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Abstract
We propose a hybrid neural network (NN) and
PDE approach for learning generalizable PDE
dynamics from motion observations. Many NN
approaches learn an end-to-end model that implic-
itly models both the governing PDE and constitu-
tive models (or material models). Without explicit
PDE knowledge, these approaches cannot guar-
antee physical correctness and have limited gen-
eralizability. We argue that the governing PDEs
are often well-known and should be explicitly en-
forced rather than learned. Instead, constitutive
models are particularly suitable for learning due to
their data-fitting nature. To this end, we introduce
a new framework termed “Neural Constitutive
Laws” (NCLaw), which utilizes a network archi-
tecture that strictly guarantees standard constitu-
tive priors, including rotation equivariance and
undeformed state equilibrium. We embed this net-
work inside a differentiable simulation and train
the model by minimizing a loss function based
on the difference between the simulation and the
motion observation. We validate NCLaw on vari-
ous large-deformation dynamical systems, rang-
ing from solids to fluids. After training on a single
motion trajectory, our method generalizes to new
geometries, initial/boundary conditions, tempo-
ral ranges, and even multi-physics systems. On
these extremely out-of-distribution generalization
tasks, NCLaw is orders-of-magnitude more accu-
rate than previous NN approaches. Real-world
experiments demonstrate our method’s ability to
learn constitutive laws from videos.1
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1. Introduction
Partial-differential-equation-governed dynamical systems
are ubiquitous in physical, chemical, and biological set-
tings (Haberman, 1998). Computationally solving these
PDEs, e.g., using the finite element method (FEM) (Hughes,
2012), has enabled critical applications in science and engi-
neering. Recently, research communities have explored
the role of machine learning (ML) in advancing partial
differential equation (PDE) modeling (Karniadakis et al.,
2021). Some methods, e.g., physics-informed neural net-
work (PINN) (Raissi et al., 2019), assume the entire PDE is
known. Other methods, e.g., graph neural network (GNN)
(Sanchez-Gonzalez et al., 2020; Pfaff et al., 2020), do not
assume any knowledge about the underlying PDE. These
methods learn the PDE-governed dynamics entirely from
data. Without any knowledge about the PDE, these ap-
proaches are prone to violating physical laws and have lim-
ited generalizability. In this work, we argue that instead
of learning the entire PDE with neural solutions, there are
benefits of replacing only parts of the PDEs with neural
components while keeping the rest of the PDEs intact. For
example, we contend that commonly-agreed physical laws,
such as the elastodynamics equation (Gurtin et al., 2010),
do not need to be learned. Instead, these commonly-agreed
physical laws should be explicitly enforced to guarantee
physical correctness. By contrast, we champion that those
parts of the PDEs where researchers traditionally struggle to
model can particularly benefit from a learning solution. In
particular, we explore an ML approach for an indispensable
part of many PDEs: the constitutive laws.

A constitutive law describes the relationship between two
physical quantities (Truesdell & Noll, 2004), e.g., stress
and strain in solids (Gonzalez & Stuart, 2008), shear stress
and shear rate in fluids (Tropea et al., 2007), the electric
displacement field, and the electric field in electromagnetism
(Landau et al., 2013). These constitutive laws play crucial
roles in important PDEs, such as the elastodynamic, Navier-
Stokes, and Maxwell’s equations.

Traditionally, constitutive laws are manually designed by do-
main experts. While they should satisfy generally-accepted
constraints, e.g., frame indifference (rotational equivari-
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ance), the ultimate criterion of good constitutive laws is how
well they match the experimentally observed data, which
is often highly nonlinear. As such, to design constitutive
relationships, researchers have relied on various data-fitting
tools, ranging from high-order polynomials (Ogden, 1997)
and splines (Xu et al., 2015) to exponential models (Hencky,
1933). Recently, neural-network-based models have been
shown to achieve higher accuracies than their classic, expert-
constructed counterparts, thanks to the neural network’s
large learning capacity (Ghaboussi et al., 1991; Le et al.,
2015). Furthermore, these models alleviate the need to man-
ually design function forms by hand since the same network
architecture can be used to capture various mechanical be-
haviors (Liu et al., 2020). Indeed, we show in our work
that a single neural network architecture can capture diverse
constitutive behaviors, ranging from water to elastic solids,
which previously required case-by-case, expert-designed
constitutive models.

When it comes to learning constitutive laws via neural net-
works, two challenges stand out. First, how to enforce these
neural constitutive laws to obey known physics priors, e.g.,
frame indifference? Second, how to obtain the labeled data
for supervised training? For example, in the case of learning
elasticity, one must obtain labeled stress-strain pairs (As’ ad
et al., 2022; Ellis et al., 1995; Furukawa & Yagawa, 1998).
However, these stress-strain pairs are often either impos-
sible to measure, e.g., in vivo medical imaging (Abulnaga
et al., 2019), or require highly specialized devices (Bishop
& Henkel, 1962).

To address the first question, we introduce the physical pri-
ors as an inductive bias in the network architecture and
directly bake in these priors by design. In this way, our net-
work naturally satisfies the necessary priors without tons of
data augmentation. To address the challenge of labeled data,
we embed the learnable constitutive model inside a differen-
tiable PDE-based physical simulator (Murthy et al., 2020)
and do supervised training on the output of this physical
simulator, not on the output of the constitutive model itself.
In particular, our approach trains on motion observation data
(formally defined as kinematic information in the continuum
mechanics literature), e.g., material point positions, which
are significantly easier to measure than stress information.

With the proposed constitutive learning approach, we
demonstrate generalizable PDE dynamics on which pure
NN approaches, e.g., GNN, struggle. These generalization
tasks include extreme out-of-distribution generalization over
temporal ranges, initial/boundary conditions, geometries,
and multi-physics systems while training on a single motion
trajectory. We attribute our generalization advantage over
pure NN approaches to the fact that we only learn one ele-
ment of the PDE while keeping the PDE’s widely-accepted
elements intact (e.g., conservation of mass and momentum).

In summary, our work makes the following contributions:

1. We embed a learnable constitutive law inside a differ-
entiable physics simulator and train the constitutive
law directly on the simulator’s output.

2. We guarantee the satisfaction of physical priors to con-
stitutive laws by designing network architectures with
matrix-wise rotation equivariance and undeformed
state equilibrium.

3. We validate our hybrid NN-PDE approach on large-
deformation PDE dynamics featuring one-shot general-
ization over unseen temporal ranges, initial conditions,
boundary conditions, geometries, and multi-physics
systems, on which previous pure NN approaches fail.

2. Related Work
Constitutive Laws Constitutive laws date back to 1676
when Robert Hooke, F.R.S. observed the linear relation-
ship between spring force and deformation, i.e., Fs = kx
(Thompson, 1926). Since then, constitutive laws have been
the staple of various branches of physics: elasticity (Treloar,
1943; Fung, 1967; Arruda & Boyce, 1993), plasticity (Mises,
1913; Drucker & Prager, 1952), fluids (Chhabra, 2006),
and permittivity (Landau et al., 2013). While these con-
stitutive laws have traditionally been constructed through
nonlinear polynomial bases (Xu et al., 2015; Xu & Barbič,
2017), research communities have been embracing neural
networks due to their versatility and robustness (Shen et al.,
2005; Tartakovsky et al., 2018; Wang & Sun, 2018; Vlas-
sis et al., 2020; Vlassis & Sun, 2022b; Fuchs et al., 2021;
Sun et al., 2022; Vlassis & Sun, 2022a; 2021; Klein et al.,
2022; Liu et al., 2022). Most of these neural-network-based
approaches require labeled data for the input and output
of the constitutive model. By contrast, our work does not
require any such data. Instead, we embed the neural consti-
tutive laws inside a differentiable-simulation-based training
pipeline.

Differentiable Simulation implements traditional PDE
simulations (e.g., FEM) in a differentiable manner such that
the simulation can be employed in a gradient-based opti-
mization workflow (Hahn et al., 2019; Liang et al., 2019;
Ma et al., 2021; Hu et al., 2019b;a; Huang et al., 2021;
Du et al., 2021b;a; Qiao et al., 2021a;b; Du et al., 2020;
de Avila Belbute-Peres et al., 2018; Geilinger et al., 2020;
Xian et al., 2023; Degrave et al., 2019). Notably, these
differentiable physics simulations enable the recovery of
constitutive parameters directly from videos and motion
observations (Murthy et al., 2020; Ma et al., 2022; Chen
et al., 2022), e.g., Young’s modulus and Poisson’s ratio
of elasticity. Prior differentiable simulation works assume
that an expert-designed constitutive law is known a priori.
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Figure 1. Hybrid NN-PDE time-stepping. (a) Our method “time-steps” sequentially to obtain the solution of the dynamical system (b)
Inside the time-stepping algorithm, we (i) use the neural elastic constitutive law to obtain the stress, (ii) update the state by solving the
governing PDE (Eqn. (1)), and (iii) obtain the new elastic deformation gradient via the neural plastic constitutive law. Algorithm 2 lists
the corresponding pseudocode.

However, given a motion observation sequence of an arbi-
trary material, it is a non-trivial task for the practitioners
to identify the underlying constitutive model, not to men-
tion recovering their parameters. By contrast, we do not
assume the availability of the material model. Instead, we
parameterize the constitutive laws via generally-applicable
neural network architectures. Wang et al. (2020) and Huang
et al. (2020) also demonstrate promising results in training
neural constitutive laws directly from motion observations,
but their formulations are limited to isotropic elastic materi-
als and 2D quasi-static loadings, respectively. Our generic
formulation handles both isotropic and anisotropic materials
as well as time-dependent 3D elastoplastic dynamics.

Machine Learning (ML) for PDE Dynamics Our work
falls into the broader conversations on ML for PDEs.
Physics-informed neural networks (PINNs) (Raissi et al.,
2019) represent the PDE solution via a neural representa-
tion and introduce physics priors via PDE-informed loss.
DeepONet (Lu et al., 2019) and neural operator (Li et al.,
2020) learn mappings from the problem parameters to the
solution with the goal of achieving fast surrogate models.
Unlike these approaches, our work operates entirely within
the classical numerical solver framework. We propose an
ML solution for one and only one component of the clas-
sical solver: the constitutive model of the PDE. There are
many great works that only replace one part of the PDE
with the neural network, although not in a constitutive law
context. For example, Bar-Sinai et al. (2019)’s data-driven
discretizations, Yin et al. (2021)’s APHYNITY, and Um et al.
(2020)’s solver-in-the-loop approach. Another robust ML-
PDE framework is the graph neural network (GNN). GNN
directly learns how much force is applied to a discretized

particle (Sanchez-Gonzalez et al., 2020; Pfaff et al., 2020)
at every time step. Implicitly, GNN learns both the constitu-
tive law (material model) and the equation of motion (i.e.,
the elastodynamics equation). As such, our work differs
from GNN by incorporating the equation-of-motion prior,
which holds true in standard continuum mechanics settings
(Gurtin et al., 2010), and only treating the constitutive model
with an NN approach. Relatedly, Li et al. (2022) augment
classic numerical solvers with neural-work-based plasticity
energy, aiming to improve optimization-time-integrators.
By contrast, our work focuses on constitutive laws, not time
integrators.

3. Method
Given a motion sequence of materials undergoing deforma-
tions, our goal is to obtain their constitutive models, repre-
sented via neural networks. These constitutive laws can later
be used to predict scenarios unseen in the training motion
sequence. Sec. 3.1 first recaps the current state-of-the-art
framework for identifying classic constitutive parameters
from motions observations. Secs. 3.2 and 3.3 will introduce
the proposed neural alternative.

3.1. Background

Continuous PDE In this work, we assume all materials in
the experiments observe the elastodynamic equation (Gon-
zalez & Stuart, 2008):

ρ0ϕ̈ = ∇ · P + ρ0b. (1)

The vector field of interest is the deformation map ϕ, which
uniquely describes the current position x of an arbitrary
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spatial point with an initial position X at time t, i.e., x =
ϕ(X, t). Additionally, ρ0 is the initial density, P = P̂ (F e)
is the first Piola-Kirchhoff stress, F e is the elastic part of
the deformation gradient (∇ϕ), ϕ̇ and ϕ̈ are the velocity
and acceleration, and b is the body force. In principle, our
approach can also be extended to other PDEs involving
spatiotemporal gradients, e.g., the Navier-Stokes equations.

Constitutive laws For Eqn. (1) to be well-defined, con-
stitutive relationships must be prescribed. The elastic con-
stitutive law defines the relationship between P and F e:
P = P̂ (F e). The plastic constitutive law defines an in-
equality constraint: fY (P ) < 0 (where fY is the yield
function (Borja, 2013)), as well as a flow rule when this
constraint is violated. Constitutive laws in these forms have
been shown to capture a wide range of materials: from
elastic solids to granular media.

Discretization In order to numerically solve Eqn. (1), we
discretize it spatially and temporally, yielding a dynamical
system M:

sn+1 = Mµ(sn),∀n = 0, 1, . . . , T, (2)

where T is the total number of time steps in the simulation,
and sn and sn+1 are the state vectors at the corresponding
time steps. The vector µ encodes all the system parameters,
e.g., those of the constitutive laws.

To obtain the dynamical system M, we may use any dis-
cretization technique, e.g., FEM, finite volume methods
(Eymard et al., 2000), smoothed-particle hydrodynamics
(Monaghan, 1992). In this work, we adopt the material
point method (MPM) (Sulsky et al., 1995; Jiang et al., 2016;
Hu et al., 2018) for its versatility in handling various materi-
als. With MPM, we discretize the domain with Q material
points, and Mµ becomes Algorithm 1. Here, the state vec-
tor sn = {xn,vn,F

e
n} contains all the discretized material

points’ current positions, velocities, and elastic deformation
gradients. The time integration scheme I follows standard
MPM practices, derived from the weak form of Eqn. (1).
Appendix A provides additional background on MPM.

We highlight that the main contribution of our work is or-
thogonal to the choice of discretization. The time integration
scheme I can also be replaced by other PDE-governed,
weak-form-derived numerical methods, e.g., FEM. Our

Algorithm 1 Time-stepping, classic
Input: sn = {xn,vn,F

e
n}

Output: sn+1 = {xn+1,vn+1,F
e
n+1}

1: for i = 1 . . . Q, P n(i) = Eµ(F e
n(i))

2: xn+1,vn+1,F
e,trial
n+1 = I(xn,vn,F

e
n,P n)

3: for i = 1 . . . Q, F e
n+1(i) = Pµ(F

e,trial
n+1 (i))

main contribution is the continuous constitutive law, which
is required by all numerical methods.

Indeed, the time-stepping scheme involves two constitutive
laws (Eqn. (3)):

Eµ :F e 7→ P

:R3×3 → R3×3

Pµ :F e,trial 7→ F e,new

:R3×3 → R3×3.
(3)

The elastic constitutive law Eµ computes the first Piola-
Kirchhoff stresses P n from the elastic deformation gra-
dients F e

n. The plastic return-mapping scheme Pµ

(de Souza Neto et al., 2011) projects the trial elastic deforma-
tion gradient onto the plastic yield constraint fY . Examples
of Eµ and Pµ are listed in Appendix B.

System Identification from Motion Observations Once
we have the PDE-governed simulation, we can identify con-
stitutive parameters directly from motion observations (Ma
et al., 2022). In particular, we can define the loss function
on the ground-truth observed particle positions xgt

n :

min
µ

L({xgt
n}Tn=0, {xn}Tn=0), (4)

where L is the loss measure. By implementing the sim-
ulation (Algorithm 1) in a differentiable manner, we can
employ standard gradient-based optimization techniques to
solve Eqn. (4) and optimize for the constitutive parameters
that match the motion observations.

3.2. Neural Constitutive Laws

In this work, we replace the classic elastic and plastic con-
stitutive treatments with neural-network-based models: Eθe
and Pθp , where θe and θp are the neural network weights.
The time-stepping scheme now becomes Algorithm 2. Fig. 1
provides a schematic illustration of our hybrid NN-PDE
time-stepping scheme. Notably, we only represent the con-
stitutive laws with neural networks while keeping the classic
PDE-based time integration I unchanged. The time integra-
tion scheme I computes the force from the divergence of
stress and updates the particle positions and velocities via
standard Euler methods (Ascher & Petzold, 1998). Since
these steps follow well-known physical laws, we argue that
they do not need to be learned. To train on motion obser-
vation data, we also adopt the same objective function as

Algorithm 2 Time-stepping, neural
Input: sn = {xn,vn,F

e
n}

Output: sn+1 = {xn+1,vn+1,F
e
n+1}

1: for i = 1 . . . Q, P n(i) = Eθe(F
e
n(i))

2: xn+1,vn+1,F
e,trial
n+1 = I(xn,vn,F

e
n,P n)

3: for i = 1 . . . Q, F e
n+1(i) = Pθp(F

e,trial
n+1 (i))
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Eqn. (4), but the optimized variable now becomes the neural
network weights:

min
θe,θp

L({xgt
n}Tn=0, {xn}Tn=0). (5)

We also emphasize that we do not assume a general back-
bone form for the constitutive law. Assuming a particular
backbone (e.g., neo-Hookean elasticity) would prevent us
from capturing the constitutive behaviors of another one.
Therefore, we opt not to assume any backbone and represent
the entire constitutive law with NNs, which are data-driven
general representations with better expressiveness and ver-
satility. However, the framework outside constitutive laws
can be considered a general PDE-based backbone. In this
sense, we share similar philosophy as Yin et al. (2021) by
augmenting physical models with NNs.

3.3. Physics-Aware Network Architecture

Our neural constitutive laws must satisfy essential physics
priors (Vlassis et al., 2022). Nevertheless, we also avoid
being constrained by any overly strong prior, e.g., isotropic
prior, which prevents our model from capturing anisotropic
materials (Wang et al., 2020). In this work, we consider two
generally applicable physical priors.

Rotation Equivariance The properties of most materi-
als in the physical world remain invariable under rotations.
This property is also known as frame indifference. Un-
like previous works (Deng et al., 2021) focusing on vec-
tor data (e.g. point cloud), we have to enforce the rotation
equivariance of deformation gradients, which are square
matrices. To this end, we feed the neural networks with
a selected set of rotation invariants, including the princi-
pal stretches Σ (singular values), the right Cauchy-Green
tensor F eTF e, and the determinant of the elastic deforma-
tion gradient det(F e). Then, we take the rotation matrix
R out of the deformation gradient via polar decomposition
F e = RS and multiply it back to the output of the neural
networks to ensure the rotation equivariance. Appendix C
provides the detailed algorithm and proofs for rotation in-
variance of the neural networks and neural constitutive laws.

Undeformed State Equilibrium Another important con-
stitutive prior is preserving the rest shape under zero load.
We ensure the undeformed state equilibrium by (1) normaliz-
ing the input invariants so that they are zero under zero load
and (2) removing all bias layers from the neural networks.
Therefore, when zero loads are applied, the elasticity net-
work will generate zero stress, while the plasticity network
will preserve the trial elastic deformation gradient.

Table 1. Reconstruction. We show the reconstruction losses for
different methods. For each environment, we indicate the top 1
with dark green and the top 2 with light green from all the baselines
and our method. We also report the statistics (mean ± standard
derivation) for each method in the last column.

Method JELL-O SAND PLASTICINE WATER Overall

spline 2.4e-1 3.2e-1 3.0e-1 3.2e-1 2.9e-1±3.5e-2
neural 1.2e-5 1.2e-2 1.9e-1 2.9e-2 5.7e-2±8.7e-2

gnn 2.1e-2 1.1e-2 8.7e-3 3.2e-2 1.8e-2±1.0e-2
ours-init 1.1e-1 4.8e-2 4.6e-2 6.8e-2 6.8e-2±2.8e-2

ours 2.4e-4 2.6e-5 6.5e-5 2.0e-5 8.6e-5±1.0e-4

labeled 8.0e-9 7.1e-2 5.5e-6 1.6e-7 1.8e-2±3.5e-2
sys-id 1.7e-8 2.7e-7 5.8e-10 1.7e-8 7.6e-8±1.3e-7

4. Experiments
In this section, we first show our experimental setup
(Sec. 4.1). We then compare our methods against baselines
and oracles in reconstruction (Sec. 4.2) and generalization
(Sec. 4.3). We further study our method in two advanced
experiments: the multi-physics environments (Sec. 4.5) and
a real-world experiment (Sec. 4.6). We refer the readers to
our project website2 where the results are best illustrated in
videos.

4.1. Experimental Setup

Environments We consider four distinct elastoplastic ma-
terials covering a diverse set of physical effects: purely
elastic (JELL-O), elastic with the Drucker-Prager yield con-
dition (SAND), elastic with the von Mises yield condition
(PLASTICINE), and weakly compressible fluids (WATER).
We detail the mathematical definition and implementation
of these ground-truth material models in Appendix B.

Baselines We compare our method against three strong
baselines. spline (Xu et al., 2015) models the constitutive
laws of the elasticity using Bézier splines, where the control
points are the parameters for optimization. neural (Wang
et al., 2020) builds upon spline but replaces the Bézier spline
with neural networks. gnn (Sanchez-Gonzalez et al., 2020)
learns the particle dynamics with graph neural networks
without any assumption about underlying PDEs.

Our Methods In addition to our results after a full training
(ours), we also present the performance of our method at
the initial stage (ours-init) without training using Eqn. (5)
in order to emphasize the efficacy of learning.

Oracles We consider two oracles with extra knowledge
that is normally inaccessible. labeled (As’ ad et al., 2022)
utilizes labeled ground truth of P and F e,new for supervision
instead of the motion observations. sys-id (Ma et al., 2022)

2https://sites.google.com/view/nclaw
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Figure 2. Generalization. We first train all methods in the environments specified in training with the initial velocities indicated using
the black arrows. Then, we evaluate the generalization of all methods on four tasks specified in testing: (a) extended time, (b) unseen
initial velocity, (c) challenging geometry, and (d) inclined boundary. The left side of the dashed line shows the initialization, and the
right side shows the simulated results after a period of time. We compare our method (ours) against baselines (neural and gnn), our
initialization (ours-init), and the ground-truth simulation (ground-truth). We highlight ours and ground-truth with a red box.

assumes a given constitutive model and identifies only the
material parameters (e.g., Young’s modulus).

Implementation Details For training, we load a cubic
object with 1k homogeneous material points at the center of
a box with a fixed linear and angular velocity. We simulate
the cube’s motion for a total of 1k time steps with a step size
of 5e-4s. We generate one single trajectory for each environ-
ment as the training dataset. For our neural networks, we
use a 3-layer multilayer perceptron (MLP) with 64 neurons
per layer. Our quantitative results report the average mean
square error every 5 frames since gnn is trained with 5×
step size following (Sanchez-Gonzalez et al., 2020). We
provide more implementation details in Appendix D.

4.2. Reconstruction

We first train all methods on a single trajectory in each
environment to reconstruct the motion sequence. We quanti-
tatively demonstrate the comparison of the reconstruction
losses in Tab. 1. We find spline ends with constantly poor
results in all environments, likely because of the optimiza-
tion difficulty from discontinuous control point search and
the limited expressiveness of the quadratic splines. The

other baselines achieve reasonable performances: neural
reconstructs JELL-O and WATER well but struggles in all
other plasticity-heavy environments due to a lack of plas-
ticity models; gnn generally has acceptable performance
in all environments. In contrast to baselines’ unstable or
sub-optimal performances, ours generally reaches a recon-
struction loss lower than 1e-3 and ranks top-1 except for
JELL-O where neural performs the best. The reason is
that neural assumes no plasticity, which is precisely the
case with JELL-O, and thus eases the training. We also
report the initial performance of our method in ours-init
to emphasize that our method learns from scratch without
ad-hoc tuning for individual environments. The two oracles
labeled and sys-id achieve near-perfect results in almost all
environments. The only exception is labeled performing
sub-optimally in SAND, which has a particularly challeng-
ing pressure-dependent plasticity law. Because labeled is
supervised directly from ground-truth P and F e,new, we at-
tribute this performance drop to the lack of back-propagation
through time (BPTT). BPTT automatically magnifies the
accumulated simulation loss and guides the neural networks
to learn long-term stability.

6



Neural Constitutive Laws

Table 2. Generalization. We show the generalization losses for different methods. We report the quantitative results on three main tasks
from Fig. 2: (a) extended time, (b) unseen initial velocity, and (c) challenging geometry. Note that we evaluate with three random initial
velocities for task (b) and report the average loss for more thorough validation. For each task in each environment, we indicate the top 1
with dark green and the top 2 with light green from all the baselines and our method. We also report the statistics (mean ± standard
derivation) for each method in the last column.

JELL-O SAND PLASTICINE WATER
Method (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c) Overall

spline 2.6e-1 2.4e-1 3.5e-1 3.5e-1 3.1e-1 3.6e-1 3.0e-1 3.0e-1 3.1e-1 3.7e-1 3.2e-1 3.3e-1 3.1e-1±4.0e-2
neural 2.9e-5 1.4e-5 5.6e-5 4.7e-2 6.2e-3 2.3e-1 2.4e-1 4.1e-3 2.8e-1 4.6e-2 1.7e-2 5.1e-2 4.9e-2±8.8e-2

gnn 3.3e-2 1.5e-2 1.6e-1 1.5e-2 1.7e-2 3.4e-1 1.1e-2 6.8e-3 3.7e-2 1.1e+0 5.8e-2 2.9e-1 1.2e-1±2.6e-1
ours-init 1.5e-1 6.6e-2 1.2e-1 1.5e-1 2.7e-2 5.0e-2 1.3e-1 2.7e-2 5.8e-2 3.0e-1 4.1e-2 1.0e-1 7.7e-2±6.9e-2

ours 9.8e-4 2.4e-4 4.1e-4 4.2e-5 6.5e-5 3.6e-4 1.4e-4 4.6e-5 2.3e-4 3.5e-4 1.9e-5 2.4e-4 1.9e-4±2.3e-4
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Figure 3. Extreme Generalization. We compare the initial state,
our method, and the ground-truth results from the traditional simu-
lation in two extreme generalization experiments: (a) a complex
water dragon loaded with over 1 million particles, (b) four rubber
toys vigorously colliding with each other and the floor.

4.3. Generalization

After training on a single trajectory in Sec. 4.2, we directly
deploy the models on four tasks with out-of-distribution
conditions to evaluate the generalizability of our method:
(a) doubled time horizon, (b) unseen linear and angular
velocity, (c) challenging geometry, and (d) inclined plane
boundary. We also used a more challenging geometry in (d)
and increased the number of particles in (c) and (d) to ∼30k
(30× more than training). We emphasize that single-shot
generalization is a non-trivial task where the training data
are only the positions of 1k particles across 1k time steps.
We expand the visualization in Appendix F.

We select a representative subset of the experiments and
report the qualitative comparison in Fig. 2. neural is consis-
tent with the reconstruction performance: generalizes well
on JELL-O even when the time horizon is doubled but fails
on all other tasks that heavily rely on plasticity. gnn cannot

generate visually plausible simulation results with different
conditions than training environments. We argue that train-
ing a generalizable gnn requires much more data than ours
since it does not assume any knowledge about the under-
lying PDE. Indeed, Sanchez-Gonzalez et al. (2020) use at
least 1k motion trajectories for training on similar setups
while our approach uses only one trajectory. For all tasks,
ours achieves similar visual results compared to ground-
truth. We also visualize ours-init to indicate the significant
improvement from random initialization to a trained model.

Tab. 2 quantitatively compares our approach and the base-
line methods. Overall, ours ranks 1st on most environments
and tasks and outperforms other baselines by orders of mag-
nitudes. Consistent with reconstruction, our method has a
small enough but worse loss than neural on JELL-O. How-
ever, as shown in Fig. 2, this gap is so small that it only
introduces a negligible visual difference between them.

4.4. Extreme Generalization

To study the limits of our method, we design experiments
stress-testing two important factors in physical simulation:
the number of particles and the collision condition. We
demonsstrate the results in Fig. 3. On the upper row, we
adopt the WATER environment and apply a dragon geometry
for the initial shape. We increase the number of particles in
the simulation to over 1 million to stress-test the robustness
of our method. As shown in the result, our method gener-
ates faithful prediction compared to the ground-truth results
from traditional simulation even after a long horizon of time
steps. We emphasize that the neural network deployed was
trained on only 1k particles. On the lower row, we initialize
four rubber toys made of JELL-O and throw them to each
other vigorously with a large initial velocity. We depict the
moment after the collision happened. Thanks to the disen-
tanglement between the constitutive laws and the rest of
the simulation, our method generalizes well to the collision
condition even when it is totally unseen during training.
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Figure 4. Advanced Experiments. Left: We compare our method with ground-truth results from the traditional simulation in two
multi-physics environments: (a) a rubber duck falling into a swimming pool, and (b) a melting ice cream gradually changing from one
material to another. Right: We train our method on the real-world data of dough dropping to learn dough’s constitutive laws: (c) our
method successfully reconstructs the training sequence, (d) our method generalizes well to unseen conditions, e.g., a complex geometry.

4.5. Multi-Physics Generalization

Since we train our model using a single trajectory contain-
ing only one material, it is non-trivial for it to predict the
material responses in multi-physics environments. We push
the boundary of this validation by constructing two chal-
lenging multi-physics environments as shown on the left
side of Fig. 4. We illustrate the ground-truth motion gen-
erated using traditional simulations in the ground-truth
row and compare it with the prediction of our method in
the ours row. In Fig. 4 (a), we model the rubber duck us-
ing the same material as JELL-O and drop it into a large
pool of WATER. Their coupling is handled by MPM. The
rubber duck is modeled with 8,086 particles and the water
with 94,208 particles, combined to over 100k particles. The
negligible visual difference indicates the accuracy of our
method in this challenging large-scale multi-physics envi-
ronment. In Fig. 4 (b), we initialize an ice cream made of
PLASTICINE and gradually transit the constitutive laws to
SAND from bottom to top to imitate a “melting” effect. Our
method remains stable and accurate even with time-varying
phase transition and yields little discrepancy compared to
the ground truth.

4.6. Real-World Experiment

Real-world materials usually present complex behaviors
which are challenging and tedious to model accurately. To
further evaluate our method, we choose a real-world dough
as our testing material, which has rich behaviors in both elas-
tic and plastic sides. As shown on the right side of Fig. 4, we
record a video clip of the movement of real dough dropped
from high. We dotted the dough in green to track the particle-
level deformation of the material. We build the simulation
directly based on the labeled particles and train our method
with supervision from this real-world data. Note that the
environment is truely 3D in order to reflect the real material
property of the dough. To train 3D NCLaw with only 2D
supervision, we introduce an additional prior: a regulariza-
tion loss minimizing the magnitude of velocities along the
depth dimension. In Fig. 4 (c), we experimentally show that
our method reconstructs the real-world trajectory of dough
impacting the ground. After training, we then directly apply
the trained model on an unseen star-shaped dough made
of the same material as shown in Fig. 4 (d). Our method
captures the non-trivial elastic and plastic deformation and
achieves one-shot generalization on this new complex real-
world geometry. Appendix D details our experimental setup
and implementation.
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4.7. Ablation Study

We then evaluate the role that rotation equivariance
and undeformed state equilibrium play in training

0 300#epoch
0.
0

0.
5

lo
ss

no-undeformed
no-rotation
ours

neural constitutive laws. We de-
sign two variants of our method
for comparison: no-undeformed
loosens the undeformed state
equilibrium by removing the nor-
malization of neural networks’ in-
put and adding back the bias lay-
ers. no-rotation loosens the rota-
tion equivariance by directly feeding the raw deformation
gradients to the neural networks. We train our method and
its variants on PLASTICINE using our regular training con-
figuration. As indicated by the training curve plot, our
method achieves a better and faster convergence, whereas
no-rotation is sub-optimal and no-undeformed blows up
the simulation by introducing unstable constitutive laws.

In addition to the listed experiments, we also compare the
runtime performance of our method against gnn and provide
full visualization of the training dataset and generalization
experiments in Appendix F.

5. Conclusions, Limitations, and Future Work
We present NCLaw as a novel hybrid NN-PDE approach to-
ward learning generalizable PDE dynamics from motion ob-
servations. Our method enforces PDE constraints through-
out the training and deployment stages while taking a data-
driven approach toward constitutive modeling. Specifically,
we embed NN-based constitutive laws inside a differentiable
PDE-governed simulator. We then train the NN model via
a loss function based on the difference between the simula-
tor’s output and the motion observation. Through a carefully
designed network architecture based on physics, NCLaw
guarantees common constitutive priors, such as rotational
equivariance and rest state equilibrium. After training on
a single motion trajectory, NCLaw achieves one-shot gen-
eralization over temporal ranges, initial/boundary condi-
tions, complex geometries, and even multi-physics scenar-
ios. Real-world experiments demonstrate NCLaw’s ability
to learn generalizable dynamics from videos.

In the near future, we aim to extend NCLaw to various phys-
ical phenomena, including heterogeneity, hysteresis, and
hardening/softening. Enforcing the second law of thermody-
namics (Gurtin et al., 2010) in constitutive design is also an
exciting direction. In terms of applications, we plan to gen-
eralize it to tasks requiring minimal sim-to-real gaps ranging
from robot locomotion/manipulation to general control in
complex physics (Wang et al., 2023). We also envision ex-
tending NCLaw to other PDEs, such as the Reynold stress
tensor in turbulence modeling (Ling et al., 2016). We also

plan to generalize our framework to other discretization
schemes, e.g., FEM. Furthermore, our NN approach can
benefit from improved interpretability and facilitating mod-
ification after training. Currently, we assume the initial
condition, including the geometry, is known. Additionally,
we assume that we have motion observations of the entire
volumetric object (in 2D, with the entire surface). Future
work may consider modeling initial condition uncertainties
and working with partial observations. NCLaw can also
be extended to learn from pixel-level video data without
manual tracking.

At a higher level, NCLaw benefits from both classic PDE
and data-driven approaches. By enforcing classic PDE
priors, NCLaw achieves orders-of-magnitude higher accu-
racy on generalization tasks than purely NN approaches
that do not enforce PDE constraints (Sanchez-Gonzalez
et al., 2020). Utilizing a single expressive neural architec-
ture, NCLaw can capture many material properties, from
solids to fluids, without hand-crafted, case-by-case, expert-
designed models. Consequently, we believe NCLaw will
open the gates for more forthcoming hybrid NN-PDE, best-
of-both-world solutions.
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Xu, H. and Barbič, J. Example-based damping design. ACM
Transactions on Graphics (TOG), 36(4):1–14, 2017.

Xu, H., Sin, F., Zhu, Y., and Barbič, J. Nonlinear material
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A. The Material Point Method
This section’s goal is to demonstrate how MPM (i.e., the
time integration scheme in I from Algorithm 1) is sys-
tematically derived from the governing PDEs. Additional
derivation details can be found in the works by Sulsky et al.
(1995); Stomakhin et al. (2013); Yue et al. (2015); Jiang
et al. (2016; 2015).

To derive MPM, we start with the Eulerian forms for the
conservation of mass and conservation of momentum,

dρ

dt
= −ρ∇ · v, (6)

ρa = ∇ · σ + ρb, (7)

where ρ is the density, a is the acceleration, σ is the Cauchy
stress tensor, and b is the body force. Note that mass conser-
vation (Eqn. (6)) does not require special treatments since
it is automatically satisfied by advecting Lagrangian MPM
particles.

A.1. Weak Form

We obtain the weak form of the equation of motion (Eqn. (7))
by multiplying a test function w on both sides and integrat-
ing it over an arbitrary domain Ω:∫

Ω

ρa ·wdΩ =

∫
Ω

(∇ · σ) ·wdΩ+

∫
Ω

ρb ·wdΩ, (8)

This should be satisfied for any test function w and any
domain Ω.

With integration by parts, the equation above becomes∫
Ω

ρa ·wdΩ = −
∫
Ω

σ : ∇wdΩ+

∫
∂ΩT

w · T dS

+

∫
Ω

ρb ·wdΩ,

(9)

where T is the traction and ∂ΩT is the boundary where
traction is applied.

A.2. Spatial Discretization

With two sets of basis functions, one for the material points
and the other for the grid, MPM discretizes the weak form
spatially and obtains the following discretized system:

G∑
b=1

Mabab =−
Q∑
i=1

V 0
i τ i∇Na(xi)

+

Q∑
i=1

MiNa(xi)bi,

(10)

where Mab =
∑Q

i=1 MiNa(xi)·Nb(xi) is the full mass ma-
trix; V 0

i ,Mi, τ i,xi, bi are the initial volume, mass, Kirch-
hoff stress, current position, the external force of material

point i; Q is the number of material points; Nb,ab are the
basis function and acceleration on the Eulerian grid node
b; G is the number of Eulerian basis functions. We refer to
Sulsky et al. (1995) for additional details on this derivation.

A.3. Temporal Discretization

Using the explicit Euler scheme with a time step size ∆t,
we can discretize in time,

G∑
b=1

Mab
vn+1
b − vn

b

∆t
=−

Q∑
i=1

V 0
i τ

n
i ∇Na(x

n
i )

+

Q∑
i=1

MiNa(x
n
i )b

n
i .

(11)

A.4. MPM Pseudocode

From these spatial and temporal discretizations, we arrive
at the pseudocode in Algorithm 3. We implement this algo-
rithm under the MLS-MPM framework by Hu et al. (2018).

This completes the background on MPM and the time in-
tegration scheme in I from Algorithm 1. Note that neural
constitutive laws introduce in our work contribute to time
integration in two ways. First, the neural elastic constitutive
law Eθe computes the first Piolar-Kirchhoff stress P (equiv-
alently, the Cauchy stress σ or the Kirchhoff stress τ ). This
stress is used for computing the forces of the grid node. Sec-
ond, the neural plastic constitutive law Pθp post-processes
the trial elastic deformation gradient by projecting back to
the admissible elastic region.

B. Material Models for Training
Below we list the material models for generating ground
truth training data. For each material, we list both the elastic
constitutive law (Eµ) and the plastic constitutive law (Pµ).

We emphasize that our method can capture all these expert-
designed classic constitutive models using the same network
architecture and the same training strategy.

Purely Elastic Examples of purely elastic materials in-
clude rubber, biological tissues, and jelly. We use the fixed
corotated hyperelastic model by Stomakhin et al. (2012).

P = 2µ(F −R) + λJ(J − 1)F−T , (12)

where R is the rotation matrix from the polar decomposi-
tion of F = RS. There is no plasticity in this material.
Equivalently, the plastic return mapping is an identity map,

P(F ) = F . (13)

Elastic with the Drucker-Prager Yield Condition We
use the Saint Venant–Kirchhoff elastic model. Computing
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Algorithm 3 MPM Algorithm
Input: Position xi

n, velocity vi
n, and elastic deformation

gradient F e,i
n of each material point, i = 1, . . . , Q at

time instance tn
Output: Position xi

n+1, velocity vi
n+1, trial elastic defor-

mation gradient F e,trial,i
n+1 , i = 1, . . . , Q at time instance

tn+1

1: Transfer Lagrangian kinematics to the Eulerian grid by
performing a “particle to grid” transfer: Compute for
b = 1, . . . , G

mb,n =

Q∑
i=1

Nb(x
i
n)Mi

mb,nvb,n =

Q∑
i=1

Nb(x
i
n)Miv

i
n

fσ
b,n = −

Q∑
i=1

J(F e,i
n )

ρ0
σ(F e,i

n )∇Nb(x
i
n) Mi

fe
b,n =

Q∑
i=1

J(F e,i
n )

ρ0
b(xi

n)Nb(x
i
n) Mi

2: Solve Eulerian governing equations by computing for
b = 1, . . . , G

v̇b,n+1 =
1

mb,n
(fσ

b,n + fe
b,n)

∆vb,n+1 = v̇b,n+1∆t

vb,n+1 = vb,n +∆vb,n+1

3: Update the Lagrangian velocity and deformation gradi-
ent by performing a “grid to particle” transfer: Compute
for i = 1, . . . , Q

vi
n+1 =

G∑
i=1

Ni(x
i
n)vb,n+1

F e,trial,i
n+1 = (I +

G∑
i=1

vi,n+1 ⊗∇Ni(x
p
n)∆t)F e,i

n

4: Update Lagrangian positions for i = 1, . . . , Q

xi
n+1 = xi

n +∆tvi
n+1

the singular value decomposition of F = UΣV T and the
Hency strain ϵ = log(Σ), we have (Barbič & James, 2005)

P = U(2µϵ+ λ tr(ϵ))UT . (14)

In addition, we apply the Drucker-Prager yield condition
(Drucker & Prager, 1952; Klár et al., 2016; Yue et al., 2018;

Chen et al., 2021):

tr(ϵ) > 0 or δγ = ∥ϵ̂∥+ α
(3λ+ 2µ) tr(ϵ)

2µ
> 0,

(15)

where α =
√

2
3

2 sin θ
3−sin θ and θ is the friction angle of the

granular media.

With this yield criterion, we then define two types of plastic
projection. When the material undergoes tension, we project
the stress unto the cone tip; When the material undergoes
compression and violates the cone constraint, we project the
stress onto the cone in an isochoric manner. Mathematically,
we have

P(F ) =


UV T tr(ϵ) > 0,

F tr(ϵ) ≤ 0 & δγ ≤ 0,

U exp(ϵ− δγ ϵ̂
∥ϵ̂∥ )V

T tr(ϵ) ≤ 0 & δγ > 0.

(16)

Elastic with the von Mises Yield Condition We adopt
the same Saint Venant–Kirchhoff elastic model detailed
previously,

P = U(2µϵ+ λ tr(ϵ))UT . (17)

However, in this case, we adopt the von Mises yield condi-
tion (Mises, 1913; Hu et al., 2018; Huang et al., 2021),

δγ = ∥ϵ̂∥ − τY
2µ

, (18)

where ϵ is the normalized Hencky strain computed from the
deformation gradient F . τY is the yield stress and describes
how easily the material undergoes the plastic flow. A posi-
tive δγ, i.e., δγ > 0, suggests the material violates the yield
constraint. For stress that violates the yield criterion, we
will project it back into the elastic region via an isochoric
(volume-preserving) projection:

P(F ) =

{
F δγ ≤ 0,

U exp(ϵ− δγ ϵ̂
∥ϵ̂∥ )V

T δγ > 0.
(19)

Weakly Compressible Fluids Following Stomakhin et al.
(2014); Tampubolon et al. (2017), we model fluids using the
aforementioned fixed corotated elastic model with µ = 0,
effectively modeling the fluid with no shearing resistance
while penalizing any volume change,

P = λJ(J − 1)F−T . (20)

In addition, we adopt the plasticity model by Stomakhin
et al. (2014); Gao et al. (2018),

P(F ) = J
1
3 I. (21)
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Algorithm 4 Neural Constitutive Laws

Input: F (F e for elasticity; F e,trial for plasticity)
Output: P or F e,new

1: F
SVD
= UΣV T // singular value decomposition

2: R = UV T // rotation equivariant
3: T 1 = NN(Σ,F TF ,det(F )) // rotation invariant
4: T 2 = 1

2 (T 1 + T T
1 ) // ensure symmetry

5: Y = RT 2 // ensure rotation equivariance
6: if elasticity then
7: P = Y
8: end if
9: if plasticity then

10: F e,new = F + αY
11: end if

Effectively, this flow rule projects the deformation gradient
onto the hydrostatic axis in an isochoric manner.

In this work, we focus on exploring the aforementioned four
types of materials. We leave it as future work to explore
other elastoplastic materials, e.g., non-Newtonian fluids
(Yue et al., 2015).

C. Algorithm of Neural Constitutive Laws
C.1. Algorithm

We demonstrate the algorithm pipeline in Algorithm 4. Note
that we can easily implement polar decomposition that
F = RS by singular value decomposition (SVD) that
F = UΣV T and get R = UV T and S = V ΣV T . We
use a highly-optimized 3×3 SVD implementation on GPUs
(Gao et al., 2018). We use α = 0.001 in all our experiments.

C.2. Proof of Rotation Invariance

Proof. Our network takes three inputs, we prove they are
rotation-invariant with respect to an arbitrary rotation R∗ ∈
SO(3) one by one:

1. The singular values Σ. We have:

F new = R∗F (22)

= R∗UΣV T (23)

= (R∗U)ΣV T , (24)

where R∗U is still a unitary matrix because both R∗

and U are unitary matrices. As a result, when R∗

applied, Σ is invariant.

2. The right Cauchy-Green tensor F TF . We have:

F T
newF new = (R∗F )T (R∗F ) (25)

= F T (R∗)TR∗F (26)

= F TF . (27)

3. The determinant of the deformation gradient det(F ).
We have:

det(F new) = det(R∗F ) (28)
= det(R∗) det(F ) (29)
= det(F ), (30)

because the determinant of a unitary matrix is 1.

As a result, all inputs to the neural networks are rotation
invariant, which implies the output of the neural networks is
rotation invariant. We also have that NN(R∗F ) = NN(F ),
which makes both T 1 and T 2 rotation invariant since they
solely depend on the output of neural networks.

C.3. Proof of Rotation Equivariance

Proof. With an arbitrary rotation R∗ ∈ SO(3) applied, the
input to neural constitutive laws will be transformed into
R∗F . By the definition of polar decomposition:

F
PD
= RS (31)

R∗F = F new
PD
= RnewS = (R∗R)S. (32)

As a result, given F new as the input, the output of neural
constitutive laws is

Y new = RnewT 2 = R∗RT 2 = R∗Y , (33)

which proves the rotation equivariance of Y . For elastic-
ity, the rotation equivariance automatically inherits. For
plasticity, we have:

F e,new
new =F e,trial

new + αY new (34)

=R∗F e,trial + αR∗Y (35)

=R∗(F e,trial + αY ) (36)
=R∗F e,new, (37)

which proves the rotation equivariance of neural plasticity
constitutive laws.

D. Implementation Details
D.1. Simulation

For each training environment, we load material points in-
side a 0.53 m cube. We set the grids in the MPM simulator
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Figure 5. Real Experiment. We illustrate the front and side view
of our experiment setup. We indicate the dropping position of the
dough with a dashed outline and the direction with a dashed arrow.

to be 20 × 20 × 20 to speed up the simulation. We use a
threshold of 3 grids to detect the collision and set a free-slip
boundary condition within a 1.03 m box. Our simulation
always applies a gravity of -9.8 m/s2. We uniformly use
the same hyper-parameters for MPM simulation for all our
training environments. We implement our differentiable
MPM simulator on GPUs using Warp (Macklin, 2022).

D.2. Network and Training

Our neural constitutive laws contain two neural networks
with equal sizes each for elasticity and plasticity, a total
of 11,008 parameters. The neural networks use GELU
(Hendrycks & Gimpel, 2016) as non-linearity and contain no
normalization layers. We use the Adam optimizer (Kingma
& Ba, 2014) with learning rates of 1.0 and 0.1 for elasticity
and plasticity, respectively. We train the neural constitutive
laws for 300 epochs and decay the learning rates of both
elasticity and plasticity using a cosine annealing scheduler.
We also clip the norm of gradients to a maximum of 0.1. We
also utilize a “teacher-forcing” scheme that restarts from the
ground-truth position periodically. We increase the period
of teacher forcing from 25 to 200 steps by a cosine anneal-
ing scheduler. We train all our experiments on one NVIDIA
RTX A6000. All experiments share the same training con-
figurations and hyper-parameters without ad-hoc tuning.

We implement the neural networks using PyTorch (Paszke
et al., 2019), which can share CUDA memory with Warp in
order to reduce the overhead interacting with the simulator.

D.3. Real-World Experiment

We use dough as our testing material. Dough is a malleable
and elastic paste made from a mixture of flour and water.

Dough is famous for its complex and hard-to-predict me-
chanical properties (Marzec et al., 2021; Amjid et al., 2013)
and, therefore, a good test for our algorithm. Our dough is
fabricated by mixing 125 g flour with 75 g water and knead-
ing for around 5 minutes. A variety of 2D shapes are then
formed out of the dough for training and testing purposes.

In physical experiments (See Fig. 5), the dough is dropped
from a height of 50 cm and collides with a rigid surface.
This process is recorded by a high-speed camera (SONY
RX100) at 960 frames per second with an exposure time of
1/4000 second. The dough is marked with around 50 green
dots on the front surface, which are later tracked to provide
precise information about the deformation history.

E. Extra Discussion
E.1. Generalization to Mesh-Based Simulation

Among all components in the physical simulation, our
method only replaces the manually tuned constitutive laws
with a carefully designed neural network, which is a data-
driven representation with better expressiveness, uniformity,
and versatility. Thus, neural constitutive laws are agnostic
to discretization and simulation frameworks. In the current
work, we select the material point method (MPM) as the
backbone due to its compatibility with various materials,
easing our implementation. That said, our framework is
general and discretization-independent. We expect that our
method also applies to mesh-based or hybrid mesh/particle
simulation or any discretization framework. However, it will
require significant engineering work to implement the sup-
porting differentiable simulation for mesh and mesh/particle
coupling, and we believe such an endeavor would be best
served by its own dedicated manuscript.

F. Extra Experiments
F.1. Runtime Comparison

We evaluate the runtime performance of our method and
compare it with baselines in Tab. 3. We conduct this experi-
ment by running for a certain period so that the simulation
covers 0.5s in the real world. Because of the difference in
time step size, it takes 1k steps for ours and analytical, while
it takes 200 steps for gnn. We rerun the same trajectory 10
times and take the average to reduce the variance. Even
though gnn takes much larger steps, we find our method run
at a comparable speed with gnn. We suspect the reason is (1)
we develop all components of our method on GPUs, and (2)
the radius graph network is time-consuming. Since we did
not focus on runtime optimization, there is still room for our
method to improve, including (1) removing redundant SVD
in elasticity and plasticity, (2) reducing the communication
between Warp and PyTorch, and (3) replacing PyTorch with
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Table 3. Runtime comparison.

Method JELL-O SAND PLASTICINE WATER

ours 2.56s 2.55s 2.62s 2.56s
gnn 2.35s 2.10s 2.19s 2.26s

Table 4. More recent comparison.

Task ours gnn Li & Farimani (2022)

reconstruction 6.5e-5 8.7e-3 9.3e-4
time 1.4e-4 1.1e-2 5.2e-3

velocity 4.6e-5 6.8e-3 1.0e-3
geometry 2.3e-4 3.7e-2 4.7e-2

light-weight neural network libraries in deployment.

F.2. More Recent Comparison

We select one of the related previous works (Li & Farimani,
2022) and evaluate it on a subset of our experiments. We use
PLASTICINE as the environment and report the performance
comparison on four tasks as shown in Tab. 4. According to
the results, Li & Farimani (2022) is better than the original
gnn baseline in our manuscript on 3 out of 4 tasks. However,
our method is still stronger than these GNN-based methods
by orders of magnitude. There are two potential reasons: (1)
our method incorporates physics-aware network architec-
tures ensuring rotation equivariance and undeformed state
equilibrium, and (2) our method disentangles the learning
of constitutive laws from the simulation framework and
promotes data efficiency.

F.3. Parameter Identification

We generate a trajectory using WATER and randomly select
1k deformation gradients as the input to the neural networks.
We measure the mean squared errors (MSE) of ours and
labeled versus the ground truth and report the results in
Tab. 5. Note that the error of P is naturally larger than
deformation gradients because of the physical meaning of
the stress tensor (often orders of magnitude larger than the
deformation gradient). As shown in the table, our method
achieves a similar result in F e,new but falls behind in P com-
pared to labeled. There are a few reasons behind it. First,
labeled actually uses extra supervision of ground-truth P
and F e,new, which are not easily accessible in the real world.
Also, we train our method by back-propagation through time
(BPTT). By contrast, labeled employs traditional training
without time stepping. Our approach risks the training effi-
cacy to some extent but is more natural to apply to training
time-dependent physical systems. Finally, in continuum me-
chanics, different constitutive laws may describe the same
kinematics (e.g., F ) with different stresses (e.g., P ). The

Table 5. Parameter identification.
Term ours labeled

P 6.1e-1 2.6e-3
F e,new 2.388e-6 2.381e-6

Table 6. Data efficiency.

Method #Trajectories Loss

gnn 1 5.8e-2
gnn 10 2.5e-2
gnn 100 1.2e-2
ours 1 1.9e-5

goal of our method is to recover the kinematics (x, F ) while
being generalizable to new scenarios.

Despite not being as accurate as labeled when it comes to
P , our method predicts precise, generalizable kinematics.
Our approach is also more stable than labeled across all
environments, as shown in Tab. 1.

F.4. Data Efficiency

For the gnn, we keep as much as possible the training de-
tails in Sanchez-Gonzalez et al. (2020). Due to the loss of
implementation details in their papers, we adapt the training
procedure for spline and neural to be compatible with our
method. In order to ablate the number of training trajectories
to study how the amount of data affects the performance, we
select gnn, which is the baseline with the strongest reliance
on data, as the backbone and redo the training with 10 and
100 data trajectories. We present the loss comparison using
the WATER environment on the velocity generalization task,
where we randomly sample 3 initial velocities and average
the losses between the evaluation and the ground truth in
Tab. 6. The gradually decreasing loss with respect to the
growing number of trajectories indicates gnn generalizes
better with more data. However, even with 100x fewer
data, ours still outperforms gnn by orders of magnitude,
reflecting the efficiency of our method.

F.5. Auxiliary Loss

Here we study the impact of another important state variable:
velocity. We additionally add a penalty on the dissimilarity
between simulated velocities and the ground-truth veloci-
ties. We show the loss comparison of position using WATER
with or without velocity dissimilarity penalty in Tab. 7. As
indicated by the results, 3 out of 4 tasks slightly benefit from
the velocity dissimilarity penalty. We argue that incorporat-
ing complementary losses could help the training to some
extent, but it might be enough for a quick start to train with
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Table 7. Auxiliary loss.

Task w/o vel loss w/ vel loss

reconstruction 2.0e-5 1.3e-5
time 3.5e-4 2.1e-4

velocity 1.9e-5 1.8e-5
geometry 2.4e-4 3.0e-4

only positional supervision, which is usually the handiest
ground truth in the real world.

F.6. More Visualization

• We visualize the training dataset in Fig. 6.

• We compare the generalizability of our method with
baselines and ground truth about different geometries
in Figs. 7 and 8.
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(a)

(b)

(c)

(d)

Figure 6. Training Data. We show granular and realistic rendering for (a) JELL-O, (b) SAND, (c) PLASTICINE, and (d) WATER.
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Figure 7. Geometry Generalization for JELL-O and SAND. We set an armadillo geometry for JELL-O and a goldfish (Crane, 2020)
geometry for SAND. We compare ours with ground-truth and baselines including gnn and neural.
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Figure 8. Geometry Generalization for PLASTICINE and WATER. We set a bunny geometry for PLASTICINE and a cow (Crane, 2020)
geometry for WATER. We compare ours with ground-truth and baselines including gnn and neural.
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