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Abstract
Recently, the contrastive language-image pre-
training, e.g., CLIP, has demonstrated promis-
ing results on various downstream tasks. The
pre-trained model can capture enriched visual
concepts for images by learning from a large
scale of text-image data. However, transferring
the learned visual knowledge to open-vocabulary
semantic segmentation is still under-explored.
In this paper, we propose a CLIP-based model
named SegCLIP for the topic of open-vocabulary
segmentation in an annotation-free manner. The
SegCLIP achieves segmentation based on ViT
and the main idea is to gather patches with learn-
able centers to semantic regions through train-
ing on text-image pairs. The gathering opera-
tion can dynamically capture the semantic groups,
which can be used to generate the final segmenta-
tion results. We further propose a reconstruction
loss on masked patches and a superpixel-based
KL loss with pseudo-labels to enhance the vi-
sual representation. Experimental results show
that our model achieves comparable or superior
segmentation accuracy on the PASCAL VOC
2012 (+0.3% mIoU), PASCAL Context (+2.3%
mIoU), and COCO (+2.2% mIoU) compared
with baselines. We release the code at https:
//github.com/ArrowLuo/SegCLIP.

1. Introduction
Semantic segmentation, aiming to assign a label to each
pixel of a given image, is an important task and has been re-
searched for a long time. The CNN-based approaches (Long
et al., 2015; Ronneberger et al., 2015; Chen et al., 2015;
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Figure 1. Overview of our problem. The proposed SegCLIP can
achieve open-vocabulary semantic segmentation through training
with image-text pairs.

Zhao et al., 2017; Chen et al., 2018; Wen et al., 2022) and
Transformer-based approaches (Cheng et al., 2021; Zheng
et al., 2021; Xie et al., 2021; Cheng et al., 2022; Jain et al.,
2022) have achieved impressive performance on this topic.
However, two significant limitations still need exploration:
expensive pixel-level labeling and restricted labeled cate-
gories leading to weak generalization (Bucher et al., 2019;
Xian et al., 2019).

Recent works propose to leverage large-scale image-text
pre-trained models to alleviate the above limitations. These
works involve zero-shot or weakly supervised semantic
segmentation because the large image-text pairs are class-
agnostic. Due to the target being to segment an image with
arbitrary categories instead of fixed labeling vocabularies,
this kind of method is also called open-vocabulary semantic
segmentation (Ghiasi et al., 2021; Xu et al., 2022b; Liang
et al., 2022; Ma et al., 2022). They can be roughly divided
into two types. The first is the classification-based method,
supervised by the extracted pseudo labels or text features
from a pre-trained model, e.g., CLIP (Radford et al., 2021).
Moreover, this type is usually achieved with a fully convo-
lutional network or carries out prediction based on mask
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proposals (Zhou et al., 2022a; Xu et al., 2022b). The other
is to group semantic regions along training with large-scale
image-text datasets, which can be called the group-based
method (Xu et al., 2022a). Through different routes, the
fundamental logic behind them is that the image-text pre-
trained model can learn vision-text alignment from image-
level to pixel-level features. Some interpretability meth-
ods, like CAM (Selvaraju et al., 2017) and Transformer-
interpretability (Chefer et al., 2021), can support such an
argument, such as in the work of (Zabari & Hoshen, 2021).

Following the research line of learning pixel-level alignment
from image-text pairs, we explore the semantic regions with
the group-based method in this paper. Compared with the
classification-based method, which involves mask proposals
and label classification, the group-based method is straight-
forward. It has consistent objectives with the pretraining
model, e.g., training with a contrastive loss using image-
text pairs. Further, the group-based model jointly learns
visual and textual representations as humans do, so it has
the potential to be improved from a multimodal perspective.
Instead of training from scratch, the group-based method
can also benefit from the pre-trained model.

To this end, we propose a group-based model SegCLIP to ac-
complish open-vocabulary semantic segmentation. The Seg-
CLIP can be regarded as segmentation+CLIP. Specifically,
the proposed model has a similar architecture to the CLIP
but a modified image encoder. The image encoder is based
on the ViT (Vision Transformer) (Dosovitskiy et al., 2021).
Instead of operating on regular grids, we designed a plugged
semantic group module to aggregate patches with learnable
centers. The learnable centers can dynamically merge visual
patches to semantic concepts via a mapping matrix gener-
ated by a cross-attention mechanism. This plugged group
module can be inserted into the middle layers of the image
encoder to generate irregular-shaped segments. Thus, the
SegCLIP can transfer knowledge from CLIP to semantic
segmentation. We use a small number of image-text pairs to
train our experiments’ extra randomly initialized parameters.
Figure 1 illustrates the training and inference process. Dur-
ing inference, the label name is filled into a given prompt
format, and the semantic segments are obtained by calcu-
lating the similarity between the text representation and the
semantic groups.

Moreover, we propose two auxiliary losses to enhance the
visual representation for semantic segmentation. One is a re-
construction loss, which aims to recover the masked patches
through their visual context. Such a reconstruction loss is
effective from the previous work (He et al., 2022; Wang
et al., 2022a; Zhou et al., 2022b). The difference is that our
reconstruction process is designed based on irregular-shaped
segments with a mapping matrix instead of regular patches.
The other is a KL loss (Kullback-Leibler divergence Loss)

used to learn a better mapping matrix via the superpixel
label, which can be obtained via the off-the-shelf tool. The
KL loss can keep the consistency of pixel-level features.

2. Model
Figure 2 presents the SegCLIP as a dual-encoder architec-
ture. One encoder is for text representation, and the other is
for image representation. We propose a plugged semantic
group module to aggregate patches with learnable centers in
the image encoder, thus injecting the CLIP with the capac-
ity to deal with semantic segmentation. The backbone of
SegCLIP is the ViT version of CLIP, and the details can be
found in (Radford et al., 2021). We describe the architecture
of SegCLIP, training losses, and inference process in detail
in this section.

2.1. Main Architecture

The architecture of SegCLIP mainly consists of a text en-
coder ET (·) and an image encoder EI(·), similar to the CLIP.
Such a design can transfer the knowledge naturally from
the pre-trained weights of the CLIP instead of training from
scratch. Nevertheless, it takes work to achieve semantic
segmentation directly because the CLIP is pre-trained with
image-level features and needs help to finish pixel-level
tasks. We propose a plugged semantic group module within
the image encoder with learnable centers to aggregate the
low-layer pixel features to achieve the segmentation. The
learnable centers can be regarded as semantic regions and
gather semantical pixels along with the training process.
Thus, the SegCLIP can finish open-vocabulary semantic
segmentation.

As shown in Figure 2, the model’s input is a pair of text
T = {wi}Mi=1 and image I = {pj}Nj=1, where wi means the
i-th token within the text, pj means the j-th non-overlapped
patches of the image, M and N denotes the number of given
text and image, respectively. Following the ViT version of
CLIP, the token is generated via a lower-cased byte pair
encoding (BPE), and the tokens representation {ewi}Mi=1

and patches representation {epj}Nj=1 are obtained by an
Embedding operation and a linear projection, respectively.
Then the tokens representation is fed into Transformer layers
(Vaswani et al., 2017) to generate the final text feature as
zw = ET

(
{ewi}Mi=1

)
. The image representation is fed into

other Transformer layers plus the semantic group module
to generate the final image feature as zp = EI

(
{epj}Nj=1

)
.

Finally, the contrastive loss can be calculated on the text
feature zw and the image feature zp. In our setting, the
text feature zw comes from a special token [SEP], which is
appended as the last token of the text. The image feature
zp is generated by the last Transformer layer followed by a
max-pooling operation.
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Figure 2. The framework of SegCLIP. The SegCLIP is a dual-encoder architecture containing a text and image encoder. The semantic
group module (zoom in at the right) is proposed to generate regular patches to arbitrary-shaped semantic regions. Three losses, including
contrastive loss, reconstruction loss, and superpixel-based KL loss, are used in training.

2.2. Semantic Group Module

To gather the regular patches to arbitrary-shaped semantic
regions, we design a semantic group to plug into the Trans-
former layers of the image encoder. In other words, the
semantic group module can be regarded as the second stage
of the image encoder, with different Transformer layers as
the first and third stages. Assuming the patches representa-
tion is Hp = {hs

pj
}Nj=1 after passing through the first stage’s

s-th (also the last) Transformer layer. The semantic group
module can gather different patches by calculating semantic
similarity. Specifically, we first randomly initialize a group
of learnable centers Hc = {ck}Lk=1, then obtain contextual
centers Ĥc = {ĉk}Lk=1 through some cross-attention layers
as follows,

Ĥt
c = CrossAttention(Ht

c,Hp,Hp), (1)

where t is the layer number of cross-attention, the start H1
c is

the Hc, and the Ĥc is the last Ĥt
c, the CrossAttention

is a cross-attention layer, the same as the Self-Attention
layer in Transformer (Vaswani et al., 2017), but the input is
asymmetrically separate embedding sequences, in here, the
query is Ht

c, and the key and value are Hp, respectively.

After obtaining the contextual centers Ĥc, we can assign
each patch to a corresponding center via a mapping matrix
M ∈ RN×L generated by the Gumbel-Softmax opera-
tion (Jang et al., 2017; Xu et al., 2022a).

M = Gumbel-Softmax(HpĤ⊤
c ), (2)

where each row of M is a one-hot vector, and Mjk denotes
the j-th patch belongs to k-th semantic center if its value
is 1. The M keeps a patch belonging to only and if only a
center, which benefits the final semantic segmentation.

Finally, we can calculate the representation of semantic
regions Ĥp with the patches representation Hp, the mapping
matrix M, and the contextual centers Ĥc as follows,

Ĥp = MLP
(
MEAN(M⊤Hp) + Ĥc

)
, (3)

where MEAN denotes doing the average for each center using
the patches belonging to it. MLP is a multilayer perceptron
block containing two fully-connected layers and a GELU
(Hendrycks & Gimpel, 2016) between them.

The generated representation of semantic regions Ĥp is
fed to the Transformer layers of the third stage to learn
sufficiently interactive region features Zp further.

2.3. Reconstruction Loss

In addition to the contrastive loss, we propose a self-
supervised reconstruction loss to enhance the visual repre-
sentation for segmentation. As shown in Figure 3, the recon-
struction loss aims to recover the masked patches through
their visual context, similar to MAE (He et al., 2022). The
difference is that our reconstruction process is designed
based on irregular-shaped segments with a mapping matrix.

We first generate a masked version of region representation
Ĥ(m)

p and mapping matrix M(m) via the semantic group
module on the unmasked patches for the MAE encoder.
However, the region representation can not be used to calcu-
late the reconstruction loss because the unmasked patches
have been gathered into different regions. We propose a
reconstruction layer to restore the representation of patches
from Ĥ(m)

p as,

H̃(m)
p = GELU

(
Linear(M(m))⊤Ĥ(m)

p

)
, (4)
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Figure 3. Reconstruction Loss.

where Linear is a fully-connected layer, and the GELU
is the activation function. Then we use extra Transformer
layers, similar to the third stage of the image encoder, to
obtain the final representation Z(m)

p using the H̃(m)
p .

We keep the MAE decoder as in (He et al., 2022) with the
input Z(m)

p . Finally, the reconstruction loss is the mean
squared error (MSE) between the reconstructed image I(m)

and the original image I, Lrec = MSE(I(m), I).

2.4. Superpixel based KL Loss

Besides the reconstruction loss, we propose a superpixel-
based KL loss to guild the learning of a mapping matrix.
The motivation is to keep the pixel-level consistency when
gathering the patches to regions. Intuitively, the pixels of a
superpixel should be gathered into a region instead of one
more region. The calculation process is illustrated in Figure
4. For a given image, we first obtain its superpixel with a
graph-based segmentation method from (Felzenszwalb &
Huttenlocher, 2004), which is unsupervised and does not
need to train on any datasets. There are many other super-
pixel methods, but we chose this typical one as a demonstra-
tion.

Assuming there are some superpixels, each pixel in the same
superpixels has the same label, e.g., superpixel id. Thus for
each patch, we assign it a label, e.g., the average floor value
of ids from its pixels. Thus, we can obtain a super-patch
corresponding to the superpixel. Intuitively, the patches
within a super-patch are also covered by a superpixel. Note
that a superpixel id is a number used to distinguish different
superpixels, and we do not care about its meaning in the
loss calculation. Every patch of a super-patch should have
a consistent probability in the mapping matrix M because
they should be gathered in a region. In other words, the
probability of a patch in the mapping matrix should be
similar to the average probability of the patches within the

image

super-pixel

…

super-patch

mean KL Loss

mapping 
matrix

Figure 4. Superpixel based KL Loss.

same super-patch. Thus, a symmetric KL loss is designed
as follows,

P̂j = softmax
( 1

|Gj |
∑
ĵ∈Gj

Pĵ

)
, (5)

Lsup =
1

2N

N∑
j=1

(
KL(Pj ,P̂j)+KL(P̂j ,Pj)

)
, (6)

where KL is the Kullback-Leibler divergence, Pj is the
regions’ probability of j-th patch, which is obtained by the
j-th row of M after softmax operation, and Gj is the
indexes of the patches contained in a super-patch which also
contains the j-th patch. By decreasing the Lsup, the model
tends to gather the patches within a superpixel together,
which benefits the segmentation.

2.5. Training and Inference

Training In addition to the reconstruction loss Lrec and
the superpixel-based KL loss Lsup, the model is also trained
with the contrastive loss Lcon in an end-to-end manner. The
total loss is the sum of them,

Ltotal = Lcon + Lrec + Lsup. (7)

The Lcon is a symmetric cross-entropy loss calculated on
the text feature zw and image feature zp, similar to the CLIP
(Radford et al., 2021),

Lcon =
1

2
(Lt2i + Li2t), (8)

Lt2i =−
1

B

B∑
i

log
exp

(
s(z

(i)
w , z

(i)
p )

)∑B
j=1 exp

(
s(z

(j)
w , z

(i)
p

) , (9)

Li2t =−
1

B

B∑
i

log
exp

(
s(z

(i)
w , z

(i)
p )

)∑B
j=1 exp

(
s(z

(i)
w , z

(j)
p

) , (10)
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where, s(zi, zj) =
ziz

⊤
j

∥zi∥∥zj∥ is the cosine similarity, B is the
batch size, the superscripts (i) and (j) means the i-th and
j-th sample, respectively.

Inference Due to the learned mapping matrix, the Seg-
CLIP can finish semantic segmentation without further
finetuning on any datasets. The image feature can be ob-
tained through the image encoder for a segmentation task
with candidate labels. For the text feature, we use a tem-
plate a photo of a {label name}. to form the in-
put text of the text encoder with different label names.
Specifically, we use the Zp ∈ RL×H from the last Trans-
former layer of the image encoder as the representation of
each region, where L is the number of learnable centers, and
H is the hidden size. The label features can be denoted as
{z(τ)w }Tτ=1 if there are T candidate labels. After calculating
the cosine similarity of each row of Zp and each z

(τ)
w via

s(zi, zj) from Eqs. (9-10), we can obtain a similarity matrix
Ŝ ∈ RL×T , in which each row denotes the labels’ proba-
bility of a region. Then the similarity S ∈ RN×T between
patches and candidate labels can be calculated using the
mapping matrix M ∈ RN×L via S = MŜ . We can assign
each patch a label with the highest similarity of each row
from the S. We can further execute an interpolation opera-
tion on the S from N to image size to obtain a pixel-level
assignment matrix, then an irregular-shaped and pixel-level
segmentation.

3. Experiments
We first describe datasets and implementation details before
ablating various settings of our model. Then we present the
state-of-the-art results on three datasets in an annotation-free
manner. Finally, we demonstrate some qualitative results of
our model.

3.1. Datasets

We pretrain the SegCLIP on the training splits of Concep-
tual Captions (CC) (Sharma et al., 2018) and COCO (Lin
et al., 2014), which contain 3M and 400K image-text pairs,
respectively.

For the semantic segmentation, we evaluate the model on the
validation splits of the PASCAL VOC 2012 (Everingham
et al., 2010), PASCAL Context (Mottaghi et al., 2014), and
COCO datasets. These datasets contain 20, 59, and 80 fore-
ground classes, respectively. To distinguish the foreground
classes from the background, we set the threshold to 0.75,
0.25, and 0.65 on the similarities for PASCAL VOC 2012,
PASCAL Context, and COCO, respectively. The metric is
the mIoU calculated with the predicted and ground truth
segmentation masks. The short side of the given image is
resized to 224 during inference.

3.2. Experimental Details

The architecture is based on the ViT version of CLIP, and
the text encoder and image encoder are all 12 Transformer
layers. The image size is set to 224 × 224, and the patch
size is 16 × 16. The max length of the text tokens is 32.
We initialize the embedding and Transformer layers from
the CLIP pre-trained weight as default. For the semantic
group module, we put it after the 10th Transformer layer
in the image encoder via grid search based on segmenta-
tion datasets. The cross-attention layer number is set to
2. The decoder layer of MAE is 3, and the mask rate of
patches is 0.75. The number of learnable centers is 8. We
randomly initialize the parameters of the semantic group
module, MAE decoder, and the rest of the Linears in the
model. For the optimization, we use Adam optimizer and
a cosine schedule of learning rate following the CLIP. The
initial learning rate is 4e-6 for the embedding layers, text en-
coder, and Transformer layers of the image encoder before
the semantic group module. For the rest of the parameters,
the initial learning rate is 4e-3. We pretrain our model us-
ing 8 NVIDIA A100 GPUs with a batch size of 768 for 10
epochs. This process takes approximately 6 hours.

3.3. Ablation Studies

We conduct ablation studies on the designed losses and key
hyperparameters to introduce their influence in this section.

Effective of the Reconstruction Loss As shown in Ta-
ble 1, training with the reconstruction loss can improve the
mIoU by 1.19%, 0.92%, and 0.66% on PASCAL VOC, PAS-
CAL Context, and COCO, respectively under the condition
of without the superpixel-based KL loss and can improve
the mIoU by 4.11%, 0.56%, and 0.52% under the condition
of with the superpixel based KL loss. The results demon-
strate that the well-designed reconstruction loss restoring
the masked patches with contextual visual features can en-
hance the encoder and make the mapping matrix a better
match for the segmentation task.

Effective of the Superpixel based KL Loss We also
report the consistent improvement of the superpixel-based
KL loss in Table 1. The gains are 0.54%, 0.72%, and 1.07%,
and 3.46%, 0.36%, and 0.93% on PASCAL VOC, PASCAL
Context, and COCO under the condition of without or with
the reconstructing loss, respectively. We suppose that the
pseudo superpixel labels can keep the pixel-level visual
feature relatively consistent within the segments.

Influence of the Plugged Layer In Table 2, we conduct
experiments on different plugged layers of the semantic
group module, from 6 to 11, with the same 8 learnable
centers. The results reflect that the plugged layer 10 can
achieve better performance than other plugged points, and
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Model R-Loss S-KL VOC Context COCO

SegCLIP 47.95 23.43 24.86
SegCLIP ✓ 49.14 24.35 25.52
SegCLIP ✓ 48.49 24.15 25.93
SegCLIP ✓ ✓ 52.60 24.71 26.45

Table 1. Ablation of the proposed losses (mIoU). R-Loss is the
reconstruction loss, S-KL is the superpixel-based KL loss.

Model P-Ly C-NO. VOC Context COCO

SegCLIP 6 8 35.28 19.28 16.73
SegCLIP 8 8 43.75 22.71 21.40
SegCLIP 10 6 47.03 23.36 24.85
SegCLIP 10 8 47.95 23.43 24.86
SegCLIP 10 10 44.89 23.46 24.74
SegCLIP 11 8 22.07 10.76 12.08

Table 2. Ablation of plugged layer (P-Ly) and center number
(C-NO.) of semantic group module. The results are obtained
with only the contrastive loss.

too small and big numbers decrease the mIoU significantly.
We suppose that too small plugged points may harm the pre-
trained CLIP weights, and the low-layer feature is segments-
irrelevant. The features from big plugged points are also
segments-irrelevant and can not benefit the segmentation
task.

Influence of the Center Number We also conduct exper-
iments on different learnable centers of the semantic group
module with the same plugged layer 10. The results in Table
2 demonstrate that the 8 learnable centers can achieve better
or comparable performance. The mIoU is not sensitive on
6, 8, and 10 learnable centers. We chose 8 as the default
hyperparameter in this work.

Influence of the Cross-Attention Layer Table 3 shows
the results on different layers of the cross-attention layer
in the semantic group module. Compared with the mIoU
obtained by training without a cross-attention layer, training
with a cross-attention layer can achieve better performance.
Such a phenomenon suggests that the cross-attention layer
can make the learnable centers match better with the features
of patches and focus on different parts of the given image.
We also obverse that two cross-attention layers achieve bet-
ter mIoU than others, but the results from numbers 1 and 3
are comparable. A large number of cross-attention layers,
e.g., 4, may harm the performance. We consider that our
training datasets are insufficient to train deep layers.

Model Cross-Att. VOC Context COCO

SegCLIP 0 44.44 22.28 22.11
SegCLIP 1 47.63 23.29 24.21
SegCLIP 2 47.95 23.43 24.86
SegCLIP 3 47.83 23.24 24.70
SegCLIP 4 45.39 23.17 23.80

Table 3. Ablation of cross-attention layer (Cross-Att.) The
plugged layer is 10, and the center NO. is 8. The results are
obtained with only the contrastive loss.

Input Ground Truth with Init.w/o Init.

VOC

Figure 5. Qualitative results on PASCAL VOC.

3.4. Comparisons with State-of-the-Art Methods

As shown in Table 4, we compare our model against class-
supervised, visually self-supervised, and textually super-
vised baselines. The results of class-supervised and visu-
ally self-supervised baselines are obtained from (Xu et al.,
2022a). They are pixel-wise classification models finetuned
on the pre-trained ViT models, i.e., DeiT (Touvron et al.,
2021), DINO (Caron et al., 2021), and MoCo (Chen et al.,
2021), with a 1×1 convolutional layer as the semantic seg-
mentation head. The finetuning datasets are the training
sets of the VOC and Context separately. Compared with the
class-supervised model, our result (52.5%) on VOC is still
comparable (53.0%), although training without manually
pixel-level annotations.

Compared with the state-of-the-art textually supervised
method GroupViT, our initialized SegCLIP achieves 0.3%,
2.3%, and 2.2% gains on the VOC, Context, and COCO,
respectively. We also conduct experiments for GroupViT on
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Model Arch. Init. Training Data Sup. Zero-Shot VOC Context COCO

DeiT♮ (Touvron et al., 2021) ViT ImageNet Class ✗ 53.0 35.9 -
DINO♮ (Caron et al., 2021) ViT CC12M+YFCC Self ✗ 37.6 22.8 -
MoCo♮ (Chen et al., 2021) ViT CC12M+YFCC Self ✗ 36.1 23.0 -

GroupViT (Xu et al., 2022a) ViT CC12M+YFCC Text ✓ 52.3 22.4 24.3
GroupViT1-s ViT CC+COCO Text ✓ 28.1 14.8 12.9
GroupViT2-s ViT CC+COCO Text ✓ 19.7 10.4 8.0

SegCLIP (ours) ViT CC+COCO Text ✓ 33.3 19.1 15.2
SegCLIP (ours) ViT ✓ CC+COCO Text ✓ 52.6 24.7 26.5

Table 4. Comparison of different models on mIoU. ‘Arch.’ and ‘Sup.’ are short for architecture and supervision, respectively. ‘Init.’
means whether be initialized with CLIP. CC12M and YFCC are from (Changpinyo et al., 2021) and (Thomee et al., 2016), respectively.
♮ means results from (Xu et al., 2022a). GroupViT1-s and GroupViT2-s are our implementations on the CC and COCO datasets, with
one-stage and two-stage grouping blocks, respectively.

Input Ground Truth with Init.w/o Init.

Figure 6. Qualitative results on PASCAL Context.

CC and COCO datasets for a fair comparison. Our SegCLIP
trained from scratch achieves 5.2%, 4.3%, and 2.3% im-
provements compared with the GroupViT1-s. Note that the
GroupViT1-s achieves superior accuracy than GroupViT2-s
in our settings. We suppose the CC and COCO, which
are smaller than the CC12M (Changpinyo et al., 2021) and
YFCC (Thomee et al., 2016), may lead the unstable and
insufficient training for the 2-stage GroupViT. When initial-
ized with the pre-trained CLIP, the SegCLIP improves the
mIoU by 19.3%, 5.6%, and 11.3% on the VOC, Context,
and COCO compared with training from scratch, respec-
tively. It implies that our model could benefit from the
pre-trained CLIP, which also proves the flexibility of the
semantic ground module.

3.5. Qualitative Results

We demonstrate the qualitative results on PASCAL VOC,
PASCAL Context, and COCO in Figures 5-7, respectively.
The results indicate that the SegCLIP can generate plausible

Input Ground Truth with Init.w/o Init.

Figure 7. Qualitative results on COCO.

segments and reasonable tags. Compared with the SegCLIP
training from scratch, the initialized SegCLIP achieves bet-
ter semantic segmentation. In Figure 5, the first row implies
the initialized SegCLIP could obtain better semantics, e.g.,
the airplane area, and the last row presents the initialized
SegCLIP could obtain correct tags, e.g., dog, for the gener-
ated segments. The same conclusion could be drawn from
Figure 6 and the first two rows of Figure 7. We can also
observe that the single objective, multiple objects of the
same class, or multiple objects from different classes can be
captured by the SegCLIP. It suggests that the model train-
ing on the large scale of image-text pairs could induce the
fine-grained alignment between segments and tags.

4. Related Work
This paper is related to the vision-language pre-training and
open-vocabulary semantic segmentation.
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4.1. Vision-Language pre-training

The vision-language pre-training (VLP) is an emerging re-
search topic with the increase of large-scale visual and lin-
guistic pairs collected from the Internet (Tan & Bansal,
2019; Chen et al., 2020; Huang et al., 2020; Kim et al.,
2021; Li et al., 2021; Wang et al., 2022b; Sun et al., 2019;
Luo et al., 2020; Bain et al., 2021; Li et al., 2022b;c). The
research directions commonly involve the design of new
model architectures and pre-training objectives (Gan et al.,
2022). For the architecture, the VLP models usually contain
several modules, e.g., visual encoder, text encoder, multi-
modal fusion encoder, or decoder. For the objective, the
representative pre-training tasks contain the masked lan-
guage model (MLM) introduced in language pre-training
(Devlin et al., 2019), vision-text matching (VTM), vision-
text contrastive learning (VTC), and masked vision model
(MVM). Besides the model, the available datasets are the
key factor in pushing the development of this research field,
e.g., Conceptual Captions (Sharma et al., 2018) and COCO
(Lin et al., 2014) used in this work, CC12M (Changpinyo
et al., 2021), YFCC (Thomee et al., 2016), LAION-400M
(Schuhmann et al., 2021), and HowTo100M (Miech et al.,
2019).

Most vision-language pre-training models are designed for
image-text or video-text related downstream tasks. Beyond
that, some are mainly designed for visual tasks with text su-
pervision. The CLIP (Radford et al., 2021) and ALIGN (Jia
et al., 2021) are two typical models trained with VTC for im-
age classification. Further, the works from (Yao et al., 2022;
Zeng et al., 2022) consider fine-grained alignment, and
the work from (Li et al., 2022e) considers self-supervision
within each modality plus other tasks when pre-training the
model. There are also some pretrain models for object detec-
tion (Gu et al., 2022; Zhong et al., 2022; Li et al., 2022d) and
segmentation (Wu et al., 2020; Ghiasi et al., 2021; Lüddecke
& Ecker, 2022; Rao et al., 2022; Ding et al., 2022b).

The proposed SegCLIP is a vision-language pre-training
model for segmentation. Besides our elaborate model, we
also designed a reconstruct loss and a superpixel-based KL
loss as our training objectives. Although the SegCLIP is
capable of training with a large-scale dataset, we consider its
transfer capability of reusing the existing pre-trained model,
i.e., CLIP, for segmentation and reducing the cost of training
resources.

4.2. Open-Vocabulary Semantic Segmentation

The open-vocabulary semantic segmentation also called se-
mantic segmentation in the wild in the literature, has been
widely researched along with vision-text pretraining. Its
target is to segment an image with arbitrary categories de-
scribed by texts instead of fixed labeling vocabularies. As
a pioneering work, ZS3Net (Bucher et al., 2019) combines

a deep visual segmentation model with a generative model
of class-dependent features. Such architecture allows the
generation of visual samples from unseen classes via train-
ing a classifier with real visual samples from seen classes.
SPNet (Xian et al., 2019) achieves that by transferring the
knowledge from previously seen classes to novel classes
by incorporating class-level semantic information into any
network designed for semantic segmentation.

Due to the impressive zero-shot transferability of CLIP (Rad-
ford et al., 2021) on various downstream tasks, a research
line is to leverage it for open-vocabulary semantic segmen-
tation. DenseCLIP (Rao et al., 2022) is a dense prediction
framework that converts the original image-text matching
problem in CLIP to a pixel-text matching problem and uses
the pixel-text score maps to guide the learning of dense pre-
diction models. Unlike DenseCLIP, which needs an image
decoder to generate the segments and is trained with ground-
truth labels, MaskCLIP (Zhou et al., 2022a) uses pseudo
per-pixel labels generated from CLIP and self-training to
achieve annotation-free segmentation. Similarly, (Zabari &
Hoshen, 2021) uses model interpretability to obtain pixel-
level pseudo-labels from CLIP to supervise single-image
segmentation methods. ZegFormer (Ding et al., 2022a)
decouples the zero-shot semantic segmentation into two
sub-tasks, i.e., grouping the pixels into segments and classi-
fying the segments with the CLIP. CLIPSeg (Lüddecke &
Ecker, 2022) is a system building upon the CLIP model as
a backbone and can generate image segmentations based
on arbitrary prompts. OpenSeg (Ghiasi et al., 2021) also
involves proposal generation and segments classification
as the ZegFormer, but it needs training with class agnostic
mask annotations to generate mask proposals.

Similarly, ZSSeg (Xu et al., 2022b) proposes a two-stage
semantic segmentation framework, with the first stage gener-
ating mask proposals and the second stage leveraging CLIP
to classify the generated proposals. LSeg (Li et al., 2022a)
uses a text encoder to provide a flexible label representa-
tion with a transformer-based image encoder trained with a
contrastive objective to align pixel embeddings to the text
embedding of the corresponding semantic class. OVSeg
(Liang et al., 2022) proposes to finetune CLIP on a col-
lection of masked image regions and their corresponding
text descriptions. Fusioner (Ma et al., 2022) is a simple,
lightweight cross-modality fusion module that can be used
to explicitly bridge a variety of self-supervised pre-trained
visual/language models for open-vocabulary semantic seg-
mentation.

Unlike previous works, our model does not require any mask
proposals or segmentation decoders. Instead, the proposed
model uses a plugged semantic group module to aggregate
patches as segments. Our work follows the line of GroupViT
(Xu et al., 2022a), which learns segmentation masks from
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text supervision. However, we have different architecture
compared with the GroupViT, and the proposed semantic
group module makes the model capable of resuing the pre-
trained weights from CLIP and training from scratch with
noisy image-text pairs. Moreover, we propose two novel
objectives to improve the visual representation further.

5. Conclusion and Future Work
This paper proposes a CLIP-based model SegCLIP for
weakly-supervised semantic segmentation. The model could
generate plausible segmentation results with only training
on the annotation-free text-image datasets. The process does
not contain the training on the labels or even the seen classes
of segmentation datasets before inference, demonstrating
a solid transfer character. The other advantage is the flexi-
bility of the plugged design of the semantic group module,
which brings the possibility of reusing the pre-trained CLIP
weights. Besides, the proposed reconstruction loss and the
superpixel-based KL loss improve performance, indicating
that the image encoder’s encoding capacity is essential for
the semantics before giving the proper tags. In summary,
the work takes a further step toward achieving fine-grained
alignment, e.g., semantic segmentation in this paper, from
training only on a large scale of image-text pairs.

Limitations The SegCLIP utilizes an interpolation op-
eration to smooth the predicted boundaries. However, it
was found that the use of regular image patches as the in-
put to the image encoder often leads to rough predictions.
The study recommends reducing the patch size to achieve
smoother and more precise boundaries.

Future Work To demonstrate the advantages of using
smaller patch sizes, we conduct experiments on the VOC,
Context, and COCO datasets using a patch size of 32, result-
ing in 49 patches per image. The obtained mIoU scores are
44.2%, 22.0%, and 21.4% for each dataset, respectively. By
comparing these scores to the mIoU scores of 52.5%, 24.7%,
and 26.5% achieved with a patch size of 16, which equates
to 196 patches per image, it becomes evident that larger
patch sizes can lead to inferior performance. Therefore, fu-
ture research could concentrate on pretraining models with
smaller patch sizes.

Furthermore, additional experiments are performed using
the validation sets from ADE20K (Zhou et al., 2017) and
Cityscapes (Cordts et al., 2016) to assess more complex
scenes. The results show that SegCLIP achieves mIoU
scores of 8.7% and 11.0% on ADE20K and Cityscapes,
respectively, meanwhile GroupViT1-s achieves 4.9% and
4.2% mIoU on the same datasets. It is revealed that the
complexity and intricacy of the scenes play a crucial role in
performance, suggesting that exploring complex scenes is a
promising research direction in the field of open-vocabulary

segmentation.

The current superpixel generation process in SegCLIP op-
erates as an offline module and is not trained end-to-end,
making it essential to explore innovative end-to-end training
techniques for this module to enhance its effectiveness. Ad-
ditionally, the use of finely-divided superpixels may result
in biased patches, making it necessary to consider the use of
class-agnostic segmentation methods to generate improved
pseudo-labels and improve performance. Furthermore, al-
though the SegCLIP framework can utilize the pre-trained
CLIP model as initialization, there is still potential for fur-
ther advancements through post-pretraining on more ex-
tensive datasets such as CC12M and YFCC. These future
research directions will present both challenges and exciting
opportunities to enhance SegCLIP’s performance to new
heights.
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