some S ∈ Pk, the term IkS(x, x

′, F ) indicates the
component of Ik(x, x′, F ) that gives interactions among the
group of features S. When speaking of interactions among
a group of features, there are multiple possible meanings:
marginal interactions between members of a group, total
interactions among members of the group, and average in-
teractions among members of the group. Loosely speaking,
if we let GS be the interactions among the features of S
that are not accounted for by the interactions of sub-groups,
then GS represents marginal interactions of features in S,∑

T⊆S GT represents the total interactions of features in
S, and

∑
T⊆S µTGT represents average interactions of fea-

tures in S, where µT is some weight function. This paper
focuses on marginal interactions.

Using quadratic regression as an example, suppose
F (x1, x2, x3) = 2x1 − 3x2 + x1x3 − 15, x = (1, 1, 1),
x′ = (0, 0, 0). Then a 2nd-order baseline interac-
tion method may report something like: I∅(x, x′, F ) =
−15, I{1}(x, x′, F ) = 2, I{2}(x, x′, F ) = −3, and
I{1,3}(x, x′, F ) = 1, and the other interactions equal zero.

It should be noted that 1st-order interactions with I1∅ disre-
garded and baseline attributions have equivalent definitions.
As with attributions, interactions may not be defined for
all (x, x′, F ). We denote the set of inputs where a given
Ik is defined by DIk , or DA with regard to attributions. As
with attributions, all interactions are baseline kth-order in-
teractions for the purpose of this paper. We may drop x′ if
the baseline is fixed, and also drop x, implying that some
appropriate value is considered.

2As an example, the first proposed baseline for image inputs
was a black image, which corresponds to the zero vector (Sun-
dararajan et al., 2017). The question of an appropriate baseline
generally depends on the data. See Pascal Sturmfels (2020) for a
survey of baselines for image tasks.
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2.2. Axioms
The definitions provided in the previous subsection are ex-
tremely general and may lead to attribution functions that
are not practical. To find practically-relevant attributions
or interaction methods, the standard strategy is to identify
certain axioms a method should satisfy. This guarantees a
method has desirable properties and constrains the possible
forms a method can take. In this subsection, we review
the common axioms of attributions and interactions used in
prior work (Grabisch & Roubens, 1999) (Sundararajan et al.,
2020), (Sundararajan & Najmi, 2020), (Tsai et al., 2022),
(Janizek et al., 2021), (Marichal & Roubens, 1999), (Zhang
et al., 2020). Axioms are only presented for interactions;
they can be easily reformulated for attributions by setting
k = 1 and disregarding I1∅, so that I1(x, x′, F ) : D → Rn.

1. Completeness:
∑

S∈Pk,|S|>0 IkS(x, x
′, F ) = F (x)−

F (x′) for all (x, x′, F ) ∈ DIk .

Completeness is sometimes called efficiency in the game-
theoretic literature and derives from the concept of cost-
sharing (Shapley & Shubik, 1971),(Sundararajan et al.,
2017). In the cost-sharing problem, a cost function gives the
cost of satisfying the demands of a set of agents (Shapley &
Shubik, 1971). A cost-share is a division of the cost among
all agents, thus requiring the sum of all cost shares to equal
the total cost. In attributions and interactions, requiring
completeness grounds the meaning of the interaction values
by requiring the method account for the total function value
change F (x)− F (x′). Thus the value of IkS(x, x

′, F ) indi-
cates how much the marginal interaction between features
in S contributed to the function’s change in output.

2. Linearity: If (x, x′, F ), (x, x′, G) ∈ DIk , a, b ∈ R,
then (x, x′, aF+bG) ∈ DIk , and Ik(x, x′, aF+bG) =
aIk(x, x′, F ) + bIk(x, x′, G).

Linearity ensures that when a model is a linear combination
of sub-models, the interactions or attributions of the model
is a weighted sum of the interactions or attributions of the
sub-models.

We say that a function F ∈ F does not vary in
some feature xi if for any vector x ∈ [a, b], f(t) =
F (x1, .., xi−1, t, xi+1, ..., xn) is constant. This indicates
that F is not a function of xi. On the contrary, if it is false
to say that F does not vary in xi, then we say F varies in
xi. If F does not vary in xi, we call xi a null feature of F .

3. Null Feature: If (x, x′, F ) ∈ DIk , F does not vary in
xi, and i ∈ S, then IkS(x, x

′, F ) = 0.

Null Feature asserts that there is no marginal interaction
among a group if one of the features has no effect. There
may be interactions between subsets of S so long as they do
not contain a null feature.3

3Null feature is similar to dummy as stated in Sundararajan
et al. (2017) and Sundararajan et al. (2020).

The three axioms above, completeness, linearity, and null
features, are generally assumed in the literature on game-
theoretic attributions and interactions. Besides these three,
there are many other axioms (guiding principles) offered that
generally serve one of two purposes: either they distinguish
a method as unique, or they show that a method satisfies de-
sirable qualities. Among them are symmetry (Sundararajan
et al., 2020), symmetry-preservation (Sundararajan et al.,
2017), (Janizek et al., 2021), (Sundararajan & Najmi, 2020),
interaction symmetry (Janizek et al., 2021), (Tsai et al.,
2022), interaction distribution (Sundararajan et al., 2020),
binary dummy (Grabisch & Roubens, 1999),(Sundarara-
jan et al., 2020), sensitivity (sometimes called sensitivity
(a))(Sundararajan et al., 2017), (Sikdar et al., 2021), im-
plementation invariance (Sundararajan et al., 2017), (Sun-
dararajan et al., 2020), (Janizek et al., 2021), (Sikdar et al.,
2021), set attribution (Tsang et al., 2020b), non-decreasing
positivity (Lundstrom et al., 2022), recursive axioms (Gra-
bisch & Roubens, 1999), 2-Efficiency (Grabisch & Roubens,
1999), (Tsai et al., 2022), faithfulness4(Tsai et al., 2022),
affine scale invariance (Friedman, 2004), (Sundararajan &
Najmi, 2020), (Xu et al., 2020), demand monotonicity (Sun-
dararajan & Najmi, 2020), proportionality (Sundararajan
& Najmi, 2020), and causality (Xu et al., 2020). Some of
the above axioms, such as linearity or implementation in-
variance, are satisfied by many methods, but no one method
satisfies all axioms. For example, Faith-Shap (Tsai et al.,
2022) agrees with the Shapley-Taylor’s (Sundararajan et al.,
2020) axioms up to a point, but while Shapley-Taylor posits
interaction distribution to gain a unique method, Faith-Shap
instead posits a formulation of faithfulness to gain a unique
method.

There are natural limitation to this setup, as some attribu-
tions in the literature do not satisfy these definitions and
axioms. For example, GradCAM (Selvaraju et al., 2017)
does not use a baseline input, nor does Smoothgrad (Smilkov
et al., 2017). Many methods, such as Layer-Wise Relevance
Propagation (Zeiler & Fergus, 2014) or Deconvolutional
networks (Springenberg et al., 2014), do not attempt to sat-
isfy completeness, so that the magnitude of the attributions
is governed by some other principle. It may be possible for
some methods to be adjusted to have a baseline by taking the
difference in attributions between an input and a baseline, or
to satisfy completeness by scaling all attributions by some
proportion. While considering adjusted methods could con-
ceivably lead to interesting results, the methods in question
are not designed to fit into a game-theoretic context, and we
omit analysis of methods that need adjustment to fit in the
game-theoretic paradigm.

4While not stated as an axiom, “faithfulness” was given as a
desirable property and used to constrain the form of an interaction.
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2.3. Attribution and Interaction Methods
Here we review several well known attribution and interac-
tion methods based on cost sharing. Before we introduce
them, we first introduce a necessary notation. For given fea-
tures S ⊆ N and assumed baseline x′, we define xS ∈ [a, b]
by:

(xS)i =

{
xi if i ∈ S

x′
i if i /∈ S,

(1)

where xi is the ith element of x and x′
i is the ith element

of x′. One well known attribution method is the Shapley
Value (Shapley & Shubik, 1971), (Lundberg & Lee, 2017):

Shapi(x, F ) =
1

n

∑
S⊆N\{i}

(
n− 1

|S|

)−1

(F (xS∪{i})− F (xS)),

where
(
n−1
|S|

)
≜ (n−1)!

(n−1−|S|)!(|S|)! denotes the number of sub-
sets of size |S| of n − 1 features. The Shapley value is a
direct import of the famous Shapley value in cost sharing
literature into the ML context; it is obtained by considering
all possible ways in which a vector x′ can transition to x
by sequentially toggling each component from the baseline
value x′

i to xi. Specifically, Shapi(x, F ) is the average func-
tion change of F when x′

i toggles to xi, over all possible
transition sequences. The Shapley value is an example of a
binary features method, meaning it only considers F evalu-
ated at the points {xS : S ⊆ N}; that is, points where each
feature value is the input or baseline value. The Shapley
value is well defined for all (x, x′, F ) ∈ [a, b]× [a, b]×F
and thus there is no need for domain restriction.

Several kth-order interactions that extend Shapley values
have been proposed, all of which are binary feature methods
(Grabisch & Roubens, 1999),(Tsai et al., 2022). First, define
δS|TF (x) =

∑
W⊆S

(−1)|S|−|W |F (xW∪T ), which measures

the marginal impact of including the features in S when
the features in T are already present based on the inclusion-
exclusion principle. The Shapley-Taylor Interaction Index
of order k (Sundararajan et al., 2020) is then given by:

STk
S(x, F ) =


k
n

∑
T⊆N\S

δS|TF (x)

(n−1
|T | )

if |S| = k

δS|∅(F ) if |S| < k.
(2)

Shapley-Taylor prioritizes interactions of order k and its
unique contribution is to satisfy the interaction distribution
axiom, which is discussed in 3.4.

Another well known attribution is the Integrated Gradients
(IG) (Sundararajan et al., 2017):

IGi(x, F ) = (xi − x′
i)

∫ 1

0

∂F

∂xi
(x′ + t(x− x′))dt. (3)

The IG is a direct translation of the well known cost-sharing
method of Aumann-Shapley (Aumann & Shapley, 1974)
to ML attributions. The IG has been called the continu-
ous version of the Shapley value, insofar as it 1) makes
use of the gradient, unlike binary features methods, and
2) is restricted to inputs (x, x′, F ) s.t. F is integrable on
the path x′ + t(x − x′).5 For the theoretical foundations
of IG, see Sundararajan et al. (2017), Aumann & Shapley

(1974), Lundstrom et al. (2022). Currently, no kth-order in-
teractions extension of the IG has been proposed. However,
a 2-order interaction, Integrated Hessian (IH), has been
proposed in Janizek et al. (2021). This interaction method
computes the pairwise interaction between xi and xj as:

IH{i,j}(x, F ) = 2(xi − x′
i)(xj − x′

j)

×
∫ 1

0

∫ 1

0

st
∂2F

∂xi∂xj
(x′ + st(x− x′))dsdt

The “main effect” of xi, or lone interaction (a misnomer),
is defined as:

IH{i}(x, F ) = (xi − x′
i)×

∫ 1

0

∫ 1

0

∂F

∂xi
(x′ + st(x− x′))dsdt

+ (xi − x′
i)

2 ×
∫ 1

0

∫ 1

0

st
∂2F

∂x2
i

(x′ + st(x− x′))dsdt

IH is what we label a recursive method since it
uses an attribution method recursively. Specifically,
IH{i,j}(x, F ) = IGi(x, IGj(·, F )) + IGj(x, IGi(·, F )).
Similarly, IH{i}(x, F ) = IGi(x, IGi(·, F )) (Janizek et al.,
2021). Note that the domain where IH is well defined is
restricted to functions where components of the Hessian can
be integrated along the path x′ + t(x− x′). We discuss the
expansion of IH to a kth-order interaction and its properties
in section 5.2 and appendix F.2.

2.4. The Möbius Transform
Lastly, we review the Möbius transform, which will be
useful for our definition of the notion of “pure interactions”
in section 3. Let v be a real-valued function on |N | binary
variables, so that v : {0, 1}N → R. For S ⊆ N , we
write v(S) to denote v((11∈S , ...,1n∈S)), where 1 is the
indicator function. Recall that the Möbius transform of v is
a function a(v) : {0, 1}N → R given by Rota (1964):

a(v)(S) =
∑
T⊆S

(−1)|S|−|T | v(T ). (4)

The Möbius transform satisfies the following relation to v:

v(S) =
∑
T⊆N

a(v)(T )1T⊆S =
∑
T⊆S

a(v)(T ). (5)

The Möbius transform can be conceptualized as a decom-
position of v into the marginal effects on v for each subset
of N . Each subset of S has its own marginal effect on the
change in function value of v, so that v(S) is a sum of the
individual effects, represented by a(v)(T ) in Eq. (5). For
example, if N = {1, 2}, then for

v(S) =


α if S = ∅
β if S = {1}
γ if S = {2}
δ if S = {1, 2}

we have

a(v)(S) =


α if S = ∅
β − α if S = {1}
γ − α if S = {2}
δ − β − γ + α if S = {1, 2}

5For example, IG is not defined for F (x1, x2) = max(x1, x2)
with x′ = (0, 0), x = (1, 1)
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3. Möbius Transforms as a Complete Account
of Interactions

3.1. Motivation: Pure Interactions
In order to identify desirable qualities of an interaction
method, it would be fruitful to answer the question: what
sorts of function is a “pure interaction” of features in S?
Specifically, is F (x1, x2, x3) = x1x2 a function of pure
interaction between x1 and x2? This question is useful
because if F is a pure interaction of x1 and x2 (i.e. the
only effects in F is an interaction between x1 and x2), then
naturally it ought to be that I2S(x, F ) = 0 for S ̸= {1, 2}.
Indeed, to continue the example, suppose F is a general
function and we can decompose F as follows:
F (x) = f∅ +

∑
1≤i≤3

f{i}(xi) +
∑

1≤i<j≤3

f{i,j}(xi, xj) + f{1,2,3}(x),

where f∅ is some constant, f{i} is pure main effect of xi;
f{i,j} gives pure pairwise interactions; and f{1,2,3} is pure
interaction between x1, x2, and x3. Assuming I2 conforms
to linearity, we would gain:

I2S(x, F ) =
∑
|T |≤3

I2S(x, fT ) = I2S(x, fS) + I2S(x, f{1,2,3}),

by applying the above principle, namely I2S(x, fT ) = 0 if
S ̸= T , |T | ≤ 2. That is, the 2nd-order interaction of F
for S would be a sum of I2S acting on the pure interaction
function for group S, written fS , and I2S acting on a pure
interaction of size 3. This would generalize to higher order
interactions, so that:

IkS(x, F ) = IkS(x, fS) +
∑

T⊆N,|T |>k

IkS(x, fT ).

We would then have to determine what rules should govern
IkS(x, fS), and IkS(x, fT ), |T | > k.

3.2. Unique Full-Order Interactions
In the previous section we spoke intuitively regarding the
notion of pure interaction; we now present a formal treat-
ment. Let In be a nth-ordered interaction function, i.e., In

gives the interaction between all possible subsets of features.
In addition to the axioms of completeness and null features
above, we propose two modest axioms for such a function;
first, we propose a milder form of linearity, which requires
linearity only for functions that InS assign no interaction to.
We weaken linearity in the interest of establishing the notion
of pure interactions with minimal assumptions.

4. Linearity of Zero-Valued Functions: If (x, x′, G),
(x, x′, F ) ∈ DIn , S ⊆ N such that InS(x, x

′, G) = 0,
then InS(x, x

′, F +G) = InS(x, x
′, F ).

Before introducing the next axiom, we consider the mean-
ing of the baseline, x′. In cost sharing, the baseline is the
state where all agents make no demands (Shapley & Shubik,
1971). If an agent makes no demands, there are no attribu-
tions, nor are there interactions with other players. Likewise,
the original IG paper notes (Sundararajan et al., 2017):

“Let us briefly examine the need for the baseline in the
definition of the attribution problem. A common way for

humans to perform attribution relies on counterfactual
intuition. When we assign blame to a certain cause we
implicitly consider the absence of the cause as a baseline
for comparing outcomes. In a deep network, we model
the absence using a single baseline input.”

As with the cost sharing literature and Sundararajan et al.
(2017), we interpret the condition xi = x′

i to indicate that
the feature xi is not present. Recalling that xS denotes
a vector where the components in S are not fixed at the
baseline values in x′, we present the next axiom:

5. Baseline Test for Interactions (k = n): For baseline
x′, if F (xS) is constant ∀x, then InS(x, x

′, F ) = 0.

This axiom states that if every variable /∈ S is held at the
baseline value, and the other variables ∈ S are allowed to
vary, but the function is a constant, then there is no interac-
tion between the features of S. Why is this sensible? The
critical observation is that a feature being at its baseline
value indicates the feature is not present. If the features of
S have no effect when other features are absent, then the
features of F do not interact in and of themselves and their
interaction measurement should be zero.

Our definition of interactions allows F and x′ to be chosen
separately. However, it is generally the case that a model
will be trained on data which will inform the appropriate
choice of baseline. It is possible that a model does not admit
to a baseline representing the absence of features, in which
case game-theoretic baseline attributions and interactions
may be ill-suited as explanation tools. We proceed to discuss
the case when F has a baseline, and assume implicitly that
x′ is chosen as the fitting baseline to F .
Theorem 1. There is a unique n-order interaction method
with domain [a, b]× [a, b]×F that satisfies completeness,
null feature, linearity of zero-valued functions, and baseline
test for interactions (n = k).

Proof of Theorem 1 is deferred to Appendix C.1. We turn to
explicitly defining the unique interaction function satisfying
the conditions in Theorem 1. For a fixed x and implicit x′,
F (xS) is a function of S. This implies it can be formulated
as a function of binary variables indicating whether each
input component of F takes value xi or x′

i. Thus we can
take the Möbius transform of F (x(·)), written as a(F (x(·))).
Now, if we evaluate the Möbius transform of F (x(·)) for
some S, given as a(F (x(·)))(S), and allow x to vary, then
this is a function of x. Recall that Pk = {S ⊂ N : |S| ≤ k}.
Given a baseline x′, define the synergy function:
Definition 3 (Synergy Function). For F ∈ F , S ∈ Pn,
and implicit baseline x′ ∈ [a, b], the synergy function ϕ :
PN × F → F is defined by the relation ϕS(F )(x) =
a(F (x(·)))(S).

We present the following example to help illustrate the syn-
ergy function: let F (x1, x2) = a+ bx2

1 + c sinx2 + dx1x
2
2,
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and suppose x′ = (0, 0) are the baseline values for x1 and
x2 that indicate the features are not present. The synergy
for the empty set is the constant F (x′) = a, indicating the
baseline value of the function when no features are present.
To obtain ϕ{1}(F ), we allow x1 to vary but keep x2 at the
baseline, and subtract the value of F (x′). This gives us
ϕ{1}(F )(x) = a + bx2

1 − a = bx2
1. If instead we allow

only x2 to vary, we get ϕ{2}(F )(x) = a+ c sin(x2)− a =
c sin(x2). Finally, if we allow both to vary and subtract of
all the lower synergies, we get ϕ{1,2}(F )(x) = dx1x

2
2.

With the above definition, we turn to the following corollary:

Corollary 1. The synergy function is the unique n-order
interaction method that satisfies completeness, null feature,
linearity of zero-valued functions, and baseline test for in-
teractions (n = k).

Proof of Corollary 1 is relegated to Appendix C.2. The prop-
erties of the synergy function stem from properties of the
Möbius transform. Specifically, because the synergy func-
tion is defined by the Möbious Transform, it inherits many of
its properties, including completeness, null feature, linearity
of zero-valued functions, and baseline test for interactions
(n = k). The primary precursor to the synergy function is
the Harsanyi dividend (Harsanyi, 1963), which is like the
Möbius transform and is formulated for discrete-input set-
tings. More recently, the Shapley-Taylor Interaction Index
(Sundararajan et al., 2017) takes the form of the Möbius
Transform when k = n, where Shapley-Taylor imposes
symmetry and interaction distribution axioms. Likewise,
Faith-Shap (Tsai et al., 2022) takes the form of the Möbius
Transform when k = n, where Faith-Shap primarily im-
poses a best-fit property dubbed faithfulness. The novelty
of the synergy function is that, while previous works as-
sumed F to be a set function (as in section 2.4), the synergy
function is a linear functional between continuous input
functions. Consequently, Corollary 1 is novel, not only
because of the inclusion of baseline test for interactions
(k = n), but also because all axioms do not assume F is a
set function.

3.3. Properties of the Synergy Function
Given a function F , the synergy of a single feature xi is
given by ϕ{i}(F )(x) = F (x{i})− F (x′), and the pairwise
synergy for features xi and xj is
ϕ{i,j}(F )(x) =F (x{i,j})− ϕ{i}(F )(x)− ϕ{j}(F )(x)− F (x′)

=F (x{i,j})− F (x{i})− F (x{j}) + F (x′).

In general, the synergy function for a group of features S is
ϕS(F )(x) = F (xS)−

∑
T⊊S,T ̸=∅

ϕT (F )(x)− F (x′)

=
∑
T⊆S

(−1)|S|−|T | × F (xT )

With this we can define the notion of a pure interaction.
A pure interaction function of the features S is a func-

tion that 1) takes a value of 0 if any feature in S takes
its baseline value, and 2) varies and only varies in the fea-
tures in S.6 This is exactly what the synergy function ac-
complishes: either ϕS(F )(x) = 0, or ϕS(F )(x) varies
in exactly the features in S and is 0 whenever xi = x′

i

for any i ∈ S. More technically, define CS = {F ∈
F|F is a pure interaction function of S} to be the set of
pure interactions of features S. Then we have the following
corollary:

Corollary 2. Suppose an implicit baseline x′ ∈ [a, b] and
let F ∈ F , and S, T ∈ Pn. Then the following hold:
1. Pure interaction sets are disjoint, meaning CS ∩CT = ∅

whenever S ̸= T .
2. ϕS projects F onto CS∪{0}. That is, ϕS(F ) ∈ CS∪{0}

and ϕS(ϕS(F )) = ϕS(F ).
3. For ΦT ∈ CT , we have ϕS(ΦT ) = 0 whenever S ̸= T .
4. ϕ uniquely decomposes F ∈ F into a set of pure inter-

action functions on distinct groups of features. That is,
there exists P ⊂ Pn such that F =

∑
S∈P ΦS where

each ΦS ∈ CS , only one such representation exists, and
ΦS = ϕS(F ) for each S ∈ P while ϕS(F ) = 0 for each
S ∈ Pn \ P .

Proof of Corollary 2 is relegated to Appendix C.3. For
ease of notation, we move forward assuming that if x′ is
not stated, the implicit baseline value is x′ = 0 and is
appropriate to F . We also assume that the synergy functions
S is applied using the proper implicit baseline choice. Lastly,
we denote ΦS ∈ CS to be a pure interaction in S as defined
above, or what we may also call a “synergy function” in S.

3.4. Axioms and the Distribution of Synergies
Now that we have the notion of pure interactions by way of
the synergy function, we comment on the interplay between
axioms and synergy functions. First, we present a version
of the baseline test for interactions which applies for k ≤ n.
The idea is a generalization of the (k = n) case; that if
Ik is a kth-order interaction and ΦS is some pure interac-
tion function with |S| ≤ k, then Ik(ΦS) should not report
interactions for any set but S. We give this as an axiom:

6. Baseline Test for Interactions (k ≤ n): For baseline
x′ and any synergy function ΦS with |S| ≤ k, if T ⊊
S, then IkT (ΦS) = 0.

This is a weaker version of the defining axiom of Shapley-
Taylor (Sundararajan et al., 2020), which states:

7. Interaction Distribution: For baseline x′ and any
synergy function ΦS , if T ⊊ S and |T | < k, then
IkT (ΦS) = 0.

The baseline test of interactions asserts that if a synergy
function is for a group of at least size k, Ik should not
report interactions for any other group. The interaction

6For the degenerate case where S = ∅, a pure interaction of
the features of S would be a constant function.
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distribution asserts the same, and adds the caveat that if the
synergy function is for a group of size larger than k, it must
be distributed only to groups of size k.

We now detail how some of these axioms can be formulated
as constraints on the distribution of synergies.
1. Completeness: enforces that any method distributes

a synergy among sets of inputs. Formally, for a
synergy function ΦS , we may say that IkT (x,ΦS) =
wT (x,ΦS) × ΦS(x), where wT is some function sat-
isfying

∑
T⊆Pk

wT (x,ΦS) = 1.
2. Linearity: enforces that Ik(F ) is the sum of Ik ap-

plied to the synergies of F . Formally, Ik(F ) =∑
T⊂Pk

Ik(ϕT (F )).
3. Null Feature: enforces that Ik only distributed ΦS to

groups T ⊆ S.
4. Baseline Test for Interaction(k ≤ n): enforces that ΦS

is not distributed to groups T ⊊ S when |S| ≤ k.
5. Interaction Distribution: enforces that ΦS is not dis-

tributed to groups T ⊊ S when |S| ≤ k, and is dis-
tributed only to groups of size k when |S| > k.

6. Symmetry7: enforces that a synergy ΦS be distributed
equally among groups in the binary features case.

4. Binary Feature Methods and Synergies
We now discuss the role of the synergy function in axiomatic
attributions/interactions. Harsanyi (1963)8noticed that for a
synergy function ΦS , the Shapley value is

Shapi(ΦS) =

{
ΦS(x)
|S| if i ∈ S

0 if i /∈ S
(6)

This means the Shapley value distributes the function gain
from ΦS equally among all i ∈ S. Using the synergy
representation of F and linearity of Shapley values, we get

Shapi(F ) =
∑

S⊆N s.t. i∈S

ΦS(x)

|S|
(7)

Thus, the Shapley value can be conceptualized as distribut-
ing each synergy Φ{i} to xi and distributing all higher syn-
ergies, ΦS with |S| ≥ 2, equally among all features in S,
e.g., Shap(Φ{1,2,3}) = (

Φ{1,2,3}
3 ,

Φ{1,2,3}
3 ,

Φ{1,2,3}
3 , 0, ..., 0).

Indeed the Shapley value is characterized by its rule of
distributing the synergy function.

Proposition 1. (Grabisch, 1997, Thm 1) The Shapley value
is the unique attribution that satisfies linearity and acts on
synergy functions as in (6).

For a synergy function ΦS , the Shapley-Taylor interaction
index of order k for a group of features T ∈ Pk is given by:

7See appendix B for a statement of symmetry axiom.
8Harsanyi (1963) observed Eq. (6) and (7) in the binary feature

setting with Möbius transforms. Here we state the continuous
input form with synergy functions.

STk
T (ΦS) =


ΦS(x) if T = S
ΦS(x)

(|S|
k )

if T ⊊ S, |T | = k

0 else

(8)

The Shapley-Taylor distributes each synergy function of S
to its group, unless is too large (|S| > k), in which case
it distributes the synergy equally among all subsets of S
of size k. We denote this type of kth-order interaction top-
distributing, as it projects all synergies larger than the largest
available size, k, to the largest groups available. This results
in Shapley-Taylor emphasising interactions between fea-
tures of size k, which may be an advantage or disadvantage,
depending on the goal of the interaction.

As with the Shapley value, the Shapley-Taylor is character-
ized by this action on synergy functions:
Proposition 2. (Sundararajan et al., 2020, Prop 4) The
Shapley–Taylor Interaction Index of order k is the unique
kth-order interaction index that satisfies linearity and acts
on synergy functions as in Eq. (8).
There is another binary feature kth-order interaction method
similar to Shapley-Taylor, briefly motioned in Sundarara-
jan et al. (2020), with the distinction that it is not top-
distributing. Here we detail and augment the method. Sim-
ilarly to the Integrated Hessian, we may take the Shapley
value recursively to gain pairwise interaction between xi

and xj , given by RS{i,j}(x, F ) = Shapi(x,Shapj(·, F )) +
Shapj(x,Shapi(·, F )) = 2Shapi(x,Shapj(·, F )). Main ef-
fects for xi would be Shapi(x,Shapi(·, F )).

More generally, consider expanding the expression ∥y∥k1 ,
and let Nk

T denote the sum of coefficients associated exactly
with the variables with indices in T . Then the Recursive
Shapley of order k distributes synergy functions as such:

RSk
T (ΦS) =

{
Nk

T

|S|k ΦS(x) if T ⊆ S

0 else
, (9)

where in the case T = S = ∅ we set Nk
T

|S|k := 1. This for-
mulation, however, has the disadvantage of distributing a
portion of synergy functions for groups sized ≤ k to sub-
groups. For example, the recursively Shapley reports that a
synergy function Φ{1,2,3}(x) also has interactions for sub-
group {1, 2}. This violates the baseline test for interactions
(k ≤ n). We can modify the method to avoid this issue,
causing Recursive Shapley to satisfy the baseline test for in-
teractions (k ≤ n) axiom. We explicitly detail the Recursive
Shapley and modification in F.1. We also give the following
Theorem (Proof in Appendix F.1.2):
Theorem 2. The Recursive Shapley of order k is the unique
kth-order interaction index that satisfies linearity and acts
on synergy functions as in Eq. (9).

5. Synergy Distribution in Gradient-Based
Methods

A critical aspect of the above binary feature methods is
that they treat all features in a synergy function as equal

7
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contributors to the function output. For example, consider
the synergy function of S = {1, 2} given by F (x1, x2) =
(x1 − x′

1)
100(x2 − x′

2). F evaluated at x = (x′
1 + 2, x′

2 +
2) yields F (x) = 210021 = 2101. The Shapley method
applied to F treats both inputs as equal contributors, and
would indicate that x1 and x2 each contributed 2101

2 to the
function increase from the baseline. This assertion seems
unsophisticated, not to mention intuitively incorrect, given
we know the mechanism of the interaction function.

The IG exhibits the potential advantages of gradient-based
attribution methods by providing a more sophisticated at-
tribution. For m ∈ Nn, define (x− x′)m = (xi − x′

i)
m1 ·

· · (xn − x′
n)

mn , taking the convention that if mi = 0 and
xi = x′

i, then (xi − x′
i)

mi = 1. Define m! = m1! · · ·mn!,
and define DmF = ∂∥m∥1F

∂x
m1
1 ···∂xmn

n
. We notate the non-

constant features of xm by Sm = {i|mi > 0}.

We call a function of the form F (y) = (y − x′)m a mono-
mial centered at x′, and note that any monomial centered
at an assumed baseline x′ is a synergy function of Sm. As-
suming mi > 0 and taking x′ = 0, the IG attribution to ym,
a synergy function of Sm, is:

IG{i}(x, y
m) = xi

∫ 1

0

mi(tx)
(m1,...,mi−1,...,mn)dt

= xi

∫ 1

0

mit
∑

mi−1x(m1,...,mi−1,...,mn)dt

= mix
m t

∑
mj∑
mj

∣∣∣1
0
=

mi

∥m∥1
xm

This means that IG distributes the function change of
F (y) = ym to xi in proportion to mi. For example, the IG’s
attribution to our previous problem is IG((2, 2), x100

1 x2) =
( 1001012

101, 1
1012

101), a solution that seems much more equi-
table than the Shapley value. Thus the IG can distinguish
between features based on the form of the synergy, unlike
the Shapley value, which treats all features in a synergy
functions as equal contributors.

5.1. Continuity Condition
We now move to more rigorously develop the connection be-
tween gradient-based methods and monomials. To connect
the action of attributions and interactions on monomials to
broader functions, we now move towards defining the no-
tion of an interaction being continuous in F . Let Cω denote
the set of functions that are real-analytic on [a, b]. It is well
known that any F ∈ Cω admits to a convergent multivariate
Taylor Expansion centered at x′:

F (x) =
∑

m∈Nn

DmF (x′)

m!
(x− x′)m (10)

Functions in Cw have continuous derivatives of all orders,
and those derivatives are bounded in [a, b]. Thus, Cω it is a
well-behaved class that gradient-based interactions ought to
be able to assess.

Recall that the Taylor approximation of order l centered at
x′, denoted Fl, is given by:

Tl(x) =
∑

m∈Nn,∥m∥1≤l

Dm(F )(x′)

m!
(x− x′)m (11)

The Taylor approximation for analytic functions has the
property that DmTl uniformly converges to DmF for any
m ∈ Nn and x ∈ [a, b]. Given this fact, it would be natural
to require that for a given kth-ordered interaction Ik defined
for Cw functions, liml→∞ Ik(Tl) = Ik(F ).

This notion is further justified by the fact that many ML
models are analytic. Particularly, NNs composed of fully
connected and residual layers, analytic activation functions
such as sigmoid, mish, swish, as well as softmax layers
are real-analytic. While models using max or ReLU func-
tions are not analytic, they can be approximated to arbitrary
precision by analytic functions simply by replacing ReLU
and max with the parameterized softplus and smoothmax
functions, respectively.

With this, we propose a continuity axiom requiring inter-
actions for a sequence of Taylor approximations of F to
converge to the interactions at F .

7. Continuity of Taylor Approximation for Analytic
Functions: If Ik is defined for all (x, x′, F ) ∈ [a, b] ×
[a, b]×Cω , then for any F ∈ Cω , liml→∞ Ik(x, x′, Tl) =
Ik(x, x′, F ), where Tl is the lth order Taylor approxima-
tion of F centered at x′.

From this we have the following result, who’s proof can be
found in Appendix D:
Theorem 3. Let Ik be an interaction method defined on
[a, b] × [a, b] × Cω which satisfies linearity and continu-
ity of Taylor approximation for analytic functions. Then
Ik(x, x′, F ) is uniquely determined by the the values Ik

takes for the inputs in the set {(x, x′, F ) : F (y) = (y −
x′)m,m ∈ Nn}.
In section 4 we saw that binary feature methods distribute
synergy functions according to a rule, and that rule char-
acterized the method as a whole. Gradient-based methods
satisfying linearity and the continuity condition are char-
acterized by their actions on specific sets of elementary
synergy functions, monomials. Thus, given our the continu-
ity condition and linearity, we have collapsed the question
of continuous interactions to the question of interactions
of monomials centered at x′. Specifically, if linearity and
continuity are deemed desirable, and a means of distribut-
ing polynomials can be chosen, then the entire method is
determined for analytic functions. This is illustrated by the
following corollary (proof located in Appendix E):
Corollary 3. IG is the unique attribution method on analytic
functions that satisfies linearity, the continuity condition,
and acts on the inputs (x, x′, (y − x′)m) as in Eq. (10).

5.2. Integrated Hessians
Next, we present two gradient-based interaction methods
corresponding to Shapley-Taylor and Recursive Shapley.

8
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For m ∈ Nn, the Integrated Hessian of F (y) = ym at x is:

IH{i,j}(y
m) =

2mimj

∥m∥21
xm, IH{i}(y

m) =
m2

i

∥m∥21
xm

As in Recursive Shapley, IH distributes a portion of any pure
interaction monomial to all nonempty subsets of features
in Sm, breaking the baseline test for interactions(k ≤ n).
For example, although F (x1, x2, x3) = x1x2 is a synergy
function of S = {1, 2}, IH distributes some of F to main
effects. This can be remedied by directly distributing single
and pairwise synergies, then using IH to distribute mono-
mials involving 3 or more variables. This augmented IH is
given below:

IH∗
T (x, F ) = ϕT (F )(x) + IHT (x, F −

∑
|S|≤2

ϕS(F ))

Both IH and augmented IH can be extended to kth-ordered
interactions to produce a monomial distribution scheme.
Consider the expansion of ∥m∥k1 , and let Mk

T (m) denote
the sum of the terms of the expansion involving exactly the
mi where i ∈ T . Explicitly,

Mk
T (m) =

∑
l∈Nn,|l|=k,Sl=T

(
k

l

)
ml (12)

The augmented IH of order k acts on monomial functions
as follows:

IHk∗
T (ym) =


xm if T = Sm

Mk
T (m)

∥m∥k1
xm if T ⊊ Sm, |Sm| > k

0 else

(13)

To explain, IHk∗ distributes all monomial synergies of size
≤ k to their groups, and distributes monomial synergies of
size > k to subgroups of Sm in proportion to Mk

T (m). A
full treatment of both is given in appendix F.2.
Corollary 4. IHk∗ is the unique attribution method on ana-
lytic functions that satisfies linearity, the continuity condi-
tion, and distributes monomials as in Eq. (13).

5.3. Sum of Powers: A Top-Distributing Gradient-Based
Method

Previously we outlined a kth-order interaction that was
not top-distributing. Now we now present the distribution
scheme for a gradient-based top-distributed kth-order inter-
action we call Sum of Powers.9 We present only its action
on monomials here, and detail the method in Appendix F.3.
Sum of Powers distributes a monomial as such:

SPk
T (y

m) =


xm if T = Sm

1

(|Sm|−1
k−1 )

∑
i∈T mi

∥m∥1
xm if T ⊊ Sm, |T | = k

0 else
(14)

The highlight is that Sum of Powers satisfies completeness,
null feature, linearity, continuity condition, baseline test for
interactions, and is a top-distributing method. Particularly
for ym, |Sm| > k, Sum of Powers distributes ym only to top
subgroups where |T | = k, and in proportion to

∑
i∈T mi.

We present a corollary below; for full details of the Sum of
Powers method, see Appendix F.3.
Corollary 5. Sum of Powers is the unique attribution
method on analytic functions that satisfies linearity, the con-
tinuity condition, and distributes monomials as in Eq. (14).

6. Concluding Remarks
The paradigm of synergy distribution is a useful concept for
the analysis and development of attribution and interaction
methods. First, it can point out weaknesses in existing meth-
ods such as the Integrated Hessian; second, it can lead to
new methods such as the Sum of Powers method, and last,
it allows new characterization results based on synergy or
monomial distribution. As seen in the comparison of Shap-
ley Value vs Integrated Gradient, synergy distribution can
play an important role implicitly even when not explicitly
discussed in the literature. However, the application of this
analysis tool does not settle the question, “which method is
best?” There exists conflicting groups of axioms and vari-
ous combinations of them produce unique interactions. The
choice of whether to use a top-distributing or recursively
defined method, a binary features or gradient-based method,
or some other method may vary with the goal. For example,
top-distributed methods may be preferable when explicitly
searching for strong interactions of size k, while an iterative
approach may be preferable when seeking to emphasizing
all interactions up to size k.

For problems with continuous inputs, gradient-based meth-
ods seem to offer a more sophisticated means of distributing
synergies, as they distinguish between features when they
distribute a synergy function. Here again, it is not clear if
any given method represents a clear “winner” to distribute
monomials. We have presented two top-distributing and two
recursive methods, but it is unclear if these methods are best
in class. For instance, perhaps a top-distributing method that
distributes monomials by some softmax-weighted scheme is
preferable to Sum of Powers. In order to find such methods,
one may try to find a linear operator LS : Cω → Cω where
the continuity criteria apply and LS(y

m) = cS(y,m)ym

for some desirable weighting function cS . Finding such
linear operators could produce a variety of attribution and
interaction methods.

In the authors’ opinion, the possibility of the existence of
one “best” method is improbable as various combinations of
different axioms lead to the development of unique methods.
Thus, choosing methods based on the context of the applica-
tion seems a more logical approach. Indeed, the existence of
unique methods with individual strengths is already studied
in game-theoretic cost-sharing literature10.
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Appendix

A. Table of Methods
All listed methods satisfy completeness, linearity, null feature, and symmetry. All gradient-based methods satisfy the
continuity condition. All interaction methods also satisfy baseline test for interactions (k ≤ n) unless otherwise noted. We
do not list interaction distribution, which is a combination of baseline test for interactions (k ≤ n) and being top-distributing
in the binary features scheme.

Name Properties Distribution Rule

Synergy Function
unique nth-order

interaction ϕT (ΦS) =

{
ΦS if S = T

0 if S ̸= T

Shapley Value
attribution method

binary features Shapi(ΦS) =

{
ΦS

|S| if i ∈ S

0 if i /∈ S

Integrated Gradients
attribution method

gradient-based IGi(y
m) =

{
mi

∥m∥1
xm if i ∈ Sm

0 if i /∈ Sm

Shapley-Taylor
binary features
top-distributing STk

T (ΦS) =


ΦS if T = S
ΦS

(|S|
k )

if T ⊊ S, |T | = k

0 else

Sum of Powers
gradient-based
top-distributing SPk

T (y
m) =


xm if T = Sm

1

(|Sm|−1
k−1 )

∑
i∈T mi

∥m∥1
xm if T ⊊ Sm, |T | = k

0 else

Recursive Shapley
binary features

iterative
breaks baseline test

RSk
T (ΦS) =

{
Nk

T

|S|kΦS(x) if T ⊆ S

0 else

Augmented
Recursive Shapley

binary features
iterative RSk∗

T (ΦS) =


ΦS(x) if T = S
Nk

T

|S|kΦS(x) if T ⊊ S, |S| > k

0 else

Integrated Hessian
gradient-based

iterative
breaks baseline test

IHk
T (y

m) =

{
Mk

T (m)

∥m∥k
1
xm if T ⊆ Sm

0 else

Augmented
Integrated Hessian

gradient-based
iterative IHk∗

T (ym) =


xm if T = Sm

Mk
T (m)

∥m∥k
1
xm if T ⊊ Sm, |Sm| > k

0 else

B. Statement of Symmetry Axiom
Let π be an ordering of the features in N . We loosely quote the definition of symmetry from Sundararajan et al. (2020),
altering the binary feature setting to a continuous feature setting:

8. Symmetry Axiom: for all F ∈ F , for all permutations π on N :

IkS(x, x
′, F ) = IkπS(πx, πx

′, F ◦ π−1), (15)

where ◦ denotes function composition, πS := {π(i) : i ∈ S}, and (πx)π(i) = xi.

This axioms implies that if we relabel the features, then interactions for the relabeled features will concur with interactions
before relabeling. It requires that the domain, [a, b], is closed under permutations of inputs, meaning it is of the form
[a1, b1]

n.

12
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C. Proofs of Synergy Function Claims
C.1. Proof of Theorem 1

Proof. Let I be any n-ordered interaction that satisfies the given axioms, and let x, x′ ∈ [a, b] × [a, b] be arbitrarily
chosen. We assume that all interactions are taken with respect to input x and baseline x′. For ease of notation, we define
FS(x) = F (xS) for F ∈ F(x, x′).

For any nonempty S ∈ Pn, note that IS(F ) = IS(F−FS+FS). Note that (F−FS)(xS) is constant. Thus, IS(F−FS) = 0
for any S ∈ Pk by the baseline test for interaction. Thus, by linearity of zero-valued functions, we have established that
IS(F ) = IS(FS) for any S ∈ Pk.

We now proceed by strong induction:

|S| = 1 case: Let i ∈ N and choose F ∈ F . Note that F{i} does not vary with any feature but xi. This implies that
for S ̸= {i}, IS(F{i}) = 0 by null feature. By completeness, I{i}(F{i}) = F{i}(x) − F{i}(x

′), and I{i}(F ) is uniquely
determined. Thus IS(F ) is uniquely determined for |S| = 1.

|S| ≤ k ⇒ |S| = k+1 case: Suppose that for any G ∈ F [a, b] and any S ⊆ {1, ..., n} such that |S| ≤ k, IS(G) is uniquely
determined. Let T ∈ Pn, |T | = k + 1, F ∈ F . It has been established that IT (F ) = IT (FT ). Note that for all S ⊊ T ,
we have |S| ≤ k, so IS(FT ) is uniquely determined by the induction hypotheses. Since FT does not vary in each xi such
that i /∈ T , we have IS(FT ) = 0 for S ⊈ T by null feature. By completeness, FT (x) − FT (x

′) =
∑

S⊆Pk
IS(FT ) =∑

S⊆T IS(FT ). Thus IT (FT ) = FT (x) − FT (x
′) −

∑
S⊊T IS(FT ). Since IT (F ) = IT (FT ) equals the sum of uniquely

determined terms, IT (F ) is uniquely determined.

C.2. Proof of Corollary 1

We proceed to show the synergy function satisfies completeness, linearity, null feature, and baseline test for interactions
(k ≤ n).

Proof. Completeness: For any v : {0, 1}n → R, Sundararajan et al. (2020, Appendix 7.1) shows that the Möbius transform
has the property that,

v(T ) =
∑
S⊆T

a(v)(S). (16)

Using this, observe,

F (x′) +
∑
S∈Pn

ϕS(F )(x) =
∑
S⊆N

a(F (x(·)))(S)

= F (xN )

= F (x),

(17)

which established completeness.

Linearity of Zero-Valued Functions: We simply establish ϕ is linear.

ϕS(cF + dG)(x) = a(cF (x(·)) + dG(x(·)))(S)

=
∑
T⊆S

(−1)|S|−|T | [(cF (x(·)) + dG(x(·)))(T )
]

= c
∑
T⊆S

(−1)|S|−|T | F (x(·))(T ) + d
∑
T⊆S

(−1)|S|−|T | G(x(·))(T )

= cϕS(F )(x) + dϕS(G)(x)

(18)

Baseline Test for Interactions: Suppose F (xS) is constant.

13
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ϕS(F )(x) = a(F (x(·)))(S)

=
∑
T⊆S

(−1)|S|−|T | F (xT )

=
∑
T⊆S

(−1)|S|−|T | F (x′)

= F (x′)
∑

0≤i≤|S|

(
|S|
i

)
(−1)|S|−i

= 0

(19)

Null Feature: Suppose F does not vary in some xi and i ∈ S. Then,

ϕS(F )(x) = a(F (x(·)))(S)

=
∑
T⊆S

(−1)|S|−|T | F (xT )

=
∑

T⊆S,i∈T

(−1)|S|−|T | F (xT ) +
∑

T⊆S,i/∈T

(−1)|S|−|T | F (xT )

=
∑

T⊆S\{i}

(−1)|S|−(|T |+1) F (xT∪{i}) +
∑

T⊆S\{i}

(−1)|S|−|T | F (xT )

= −
∑

T⊆S\{i}

(−1)|S|−|T |) F (xT ) +
∑

T⊆S\{i}

(−1)|S|−|T | F (xT )

= 0

(20)

C.3. Proof of Corollary 2

Proof. We proceed in the order given in Corollary 2.

1. Pure interaction sets are disjoint, meaning CS ∩ CT = ∅ whenever S ̸= T .

Suppose S, T ∈ Pn with T ̸= S. We proceed by contradiction and suppose F ∈ CS ∪ CT . WLOG ∃i ∈ S \ T , implying
that F varies in feature i since F is a synergy function of S, and F does not vary in feature i, since F is a synergy function
of T . This is a contradiction. Thus CS ∩ CT = ∅.

2. ϕS projects F onto CS ∪ {0}. That is, ϕS(F ) ∈ CS ∪ {0} and ϕS(ϕS(F )) = ϕS(F )

Let F ∈ F . First, for the degenerate case, ϕ∅(F ) = F (x′), which is a constant function. For any constant c, ϕ∅(c) = c,
implying ϕ∅ is a projection and surjective for the range C∅ ∪ {0}. Thus ϕ∅ projects F onto C∅ ∪ {0}.

Now we will show that ϕS(F ) either is a pure interaction of S or is 0 in the non-degenerate case. Suppose xi = x′
i for some

i ∈ S. Then,

14
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ϕS(F )(x) =
∑
T⊆S

(−1)|S|−|T | F (xT )

=
∑

T⊆S,i∈T

(−1)|S|−|T | F (xT ) +
∑

T⊆S,i/∈T

(−1)|S|−|T | F (xT )

=
∑

T⊆S\{i}

(−1)|S|−(|T |+1) F (xT∪{i}) +
∑

T⊆S\{i}

(−1)|S|−|T | F (xT )

= −
∑

T⊆S\{i}

(−1)|S|−|T |) F (xT ) +
∑

T⊆S\{i}

(−1)|S|−|T | F (xT )

= 0

Thus ϕS(F ) = 0 whenever xi = x′
i for some i ∈ S, and ϕS(F ) satisfies condition 1 for being a pure interaction of S.

Now, inspecting the definition, ϕS(F )(x) =
∑

T⊆S(−1)|S|−|T | F (xT ), so ϕS(F ) does not vary in xi, i /∈ S. Lastly,
suppose that F does not vary in some xi, i ∈ S. Since ϕ satisfies null feature, ϕS(F ) = 0. So either ϕS(F ) varies in all xi

such that i ∈ S, or ϕS(F ) = 0. If the former, ϕS(F ) satisfies condition 2 for being a pure interaction of S; if the latter,
ϕS(F ) = 0. Thus ϕS(F ) = 0 or ϕS(F ) is a pure interaction function of S, implying the range of ϕS is CS ∪ {0}.

Now let ΦS ∈ CS . Note

ϕS(ΦS)(x) =
∑
T⊆S

(−1)|S|−|T | ΦS(xT )

=
∑
T=S

(−1)|S|−|T | ΦS(xT )

= ΦS(xS)

= ΦS(x)

It is plain by the definition that ϕS(0) = 0. Thus ϕS is surjective for the range CS ∪ {0}. Since the range of ϕS is CS ∪ {0},
ϕ maps elements of CS to themselves, and maps 0 to 0, so ϕS is a projection.

3. For ΦT ∈ CT , we have ϕS(ΦT ) = 0 whenever S ̸= T .

Let ΦT ∈ CT and T ̸= S. If ∃i ∈ S \T , then ϕS(ΦT ) = 0 by null feature. Otherwise S ⊊ T , and ϕS(ΦT ) = 0 be baseline
test for interactions (k = n).

4. ϕ uniquely decomposes F ∈ F into a set of pure interaction functions on distinct groups of features.
That is, there exists P ⊂ Pn such that F =

∑
S∈P ΦS , where each ΦS ∈ CS . Further more, only one such

representation exists, ΦS = ϕS(F ) for each S ∈ P , and ϕS(F ) = 0 for each S ∈ Pn \ P .

F =
∑

S∈Pn
ϕS(F ), and each ϕS(F ) ∈ CS ∪ {0}. Since 0 + ϕ∅(F ) ∈ C∅ and we may gather all the ϕS(F ) terms that are

zero into the C∅ term, we have shown a decomposition exists.

Let it be that F (x) =
∑

S∈P ΦS(x) for some P ∈ Pn, where each ΦS is an interaction function in S. By the results already
established, we have for any T ∈ P

ϕS(F ) = ϕS(
∑
T∈P

ΦT )

=
∑
T∈P

ϕS(ΦT )

= ϕS(ΦS)

= ΦS

15
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If S /∈ P , then

ϕS(F ) = ϕS(
∑
T∈P

ΦT )

=
∑
T∈P

ϕS(ΦT )

= 0

Now suppose that there are two decompositions,
∑

S∈P1 Φ1
S = F =

∑
S∈P2 Φ2

S . WLOG suppose S ∈ P1 \ P2. Then
ϕS(F ) = 0 since S /∈ P2 and ϕS(F ) = Φ1

S since S ∈ P1. Thus Φ1
S = 0 and S = ∅. Thus P1△P2 equals either ∅ or

{∅}, and in the case that P1△P2 = {∅} the extra term corresponding to ∅ in one of the sums is 0, and does not effect the
decomposition. Now, if P1△P2 = ∅, then for any S ∈ P1,P2, we have Φ1

S = ϕS(F ) = Φ2
S . Thus, the decomposition is

unique.

D. Proof of Theorem 3
Proof. Let Ik be a kth-order interaction method defined for all (x, x′, F ) ∈ [a, b]× [a, b]× Cω . Fix x′ and x. Let Tl be the
lth order Taylor approximation of F at x′. Then

Ik(x, x′, F ) = lim
l→∞

Ik(x, x′, Tl)

=
∑

m∈Nn,∥m∥1≤l

Dm(F )(x′)

m!
lim
l→∞

Ik(x, x′, (y − x′)m)

The last line is determined by the action of Ik on elements of the set {(x, x′, F ) : F (y) = (y − x′)m,m ∈ Nn}, concluding
the proof.

E. Proof of Corollary 3
Sundararajan et al. (2017) has shown that IG is linear and Eq. (10) shows the actions of IG on polynomials.

Let F ∈ Cω and let Tl be the Taylor approximation of F of order l centered at x′. It is known that ∂Tl

∂xi
→ ∂F

∂xi
uniformly on

a compact domain, such as [a, b]. Thus,

lim
l→∞

IGi(x, Tl) = lim
l→∞

(xi − x′
i)

∫ 1

0

∂Tl

∂xi
(x′ + t(x− x′))dt

= (xi − x′
i)

∫ 1

0

∂F

∂xi
(x′ + t(x− x′))dt

= IGi(x, F )

(21)

Thus IG satisfies the continuity criteria. Apply Theorem 3 for result.

F. Interaction Methods
Here we give an in depth treatment of the Recursive Shapley, Integrated Hessian, and Sum of Powers methods, as well as
the augmentations to the recursive methods. We define the methods and show that each method is the unique method that
satisfies linearity, their distribution policy, and in the case of gradient methods, the continuity condition. We also prove that
each method satisfies desirable properties such as completeness, null feature, symmetry, and, if applicable, baseline test for
interactions (k ≤ n).
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F.1. Recursive Shapley and Augmented Recursive Shapley

F.1.1. DEFINING RECURSIVE SHAPLEY

Here we detail the properties of Recursive Shapley and Augmented Recursive Shapley. Let σk
T be the set of se-

quences of length k such that the sequence is made of the elements of T ̸= ∅ and each element appears at least
once. For example, σ3

{1,2} = {(1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1)}. Calculating the size of σk
T ,

|σk
T | =

∑
|l|=k s.t. Sl=T

(
k
l

)
= Nk

T . For a given sequence s, define IGt(x, F ) be a recursive implementation of the
Shapley method according to the sequence s, i.e., Shap(1,2,3)(x, F ) = Shap3(x,Shap2(·,Shap1(·, F ))). We can then define
the kth-order Recursive Shapley for T ̸= ∅ as:

RSk
T (x, F ) =

∑
s∈σk

T

Shaps(x, F ) (22)

and define RSk
∅(x, x

′, F ) := F (x′).

We now move to inspect this equation and establish some properties. Eq. (6) states that for a synergy function ΦS , S ̸= ∅,

Shapi(x,ΦS) =

{
ΦS(x)
|S| if i ∈ S

0 if i /∈ S
(23)

Then for a given sequence s ∈ σk
T and synergy function ΦS , if T ⊆ S then,

Shaps(x,ΦS) = Shapsk(x,Shapsk−1
(...Shaps1(·,ΦS)....)

= Shapsk(x,Shapsk−1
(...Shaps2(·,

ΦS

|S|
)....)

= Shapsk(x,Shapsk−1
(...Shaps3(·,

ΦS

|S|2
)....)

= ...

= Shapsk(x,
ΦS

|S|k−1
))

=
ΦS(x)

|S|k

(24)

However, if T ⊊ S then there exists an element of s that is not in S, and:

Shaps(x,ΦS) = 0, (25)

due to some sj /∈ S in the sequence.

F.1.2. RECURSIVE SHAPLEY’S DISTRIBUTION POLICY

Now, to show how Recursive Shapley distributes synergies, apply the definition of recursive Shapely for S ̸= ∅ to get:

RSk
T (x,ΦS) =

∑
s∈σk

T

Shaps(x,ΦS)

=

{∑
s∈σk

T

ΦS(x)
|S|k if T ⊆ S∑

s∈σk
T
0 if T ⊈ S

=

{
Nk

T

|S|kΦS(x) if T ⊆ S

0 if T ⊈ S

(26)
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We also gain the above for S = ∅ by setting Nk
T

|S|k = 1 when T = ∅. This establishes the distribution scheme in Eq. (9).

Recursive Shapley is also linear because it it the sum of function compositions of composition of linear functions. This
establishes Theorem 2.

F.1.3. PROPERTIES OF RECURSIVE SHAPLEY

To show Recursive Shapley satisfies completeness, observe for S ̸= ∅:

∑
T∈Pk,|T |>0

RSk
T (x,ΦS) =

∑
T⊆S

Nk
T

ΦS(x)

|S|k

=
ΦS(x)

|S|k
∑
T⊆S

Nk
T

=
ΦS(x)

|S|k
|S|k

= ΦS(x)

(27)

The case when S = ∅ is easily verified by inspecting the synergy distribution policy of RS.

To show Recursive Shapley satisfies null feature, suppose that F does not vary in xi. Then for any S ∈ Pk such that i ∈ S,
ϕS(F ) = 0 since the synergy function is an interaction satisfying null feature. Then if i ∈ T ,

RSk
T (x, F ) =

∑
S∈Pk

RSk
T (x, ϕS(F ))

=
∑

S∈Pk s.t. i∈S

RSk
T (x, ϕS(F )) +

∑
S∈Pk s.t. i/∈S

RSk
T (x, ϕS(F ))

=
∑

S∈Pk s.t. i∈S

RSk
T (x, 0) +

∑
S∈Pk s.t. i/∈S

0

= 0

(28)

Where the terms in the second sum are zero by Eq. (9).

To show Recursive Shapley satisfies symmetry, let π be a permutation on N . Note that for ΦS ∈ CS , we have ΦS ◦ π−1 is a
pure interaction function in πS with baseline πx′. Then

RSk
πT (πx, πx

′,ΦS ◦ π−1) =

{
Nk

πT

|πS|kΦS ◦ π−1(πx) if πT ⊆ πS

0 if πT ⊈ πS

=

{
Nk

T

|S|kΦS(x) if T ⊆ S

0 if T ⊈ S

= RSk
T (x, x

′,ΦS)

So RS is symmetric on synergy functions. Now use the synergy decomposition of F ∈ F to show RS is generally symmetric.

F.1.4. AUGMENTED RECURSIVE SHAPLEY AND PROPERTIES

The synergy function ϕ is taken implicitly with respect to a baseline appropriate to F . To make the baseline choice explicit,
we write ϕ(F ) = ϕ(x′, F ). Augmented Recursive Shapley is then defined as:

RSk∗
T (x, x′, F ) = ϕT (x

′, F )(x) + RSk
T (x, x

′, F −
∑
S∈Pk

ϕS(x
′, F )) (29)
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With the above augmentation, IHk∗ explicitly distributes synergies ϕT (F ) to group T whenever |T | ≤ k, and distributes
higher synergies as IHk.

The above is a linear function of F . Plugging in ΦS to the above gains the following distribution policy:

RSk∗
T (ΦS) =


ΦS(x) if T = S
Nk

T

|S|kΦS(x) if T ⊊ S, |S| > k

0 else

(30)

Because each F ha a unique synergy decomposition, we have
Corollary 6. Augmented Recursive Shapley of order k is the unique kth-order interaction index that satisfies linearity and
acts on synergy functions as in Eq. (30).

To show that Augmented Recursive Shapley satisfies null feature, let F not vary in some feature xi and let i ∈ T . Then

RSk∗
T (x, F ) =

∑
S∈Pn

RSk∗
T (x, ϕS(F ))

= RSk∗
T (x, ϕT (F )) +

∑
T⊊S,|S|>k

RSk∗
T (x, ϕS(F ))

= RSk∗
T (x, 0) +

∑
T⊊S,|S|>k

Nk
T

|S|k
ϕS(F )(x)

= 0 +
∑

T⊊S,|S|>k

0

= 0

Thus Augmented Recursive Shapley satisfies null feature.

To show Augmented Recursive Shapley satisfies baseline test for interactions (k ≤ n), let T ⊊ S, |S| ≤ k, and ΦS ∈ CS .
Then RSk∗

T (x,ΦS) = 0 by Eq.(30).

To show Augmented Recursive Shapley satisfies completeness, consider the synergy function ΦS . If |S| ≤ k, Eq. (30)
shows completeness. If |S| > k, then follow the proof of completeness for Recursive Shapley.

To show Augmented Recursive Shapley satisfies symmetry, consider a synergy function ΦS ∈ CS and permutation π. Note
that for ΦS ∈ CS , we have ΦS ◦ π−1 is a pure interaction function in πS with baseline πx′. Then

RSk∗
πT (πx, πx

′,ΦS ◦ π−1) =


Nk

πT

|πS|kΦS ◦ π−1(πx) if πT = πS
Nk

πT

|πS|kΦS ◦ π−1(x) if πT ⊊ πS, |πS| > k

0 else

=


Nk

T

|S|kΦS(x) if T ⊆ S
Nk

T

|S|kΦS(x) if T ⊊ S, |S| > k

0 else

= RSk∗
T (x, x′,ΦS)

F.2. Integrated Hessian and Augmented Integrated Hessian

F.2.1. DEFINITION OF INTEGRATED HESSIAN

Here we give a complete definition of IH and detail how IH distributes monomials. We also detail IH∗ and show it satisfies
Corollary 4. We then show both satisfy completeness, linearity, null feature, and symmetry, and augmented IH satisfies
baseline test for interactions (k ≤ n).

19
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Let σk
T be the set of sequences of length k such that the sequence is made of the elements of T ̸= ∅ and each

element appears at least once. For example, σ3
{1,2} = {(1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1)}. For

a given sequence s, define IGs(x, F ) to be a recursive implementation of IG according to the sequence s, i.e.,
IG(1,2,3)(x, F ) = IG3(x, IG2(·, IG1(·, F ))).

We can then define the k-order Integrated Hessian for T ̸= ∅ by:

IHk
T (x, F ) =

∑
s∈σk

T

IGs(x, F ), (31)

and for T = ∅, we define IHk
∅(x, x

′, F ) = F (x′).

F.2.2. IH POLICY DISTRIBUTING MONOMIALS AND CONTINUITY CONDITION

We now move to inspect this equation and establish some properties. First, IG is linear, establishing that IH is also linear by
its form.

Next, we establish its policy distributing monomials centred at x′. Eq. (10) states that for a monomial F (y) = (y − x′)m,
m ̸= 0,

IGi(x, x
′, (y − x′)m) =

{
mi

∥m∥1
(y − x′)m if i ∈ Sm

0 if i /∈ Sm

(32)

Then for a given sequence s ∈ σk
T and synergy function (y − x′)m, T ⊆ Sm,

IGs(x, (y − x′)m) = IGsk(x, IGsk−1
(...IGs1(·, (y − x′)m)....)

= IGsk(x, IGsk−1
(...IGs2(·,

ms1(y − x′)m

∥m∥1
)....)

= IGsk(x, IGsk−1
(...IGs3(·,

ms1ms2(y − x′)m

∥m∥21
)....)

= ...

= IGsk(x,
Π1≤i≤k−1msi(y − x′)m

∥m∥k−1
1

)

=
Π1≤i≤kmsi

∥m∥k1
(x− x′)m

(33)

However, if there exists any elements of s that is not in Sm, then:

IGs(x, x
′, (y − x′)m) = 0, (34)

due to some sj /∈ Sm in the sequence.

Now, applying the definition of IH when m ̸= 0, we get:

IHk
T (x, (y − x′)m) =

∑
s∈σk

T

IGs(x, (y − x′)m)

=

{∑
s∈σk

T

Π1≤i≤kmsi

∥m∥k
1

(x− x′)m if T ⊆ Sm∑
s∈σk

T
0 if T ⊈ Sm

=

{
Mk

T (m)

∥m∥k
1
(x− x′)m if T ⊆ Sm

0 if T ⊈ Sm,

(35)
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where we define Mk
T (m) =

∑
|l|=k s.t. Sl=T

(
k
l

)
ml, with

(
k
l

)
= k!

Πi∈Sl
li!

the multinomial coefficient. In the case T = Sm =

∅, we set Mk
T (m)

∥m∥k
1

= 1.

Now let us turn to the question of the continuity of Taylor approximation for analytic functions. Let Tl be the Taylor
approximation of some F ∈ Cω . Using Corollary 3, we have liml→∞ IGi(x, Tl) = IGi(x, F ). This implies:

IGi(x, F ) = lim
l→∞

IGi(x, Tl)

=
∑

m∈Nn

Dm(F )(x′)

m!
IGi(x, (y − x′)m)

=
∑

m∈Nn

Dm(F )(x′)

m!

mi

∥m∥1
(x− x′)m

(36)

That is, the above sum is convergent for all x ∈ [a, b], implying that IGi(·, F ) ∈ Cω . Also note:

IGi(x, Tl) =
∑

m∈Nn,|m|≤l

Dm(F )(x′)

m!

mi

∥m∥1
(x− x′)m (37)

This shows that IG(x, Tl) is a Taylor approximation of IGi(x, F ). Thus, for F ∈ Cω and a sequence s, we can pull the limit
out consecutively since we are simply dealing with a series of Taylor approximations.

IGs(x, F ) = IGsk(x, IGsk−1
(...IGs1(·, F )...))

= IGsk(x, IGsk−1
(... lim

l→∞
IGs1(·, Tl)...))

= IGsk(x, IGsk−1
(... lim

l→∞
IGs2(·, IGs1(·, Tl))...))

= lim
l→∞

IGsk(x, IGsk−1
(...IGs1(·, Tl)...))

= lim
l→∞

IGs(x, Tl),

(38)

which establishes that IHk satisfies the continuity property. This implies the following corollary:

Corollary 7. Integrated Hessian of order k is the unique kth-order method to satisfy linearity, the continuity condition, and
distributes monomials as in Eq. (35).

F.2.3. ESTABLISHING FURTHER PROPERTIES OF IH

To show IH is complete, observe for a monomial F (y) = (y − x′)m, m ̸= 0,

∑
S∈Pk,|S|>0

IHk
S(x, x

′, F ) =
∑

S⊆Sm,|S|>0

Mk
T (m)

∥m∥k1
(x− x′)m

=
∑

S⊆Sm,|S|>0

∑
|l|=k s.t. Sl=S

(
k
l

)
ml

∥m∥k1
(x− x′)m

=
∥m∥k1
∥m∥k1

(x− x′)m

= (x− x′)m

When m = 0, we get IHk
S(x, x

′, F ) = 0 except when S = ∅, in which case we get IHk
S(x, x

′, F ) = 1.

Applying the Taylor decomposition of F and continuity property to a general F ∈ Cω , we get:
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∑
S∈Pk,|S|>0

IHk
S(x, x

′, F ) =
∑

S∈Pk,|S|>0

lim
l→∞

IHk
S(x, x

′, Tl)

= lim
l→∞

∑
S∈Pk,|S|>0

∑
m∈Nn,0<∥m∥1≤l

Dm(F )(x′)

m!
IHk

S(x, x
′, (y − x′)m)

= lim
l→∞

∑
m∈Nn,0<∥m∥1≤l

Dm(F )(x′)

m!

∑
S∈Pk,|S|>0

IHk
S(x, x

′, (y − x′)m)

= lim
l→∞

∑
m∈Nn,0<∥m∥1≤l

Dm(F )(x′)

m!
(x− x′)m

= lim
l→∞

∑
m∈Nn,∥m∥1≤l

Dm(F )(x′)

m!
(x− x′)m − F (x′)

= F (x)− F (x′)

To show IH satisfies null feature, we proceed as in the proof for Recursive Shapley and suppose that F does not vary in xi.
Then for any S ∈ Pk such that i ∈ S, ϕS(F ) = 0 since the synergy function is an interaction satisfying null feature. Then
if i ∈ T ,

IHk
T (x, F ) =

∑
S∈Pk

IHk
T (x, ϕS(F ))

=
∑

S∈Pk s.t. i∈S

IHk
T (x, ϕS(F )) +

∑
S∈Pk s.t. i/∈S

IHk
T (x, ϕS(F ))

=
∑

S∈Pk s.t. i∈S

IHk
T (x, 0) +

∑
S∈Pk s.t. i/∈S

0

= 0

(39)

To show symmetry, let π be a permutation. Note that since (πy)π(i) = yi, we also have (π−1y)i = (π−1y)π−1(π(i)) = yπ(i).
Then, if F (y) = (y − x′)m, we get

F · π−1(y) = (yπ(1) − x′
1)

m1 · · · (yπ(n) − x′
n)

mn

= (y1 − x′
π−1(1))

mπ−1(1) · · · (yn − x′
π−1(n))

mπ−1(n)

= (y − πx′)πm

Also note that,

Sπm = {i : (πm)i > 0}
= {i : mπ−1(i) > 0}
= {π(i) : mπ−1(π(i)) > 0}
= {π(i) : mi > 0}
= {π(i) : i ∈ Sm}
= πSm

Then,
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IHk
πT (πx, πx

′, F ◦ π−1) =

{
Mk

πT (πm)

∥πm∥k
1

(πx− πx′)πm if πT ⊆ Sπm

0 if πT ⊈ Sπm

=

{
Mk

T (m)

∥m∥k
1
(x− x′)m if T ⊆ S

0 if T ⊈ S

= IHk
T (x, x

′, F )

Now, if we take π ∈ Cω and denote π−1
j to be the jth output of π−1, then

∂π−1
j

∂xi
= 1j=π−1(i). Then we have

∂(F ◦ π−1)

∂xi
(y) =

n∑
j=1

∂F

∂xj
(π−1(y))

∂π−1
j

∂xi
(y)

=
∂F

∂xπ−1(i)
(π−1(y)),

which yields

Dπm(F ◦ π−1)(πx′) =
∂∥πm∥1(F ◦ π−1)

∂x
(πm)1
1 · · · ∂x(πm)n

n

(πx′)

=
∂∥πm∥1F

∂x
mπ−1(1)

π−1(1) · · · ∂x
mπ−1(n)

π−1(n)

(π−1πx′)

=
∂∥m∥1F

∂xm1
1 · · · ∂xmn

n
(x′)

= DmF (x′)

From the above we have for general F ,

IHk
πS(πx, πx

′, F ◦ π−1) = lim
l→∞

IHk
πS(πx, πx

′,
∑

m∈Nn,0<∥m∥1≤l

Dm(F ◦ π−1)(πx′)

m!
(y − πx′)m)

= lim
l→∞

∑
m∈Nn,0<∥m∥1≤l

Dm(F ◦ π−1)(πx′)

m!
IHk

πS(πx, πx
′, (y − πx′)m)

= lim
l→∞

∑
m∈Nn,0<∥m∥1≤l

Dπm(F ◦ π−1)(πx′)

(πm)!
IHk

πS(πx, πx
′, (y − πx′)πm)

= lim
l→∞

∑
m∈Nn,0<∥m∥1≤l

Dm(F )(x′)

m!
IHk

S(x, x
′, (y − x′)m)

= lim
l→∞

IHS(x, x
′, Tl)

= IHS(x, x
′, F )

F.2.4. AUGMENTED INTEGRATED HESSIAN AND ITS PROPERTIES

The synergy function ϕ is taken implicitly with respect to a baseline appropriate to F . To make the baseline choice explicit,
we write ϕ(F ) = ϕ(x′, F ). Augmented Integrated Hessian is then defined as:

IHk∗
T (x, x′, F ) = ϕT (x

′, F )(x) + IHk
T (x, x

′, F −
∑
S∈Pk

ϕS(x
′, F )) (40)
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As in Augmented Recursive Shapley, Augmented Integrated Hessian explicitly distributes ϕT (F ) to group T when |T | ≤ k,
and distributes ϕT (F ) as IH when |T | > k.

To establish the monomial distribution policy we inspect the action of IHk∗
T in different cases. Plugging in (y − x′)m to the

above, if |Sm| ≤ k, the right term is zero and Eq. (13) holds, while if |Sm| > k, the left term is zero and the right term is
IHk

T (x, (y − x′)m). It is also easy to see that the above is linear.

Regarding the continuity condition, observe that:

ϕS(F ) =
∑

m∈Nn,Sm=S

Dm(F )(x′)

m!
(x− x′)m

= lim
l→∞

∑
m∈Nn,∥m∥1≤l,Sm=S

Dm(F )(x′)

m!
(x− x′)m

= lim
l→∞

ϕS(Tl),

which gains,

lim
l→∞

IHk∗
S (x, Tl) = lim

l→∞
ϕS(Tl)(x) + IHk

S(x, Tl −
∑

R∈Pk

ϕR(Tl))

= ϕS(F )(x) + IHk
S(x, lim

l→∞
Tl −

∑
S∈Pk

ϕR(Tl))

= IHk
S(x, F −

∑
R∈Pk

ϕR(F ))

= IHk∗
S (x, F ),

which establishes Corollary 4.

To show completeness, consider the decomposition F =
∑

S∈Pn
ϕS(F ). Now IHk∗ satisfies completeness for the subset of

functions ΦS ∈ CS , |S| ≤ k from the completeness of ϕ and Eq. (40). Also, IHk∗ satisfies completeness for the subset of
functions ΦS ∈ CS , |S| > k because IHk satisfies completeness. From this we have:

∑
T∈Pk,|T |≠0

IHk∗
T (x, x′, F ) =

∑
T∈Pk,|T |≠0

IHk∗
T (x, x′,

∑
S∈Pn

ϕS(F ))

=
∑
S∈Pn

∑
T∈Pk,|T |≠0

IHk∗
T (x, x′, ϕS(F ))

=
∑

S∈Pn,|S|≠0

[ϕS(F )(x)− ϕS(F )(x′)]

=
∑

S∈Pn,|S|≠0

[ϕS(F )(x)] + F (x′)− F (x′)

=
∑
S∈Pn

[ϕS(F )(x)]− F (x′)

= F (x)− F (x′)

Baseline test for interactions applies immediately from the definition of Augmented Integrated Hessian in Eq. (40).
Concerning null feature, suppose F does not vary in some xi and i ∈ T . First, we have ϕT (F ) = 0. Also, F−

∑
R∈Pk

ϕR(F )

does not vary in xi either, so, since IHk satisfies null feature. Thus we have IHk∗(x, F ) = 0 by Eq. (40).

Lastly, concerning symmetry, let π be a permutation. Note that ϕ is symmetric, as it is the k = n case for Shapley-Taylor,
which is symmetric. Then,
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IHk∗
πT (πx, πx

′, F ◦ π−1) = ϕπT (πx
′, F ◦ π−1)(πx) + IHk

πT (πx, πx
′, F ◦ π−1 −

∑
R∈Pk

ϕπR(πx
′, F ◦ π−1))

= ϕT (x
′, F )(x) + IHk

T (πx, πx
′, ϕπR(πx

′,
∑

R⊂N,|R|>k

F ◦ π−1))

= ϕT (x
′, F )(x) +

∑
R⊂N,|R|>k

IHk
T (πx, πx

′, ϕπR(πx
′, F ◦ π−1))

= ϕT (x
′, F )(x) +

∑
R⊂N,|R|>k

IHk
T (x, x

′, ϕR(x
′, F ))

= ϕT (x
′, F )(x) + IHk

T (x, x
′,

∑
R⊂N,|R|>k

ϕR(x
′, F ))

= IHk∗
T (x, x′, F )

F.3. Sum of Powers

F.3.1. DEFINING SUM OF POWERS

To define Sum of Powers, we first turn to defining a slight alteration of the Shapley-Taylor method. Suppose we performed
Shapley-Taylor on a function F , but we treated F as a function of every variable except for xi, which we held at the input
value. Specifically, for a given index i and coalition S with i ∈ S, we perform the (|S| − 1)-order Shapley-Taylor method
for the coalition S \ {i}. We perform this on an alteration of F , so that F is a function of n− 1 variables because the xi

value is fixed. We denote this function ST−i
S , which has formula:

ST−i
S (x, x′, F ) =

|S| − 1

n− 1

∑
T⊆N\S

δS\{i}|T∪{i}F (x)(
n−2
|T |

) (41)

With this, we define Sum of Powers for k ≥ 2 as:

SPk
S(x, x

′, F ) =

{∑
i∈S

[
ST−i

S (x, x′, IGi(·, x′, F ))
]

if |S| = k

ϕS(F ) if |S| < k
(42)

We define the Sum of Powers for k = 1 as the IG, with the addition that SP1
∅(x, x

′, F ) = F (x′).

Similar to the alteration of the Shapley-Taylor, we can alter the Shapley method, giving us:

Shap−i
j (x, x′, F ) =

∑
S⊂N\{i,j}

|S|!(n− |S| − 2)!

(n− 1)!

(
F (xS∪{i,j})− F (xS∪{i})

)
(43)

For the Sum of Powers k = 2 case, the altered Shapley-Taylor is a 1-order Shapley-Taylor method, and conforms to the
Shapley method:

SP2
i,j(x, x

′, F ) =

{
Shap−i

j (x, x′, IGi(·, x′, F )) + Shap−j
i (x, x′, IGj(·, x′, F )) if |S| = 2

ϕS(F ) if |S| ≤ 1
(44)

F.3.2. PROOF OF COROLLARY 5

For the k = 1 case, Sum of Powers is the IG, which satisfies linearity, distributes as in Eq. 14, and satisfies the continuity
condition.

We now assume k ≥ 2 for the rest of the section. First, SPk
S satisfies linearity because IG is linear in F and ST−i

S is linear in
F .
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We now proceed by cases to establish how SPk distributes monomials. We consider first the action of ST−i
S on F (y) =

(y − x′)m. ST−i
S acts as the (|S| − 1)-order Shapley-Taylor on an augmented function F−i(y1, ..., yi−1, yi+1, ..., yi) :=

(xi − x′
i)

miΠj ̸=i(yj − x′
j)

mj . Now, Πj ̸=i(yj − x′
j)

mj is a synergy function of Sm \ {i}. Thus we can use the distribution
rule of Shapley-Taylor, gaining

ST−i
S (x, x′, F ) = ST|S|−1

S\{i}(x−i, x
′
−i, F

−i)

=


(xi − x′

i)
m if S = Sm

(xi−x′
i)

m

(|S|−1
k−1 )

if S ⊊ Sm, |S| = k

0 else

,
(45)

where x−i denotes the vector x with the ith component removed.

With this established, we now show the action of the Sum of Powers method for an exhaustive set of cases:

1. (|S| < k, S = Sm): SPk
S(x, (y − x′)m) = ϕS((y − x′)m) = (y − x′)m.

2. (|S| < k, S ̸= Sm): SPk
S(x, (y − x′)m) = ϕS((y − x′)m) = 0.

3. (|S| = k, S ⊆ Sm):

SPk
S(x, x

′, (y − x′)m) =
∑
i∈S

[
ST−i

S (x, x′, IGi(·, x′, (y − x′)m)
]

=
∑
i∈S

[
ST−i

S (x, x′,
mi

∥m∥1
(y − x′)m)

]
=

∑
i∈S

1(|Sm|−1
|S|−1

) mi

∥m∥1
(x− x′)m

=
1(|Sm|−1

|S|−1

) ∑i∈S mi

∥m∥1
(x− x′)m

4. (|S| = k, S ⊈ Sm): Let i ∈ S. If i ∈ S \ Sm, then ST−i
S (x, x′, IGi(·, x′, (y − x′)m)) = ST−i

S (x, x′, 0)) = 0.

If, on the other hand, i ∈ Sm, then ST−i
S (x, x′, IGi(·, x′, (y−x′)m)) = ST−i

S (x, x′, mi

∥m∥1
(y−x′)m). Now, the altered

Shapley-Taylor takes the value of zero for synergy functions of sets that are not super-sets of the attributed group, S\{i}.
Also, (y−x′)m is a synergy function of Sm, and Sm is not a super-set of S\{i}. Thus ST−i

S (x, x′, mi

∥m∥1
(y−x′)m) = 0.

This established that each term in the sum
∑

i∈S

[
ST−i

S (x, x′, IGi(·, x′, (y − x′)m))
]

is zero, gaining SPk
S(x, x

′, (y −
x′)m = 0.

Thus Sum of Powers has a distribution scheme that agrees with Eq. (14). To restate:

SPk
T (x, (y − x)m) =


(x− x′)m if T = Sm

1

(|Sm|−1
k−1 )

∑
i∈T mi

∥m∥1
(x− x′)m if T ⊊ Sm, |T | = k

0 else

(46)

Finally, IG satisfies the continuity condition by Corollary 3, and it is easy to see that that ST−1
S satisfies the continuity

condition. Thus Sum of Powers obeys the continuity condition.
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F.3.3. ESTABLISHING FURTHER PROPERTIES FOR SUM OF POWERS

To establish null feature, let F not vary in xi and let i ∈ S. Sum of Powers satisfies the continuity condition, so

SPk
S(x, x

′, F ) = lim
l→∞

∑
m∈Nn,|m|≤l

DmF (x′)

m!
SPk

S(x, x
′, (y − x′)m)

= lim
l→∞

∑
m∈Nn,|m|≤l,mi=0

DmF (x′)

m!
SPk

S(x, x
′, (y − x′)m)

= 0,

where the second line is because DmF (x′) = 0 if mi > 0 because F does not vary in xi, and the third line is because
SPk

S(x, x
′, (y − x′)m) = 0 if mi = 0.

To establish baseline test for interaction (k ≤ n), let ΦS ∈ Cω be a synergy function of S and let T ⊊ S, |T | < k. Then
SPk

T (x,ΦS) = ϕT (ΦS)(x) = 0.

To establish completeness, consider F (y) = (y − x′)m, with |Sm| > k. Then,

∑
S∈Pk,|S|>0

SPk
S(x, x

′, F ) =
∑

S⊊Sm,|S|=k

SPk
S(x, x

′, (y − x′)m)

=
∑

S⊊Sm,|S|=k

1(|Sm|−1
k−1

) ∑i∈S mi

∥m∥1
(x− x′)m

=
(x− x′)m(|Sm|−1
k−1

)
∥m∥1

∑
S⊊Sm,|S|=k

∑
i∈S

mi

=
(x− x′)m(|Sm|−1
k−1

)
∥m∥1

(
|Sm| − 1

k − 1

)
∥m∥1

= F (x)− F (x′)

Now treating a general F ∈ Cω , the proof is identical to the proof for Integrated Hessian,

∑
S∈Pk,|S|>0

SPk
T (x, x

′, F ) =
∑

S∈Pk,|S|>0

lim
l→∞

SPk
T (x, x

′, Tl)

= lim
l→∞

∑
S∈Pk,|S|>0

∑
m∈Nn,0<∥m∥1≤l

Dm(F )(x′)

m!
SPk

T (x, x
′, (y − x′)m)

= lim
l→∞

∑
m∈Nn,0<∥m∥1≤l

Dm(F )(x′)

m!

∑
S∈Pk,|S|>0

SPk
T (x, x

′, (y − x′)m)

= lim
l→∞

∑
m∈Nn,0<∥m∥1≤l

Dm(F )(x′)

m!
(x− x′)m

= lim
l→∞

∑
m∈Nn,∥m∥1≤l

Dm(F )(x′)

m!
(x− x′)m − F (x′)

= F (x)− F (x′)

To show symmetry, the proof parallels the proof for Integrated Hessian in section F.2.3. Let π be a permutation. If we let
F (y) = (y − x′)m and follow what was previously established in section F.2.3, then
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SPk
πT (πx, πx

′, F ◦ π−1) =


(πx− πx′)πm if πT = Sπm

1

(|Sπm|−1
k−1 )

∑
i∈πT (πm)i
∥πm∥1

(πx− πx′)πm if πT ⊊ Sπm, |πT | = k

0 else

=


(x− x′)m if T = Sm

1

(|Sm|−1
k−1 )

∑
i∈T mi

∥m∥1
(x− x′)m if T ⊊ Sm, |T | = k

0 else

= SPk
T (x, x

′, F )

From the above we have for general F ,

SPk
πS(πx, πx

′, F ◦ π−1) = lim
l→∞

SPk
πS(πx, πx

′,
∑

m∈Nn,0<∥m∥1≤l

Dm(F ◦ π−1)(πx′)

m!
(y − πx′)m)

= lim
l→∞

∑
m∈Nn,0<∥m∥1≤l

Dm(F ◦ π−1)(πx′)

m!
SPk

πS(πx, πx
′, (y − πx′)m)

= lim
l→∞

∑
m∈Nn,0<∥m∥1≤l

Dπm(F ◦ π−1)(πx′)

(πm)!
SPk

πS(πx, πx
′, (y − πx′)πm)

= lim
l→∞

∑
m∈Nn,0<∥m∥1≤l

Dm(F )(x′)

m!
SPk

S(x, x
′, (y − x′)m)

= lim
l→∞

SP(x, x′, Tl)

= SP(x, x′, F )
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