
Graph Inductive Biases in Transformers without Message Passing

Liheng Ma * 1 8 Chen Lin * 2 Derek Lim 3 Adriana Romero-Soriano 4 1 5 6 Puneet K. Dokania 2 7

Mark Coates 1 8 Philip H.S. Torr 2 Ser-Nam Lim 4

Abstract

Transformers for graph data are increasingly
widely studied and successful in numerous learn-
ing tasks. Graph inductive biases are crucial for
Graph Transformers, and previous works incorpo-
rate them using message-passing modules and/or
positional encodings. However, Graph Transform-
ers that use message-passing inherit known is-
sues of message-passing, and differ significantly
from Transformers used in other domains, thus
making transfer of research advances more dif-
ficult. On the other hand, Graph Transformers
without message-passing often perform poorly on
smaller datasets, where inductive biases are more
important. To bridge this gap, we propose the
Graph Inductive bias Transformer (GRIT) — a
new Graph Transformer that incorporates graph
inductive biases without using message passing.
GRIT is based on several architectural changes
that are each theoretically and empirically justi-
fied, including: learned relative positional encod-
ings initialized with random walk probabilities,
a flexible attention mechanism that updates node
and node-pair representations, and injection of
degree information in each layer. We prove that
GRIT is expressive — it can express shortest path
distances and various graph propagation matrices.
GRIT achieves state-of-the-art empirical perfor-
mance across a variety of graph datasets, thus
showing the power that Graph Transformers with-
out message-passing can deliver.

*Equal contribution 1McGill University 2Department of Engi-
neering Science, University of Oxford 3CSAIL, Massachusetts
Institute of Technology 4MetaAI 5Mila - Quebec AI Institute
6Canada CIFAR AI Chair 7FiveAI 8International Laboratory on
Learning Systems (ILLS). Correspondence to: Liheng Ma <li-
heng.ma@mail.mcgill.ca>, Chen Lin <chen.lin@eng.ox.ac.uk>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1. Introduction
Following the success of Transformers (Vaswani et al., 2017)
in different modalities like natural language processing
(NLP) (Vaswani et al., 2017) and computer vision (Dosovit-
skiy et al., 2020), developing Transformers for graph data
has attracted much interest (Dwivedi & Bresson, 2021;
Kreuzer et al., 2021; Ying et al., 2021; Chen et al., 2022;
Hussain et al., 2022; Rampášek et al., 2022; Zhang et al.,
2023). A major motivation of Graph Transformers is to alle-
viate certain known limitations of (local) Message-Passing
Graph Neural Networks (MPNNs) (Gilmer et al., 2017),
such as over-smoothing (Li et al., 2018; Oono & Suzuki,
2020), over-squashing (Alon & Yahav, 2020; Topping et al.,
2022), and expressive power limitations (Xu et al., 2019;
Loukas, 2020; Morris et al., 2019).

However, it is known that transformers generally lack strong
inductive biases (Dosovitskiy et al., 2020). In the graph
domain, Graph Transformers aggregate information based
on a learned attention matrix, which enjoys a high degree
of freedom; in contrast, MPNNs explicitly aggregate the
information according to the exact topology of the input
graph. This comes with at least two consequences. First,
Graph Transformers may be prone to over-fitting, and thus
they often fail to outperform MPNNs in limited data settings.
Second, learning meaningful attention scores typically re-
quires capturing important positional or structural relation-
ships between nodes, and strong positional encodings are
challenging to design since the structure and symmetries of
graph data are fundamentally different from that of other
(Euclidean) domains (Vaswani et al., 2017; Bronstein et al.,
2021). For instance, there is no ordering or canonical co-
ordinate system for nodes in a graph, whereas words in a
sentence have a sequence structure, and pixels in an image
have a grid structure.

To incorporate graph inductive biases, many of the best-
performing Graph Transformers explicitly integrate local
message-passing mechanisms. For instance, some works in-
corporate sparse attention on local neighborhoods (Dwivedi
& Bresson, 2021; Kreuzer et al., 2021), or integrate vari-
ous other types of MPNN modules into their models (Chen
et al., 2022; Rampášek et al., 2022). Thus, such Graph
Transformers may at least partially inherit some of the lim-

1

Graph Inductive Biases in Transformers without Message Passing

itations of MPNNs. Moreover, message-passing modules
within Graph Transformers make these models significantly
different from the Transformers used in other domains; thus,
it becomes more difficult to transfer some of the large quan-
tities of Transformer research from other domains into the
graph domain. This is exacerbated by the fact that integrat-
ing message-passing adds complexity to the design space of
the underlying model, necessitating more architectural deci-
sions and extra effort for hyperparameter tuning (Masters
et al., 2022).

The trade-off between the limitations of message-passing
and the importance of graph inductive biases can be seen in
the empirical performance of models on competitive bench-
marks. For instance, let us consider the results for two popu-
lar molecular graph regression benchmarks as of May 2023.
On the small ZINC dataset (12,000 graphs) (Dwivedi et al.,
2022a), GNNs that rely on message-passing take up the
top spots on the leaderboards.1 For the large PCQM4MV2
dataset (about 3,700,000 graphs) (Hu et al., 2021), Graph
Transformers take up the top spots.2

In this work, we introduce the Graph Inductive bias
Transformer (GRIT), a Graph Transformer that incorpo-
rates useful graph inductive biases without explicit message-
passing modules. Our model is based on three design
choices that integrate graph inductive biases, each of which
is theoretically justified: (a) we use a learned relative posi-
tional encoding initialized with Relative Random Walk Prob-
abilities (RRWP); this learned positional encoding can prov-
ably express shortest path distances (Ying et al., 2021) and
general classes of message-passing propagations (Gasteiger
et al., 2019; Zhao et al., 2021a; Xu et al., 2019). (b) we de-
velop an attention mechanism that jointly updates both node
representations and node-pair representations, and can thus
learn to update the RRWP positional encodings; a distance
based Weisfeiler Leman test (Zhang et al., 2023) shows that
certain Graph Transformers with RRWP are strictly stronger
than Graph Transformer with shortest path distances like
Graphormer (Ying et al., 2021). (c) we inject degree infor-
mation into our Transformer update using degree scalers,
with batch normalization replacing the standard layer nor-
malization; replacing the layer normalization is provably
required to maintain the degree information.

Along with theoretical justification, we provide ample empir-
ical evidence to demonstrate the effectiveness of our design
choices. GRIT achieves state-of-the-art empirical perfor-
mance across a variety of graph learning benchmarks, both
small and large-scale. In particular, we bridge the perfor-

1https://paperswithcode.com/sota/
graph-regression-on-zinc-500k at the time of
submission.

2https://ogb.stanford.edu/docs/lsc/
leaderboards/

mance gap in which message-passing-based methods do not
perform as well in large datasets, and non-message-passing
Transformers do not perform as well in small datasets. Ab-
lations and synthetic experiments further justify our design
decisions, showing that GRIT indeed integrates graph in-
ductive biases into Transformers in an effective manner.3

2. Related Work
Transformers for Euclidean Domains Transformers
have achieved ground-breaking successes in various do-
mains, including but not limited to natural language pro-
cessing (Vaswani et al., 2017; Devlin et al., 2019; Dai et al.,
2019) and computer vision (Dosovitskiy et al., 2020; Liu
et al., 2021). As can be seen in both domains, Transformers
often suffer from a lack of inductive bias compared to Re-
current Neural Networks (RNNs) and Convolutional Neural
Networks (CNNs), and typically require a large amount of
training data in order to perform well. Recent studies have
found that introducing more inductive biases can effectively
improve the performance of Transformers (Liu et al., 2021;
Park & Kim, 2021)

Positional Encoding and Structural Encoding for
Graphs In the graph domain, positional encodings (PE)
and structural encodings (SE) (Srinivasan & Ribeiro, 2020)
have been studied for enhancing both Message-Passing
Graph Neural Networks (MPNNs) and Graph Transformers
(You et al., 2019; Ma et al., 2021; Li et al., 2020; Zhang
et al., 2021; Dwivedi et al., 2022a; Loukas, 2020; Dwivedi
et al., 2021; Lim et al., 2023; Wang et al., 2022). Such
positional or structural encodings capture various types of
graph features, such as shortest-path distances (Li et al.,
2020), identity-awareness (You et al., 2021), and spectral
information (Dwivedi et al., 2022a).

Many so-called positional or structural encodings contain
both positional and structural information (Dwivedi et al.,
2022a; Srinivasan & Ribeiro, 2020; Rampášek et al., 2022);
thus, researchers use the terms positional encoding and
structural encoding interchangeably in related literature. In
this work, we use “positional encodings” as an umbrella
term.

Graph Transformers with Message-Passing Dwivedi &
Bresson (2021) is one of the early works that introduce a
Transformer architecture to graph domains with Laplacian
Positional Encoding (LapPE). However, the global attention
version of it performs poorly compared to the message-
passing-based sparse attention version. Kreuzer et al. (2021)
propose the SAN model, which uses both sparse and global
attention mechanisms at each layer, and introduces an extra

3The code and models are publicly available at https://
github.com/LiamMa/GRIT.

2

https://paperswithcode.com/sota/graph-regression-on-zinc-500k
https://paperswithcode.com/sota/graph-regression-on-zinc-500k
https://ogb.stanford.edu/docs/lsc/leaderboards/
https://ogb.stanford.edu/docs/lsc/leaderboards/
https://github.com/LiamMa/GRIT
https://github.com/LiamMa/GRIT

Graph Inductive Biases in Transformers without Message Passing

transformer to encode LapPE. SignNet (Lim et al., 2023)
is a specialized symmetry-invariant encoder for LapPE that
uses message-passing modules to process Laplacian eigen-
vectors (Lim et al., 2023; Rampášek et al., 2022).

Several Graph Transformers (Chen et al., 2022; Rampášek
et al., 2022) use random walk structural encodings
(RWSE) (Dwivedi et al., 2021). Due in part to the fact
that RWSE focuses on structural information and does not
encode as much positional information, these Graph Trans-
formers each integrate message-passing modules.

Graph Transformers without Message-Passing In con-
trast to the aforementioned works, a number of Graph Trans-
formers without (local) message-passing have been pro-
posed. Among them, a series of works propose to use rel-
ative positional encodings for each pair of nodes, such as
shortest-path distance positional encodings (SPDPE) (Ying
et al., 2021; Park et al., 2022; Luo et al., 2022). Generalized-
Distance Transformers (Zhang et al., 2023) introduce other
distances on graphs (e.g., resistance distances) as relative
positional encodings. These works are among the most
related to our method and typically perform well on large
datasets such as the PCQM4Mv2 dataset from the OGB
Large Scale Challenge (Hu et al., 2021). However, they
perform worse on smaller datasets (e.g., ZINC (Dwivedi
et al., 2022a)) compared to hybrid Graph Transformers and
MPNNs (Rampášek et al., 2022). Based on a synthetic ex-
periment (Sec. 4.3), we give evidence that due to the lack of
sufficient inductive bias, they are not as capable in enabling
attention mechanisms to perform local message-passing
when necessary.

There are also several other Graph Transformers without
message-passing proposed in recent years: TokenGT (Kim
et al., 2022) proposes a Transformer that views both nodes
and edges as tokens, and uses LapPE or orthogonal random
features; Relational Transformer (Diao & Loynd, 2022) also
proposes to update both node and edge tokens; EGT (Hus-
sain et al., 2022) proposes to use an SVD-based PE instead
of LapPE for directed graphs; (Mialon et al., 2021; Feldman
et al., 2022) introduce positional encodings based on heat
kernels and other graph kernels.

3. Methodology and Theory
In this section, we introduce our proposed GRIT architecture
that uses a novel flexible attention mechanism together with
a general relative positional encoding scheme, and does not
incorporate any explicit local message-passing modules.

It is based on three design decisions: (i) a learned relative po-
sitional encoding initialized with random walk probabilities,
(ii) a flexible attention mechanism that updates node and
node-pair representations, and (iii) the integration of node

degree information in each layer. Each of our design deci-
sions is justified by theoretical results, which are also cov-
ered in this section. Further, in Section 4, we show that each
of these design choices improves empirical performance
in ablation studies, and the overall architecture achieves
state-of-the-art performance across various datasets.

3.1. Learned Random Walk Relative Encodings

When applied to graph data, Transformers typically have a
token embedding for each node and update this node embed-
ding with attention and feedforward modules (FFNs). As the
graph (adjacency) structure important to message-passing
GNNs is removed from the architecture, the positional en-
codings must adequately capture the graph structure for
Transformers to succeed.

We use a learned relative positional encoding scheme ini-
tialized with random walk probabilities that is related to
previously used positional encodings (Dwivedi et al., 2021;
Li et al., 2020; Mialon et al., 2021). Going beyond previous
work, we give theoretical justification for the use of random
walk probabilities — with an appropriate architecture, they
are more expressive than shortest path distances, and can
capture large classes of graph propagation matrices.

Let A ∈ Rn×n be the adjacency matrix of a graph (V, E)
with n nodes, and let D be the diagonal degree matrix.
Define M := D−1A, and note that Mij is the probability
that i hops to j in one step of a simple random walk. The
proposed relative random walk probabilities (RRWP) initial
positional encoding is defined for each pair of nodes i, j ∈ V
as follows:

Pi,j = [I,M,M2, . . . ,MK−1]i,j ∈ RK , (1)

in which I is the identity matrix. For any node i ∈ V ,
the diagonal Pi,i can additionally be utilized as an initial
node-level structural encoding, which is the same as the
Random Walk Structural Encodings (RWSE) used in past
work (Dwivedi et al., 2021; Rampášek et al., 2022). The
parameter K ∈ N controls the maximum length of random
walks considered.

Importantly, we use RRWP as an initialization of learned
relative positional encodings in our architecture. The tensor
P can be updated by an elementwise MLP : RK → Rd to
get new relative positional encodings MLP(Pi,j,:), and also
is updated with other information by the attention layers
in our Transformer. This is essential for expressive power,
and also may provide a useful inductive bias, as in Propo-
sition 3.1 we show that this updating allows us to recover
important propagation matrices.

Visualization of RRWP To further justify and build intu-
ition for initializing with RRWP positional encodings, we

3

Graph Inductive Biases in Transformers without Message Passing

1-RW 2-RW 3-RW 4-RW

Figure 1. RRWP visualization for the fluorescein molecule, up to the 4th power. Thicker and darker edges indicate higher edge weight.
Probabilities for longer random walks reveal higher-order structures (e.g., the cliques evident in 3-RW and the star patterns in 4-RW).

1-RW 2-RW 3-RW 4-RW

Figure 2. RRWP visualization for a sample from a stochastic block model with 2 communities, up to the 4th power. Probabilities for
longer random walks better highlight the community structure and reduce bottlenecks.

demonstrate that it indeed captures useful information on
graphs by example. In Figure 1 and Figure 2 we visual-
ize RRWP on two example graphs: the molecular graph
for fluorescein and a sample graph from a stochastic block
model with 2 communities. For the molecule, we see that
RRWP captures higher-order structural information in the
longer random walks. In the stochastic block model, longer
random walks better reveal the community structure com-
pared to the original graph topology. Moreover, it reduces
bottlenecks in the graph, which may be important for certain
applications (Alon & Yahav, 2020; Topping et al., 2022).

3.1.1. THEORY: RRWP + MLP IS EXPRESSIVE

Given our initial RRWP positional encodings P, we learn
new positional encodings end-to-end with an MLP. We
show that this combination is provably expressive: this
learned positional encoding can approximate shortest path
distances or general classes of graph propagation matrices
up to an arbitrary ϵ > 0 accuracy. This shows that we
generalize methods like Graphormer (Ying et al., 2021),
and various message-passing propagations (Gasteiger et al.,
2019; Xu et al., 2019).

Proposition 3.1. For any n ∈ N, let Gn ⊆ {0, 1}n×n

denote all adjacency matrices of n-node graphs. For
K ∈ N, and A ∈ Gn consider the RRWP: P =
[I,M, . . . ,MK−1] ∈ Rn×n×K . Then for any ϵ > 0, there
exists an MLP : RK → R acting independently across
each n dimension such that MLP(P) approximates any of

the following to within ϵ error:

(a) MLP(P)ij ≈ SPDK−1(i, j)

(b) MLP(P) ≈
∑K−1

k=0 θk(D
−1A)k

(c) MLP(P) ≈ θ0I+ θ1A,

in which SPDK−1(i, j) is the K−1 truncated shortest path
distance, and θk ∈ R are arbitrary coefficients.

The proof is given in Appendix C.2. (a) shows that, if we
use an MLP with K-hop RRWP input, then we can capture
all shortest path distances for nodes of up to K − 1 hops
away from each other. In particular, for K = n, we recover
all shortest path distances (with disconnected nodes getting
a distance of n, which is higher than the maximum distance
n− 1 between connected nodes). (b) and (c) show that we
can capture many types of graph propagations. As special
cases, we can capture sum aggregation [bullet (c) with θ0 =
0, θ1 = 1], mean aggregation [bullet (b) with K = 2, θ1 =
1, other θi = 0], K-truncated personalized PageRank (PPR)
[bullet (b) with θk = α(1−α) for some α ∈ (0, 1)], and K-
truncated heat kernels [bullet (b) with θk = exp(−τ)·τk/k!
for τ > 0]. Such graph propagations may provide useful
inductive biases, and a synthetic experiment in Section 4.3
shows that GRIT is highly capable of learning attention
mechanisms that match target graph propagations, while
other Graph Transformers are less capable.

4

Graph Inductive Biases in Transformers without Message Passing

3.2. Flexible Attention Mechanism with Absolute and
Relative Representations

Most current designs of the self-attention mechanism are
based on node-token-level PE and node-token-level rep-
resentations, but this does not fully capture the relative
positional information between pairs of nodes. A recent
study by Brody et al. (2022) also reveals that some atten-
tion mechanisms (e.g., GAT (Veličković et al., 2018) and
scaled dot-product attention (Vaswani et al., 2017)) are not
sufficiently flexible to attend to specific tokens.

Therefore, we propose a new way to compute attention
scores by conditioning on (learned) relative representations
of node-pairs, which combines the strengths of the general
conditioning layer (Perez et al., 2018) and GATv2 (Brody
et al., 2022).

In each transformer layer, we update node representations
xi,∀i ∈ V and node-pair representations ei,j ,∀i, j ∈ V .
First, we initialize these using the initial node features and
our RRWP positional encodings: xi = [x′

i∥Pi,i] ∈ Rdh+K

and ei,j = [e′i,j∥Pi,j] ∈ Rde+K , where x′
i ∈ Rdh and

e′i,j ∈ Rde are observed node and edge attributes, which
can be dropped if not present in the data. We set e′i,j = 0 if
there is no observed edge from i to j in the original graph.
The attention computation is defined as follows:

êi,j = σ
(
ρ ((WQxi +WKxj)⊙WEwei,j)

+WEbei,j

)
∈ Rd′

,

αij = Softmaxj∈V(WAêi,j) ∈ R,

x̂i =
∑
j∈V

αij · (WVxj +WEvêi,j) ∈ Rd,

(2)
where σ is a non-linear activation (ReLU by default);
WQ,WK,WEw,WEb ∈ Rd′×d, WA ∈ R1×d′

and
WV,WEv ∈ Rd×d′

are learnable weight matrices;
⊙ indicates elementwise multiplication; and ρ(x) :=
(ReLU(x))1/2− (ReLU(−x))1/2 is the signed-square-root,
which stabilizes training by reducing the magnitude of large
inputs. We also include biases in our implementation, but
they are omitted here for simplicity. Note that we update the
pair representations ei,j , so our Transformer is capable of
updating the positional encodings. In particular, our Trans-
former is capable of applying an elementwise MLP to P,
as we showed was useful in Proposition 3.1.

Similarly to other self-attention mechanisms, our proposed
attention mechanism can be extended to multiple heads
(say, Nh heads) by assigning different weight matrices for
different heads. We perform the above computations for
different heads h ∈ {1, . . . , Nh} to get representations x̂h

i

Figure 3. (Left) Dodecahedron graph. (Right) Desargues graph.
GD-WL with RRWP can distinguish these two graphs, but GD-WL
with SPD cannot.

and êhi,j , then combine the different heads as follows:

xout
i =

Nh∑
h=1

Wh
Ox̂

h
i ∈ Rd ,

eout
ij =

Nh∑
h=1

Wh
Eoê

h
ij ∈ Rd ,

(3)

where Wh
O,W

h
Eo ∈ Rd×d′

are output weight matrices for
each head h.

3.2.1. THEORY: RRWP IS MORE EXPRESSIVE THAN
SPD IN TRANSFORMERS

We can use recently proposed Weisfeiler-Leman-like graph
isomorphism tests to demonstrate that RRWP within a Trans-
former architecture is strictly more expressive than the com-
monly used shortest path distances (SPD). Recently, Zhang
et al. (2023) proposed the Generalized Distance Weisfeiler-
Leman Test (GD-WL) — a graph isomorphism test based
on updating node colors that incorporates distances. Let
G be a graph with vertex set V , dG(v, u) denote a distance
between nodes v and u, and χ0

G(v) be an initial color of v.
Then GD-WL updates node colors as

χt
G(v) = hash({{(dG(v, u), χt−1

G (u)) : u ∈ V}}). (4)

The multiset of final node colors {{χT
G(v) : v ∈ V}} at itera-

tion T is hashed to get a graph color. Zhang et al. (2023) use
GD-WL to analyze a Graph Transformer architecture that
uses dG(v, u) as relative positional encodings. They show
that setting dG(v, u) to the shortest path distance makes it
possible to solve edge biconnectivity problems. We can
show that if we choose dG(v, u) to be our relative random
walk encoding dG(v, u) = Pvu ∈ Rn (with K = n), the
GD-WL using this distance is more powerful than the GD-
WL using shortest path distances (SPD) 4.

Proposition 3.2. GD-WL with RRWP distances is strictly
stronger than GD-WL with shortest path distances.

4We need to generalize GD-WL to allow vector-valued dis-
tances, but this is easily handled by the hash function

5

Graph Inductive Biases in Transformers without Message Passing

The proof is given in Appendix C.1. We first show that
GD-WL with RRWP can distinguish any two graphs that
GD-WL with SPD can. Then we show that GD-WL with
RRWP can distinguish the Dodecahedron and Desargues
graphs — plotted in Figure 3 — whereas Zhang et al. (2023)
showed that GD-WL with SPD cannot distinguish these.

3.3. Injecting Degree Information

Attention mechanisms are innately invariant to node degrees,
analogously to mean-aggregation; this introduces extra am-
biguities and hence reduces expressive power in processing
graph-structured data (Xu et al., 2019; Corso et al., 2020).
Therefore, we introduce an adaptive degree-scaler (Corso
et al., 2020) to our attention mechanism to maintain degree
information.

After the computation of node representations in (3), we
inject degree information into the node representations as
follows:

xout′
i := xout

i ⊙ θ1 +
(
log(1 + di) · xout

i ⊙ θ2

)
∈ Rd ,

(5)
where di is the degree of node i, and θ1,θ2 ∈ Rd are
learnable weights. Like other Transformer architectures, we
follow this with a standard feed-forward network (FFN) to
update the node representations.

To properly include degree information, we apply batch
normalization (Ioffe & Szegedy, 2015) instead of the stan-
dard layer normalization (Ba et al., 2016; Vaswani et al.,
2017) to the outputs of self-attention modules and FFNs.
This is because layer normalization applied to each node
representation cancels out the effect from degree-scalers or
sum-aggregators. We capture this in the following proposi-
tion, which we prove in Appendix C.3.

Proposition 3.3. Sum-aggregated node representations,
degree-scaled node representations, and mean-aggregated
node representations all have the same value after applica-
tion of a LayerNorm on node representations.

4. Experimental Results
4.1. Benchmarking GRIT

We evaluate our proposed method on five benchmarks from
the Benchmarking GNNs work (Dwivedi et al., 2022a) and
two benchmarks from the recently developed Long-Range
Graph Benchmark (Dwivedi et al., 2022b). These bench-
marks cover diverse graph learning tasks including node
classification, graph classification, and graph regression;
they are especially focused on graph structure encoding,
node clustering, and learning long-range dependencies. In
addition, we also conduct experiments on the larger datasets
ZINC-full graphs (∼ 250,000 graphs) (Irwin et al., 2012)
and PCQM4Mv2 (∼ 3,700,000 graphs) (Hu et al., 2021).

Further details concerning the experimental setup can be
found in Appendix B.

Baselines We primarily compare our methods
with the recent SOTA hybrid Graph Transformer,
GraphGPS (Rampášek et al., 2022), as well as a number of
prevalent graph-learning models: popular message-passing
neural networks (GCN (Kipf & Welling, 2017), GIN (Xu
et al., 2019) and its variant with edge-features (Hu et al.,
2020), GAT (Veličković et al., 2018), GatedGCN (Bresson
& Laurent, 2018), GatedGCN-LSPE (Dwivedi et al.,
2021), PNA (Corso et al., 2020)); Graph Transformers
(Graphormer (Ying et al., 2021), K-Subgraph SAT (Chen
et al., 2022), EGT (Hussain et al., 2022), SAN (Kreuzer
et al., 2021), Graphormer-URPE (Luo et al., 2022),
Graphormer-GD (Zhang et al., 2023)); and other re-
cent Graph Neural Networks with SOTA performance
(DGN (Beani et al., 2021), GSN (Bouritsas et al., 2022),
CIN (Bodnar et al., 2021), CRaW1 (Toenshoff et al., 2021),
GIN-AK+ (Zhao et al., 2021b)).

Benchmarks from Benchmarking GNNs (Dwivedi et al.,
2022a). We first benchmark our method on five datasets
from Benchmarking GNNs (Dwivedi et al., 2022a): ZINC,
MNIST, CIFAR10, PATTERN, and CLUSTER, following
the experimental setting of GraphGPS (Rampášek et al.,
2022) (∼ 500K parameter limit for ZINC, PATTERN, and
CLUSTER; ∼ 100K parameter limit for MNIST and CI-
FAR10). Results are shown in Table 1; we report the mean
and standard deviation across 4 runs with different random
seeds.

We show that our model has the best mean performance
for four of the five datasets with statistically significant im-
provement. In the remaining dataset, our model reaches
the second-best performance without a statistically signif-
icant difference compared to the best performer. These
results showcase the ability of GRIT to outperform a variety
of methods on small to medium-sized datasets, including
MPNNs, expressive higher-order GNNs, and Graph Trans-
formers.

Long-Range Graph Benchmark (Dwivedi et al., 2022b).
Next, we evaluate our method on the recently proposed
Long-Range Graph Benchmark (LRGB). We conduct exper-
iments on the two peptide graph benchmarks from LRGB,
namely Peptides-func and Peptides-struct, which are 10-task
multilabel classification and 11-task regression tasks, respec-
tively. Results are shown in Table 2. On both datasets, our
method obtains the best mean performance, outperforming
MPNNs and Graph Transformers — this demonstrates that
our model is capable of learning long range interactions.

6

Graph Inductive Biases in Transformers without Message Passing

Table 1. Test performance in five benchmarks from (Dwivedi et al., 2022a). Shown is the mean ± s.d. of 4 runs with different random
seeds. Highlighted are the top first, second, and third results. # Param ∼ 500K for ZINC, PATTERN, CLUSTER and ∼ 100K for
MNIST and CIFAR10. ∗ indicates statistically significant difference against the second-best result from the two-sample one-tailed t-test.

Model ZINC MNIST CIFAR10 PATTERN CLUSTER

MAE↓ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑
GCN 0.367± 0.011 90.705± 0.218 55.710± 0.381 71.892± 0.334 68.498± 0.976
GIN 0.526± 0.051 96.485± 0.252 55.255± 1.527 85.387± 0.136 64.716± 1.553
GAT 0.384± 0.007 95.535± 0.205 64.223± 0.455 78.271± 0.186 70.587± 0.447
GatedGCN 0.282± 0.015 97.340± 0.143 67.312± 0.311 85.568± 0.088 73.840± 0.326
GatedGCN-LSPE 0.090± 0.001 − − − −
PNA 0.188± 0.004 97.94± 0.12 70.35± 0.63 − −
DGN 0.168± 0.003 − 72.838± 0.417 86.680± 0.034 −
GSN 0.101± 0.010 − − − −
CIN 0.079± 0.006 − − − −
CRaW1 0.085± 0.004 97.944± 0.050 69.013± 0.259 − −
GIN-AK+ 0.080± 0.001 − 72.19± 0.13 86.850± 0.057 −
SAN 0.139± 0.006 − − 86.581± 0.037 76.691± 0.65
Graphormer 0.122± 0.006 − − − −
K-Subgraph SAT 0.094± 0.008 − − 86.848± 0.037 77.856± 0.104
EGT 0.108± 0.009 98.173± 0.087 68.702± 0.409 86.821± 0.020 79.232± 0.348
Graphormer-URPE 0.086± 0.007 − − − −
Graphormer-GD 0.081± 0.009 − − − −
GPS 0.070± 0.004 98.051± 0.126 72.298± 0.356 86.685± 0.059 78.016± 0.180

GRIT (ours) 0.059± 0.002∗ 98.108± 0.111 76.468± 0.881∗ 87.196± 0.076∗ 80.026± 0.277∗

Table 2. Test performance on two benchmarks from long-range
graph benchmarks (LRGB) (Dwivedi et al., 2022b). Shown is the
mean ± s.d. of 4 runs with different random seeds. Highlighted are
the top first, second, and third results. # Param ∼ 500K for both
datasets. ∗ indicates statistical significance against the second-best
results from the Two-sample One-tailed T-Test.
Model Peptides-func Peptides-struct

AP↑ MAE↓
GCN 0.5930± 0.0023 0.3496± 0.0013
GINE 0.5498± 0.0079 0.3547± 0.0045
GatedGCN 0.5864± 0.0035 0.3420± 0.0013
GatedGCN+RWSE 0.6069± 0.0035 0.3357± 0.0006

Transformer+LapPE 0.6326± 0.0126 0.2529± 0.0016
SAN+LapPE 0.6384± 0.0121 0.2683± 0.0043
SAN+RWSE 0.6439± 0.0075 0.2545± 0.0012
GPS 0.6535± 0.0041 0.2500± 0.0012

GRIT (ours) 0.6988± 0.0082∗ 0.2460± 0.0012∗

ZINC-full Dataset We also test our model on the ZINC-
full dataset (Irwin et al., 2012), which is the full version of
ZINC that has 250,000 graphs. Besides the MPNNs and
Graph Transformers, we also compare our method with
other domain agnostic methods like higher-order GNNs
(δ-2-GNN, δ-2-LGNN (Morris et al., 2020)) as well as PE-
enhanced GNNs (SignNet (Lim et al., 2023)). We see that
GRIT outperforms various classes of methods, and achieves
the best mean performance of all methods.

Table 3. Test performance on ZINC-full (Irwin et al., 2012).
Param ∼ 500K. Shown is the mean ± s.d. of 4 runs with
different random seeds. Highlighted are the top first, second, and
third results.

Method Model ZINC-full (MAE ↓)

MPNNs

GIN 0.088± 0.002
GraphSAGE 0.126± 0.003
GAT 0.111± 0.002
GCN 0.113± 0.002
MoNet 0.090± 0.002

Higher-order δ-2-GNN 0.042± 0.003
GNNs δ-2-LGNN 0.045± 0.006

PE-GNN SignNet 0.024± 0.003

Graphormer 0.052± 0.005
Graph Graphormer-URPE 0.028± 0.002

Transformers Graphormer-GD 0.025± 0.004

GRIT (ours) 0.023± 0.001

PCQM4Mv2 Large-scale Graph Regression Bench-
mark (Hu et al., 2021) Further, we conduct an experiment
on the PCQM4Mv2 large-scale graph regression benchmark
of 3.7M graphs (Hu et al., 2021), which is currently one
of the largest molecular datasets (Table. 4). We compare
our method against MPNNs (GCN (Kipf & Welling, 2017),
GIN (Xu et al., 2019) with/without virtual nodes) as well
as several Graph Transformers (GRPE (Park et al., 2022),
Graphormer (Ying et al., 2021), TokenGT (Kim et al., 2022)

7

Graph Inductive Biases in Transformers without Message Passing

and GraphGPS (Rampášek et al., 2022)). Following the
protocol of Rampášek et al. (2022), we treated the valida-
tion set of the dataset as a test set, since the Test-dev set
labels are private. The result of a single random seed run is
reported due to the size of the dataset, following previous
works (Rampášek et al., 2022; Kim et al., 2022). Our model
can reach a comparable performance to GraphGPS (best)
and Graphormer (third best) while using fewer learnable
parameters. We did not conduct any hyperparameter search
due to the limit of time, and instead adopted the values from
GraphGPS (Rampášek et al., 2022).

Table 4. Test performance on PCQM4Mv2 (Hu et al., 2021) dataset.
Shown is the result of a single run due to the computation con-
straint. Highlighted are the top first, second, and third results.

Method Model Valid. (MAE ↓) # Param

MPNNs

GCN 0.1379 2.0M
GCN-virtual 0.1153 4.9M
GIN 0.1195 3.8M
GIN-virtual 0.1083 6.7M

GRPE 0.0890 46.2M
Graphormer 0.0864 48.3M
TokenGT (ORF) 0.0962 48.6M

Graph TokenGT (Lap) 0.0910 48.5M
Transformers GPS-small 0.0938 6.2M

GPS-medium 0.0858 19.4M

GRIT (ours) 0.0859 16.6M

Table 5. Ablations on design choices of our architecture on
ZINC (Dwivedi et al., 2022a). Substituting other design choices
decreases the performance of our model. Shown is the mean ± s.d.
of 4 runs with different random seeds. A → B stands for using B
instead of A.

ZINC MAE ↓
GRIT (ours) 0.059± 0.002
- Remove degree scaler 0.076± 0.002
- Remove the update of RRWP 0.066± 0.005
- Global-attn. → Sparse-attn. 0.066± 0.002
- Degree scaler → Degree encoding 0.072± 0.005
- GRIT-attn. → Graphormer-attn. 0.117± 0.028
- RRWP → RWSE 0.081± 0.010
- RRWP → SPDPE 0.067± 0.002

4.2. Ablations

To determine the utility of our architectural design choices,
we conduct several ablation experiments on ZINC. Table 5
shows the results. Removing degree scalers, removing the
update mechanism of RRWP, substituting global attention
with sparse attention, replacing the degree scalers with de-
gree encoding from Graphormer (Ying et al., 2021), replac-
ing our attention mechanism with the attention mechanism

used in Graphormer (no PE update), and substituting RRWP
with RWSE (Dwivedi et al., 2021) or SPDPE (Ying et al.,
2021), all lead to worse performance — this lends credence
to our architectural choices.

We also conduct a sensitivity analysis on the parameter K of
RRWP on ZINC. The results are shown in Table 6. Notably,
our method is SOTA or near SOTA for many choices of K,
except for very unreasonable choices like K = 2. Note that
we keep every other hyperparameter fixed besides K in this
experiment, which was originally chosen for K = 21. This
might explain why other K perform slightly worse.

Table 6. Sensitivity Analysis of K-order RRWP on
ZINC (Dwivedi et al., 2022a). Shown is the mean ± s.d.
of 4 runs with different random seeds.

K 2 7 14 18 21 24 42

MAE ↓ 0.147 0.063 0.063 0.060 0.059 0.060 0.061
± 0.006 0.003 0.004 0.002 0.002 0.002 0.001

Table 7. Synthetic Experiment on Learning to Attend K-hop
Neighborhoods
MAE ≤ 1 ↓ 1-hop 2-hop 3-hop

MeanPool (baseline) .083± .015 .080± .014 .069± .011

Transf.+RWSE .083± .015 .080± .014 .069± .011
SAN+LapPE .044± .011 .042± .010 .029± .008
Graphormer+SPDPE .043± .010 .034± .010 .025± .005

GRIT (Ours) .001± .001 .001± .001 .007± .004

4.3. Synthetic Experiment: Can Our Attention Module
Learn to Attend to K-hop Neighbors?

We conduct a synthetic experiment to study the ability
of our proposed attention modules to emulate a general
class of graph propagation matrices, in comparison to ex-
isting Graph Transformers. Concretely, we consider single-
layer, single-head attention modules with the correspond-
ing positional encoding as the only input. We experi-
ment with GRIT and a set of popular Graph Transform-
ers: vanilla Transformer+RWSE (the Transformer branch of
GraphGPS (Rampášek et al., 2022)), SAN+LapPE* (global
attention component with the LapPE transformer) (Kreuzer
et al., 2021), and Graphormer+SPDPE (Ying et al., 2021).

We train these attention mechanisms to output a row-
normalized adjacency matrix for (k = 1, 2, 3)-hop neigh-
borhoods, using the l1-loss as the training objective. More
precisely, the targets are generated as follows. We choose
a k ∈ {1, 2, 3}, compute Ak for an adjacency matrix A,
round nonzero values to have the value 1, and then normal-
ize each row to sum to one.

With 20 graphs randomly sampled from the ZINC dataset,

8

Graph Inductive Biases in Transformers without Message Passing

we train each method for 2000 epochs on each graph sep-
arately and compute the (training) mean absolute errors
across graphs. From the results (Table 7), we observe that
SAN+LapPE* and Graphormer+SPDPE perform similarly
in learning to attend to a specific type of neighborhood,
while Transformer+RWSE performs much worse; this may
help explain why MPNNs are so essential for GraphGPS,
according to its ablation studies (Table B.1 (Rampášek et al.,
2022)). GRIT significantly outperforms other baselines by
an order of magnitude, showing that our method can well
approximate a general class of graph propagations, as theo-
retically expected (due to Proposition 3.1).

In addition, we also visualize the attention scores for a
single graph of the synthetic experiments (see Figure 5 in
Appendix B.5), which agrees with the quantitative results.
Whereas other attention mechanisms qualitatively struggle
at matching the target sparsity pattern or attention magni-
tudes, our GRIT attention mechanism succeeds at learning
to match both sparsity and magnitudes.

5. Conclusion
Observing the performance gap of Graph Transformers be-
tween small and large-scale datasets, we argue for the impor-
tance of graph inductive biases in Graph Transformers. Mo-
tivated by promoting inductive biases in Graph Transformers
without message-passing, we propose GRIT, based on three
theoretically and empirically motivated design choices for
incorporating graph inductive biases. Our learned relative
positional encodings initialized with RRWP along with our
flexible attention mechanism allow for an expressive model
that can provably capture shortest path distances and general
families of graph propagations. Theoretical results show
that the RRWP initialization is strictly more expressive than
shortest path distances when used in the GD-WL graph
isomorphism test (Zhang et al., 2023), and a synthetic exper-
iment shows that our flexible attention mechanism is indeed
able to learn graph propagation matrices that other Graph
Transformers are not as capable of learning. Our GRIT
model achieves state-of-the-art performance across a wide
range of graph datasets, showing that data complexity can
be improved for Graph Transformers without integrating
local message-passing modules. Nonetheless, GRIT is not
the final chapter for graph inductive biases in Transformers;
future work can address limitations of our work, such as
GRIT’s n2 scaling for updating pair representations, and
lack of upper bounds on expressive power.

6. Acknowledgments
DL is supported by an NSF Graduate Fellowship. CL is
supported by Meta AI 5. We would also like to thank the
Royal Academy of Engineering and FiveAI.

References
Alon, U. and Yahav, E. On the Bottleneck of Graph Neural

Networks and its Practical Implications. In Proc. Int.
Conf. Learn. Representations, September 2020.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer Normaliza-
tion. In NIPS 2016 Deep Learning Symposium, August
2016.

Beani, D., Passaro, S., Létourneau, V., Hamilton, W., Corso,
G., and Lió, P. Directional Graph Networks. In Proc. Int.
Conf. Mach. Learn., pp. 748–758. PMLR, July 2021.

Bevilacqua, B., Frasca, F., Lim, D., Srinivasan, B., Cai,
C., Balamurugan, G., Bronstein, M. M., and Maron, H.
Equivariant Subgraph Aggregation Networks. In Proc.
Int. Conf. Learn. Representations, March 2022.

Bodnar, C., Frasca, F., Wang, Y., Otter, N., Montufar, G. F.,
Lió, P., and Bronstein, M. Weisfeiler and Lehman Go
Topological: Message Passing Simplicial Networks. In
Proc. Int. Conf. Mach. Learn., pp. 1026–1037. PMLR,
July 2021.

Bouritsas, G., Frasca, F., Zafeiriou, S. P., and Bronstein,
M. Improving Graph Neural Network Expressivity via
Subgraph Isomorphism Counting. IEEE Trans. Pattern
Anal. Mach. Intell., pp. 1–1, 2022. ISSN 1939-3539. doi:
10.1109/TPAMI.2022.3154319.

Bresson, X. and Laurent, T. Residual Gated Graph Con-
vNets. arXiv, April 2018.

Brody, S., Alon, U., and Yahav, E. How Attentive are
Graph Attention Networks? In Proc. Int. Conf. Learn.
Representations), 2022.

Bronstein, M. M., Bruna, J., Cohen, T., and Veličković,
P. Geometric Deep Learning: Grids, Groups, Graphs,
Geodesics, and Gauges. May 2021.

Chen, D., O’Bray, L., and Borgwardt, K. Structure-Aware
Transformer for Graph Representation Learning. In Proc.
Int. Conf. Mach. Learn., pp. 3469–3489, June 2022.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković,
P. Principal Neighbourhood Aggregation for Graph Nets.
In Adv. Neural Inf. Process. Syst., December 2020.

5Meta has no relationships whatsoever with the other funding
sponsors.

9

Graph Inductive Biases in Transformers without Message Passing

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q., and
Salakhutdinov, R. Transformer-XL: Attentive Language
Models beyond a Fixed-Length Context. In Proc. Annu.
Meeting Assoc. Comput. Linguist., pp. 2978–2988, July
2019.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. In Proc. Annu. Conf. North Am.
Chapter Assoc. Comput. Linguist. Hum. Lang. Technol.
(NAACL-HILT), May 2019.

Diao, C. and Loynd, R. Relational attention: Generalizing
transformers for graph-structured tasks. arXiv preprint
arXiv:2210.05062, 2022.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An Image is Worth 16x16 Words: Transformers for
Image Recognition at Scale. In Proc. Int. Conf. Learn.
Representations, September 2020.

Dwivedi, V. P. and Bresson, X. A Generalization of Trans-
former Networks to Graphs. In Proc. AAAI Workshop
Deep Learn. Graphs: Methods Appl., January 2021.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., and
Bresson, X. Graph Neural Networks with Learnable
Structural and Positional Representations. In Proc. Int.
Conf. Learn. Representations, September 2021.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and
Bresson, X. Benchmarking Graph Neural Networks. J.
Mach. Learn. Res., December 2022a.

Dwivedi, V. P., Rampášek, L., Galkin, M., Parviz, A., Wolf,
G., Luu, A. T., and Beaini, D. Long Range Graph Bench-
mark. In Adv. Neural Inf. Process. Syst., December 2022b.

Feldman, O., Boyarski, A., Feldman, S., Kogan, D., Mendel-
son, A., and Baskin, C. Weisfeiler and leman go infi-
nite: Spectral and combinatorial pre-colorings. In Proc.
Int. Conf. Learn. Representations Workshop Geom. topol.
Representation Learn., 2022.

Gasteiger, J., Weiß enberger, S., and Günnemann, S. Dif-
fusion Improves Graph Learning. In Adv. Neural Inf.
Process. Syst., volume 32. Curran Associates, Inc., 2019.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural Message Passing for Quantum Chem-
istry. In Proc. Int. Conf. Mach. Learn., June 2017.

Hornik, K., Stinchcombe, M., and White, H. Multilayer
feedforward networks are universal approximators. Neu-
ral Netw., 2(5):359–366, 1989.

Hu, W., Liu*, B., Gomes, J., Zitnik, M., Liang, P., Pande, V.,
and Leskovec, J. Strategies for Pre-training Graph Neural
Networks. In Proc. Int. Conf. Learn. Representations,
March 2020.

Hu, W., Fey, M., Ren, H., Nakata, M., Dong, Y., and
Leskovec, J. Ogb-lsc: A large-scale challenge for ma-
chine learning on graphs. In Adv. Neural Inf. Process.
Syst. Datasets Benchmarks Track, 2021.

Hussain, M. S., Zaki, M. J., and Subramanian, D. Global
Self-Attention as a Replacement for Graph Convolu-
tion. In Proc. ACM SIGKDD Int. Conf. Knowl Discov.
Data Min. (KDD), August 2022. doi: 10.1145/3534678.
3539296.

Ioffe, S. and Szegedy, C. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate
Shift. In Proc. Int. Conf. Mach. Learn., pp. 448–456.
PMLR, June 2015.

Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., and
Coleman, R. G. ZINC: A Free Tool to Discover Chem-
istry for Biology. J. Chem. Inf. Model., 52(7):1757–1768,
July 2012. ISSN 1549-9596. doi: 10.1021/ci3001277.

Kim, J., Nguyen, D. T., Min, S., Cho, S., Lee, M., Lee,
H., and Hong, S. Pure Transformers are Powerful Graph
Learners. In Adv. Neural Inf. Process Syst., October 2022.

Kipf, T. N. and Welling, M. Semi-Supervised Classification
with Graph Convolutional Networks. In Proc. Int. Conf.
Learn. Representations, 2017.

Kreuzer, D., Beaini, D., Hamilton, W. L., Létourneau, V.,
and Tossou, P. Rethinking Graph Transformers with
Spectral Attention. In Adv. Neural Inf. Process. Syst.,
May 2021.

Li, P., Wang, Y., Wang, H., and Leskovec, J. Distance
Encoding: Design Provably More Powerful Neural Net-
works for Graph Representation Learning. In Adv. Neural
Inf. Process. Syst., 2020.

Li, Q., Han, Z., and Wu, X.-M. Deeper Insights into Graph
Convolutional Networks for Semi-Supervised Learning.
In Proc. AAAI Conf. Artif. Intell., pp. 9, 2018.

Lim, D., Robinson, J. D., Zhao, L., Smidt, T., Sra, S., Maron,
H., and Jegelka, S. Sign and Basis Invariant Networks
for Spectral Graph Representation Learning. In Proc. Int.
Conf. Learn. Representations, 2023.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B. Swin Transformer: Hierarchical Vision
Transformer Using Shifted Windows. In Proc. IEEE/CVF
Int. Conf. Comput. Vis., pp. 10012–10022, 2021.

10

Graph Inductive Biases in Transformers without Message Passing

Loukas, A. What graph neural networks cannot learn: Depth
vs width. In Proc. Int. Conf. Learn. Representations,
March 2020.

Luo, S., Li, S., Zheng, S., Liu, T.-Y., Wang, L., and He, D.
Your transformer may not be as powerful as you expect.
In Adv. Neural Inf. Process. Syst., 2022.

Ma, L., Rabbany, R., and Romero-Soriano, A. Graph at-
tention networks with positional embeddings. In Pacific-
Asia Conf. Knowl. Discov. and Data Min., pp. 514–527.
Springer, 2021.

Masters, D., Dean, J., Klaser, K., Li, Z., Maddrell-
Mander, S., Sanders, A., Helal, H., Beker, D., Rampášek,
L., and Beaini, D. GPS++: An Optimised Hybrid
MPNN/Transformer for Molecular Property Prediction,
December 2022.

Mialon, G., Chen, D., Selosse, M., and Mairal, J. GraphiT:
Encoding Graph Structure in Transformers, June 2021.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and Leman Go
Neural: Higher-Order Graph Neural Networks. In Proc.
AAAI Conf. Artif. Intell., volume 33, pp. 4602–4609, July
2019. doi: 10.1609/aaai.v33i01.33014602.

Morris, C., Rattan, G., and Mutzel, P. Weisfeiler and leman
go sparse: towards scalable higher-order graph embed-
dings. In Adv. Neural Inf. Process. Syst., pp. 21824–
21840, 2020.

Oono, K. and Suzuki, T. Graph neural networks exponen-
tially lose expressive power for node classification. In
Proc. Int. Conf. Learn. Representations, 2020.

Park, N. and Kim, S. How Do Vision Transformers Work?
In Proc. Int. Conf. Learn. Representations, September
2021.

Park, W., Chang, W., Lee, D., Kim, J., and Hwang, S.-w.
GRPE: Relative Positional Encoding for Graph Trans-
former. In Proc. Int. Conf. Learn. Representations Work-
shop Mach. Learn. Drug Discov., 2022.

Perez, E., Strub, F., De Vries, H., Dumoulin, V., and
Courville, A. Film: Visual reasoning with a general
conditioning layer. In Proc. AAAI Conf. Artif. Intell.,
volume 32, 2018.

Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf,
G., and Beaini, D. Recipe for a General, Powerful, Scal-
able Graph Transformer. In Adv. Neural Inf. Process.
Syst., May 2022.

Srinivasan, B. and Ribeiro, B. On the Equivalence between
Positional Node Embeddings and Structural Graph Rep-
resentations. In Proc. Int. Conf. Learn. Representations,
2020.

Toenshoff, J., Ritzert, M., Wolf, H., and Grohe, M. Graph
learning with 1d convolutions on random walks. arXiv
preprint arXiv:2102.08786, 2021.

Topping, J., Giovanni, F. D., Chamberlain, B. P., Dong, X.,
and Bronstein, M. M. Understanding over-squashing and
bottlenecks on graphs via curvature. In Proc. Int. Conf.
Learn. Representations, March 2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Aidan N Gomez, Kaiser, L., and Polosukhin, I. Atten-
tion is All you Need. In Adv. Neural Inf. Process. Syst.,
volume 30. Curran Associates, Inc., 2017.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., and Bengio, Y. Graph Attention Networks. In Proc.
Int. Conf. Learn. Representations, February 2018.

Wang, H., Yin, H., Zhang, M., and Li, P. Equivariant and Sta-
ble Positional Encoding for More Powerful Graph Neural
Networks. In Proc. Int. Conf. Learn. Representations,
May 2022.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How Powerful
are Graph Neural Networks? In Proc. Int. Conf. Learn.
Representations, February 2019.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen,
Y., and Liu, T.-Y. Do Transformers Really Perform Badly
for Graph Representation? In Adv. Neural Inf. Process.
Syst., 2021.

You, J., Ying, R., and Leskovec, J. Position-aware Graph
Neural Networks. In Proc. Int. Conf. Mach. Learn., pp.
7134–7143. PMLR, May 2019.

You, J., Gomes-Selman, J., Ying, R., and Leskovec, J.
Identity-aware Graph Neural Networks. In Proc. AAAI
Conf. Artif. Intell., February 2021.

Zhang, B., Luo, S., Wang, L., and He, D. Rethinking the ex-
pressive power of GNNs via graph biconnectivity. In Proc.
Int. Conf. Learn. Representations, 2023. URL https:
//openreview.net/forum?id=r9hNv76KoT3.

Zhang, Z., Cui, P., Pei, J., Wang, X., and Zhu, W. Eigen-
GNN: A Graph Structure Preserving Plug-in for GNNs.
IEEE Trans. Knowl. Data Eng., pp. 1–1, 2021. ISSN
1558-2191. doi: 10.1109/TKDE.2021.3112746.

Zhao, J., Dong, Y., Ding, M., Kharlamov, E., and Tang, J.
Adaptive Diffusion in Graph Neural Networks. In Adv.
Neural Inf. Process. Syst., volume 34, pp. 23321–23333.
Curran Associates, Inc., 2021a.

Zhao, L., Jin, W., Akoglu, L., and Shah, N. From stars to
subgraphs: Uplifting any gnn with local structure aware-
ness. In Proc. Int. Conf. Learn. Representations, 2021b.

11

https://openreview.net/forum?id=r9hNv76KoT3
https://openreview.net/forum?id=r9hNv76KoT3

Graph Inductive Biases in Transformers without Message Passing

A. Model Architecture
A.1. Visualization of the Transformer Architecture of GRIT

In order to put all the conceptual building blocks into one clear visualization, here we provide an overview of the GRIT
transformer in Figure 4.

RR
W

P
(P

re
-c

om
pu

te
)

GRIT
Transformer

Block

Graph
Prediction

Head

(a) The Overall Architecture of GRIT Transformers

DegScaler

MSA

BN

BN

FFN

BN

(b) The Architecture of a GRIT
Transformer Block

Figure 4. The Architecture of GRIT Transformers. (a) visualize the conceptural relationship between our proposed RRWP feature and the
GRIT transformer. (b) shows the detailed design of GRIT transformer block.

B. Experimental Details
B.1. Description of Datasets

A summary of the statistics and characteristics of datasets is shown in Table. 8. The first five datasets are from Dwivedi
et al. (2022a), the middle two are from Dwivedi et al. (2022b) and the last is from Hu et al. (2021). Readers are referred to
Rampášek et al. (2022) for more details about the datasets.

Table 8. Overview of the graph learning datasets involved in this work (Dwivedi et al., 2022a;b; Irwin et al., 2012; Hu et al., 2021) .
Dataset # Graphs Avg. # nodes Avg. # edges Directed Prediction level Prediction task Metric

ZINC(-full) 12,000 (250,000) 23.2 24.9 No graph regression Mean Abs. Error
MNIST 70,000 70.6 564.5 Yes graph 10-class classif. Accuracy
CIFAR10 60,000 117.6 941.1 Yes graph 10-class classif. Accuracy
PATTERN 14,000 118.9 3,039.3 No inductive node binary classif. Weighted Accuracy
CLUSTER 12,000 117.2 2,150.9 No inductive node 6-class classif. Accuracy

Peptides-func 15,535 150.9 307.3 No graph 10-task classif. Avg. Precision
Peptides-struct 15,535 150.9 307.3 No graph 11-task regression Mean Abs. Error

PCQM4Mv2 3,746,620 14.1 14.6 No graph regression Mean Abs. Error

B.2. Dataset splits and random seed

Our experiments are conducted on the standard train/validation/test splits of the evaluated benchmarks. For each dataset, we
execute 4 runs with different random seeds (0,1,2,3) and report the mean performance and standard deviation.

B.3. Hyperparameters

Due to the limited time and computational resources, we did not perform an exhaustive search or a grid search on the
hyperparameters. We mainly follow the hyperparameter setting of GraphGPS (Rampášek et al., 2022) and make slight
changes if the number of parameters does not fit in the commonly used parameter budgets. For the benchmarks from Dwivedi

12

Graph Inductive Biases in Transformers without Message Passing

et al. (2022a;b), we follow the most commonly used parameter budgets: up to 500k parameters for ZINC, PATTERN,
CLUSTER, Peptides-func and Peptides-struct; and 100k parameters for MNIST and CIFAR10.

The final hyperparameters are presented in Tables. 9 and Tables. 10.

Table 9. Hyperparameters for five datasets from BenchmarkingGNNs (Dwivedi et al., 2022a) and ZINC-full (Irwin et al., 2012)

Hyperparameter ZINC/ZINC-full MNIST CIFAR10 PATTERN CLUSTER

Transformer Layers 10 3 3 10 16
Hidden dim 64 52 52 64 48
Heads 8 4 4 8 8
Dropout 0 0 0 0 0.01
Attention dropout 0.2 0.5 0.5 0.2 0.5
Graph pooling sum mean mean − −
PE dim (RW-steps) 21 18 18 21 32
PE encoder linear linear linear linear linear

Batch size 32/256 16 16 32 16
Learning Rate 0.001 0.001 0.001 0.0005 0.0005
Epochs 2000 200 200 100 100
Warmup epochs 50 5 5 5 5
Weight decay 1e− 5 1e− 5 1e− 5 1e− 5 1e− 5

Parameters 473,473 102,138 99486 477,953 432,206

Table 10. Hyperparameters for two datasets from the Long-range Graph Benchmark (Dwivedi et al., 2022b) and PCQM4Mv2 (Hu et al.,
2021)

Hyperparameter Peptides-func Peptides-struct PCQM4Mv2

Transformer Layers 4 4 16
Hidden dim 96 96 256
Heads 4 8 8
Dropout 0 0 0.1
Attention dropout 0.5 0.5 0.1
Graph pooling mean mean mean

PE dim (walk-step) 17 24 16
PE encoder linear linear linear

Batch size 32 32 256
Learning Rate 0.0003 0.0003 0.0002
Epochs 200 200 150
Warmup epochs 5 5 10
Weight decay 0 0 0

Parameters 443,338 438,827 15.3M

B.4. Significance Test

We conduct a two-sample one-tailed T-test to compare the results of our method with the second-best model on each dataset.
The baselines’ results are taken from (Rampášek et al., 2022), with 10 runs for datasets from (Dwivedi et al., 2022a) and 4
runs for datasets from (Dwivedi et al., 2022b).

The statistical tests are conducted using the tools available at https://www.statskingdom.com/140MeanT2eq.
html.

13

https://www.statskingdom.com/140MeanT2eq.html
https://www.statskingdom.com/140MeanT2eq.html

Graph Inductive Biases in Transformers without Message Passing

B.5. Visualization for the Synthetic Experiment

In Figure 5, we visualize the learned attention scores for a single graph from our synthetic experiments in Section 4.3. Recall
that the goal of the synthetic experiments was to test the ability of different attention mechanisms and positional encoding
schemes to learn to attend to k-hop neighborhoods, using only a single layer of attention and only the PE as input.

Fir
st

-h
op

 n
ei

gh
bo

rs
Se

co
nd

-h
op

 n
ei

gh
bo

rs

Ground Truth

Th
ird

-h
op

 n
ei

gh
bo

rs

Transformer+RWSE SAN+LapPE* Graphormer+SPDPE Ours

Figure 5. Visualization of learned attention scores for the synthetic experiment on learning to attend to (k = 1, 2, 3)-hop neighbors. Our
GRIT attention mechanism (far right) is the most successful at matching both the sparsity pattern and attention magnitudes of the target
(far left).

Transformer+RWSE struggles to learn to attend to k-hop neighbors. Graphormer+SPDPE can successfully attend to most
nodes in k-hop neighborhoods; however, many other nodes are still assigned small attention scores, so the fraction of
attention focused on the neighborhoods is diminished. SAN+LapPE* is better at capturing the scales of the target attention
scores, but it assigns high attention scores to multiple nodes outside the targeted neighborhoods. In contrast, our GRIT
attention mechanism can successfully attend to the nodes in k-hop neighborhoods. We also provide the result table of the
synthetic experiment with R2 metric, shown in Table. 11.

Table 11. Synthetic Experiment on Learning to Attend K-hop Neighborhoods

R2 ≤ 1 1-hop 2-hop 3-hop

MeanPool (baseline) 0± 0 0± 0 0± 0

Transf.+RWSE 0± 0 0± 0 0± 0
SAN+LapPE 0.32± 0.20 0.31± 0.24 0.52± 0.21
EGT+SVDPE 0.55± 0.21 0.28± 0.25 0.26± 0.28
Graphormer+SPDPE 0.67± 0.09 0.77± 0.08 0.80± 0.06

GRIT (Ours) 0.999± 0.001 0.998± 0.004 0.961± 0.035

14

Graph Inductive Biases in Transformers without Message Passing

B.6. Asymptotic Complexity, Runtime and GPU Memory

The asymptotic complexities of RRWP and GRIT’s attention mechanism are O(K|V||E|) and O(|V|2) respectively, where
K is the number of hops of RRWP, |E| is the number of edges and |V| is the number of nodes, matching the asymptotic
complexity of most Graph Transformers (Kreuzer et al., 2021; Rampášek et al., 2022; Hussain et al., 2022; Ying et al.,
2021). .

We provide the runtime and GPU memory consumption of GRIT and other baselines on ZINC as a reference (Table. 12).
The runtime is given by the pipeline of GraphGPS (Rampášek et al., 2022), and the memory usage is counted by the NVIDIA
System Management Interface (nvidia-smi).

Table 12. Runtime and GPU memory for SAN (Kreuzer et al., 2021), GraphGPS (Rampášek et al., 2022) and GRIT (Ours) on ZINC with
batch size 32. The timing is conducted on a single NVIDIA V100 GPU and 20 threads of Intel(R) Xeon(R) GOld 6140 CPU @ 2.30GH.

ZINC SAN GraphGPS GRIT (Ours)

MAE ↓ 0.139± 0.006 0.070± 0.004 0.059± 0.002
PE Precompute-time 10 sec 11 sec 11 sec
GPU Memory 2291 MB 1101 MB 1865 MB
Training time 57.9 sec/epoch 24.3 sec/epoch 29.4 sec/epoch

1-RW 2-RW 3-RW 4-RW 5-RW

1-RW 2-RW 3-RW 4-RW 5-RW

Figure 6. (Top row) RRWP for the Dodecahedron graph. (Bottom row) RRWP for the Desargues graph. This pair of non-isomorphic
graphs cannot be distinguished by GD-WL with shortest path distances, but can be distinguished by GD-WL with our RRWP positional
encoding.

C. Proofs of Theoretical Results
C.1. GD-WL

Proof of Proposition 3.2. First, we show that GD-WL with RRWP is at least as strong as GD-WL with shortest path
distances. Then we give an example of two graphs that GD-WL with shortest path distances cannot distinguish, yet GD-WL
with RRWP can.

Let dRWG (v, u) ∈ Rn be the relative random walk encoding with K = n, and dSPD
G ∈ R be the shortest path distance

encoding. Then note that
min{i : dRWG (v, u)i ̸= 0} = dSPD

G (v, u)}, (6)

where the min takes the value ∞ if dRWG (v, u)i = 0 for each i. Thus, dSPD
G is a function of dRWG , and hence dRWG refines

dSPD
G . We finish by using Lemma 2 of Bevilacqua et al. (2022), which says that taking multisets of colors preserves

15

Graph Inductive Biases in Transformers without Message Passing

refinement. This shows that GD-WL with RRWP is at least as strong as GD-WL with SPD.

To show that GD-WL with RRWP is strictly stronger, we present a pair of non-isomorphic graphs that it can distinguish but
GD-WL with SPD cannot: the Desargues graph and the Dodecahedral graph, which are plotted in Figure 6. Zhang et al.
(2023) note that GD-WL with shortest path distances cannot distinguish these graphs. However, GD-WL with our RRWP
positional encoding can. This can be seen from the 5-hop random walk probability distributions — there exists at least one
walk of exactly length 5 between any two nodes of the Dodecahedral graph, but there is no exactly length 5 walk between
many pairs of nodes of the Desargues graph.

C.2. RRWP and MLP

Proof of Proposition 3.1. (a) First, we construct an MLP such that MLP(P)i,j ≈ SPDK−1(i, j), in which SPDK−1(i, j)
takes the value of the length of the shortest path between nodes i and j if i and j are no more than K − 1 hops away from
each other, and takes the value of K otherwise.

We build the MLP to approximate a composition of several continuous functions f3 ◦ f2 ◦ f1. Let P(A) be the RRWP
associated to the adjacency matrix A, i.e. P(A) = [I,D−1A, . . . , (D−1A)K−1]. We define L to be a lower bound on the
smallest nonzero entry of P(A), across all A ∈ Gn. In particular, we let

L = min
A∈Gn

min
i,j,t:P(A)ijt>0

P(A)ijt. (7)

Since the minimizations are over finitely many positive entries, we have that L > 0. Thus, there exists a continuous function
f1 : RK → RK such that f1(x)i = 0 if xi ≤ 0 and 1 if xi ≥ L. Since for t ∈ {0, . . . ,K − 1} Pijt ≥ L if and only if node
i is reachable to j in t hops, we have that

f1(Pi,j,:)t =

{
1 if i can reach j in t hops
0 else

. (8)

Next, we define f2 : RK → RK as f2(x)t = maxt′≤t xt′ . Then we have

(f2 ◦ f1(Pi,j,:))t =

{
1 if SPD(i, j) ≤ t

0 else
. (9)

Finally, we let f3 : RK → R be defined by f3(x) = n−
∑K−1

t=1 xt. The full composition then gives

f3 ◦ f2 ◦ f1(Pi,j,:) =

{
SPD(i, j) if SPD(i, j) ≤ K − 1

n else
. (10)

Now, note that f3 ◦ f2 ◦ f1 is continuous, so by standard universal approximation results (Hornik et al., 1989) we can
approximate it with an MLP on the compact set Gn to an arbitrary accuracy ϵ > 0. This finishes the proof.

(b) Now, fix θ0, . . . , θK−1 ∈ R. We will construct an MLP such that MLP(P) ≈
∑K−1

k=0 θk(D
−1A)k. Note that this target

function can be written as
K−1∑
k=0

θkM
k =

K−1∑
k=0

θkP:,:,k. (11)

Hence, we let f1 : RK → Rk be the continuous function that scales a vector x ∈ RK elementwise by θ = [θ0, . . . , θK−1]:
f1(x) = x⊙ θ. Then let f2 : RK → R take the sum: f2(x) =

∑K−1
k=0 xk. It is easy to see that

f2 ◦ f1(Pi,j) =

K−1∑
k=0

θkPi,j,k, (12)

so letting the MLP approximate the continuous function f2 ◦ f1, we are done.

(c) Finally, we will construct an MLP such that MLP(P) ≈ θ0I + θ1A. Note that this target function is equal to
θ0P:,:,0 + θ1A.

16

Graph Inductive Biases in Transformers without Message Passing

To get the adjacency A, we use the function f1 : RK → RK as used in the proof of part (a), which rounds f1(x)i = 0
if xi ≤ 0 and 1 if xi ≥ L. Then f1(Pi,j)1 = Ai,j . Then we take f2 : RK → RK to scale the first two entries by θ0
and θ1 respectively (similarly to f1 in the proof of part (b)), and take f3 : RK → R to sum across the first two slices:
f3(x) = x0 + x1. Then we have that

f3 ◦ f2 ◦ f1(Pi,j) = θ0I+ θ1A (13)

as desired. Choosing an MLP that approximate this continuous function f3 ◦ f2 ◦ f1, we are done.

C.3. LayerNorm on Nodes Removes the Degree Information from Sum-Aggregators and/or Degree Scalers

Normalization layers are essential for deep neural networks, especially Transformers (Vaswani et al., 2017). Graph
Transformers usually use BatchNorm (Ioffe & Szegedy, 2015), following most MPNNs, or LayerNorm (Ba et al., 2016),
following Transformers in other domains (Vaswani et al., 2017; Dosovitskiy et al., 2020). Here, we show that a LayerNorm
removes degree information, which motivates our choice of BatchNorm in our Transformer.

Proof of Proposition 3.3. As noted by Corso et al. (2020), the output representation for a node i from a sum-aggregator
can be viewed as xsum

i = di · xmean
i where di ∈ R is the degree of node i and xmean

i = [xi1, . . . xiF]
⊤ ∈ RF is the node

representation from a mean-aggregator. The layer normalization statistics for a node i over all hidden units are computed as
follows:

µsum
i =

1

F

F∑
j=1

xsum
ij =

1

F

F∑
j=1

di · xmean
ij =

di
F

F∑
j=1

xmean
ij = di · µmean

i

σsum
i =

√√√√ 1

F

F∑
j=1

(xsum
ij − µsum)2 =

√√√√d2i
F

F∑
j=1

(xmean
ij − µmean)2 = di · σmean

i

(14)

Therefore, regardless of the elementwise affine transforms shared by all nodes, each element of the normalized representation

x̃sum
ij =

(xsum
ij − µsum

i)

σsum
i

=
(di · xmean

ij − di · µmean
i)

di · σmean
i

=
(xmean

ij − µmean
i)

σmean
i

= x̃mean
ij , ∀i ∈ V,∀j = 1, . . . , F, (15)

will be the same for both sum-aggregation and mean-aggregation.

The same conclusion can be seen for degree scalers, by simply changing di to f(di) in the proof, where f : R → R>0.

17

