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Abstract
It has become standard to solve NLP tasks by
fine-tuning pre-trained language models (LMs),
especially in low-data settings. There is minimal
theoretical understanding of empirical success,
e.g., why fine-tuning a model with 108 or more
parameters on a couple dozen training points does
not result in overfitting. We investigate whether
the Neural Tangent Kernel (NTK)—which origi-
nated as a model to study the gradient descent dy-
namics of infinitely wide networks with suitable
random initialization—describes fine-tuning of
pre-trained LMs. This study was inspired by the
decent performance of NTK for computer vision
tasks (Wei et al., 2022). We extend the NTK for-
malism to Adam and use Tensor Programs (Yang,
2020b) to characterize conditions under which the
NTK lens may describe fine-tuning updates to pre-
trained language models. Extensive experiments
on 14 NLP tasks validate our theory and show
that formulating the downstream task as a masked
word prediction problem through prompting often
induces kernel-based dynamics during fine-tuning.
Finally, we use this kernel view to propose an ex-
planation for the success of parameter-efficient
subspace-based fine-tuning methods.1

1. Introduction
It is now customary to solve most supervised natural lan-
guage processing (NLP) tasks such as topic classification
and textual entailment by fine-tuning a pre-trained language
model (e.g., (Devlin et al., 2019; Liu et al., 2020b; Clark
et al., 2020; Raffel et al., 2020; Joshi et al., 2020)). We lack
theoretical understanding of this fine-tuning paradigm. Why
do we not see over-fitting when fine-tuning a very large
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language model using a couple dozen instances of the super-
vised task? Why is fine-tuning so sensitive to details such
as whether or not we include a prompt (e.g., adding “It was
[great/terrible]” for sentiment analysis (Schick & Schütze,
2021; Gao et al., 2021)? Why does restricting optimiza-
tion to a low-rank subspace of model parameters (Hu et al.,
2021; Li et al., 2018; Aghajanyan et al., 2021) still result
in performance comparable to full fine-tuning? Answering
such questions requires understanding how the sequence of
parameter updates changes in various scenarios, e.g., the
addition of a prompt, or the introduction of randomly ini-
tialized parameters. The current theory of deep learning, at
first sight, seems too primitive to address such questions,
especially since fine-tuning has to start from a parameter
initialization inherited from pre-training.

Recently, Wei et al. (2022) suggested replacing fine-tuning
with Neural Tangent Kernel (NTK), an idea invented for the
study of infinite-width deep neural networks (Jacot et al.,
2018; Du et al., 2019a) and previously applied to solving
vision tasks with infinitely wide ConvNets (Arora et al.,
2019b). They note that the NTK can be defined for any
neural model f and any initialization θ0 by representing an
input ξ by the gradient it induces ∇f(ξ; θ0), which yields a
kernel matrix:

K(ξ, ξ′) = ⟨∇f(ξ; θ0),∇f(ξ′; θ0)⟩. (1)

This kernel is well-defined for any parameter vector θ0.
However, for an infinite-width network initialized with θ0
sampled from a suitably-scaled Gaussians, it can be shown
that the kernel matrix is unchanged during gradient descent,
which turns the classification task into a form of kernel
regression with respect to this kernel (Jacot et al., 2018).
In the fine-tuning setting, however, the initialization θ0 is
inherited from the pre-trained network, and not sampled
from the Gaussian distribution. Nevertheless, (Wei et al.,
2022) found that kernel regression using this “empirical
NTK” (eNTK) defined with the inherited θ0 performs well,
achieving classification accuracy within 6% absolute of ac-
tual fine-tuning on several image recognition tasks. In other
words, their work hints that mathematical understanding
of the fine-tuning phenomenon (e.g., its sample efficiency)
could go via the theory of kernel classifiers.

The current paper furthers an empirical and theoretical
understanding of the pre-training and fine-tuning (FT)
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paradigm for NLP tasks. Our contributions are:

1. We formally extend the standard NTK theory de-
veloped for gradient descent to characterize kernel-
based dynamics when training with Adam. We
propose and rigorously prove the correctness of a new
kernel formula relying on the sign of the gradient to
describe early-stage training (e.g., fine-tuning) with
Adam (Section 4).

2. We formally extend infinite-width analysis to ac-
count for a pre-trained initialization and character-
ize conditions under which fine-tuning can exhibit
kernel behavior. Using insights into the importance
of prompting, we formally prove the existence of a
rigorous mechanism through which prompt-based FT
of complex architectures (e.g., Transformers) can ex-
hibit kernel behavior (Section 5). Analysis proceeds
in the context of networks whose widths go to infinity
(i.e., through the Tensor Programs framework), but
unlike standard NTK theory, it allows a non-random
initialization (i.e., one that results from pre-training).

3. We perform an extensive empirical analysis on
14 diverse NLP tasks to reveal when and to what
extent fine-tuning exhibits kernel behavior. We
find that using a meaningful prompt is crucial for the
eNTK to achieve good performance, suggesting that
prompting induces a well-characterized optimization
benefit for fine-tuning. Further experiments reveal
that the trajectory of prompt-based FT can often be
described by kernel-based dynamics when the eNTK
succeeds (Section 6).

4. We straightforwardly apply the kernel view of FT
dynamics to formally analyze the success of fine-
tuning methods that update in a low-rank subspace
of model parameters (e.g., LoRA, (Hu et al., 2021)).
These results in Section 7 highlight how a kernel-
based understanding of FT can aid in the practical
design and theoretical analysis of efficient variants.

2. Related Work
Kernel view of training. The infinite-width limit is a
well-studied theoretical model for deep network optimiza-
tion. Jacot et al. (2018) introduced NTK to capture training
a deep and infinitely wide neural network from a random
initialization. Subsequent experiments showed that the ker-
nels underperformed for standard tasks (Arora et al., 2019b)
but performed well on small datasets (i.e., hundreds of ex-
amples) (Arora et al., 2020). Many works (Allen-Zhu et al.,
2019a;b; Arora et al., 2019a; Du et al., 2019b;a; Li & Liang,
2018; Zou et al., 2018; Cao & Gu, 2019) have since applied
this lens to understand the optimization and generalization

behavior of deep networks. However, such analyses do not
directly apply to the pre-training and fine-tuning framework
because (1) the network trained during FT is inherited and
non-random; and (2) LMs are often trained with Adam,
and the NTK formula only describes training an infinitely
wide network with SGD. In this work, we handle a non-
random (i.e., pre-trained) initialization by assuming that the
pre-training task is sufficiently related to the downstream
task (Definition 5.3), and we derive new kernels to model
early-stage training with Adam (Section 4).

Theory of self-supervised learning and transfer learning.
Several existing theoretical works on transfer learning study
the performance of linear probing on a representation to
provide guarantees on various tasks related to the original
training data (Du et al., 2021; Tripuraneni et al., 2020; Wu
et al., 2020). Chua et al. (2021) show that regularized fine-
tuning in a meta-learning setting exhibits kernel behavior if
the pre-training and downstream tasks are closely related.
Along similar lines, Mu et al. (2020); Maddox et al. (2021);
Achille et al. (2021) suggest through experiments and theory
that gradient-based features, corresponding to a lineariza-
tion of fine-tuning, can perform well on visual downstream
tasks. We characterize when kernel dynamics describe fine-
tuning a pre-trained masked language model on downstream
language understanding tasks.

Saunshi et al. (2021) study autoregressive language models
to rigorously characterize why prompting can improve zero-
shot task performance, but their analysis precludes an inves-
tigation of FT. We focus on the masked language model pre-
training objective, but it is worth noting that there are many
works (Saunshi et al., 2019; Tosh et al., 2021a;b; Lee et al.,
2021; Tsai et al., 2021) studying transfer when pre-training
with a contrastive objective. However, experiments on lan-
guage modeling (Abnar et al., 2021) and contrastive learning
(Saunshi et al., 2022) recently demonstrated that properties
of transfer between self-supervised pre-training and super-
vised FT cannot be fully captured by model-agnostic analy-
ses that directly relate the pre-training and downstream task
errors. Kernel theory provides a principled optimization-
and architecture-aware framework to analyze FT.

Optimization of Transformers. Several works (Zhang
et al., 2020; Liu et al., 2020a; Li et al., 2022) have
documented issues with optimizing Transformer-based
architectures with SGD instead of Adam. To study the
unique properties of optimizing transformers with Adam,
we derive a new kernel formula (Theorem 4.3) to capture
early-stage training with Adam. Table 2 compares the
performance of this kernel to FT with Adam and SGD.

Variants of fine-tuning methods. A standard way of fine-
tuning pre-trained LMs as introduced in (Radford et al.,
2018; Devlin et al., 2019) is to add a linear classifier on
top of a pre-trained encoder and update all the parameters
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together. Subsequent work (Schick & Schütze, 2021; Gao
et al., 2021) formulated downstream tasks as a language
modeling problem (i.e., prompt-based FT) and demonstrated
empirical success in low-data scenarios (see Liu et al. (2022)
for a comprehensive survey). Another line of research stud-
ies parameter-efficient fine-tuning methods in which only a
subset of model parameters are updated (Lester et al., 2021;
Ben Zaken et al., 2022; Li & Liang, 2021) or the parameters
updates are restricted to a low-dimensional subspace (Hu
et al., 2021; Aghajanyan et al., 2021). We show that good
eNTK performance arises only when studying prompt-based
FT in Section 6 (Figure 1) and we later show in Section 7
that subspace-based FT methods such as LoRA (Hu et al.,
2021) have a simple interpretation through the kernel.

3. Preliminaries
3.1. Pre-Training and Fine-Tuning Paradigm

We focus our attention on masked language models (MLMs),
such as BERT (Devlin et al., 2019) and RoBERTa (Liu et al.,
2020b), which are trained to minimize the cross-entropy
loss on independently predicting masked tokens (i.e., a |V|-
way classification task, where V is the vocabulary). Given
a text input s of length T from the pre-training distribution
SPT, replace a small percentage (e.g., 15%) of tokens with
[MASK] tokens. This masked input is then fed into the
representation function h : SPT → T × Rn (e.g., a Trans-
former encoder) to produce a low-dimensional contextual
embedding for each position in the input. The contextual
embeddings are independently multiplied by a classifier
head (i.e., word embeddings) Φ ∈ Rn×|V| to produce logits
that will be used to compute the probability of a token filling
each masked position.

Using a pre-trained model to solve downstream tasks effec-
tively has been a highly active area of research. We focus
on fine-tuning (FT) methods, which adapt the pre-trained
model to a new input distribution SFT using additional train-
ing on the C-way downstream classification task.

1. Standard FT (Devlin et al., 2019; Liu et al., 2020b):
To solve a C-way downstream classification task, ini-
tialize and learn2 a new classifier head Γ : Rn → RC

on top of the contextual [CLS] embedding, denoted
h[CLS]. In this case, the model output f : SFT → RC

for the eNTK construction is f(s) = Γ(h[CLS](s)).

2. Prompt-based FT (Schick & Schütze, 2021; Gao

2In our experiments, Standard FT corresponds to initializing Γ
at the linear probing solution (i.e., training Γ on the downstream
task while freezing all other layers) and then performing FT. We
do this because when FT exhibits kernel behavior (Definition 3.2),
it finds solutions close to initialization, and we hypothesize that
the Γ learned during FT is closer to the linear probing solution
than a random initialization.

et al., 2021): Add a natural language prompt (e.g.
“This is [MASK].”) in addition to the downstream
task input, and use the pre-trained MLM to fill in the
masked token. Compute the logits over task-relevant
words (e.g., “great” and “terrible”) using the corre-
sponding columns of Φ, denoted Φ̃ ∈ Rn×C . These
logits will serve as surrogates to solve the downstream
task. In this case, the model output f : SFT → RC for
the eNTK construction is f(s) = Φ̃⊤h[MASK](s).

3.2. Kernel Behavior

We consider a neural network f(ξ; θ) that takes input ξ
and computes a scalar output3 using θ as the parameters.
Gradient-based updates to the model parameters involve
computing a loss function ℓ and ∂ℓ

∂θ , which can be decom-
posed by the chain rule as ∂ℓ

∂f
∂f
∂θ . The first term is defined as

the output derivative (Definition 3.1), and the second term
is used to define kernel behavior (Definition 3.2).

Definition 3.1 (Output Derivative). The output derivative
χ(ξ, y, θ) for a network f with parameters θ, loss func-
tion ℓ, and input ξ with label y is defined as χ(ξ, y, θ) =
∂ℓ(f(ξ;θ),y)

∂f . We also define the output derivative applied at
time t as χt = χ(ξt, yt, θt−1), where ξt is the input at time
t with label yt. For ease of notation, we often absorb y into
ξ and write χ(ξ, θ) and χ(ξ, f) interchangeably.

Below, we adapt the definition of kernel-based learning
(i.e., lazy regime in Woodworth et al. (2020)) to an arbitrary
initialization.

Definition 3.2 (Kernel Behavior). Let θt be the parameters
after t steps of training by a gradient-based optimization
algorithm, and let ξ be an arbitrary fixed input. We say
this training process of the network demonstrates kernel
behavior if the following properties are satisfied.

1. Linearization: The change of the network can be well-
approximated by its first order Taylor expansion, i.e.,

f(ξ; θt)− f(ξ; θt−1) ≈ ⟨∇f(ξ; θt−1), θt − θt−1⟩;

2. Fixed Features: The gradient at step t is approxi-
mately the same as before training, i.e.,∇f(ξ; θt) ≈
∇f(ξ; θ0).

∇f denotes the gradient of f w.r.t. θ. “Closeness to kernel
behavior” is quantified using the difference in the quanti-
ties on the two sides of the ≈ symbol. We formalize the
approximations in Definition C.3.

3Note that for C-way classification, f outputs a vector in RC .
We say f exhibits kernel behavior if the Linearization and Fixed
Features properties hold for every component of f . The subsequent
definition of a kernel analog also generalizes to a vector output,
where νt is a vector in RC and K(A)(ξ, ξt) is a matrix in RC×C .
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Past work has shown that if gradient-based training exhibits
kernel behavior, then the function change can be expressed
in terms of a fixed kernel (i.e., the kernel analog).

Definition 3.3 (Kernel Analog). Suppose optimization of
the parameters θ of a model f using the gradient-based
update algorithmA exhibits kernel behavior (Definition 3.2).
Then, we say that a kernel K(A) is the kernel analog of the
optimization algorithm A if for every t > 0, there exists νt
such that for any input ξ,

f(ξ; θt)− f(ξ; θt−1) ≈ −νtK(A)(ξ, ξt) (2)

where ξt is the training input4 of step t, θt is the parameter
after step t.

We illustrate the connection between the kernel analog and
kernel behavior when using SGD. If SGD exhibits kernel
behavior, then, for a fixed input ξ, we can write

f(ξ; θt)− f(ξ; θt−1) ≈ ⟨∇f(ξ; θt−1), θt − θt−1⟩
= ⟨∇f(ξ; θt−1),−ηχt∇f(ξt; θt−1)⟩
≈ −ηχtK(SGD)(ξ, ξt)

where the approximations follow from the Linearization and
Fixed Features property, respectively, η is the learning rate,
χt is the output derivative (Definition 3.1), andK(SGD) is the
kernel analog of SGD with νt = ηχt. Notably, K(SGD) is the
well-known neural tangent kernel (NTK) formula derived
in (Jacot et al., 2018), which represents an input ξ as the
resulting gradient ∇f(ξ; θ0).
Definition 3.4 (Neural Tangent Kernel K(SGD)).
K(SGD)(ξ, ξ′) = ⟨∇f(ξ; θ0),∇f(ξ′; θ0)⟩

Given a kernel K, one can solve a classification task by
learning αi to minimize the empirical risk of

∑
i αiK(·, ξi),

where {ξi} is the training data (Appendix A). If training
exhibits kernel behavior and K is the kernel analog for the
optimizer, then solving the kernel regression problem is
equivalent to training the network (Jacot et al., 2018).

In Section 4, we derive the kernel analog for SignGD (i.e.,
an early-stage approximation of Adam), and in Section 6,
we compare its eNTK performance against Adam FT. The
eNTK computation relies on two design choices for the
setting: (1) what the model output f(ξ; θ) is, and (2) which
optimizer A is used. We choose f based on the FT setting
(Section 3.1) and A as SGD or Adam.

4. Kernel Derivation for Adam
Computing the eNTK requires using the kernel analog (Def-
inition 3.3) of the chosen optimization algorithm A. How-
ever, it is difficult to construct a long-term kernel analog for

4For simplicity, we assume the batch size is 1.

Adam, because the adaptivity causes each update to depend
on the entire gradient history. Previous work has shown that
in the early stages of training, full-batch (Ma et al., 2022)
and mini-batch (Malladi et al., 2022) Adam with a small
learning rate compute the moving averages for the moment
estimates in a small neighborhood, so the Adam update
reduces to coordinate-wise normalization on the gradient.
This optimization algorithm is called SignGD.

Definition 4.1 (SignGD). SignGD is a gradient-based opti-
mization algorithm that updates parameters as θt = θt−1 −
η sign(∇ℓt(ξt; θt−1)), where sign is applied element-wise.

In Table 10, we provide empirical evidence that fine-tuning
with SignGD yields comparable performance to Adam.5 We
define the sign-based kernel below and prove it to be the
correct kernel analog for SignGD.

Definition 4.2 (Asymmetric SignGD Kernel).
K(A-SignGD)(ξ, ξ′) = ⟨∇f(ξ; θ0), sign(∇f(ξ′; θ0)⟩.
Theorem 4.3 (Informal version of Theorem C.4). If a net-
work is trained with SignGD and exhibits kernel behavior
(Definition 3.2), then the training dynamics follow

f(ξ; θt)− f(ξ; θt−1) ≈ −η sign(χt)K(A-SignGD)(ξ, ξt),

where χt is the output derivative (Definition 3.1).

Proof sketch. The Linearization property in Definition 3.2
implies that

f(ξ; θt)−f(ξ; θt−1) ≈ ⟨∇f(ξ; θt), θt − θt−1⟩
= −η sign(χt)⟨∇f(ξ; θt), sign(∇f(ξt; θt−1))⟩.

Then, by the Fixed Features property in Definition 3.2,

⟨∇f(ξ; θt), sign(∇f(ξt; θt−1))⟩ ≈
⟨∇f(ξ; θ0), sign(∇f(ξt; θ0))⟩ = K(A-SignGD)(ξ, ξt).

We solve the asymmetric kernel regression as suggested in
He et al. (2022), but the difficulties of solving the kernel re-
gression problem with an asymmetric kernel (Appendix A.3)
motivate us to also use the symmetric SignGD kernel.

Definition 4.4 (SignGD Kernel). K(SignGD)(ξ, ξ′) =
⟨sign(∇f(ξ; θ0)), sign(∇f(ξ′; θ0))⟩

Unlike the standard NTK formula for SGD, the kernel ana-
log for Adam uses the sign function because early-stage
Adam dynamics are agnostic to the scales of the gradients.
Concurrent work in Littwin & Yang (2023) more formally
extends the Tensor Programs framework and finds that no
kernel can describe general (e.g., late-stage) Adam training
when batch size is large.

5Sign-based optimizers have also shown success in vision
tasks (Chen et al., 2022).
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5. Theory: Prompt-Based Fine-Tuning Can
Exhibit Kernel Behavior

We give a plausible mechanism for how prompt-based FT
can exhibit kernel behavior (Definition 3.2) as the network
width grows large. We start by formalizing how changing
the architecture width impacts pre-training.

Definition 5.1 (Pre-Training Scheme). A pre-training
scheme (X ,A,Fn) with width n contains the dataset X ,
optimizer A and its hyperparameters, and a model architec-
ture Fn. Let fn ∼ (X ,A,Fn) denote a model resulting
from training the architecture Fn on the dataset X with
optimizer A.

Remark 5.2. The reliance of the architecture on the width is
given by Tensor Programs (Yang, 2020a): for example, in a
Transformer, n corresponds to the embedding dimension.

We now connect pre-training to the downstream task. Anal-
ogous to Saunshi et al. (2021), we reason that prompting
transforms the downstream task into a fill-in-the-blank prob-
lem, and thus the downstream task can be viewed as a sub-
case of the pre-training task. We then assume that a wider
pre-trained network will be better at filling in masked tokens
and that an infinitely wide pre-trained network can solve the
downstream task perfectly when using a suitable prompt.

Definition 5.3 (Natural Task in the Infinite-Width Limit). A
downstream task Ξ is natural with respect to a pre-training
scheme (X ,A,Fn) if, for any pre-trained model fn ∼
(X ,A,Fn) and any downstream example (ξ, y) ∈ Ξ,

lim
n→∞

χ(ξ, y, fn) = 0. (3)

where χ is the output derivative (Definition 3.1).

Remark 5.4. Experiments in Section 6 and Appendix B.2
suggest that the FT optimization dynamics depend on the
choice of prompt. In the above notation, the prompt is
included in the downstream task dataset Ξ. Only tasks with
a well-suited prompt can be natural in the infinite-width
limit. Tasks solved by FT using a randomly initialized head
cannot satisfy the condition since χ will not vanish even for
an infinitely wide pre-trained network at start of FT.

Although Definition 5.3 is asymptotic, we design a cheap
empirical test using two models of different widths n1 ̸=
n2 and same depth resulting from otherwise identical
pre-training schemes: fn1 ∼ (X ,A,Fn1) and fn2 ∼
(X ,A,Fn2). We measure if χ decreases with width for
every downstream example (ξ, y) ∈ Ξ without making any
gradient updates. This is necessary but not sufficient for
the task to be natural in the infinite-width limit. See Ap-
pendix B.1.

To study the behavior of FT, one also needs to make as-
sumptions about parameters that resulted from pre-training.

We assume that the network can be written as a Tensor Pro-
gram (Yang, 2019; 2020a;b), which is sufficiently general
to allow our theory to describe many complex architectures
(e.g., Transformers). To allow the analysis to proceed by
way of Tensor Programs, the network must be (1) stable:
its output does not grow with width (i.e., the infinite-width
limit is meaningful), and (2) non-trivial: its output can be
updated during fine-tuning (i.e., learning can occur).

Theorem 5.5 (Informal version of Theorem C.5). Assume
the downstream task Ξ is natural in the infinite-width limit
with respect to a pre-training scheme (X ,A,Fn), and the
model f ∼ (X ,A,Fn) is stable, non-trivial, and can be
written as a Tensor Program. Then prompt-based FT of f
will exhibit the Linearization and Fixed Features properties
of kernel behavior (Definition 3.2).

The theorem formalizes the intuition that if the pre-trained
network is already decent at solving the downstream task,
the network needs to only mildly adapt to solve the down-
stream task. Notably, we extend standard NTK theory to
account for an arbitrary initialization and to characterize
early-stage training with Adam using results from Section 4.

Our theoretical results in this section and Section 4 apply to
autoregressive and masked language models (MLMs), but
we limit our fine-tuning experiments to MLMs as they are
known to perform better after fine-tuning.

6. Experiments
We compute the eNTK as described in Section 3 for differ-
ent optimization algorithms and FT settings. eNTK perfor-
mance being comparable to FT performance is a necessary
but not sufficient condition for FT to exhibit kernel behavior
(Definition 3.2), so we also directly measure if the Lin-
earization and Fixed Features properties hold (Section 6.2).
If the eNTK can solve the task, then eNTK regression pro-
vides an alternate method6 to use the pre-trained model to
solve a downstream task, but the kernel lens only admits
a theoretical analysis of FT optimization dynamics if both
properties of kernel behavior are satisfied (Definition 3.2;
see Section 6.2). For tasks that the eNTK cannot solve,
we conjecture that the prompt is not well-designed for the
task (in the sense of Definition 5.3), forcing the pre-trained
model to adapt more during FT.

Our experiments are in the few-shot setting with manual
prompt templates from Gao et al. (2021). We consider 14
NLP tasks, divided into 8 single sentence and 6 sentence pair
datasets, which cover: sentiment analysis (SST-2, SST-5,

6The eNTK is not as susceptible to noisy gradients as FT is,
because the learned kernel coefficients can downweight anomalous
examples. This stability sometimes allows the kernel to outper-
form FT, especially in the few-shot setting (see MR and Subj in
Table 2a).
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Task SST-2 SST-5 MR CR MPQA Subj TREC AG News MNLI SNLI QNLI RTE MRPC QQP

Task type ———— sentiment ———— polarity subj. —— topic clf. —— ————- entailment ———— – para. detect. –
Num. classes C 2 5 2 2 2 2 6 4 3 3 2 2 2 2

SGD vs. K(SGD): 16-shot

eNTK solves task                       #       #####      #  ##  ####    #           #    

Linearization      #              ## ##      #####         #    ## ## ##   #      #    ##

Fixed Features                               #####     #                               

⇒ Kernel behavior      #              #####      #####     # #  ##  #### ## ##   #      # #  ##

SGD vs. K(SGD): 64-shot

eNTK solves task                               #####      ## # #####    #                

Linearization         #           ###    ## #####      ##### ##### # # #  ##   # ## #  # 

Fixed Features                               #####    #                      #        

⇒ Kernel behavior         #           ###    ## #####    # ##### ##### # ###  ##   # ## #  # 

Adam vs. {K(SignGD),K(A-SignGD)}: 16-shot

eNTK solves task         #             #       #####          # ## ##    #            ##  

Linearization        #     #      ##  #      ##### # ### # ### # ### ##   #       ##    # 

Fixed Features                                     #                                 

⇒ Kernel behavior        ##    #      ### #      ##### ##### # ### ##### ## # ##      ##  ### 

Adam vs. {K(SignGD),K(A-SignGD)}: 64-shot

eNTK solves task                               ### #      # #  ##### ## ##            #   

Linearization         #           ###     # ##### ##  # #  ## ##### #   #  # #       #   

Fixed Features                                                                       

⇒ Kernel behavior         #           ###     # ##### ##  # # ### ##### ## ##  # #       # # 

Table 1. We find that 8 out of 14 tasks consistently induce kernel behavior across 5 subsampled datasets. Each dot represents a seed (i.e. a
different k-shot dataset). A green dot indicates that the seed satisfies the criterion, and a red circle indicates that it does not. We say the
eNTK solves the task if the kernel analog achieves at least 90% of the fine-tuning performance. We say that the Linearization property
holds if the linearized model improves the pre-trained model by at least 50% of the amount that fine-tuning improves it. We say that Fixed
Features is satisfied if the average element-wise distance between the kernels before and after fine-tuning are less than 2.0. The formal
definition of kernel behavior (Definition 3.2) does not prescribe measurable numerical thresholds for these properties, so we selected them
manually for ease of presentation. We urge readers to examine the data in Table 2 and Figure 2 directly for a more nuanced view.

MR, CR); classifying an opinion’s polarity (MQPA) or sub-
jectivity (Subj) or question type (TREC) or news topic (AG
News); natural language inference (MNLI, SNLI, QNLI,
RTE); and paraphrase detection tasks (MRPC, QQP). For
each task, we randomly sample 5 k-shot datasets with k
training examples for each label. We show experiments for
k ∈ {16, 64} using a pre-trained RoBERTa-base (Liu et al.,
2020b) for all FT and eNTK experiments. We consider
K(SignGD) and K(A-SignGD) as kernel analogs for Adam. See
Appendix A for more details and experiments on k = 512.

We summarize our results in Table 1. We find that the
eNTK can consistently solve 12 out of 14 tasks comparably
to prompt-based fine-tuning, out of which 8 induce kernel
behavior during fine-tuning. Our results show that FT opti-
mization dynamics depend on the downstream task and the
inclusion of a meaningful prompt.

6.1. Kernel Performance on Downstream Tasks

Prompting is critical for eNTK to match FT perfor-
mance. We measure the eNTK performance in the stan-
dard and prompt-based FT settings across SST-2, MR, CR,
QNLI, QQP and RTE (Figure 1 and Table 6). In the standard
FT setting, K(SGD) and SGD-FT demonstrate a gap of up

to 16% absolute on tasks that exhibit only a 3% gap in the
prompt-based setting. Table 6 demonstrates that the inclu-
sion of more data improves the eNTK performance in the
unprompted setting, but kernels computed with a prompt
consistently outperform the standard ones. We explore the
importance of the choice of prompt format in Appendix B.2.
These results agree with our theoretical analysis that tasks
must use a meaningful prompt in order to induce kernel
behavior (Definition 5.3).

SGD performs comparably to Adam in prompt-based
FT. Table 2 shows that Adam and SGD perform within
4% absolute of each other when using a prompt, suggesting
that known difficulties in optimizing transformers with SGD
(Li et al., 2022; Zhang et al., 2020; Liu et al., 2020a) do not
play a substantial role during prompt-based FT. Indeed, we
expect that the benefit of Adam over SGD is reduced when
the task is simple enough to induce kernel behavior.

Prompt-based eNTK matches FT in most tasks. We
compare SGD-FT to K(SGD) and Adam-FT to K(A-SignGD)

in Table 2. We observe that for 10 out of 14 tasks, the
kernel analog can achieve accuracy within 10% of the cor-
responding FT performance for k = 16 and k = 64. The
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k-shot Method SST-2 SST-5 MR CR MPQA Subj TREC AG News

16 SGD-FT 89.0(1.5) 44.6(1.4) 83.2(2.4) 93.3(0.2) 83.3(1.3) 88.5(2.6) 80.3(7.2) 84.2(1.1)

K(SGD) 88.3(0.3) 43.6(2.2) 84.7(1.5) 93.2(0.9) 76.4(2.7) 88.6(1.3) 56.0(9.2) 82.1(2.0)

Adam-FT 88.3(1.2) 45.4(2.6) 81.3(6.1) 93.0(1.6) 82.8(2.2) 87.4(2.1) 79.6(6.1) 84.0(1.6)

K(SignGD) 88.3(0.5) 42.2(3.9) 84.3(1.5) 93.7(0.5) 76.7(3.3) 89.2(2.0) 58.1(6.5) 82.3(1.6)

K(A-SignGD) 88.3(0.4) 43.7(1.7) 84.9(1.1) 93.4(0.5) 74.6(3.5) 88.6(1.8) 22.7(2.8) 83.6(1.0)

64 SGD-FT 89.7(0.4) 45.8(2.1) 85.6(1.1) 94.3(0.5) 84.8(0.8) 92.9(0.5) 93.2(1.0) 86.8(0.7)

K(SGD) 89.2(1.0) 46.0(1.3) 86.4(0.6) 93.7(0.4) 81.2(0.9) 91.4(0.7) 77.8(2.3) 85.6(0.7)

Adam-FT 89.3(0.7) 48.5(2.0) 86.0(0.4) 93.7(0.8) 84.6(0.9) 92.7(0.6) 92.6(1.3) 86.8(1.1)

K(SignGD) 89.1(0.5) 49.1(1.6) 85.6(1.0) 93.9(0.2) 79.0(5.8) 92.4(0.5) 82.0(1.4) 85.9(0.7)

K(A-SignGD) 88.9(0.9) 43.6(2.2) 85.6(1.0) 94.0(0.3) 81.8(1.1) 91.8(1.1) 21.0(4.3) 86.2(0.3)

(a) Single-sentence tasks

k-shot Method MNLI SNLI QNLI RTE MRPC QQP

16 SGD-FT 59.2(2.7) 65.7(2.7) 62.1(3.1) 60.0(5.5) 73.9(2.7) 62.1(2.3)

K(SGD) 53.0(3.0) 57.8(2.3) 60.1(3.3) 60.0(4.7) 73.4(5.6) 58.2(0.9)

Adam-FT 56.8(2.9) 64.6(4.1) 63.1(3.5) 57.6(6.3) 77.6(3.1) 61.8(4.5)

K(SignGD) 53.8(1.2) 54.9(2.7) 59.5(3.1) 55.4(4.2) 75.6(1.2) 60.7(2.2)

K(A-SignGD) 51.9(4.0) 54.9(3.1) 56.0(1.9) 59.8(4.0) 75.2(2.6) 59.4(2.0)

64 SGD-FT 68.7(1.7) 77.3(0.9) 72.8(2.2) 68.9(2.5) 82.8(1.2) 69.2(1.3)

K(SGD) 60.4(1.8) 65.5(1.6) 67.3(1.6) 66.5(2.5) 79.2(2.5) 66.4(1.7)

Adam-FT 67.9(1.0) 76.9(1.4) 74.2(3.2) 67.3(2.7) 80.9(1.2) 69.8(0.6)

K(SignGD) 60.8(1.7) 64.1(2.3) 65.4(1.7) 63.8(1.8) 77.4(2.3) 63.7(4.4)

K(A-SignGD) 58.5(1.7) 66.8(1.1) 66.5(1.1) 63.8(2.2) 77.3(2.0) 66.1(3.4)

(b) Sentence-pair tasks

Table 2. Prompt-based FT and prompt-based eNTK performance with different formulas on the LM-BFF test set (Gao et al., 2021). The
kernel analog performs comparably to FT on many tasks but fails if the prompt is poorly designed (i.e., MPQA, TREC, SNLI, and MNLI).
Performance is measure by average test accuracy over 5 k-shot splits for all tasks except MRPC and QQP, where it is F1.

difference between K(SignGD) and K(A-SignGD) is negligible
on most tasks, but the non-standard solver for the asym-
metric problem (Appendix A.3) may cause K(A-SignGD) to
sometimes perform worse than K(SignGD) despite being the
theoretically sound kernel analog (Theorem 4.3).

6.2. Measuring Kernel Behavior

The eNTK can often solve the task comparably to fine-
tuning (Table 2), suggesting that these tasks may induce
kernel behavior (Definition 3.2). However, the observed
success only indicates that the gradient features can solve
the downstream task and does not directly study the opti-
mization dynamics. We take additional measurements to
provide further empirical evidence that FT can be described
by kernel behavior. The approximations in Definition 3.2
involve constants depending on the dataset and model archi-
tecture, so we set manual thresholds for our results.

The Linearization property holds for all tasks the eNTK
can solve. If FT exhibits kernel behavior (Definition 3.2),
then the function after FT should be close to the first order

Taylor expansion around the pre-trained model:

f(ξ; θFT) ≈ f(ξ; θPT) + ⟨∇f(ξ; θPT), θFT − θPT⟩

where θPT is the model parameters after pre-training, θFT is
the model parameters after fine-tuning on the downstream
task, and ξ is sampled from the test set. Figure 2 summarizes
how this linearized model performs in comparison to the
pre-trained and fine-tuned models.

Pre-trained models perform significantly better than random
on many single-sentence downstream tasks (e.g., SST-2,
MR, and CR) but close to random on most sentence-pair
tasks (e.g., QNLI, RTE, MRPC, and QQP).7 The linearized
model recovers more than 50% amount of the improvement
from FT for all tasks the eNTK could solve (Table 2).

The Fixed Features property holds for all tasks the eNTK
can solve. We empirically test if the Fixed Features prop-
erty (Definition 3.2) holds for tasks that the eNTK can solve
by measuring the relative distance between K(SGD) com-
puted before and after FT (Table 7). Tasks that the eNTK

7Subj, MNLI, and SNLI are outliers to this trend.

7



A Kernel-Based View of Language Model Fine-Tuning

SST-2 SST-5 MR CR MPQA Subj TREC AG News MNLI SNLI QNLI RTE MRPC QQP
−15

−10

−5

0
∆ in performance between SGD and K(SGD)

Standard
Prompt-based

Figure 1. The performance difference between SGD-FT and K(SGD) performance for both the standard and the prompt-based setting
(Section 3) suggests that using a prompt is important for kernel behavior (Definition 3.2) to arise. In standard FT, we initialize the new
classification head (i.e., Γ) using the linear probing solution. The performance is shown for the 64-shot setting and measured by the
average test accuracy over 5 random splits, except for MRPC and QQP, where it is F1. Results on additional settings are in Table 6.

can solve exhibit low (i.e., less than 2) distances, indicating
the Fixed Features property likely holds.

Entailment tasks exhibit anomalous optimization charac-
teristics. Although pre-trained models perform much bet-
ter than random on MNLI and SNLI, we find that the eNTK
cannot solve these tasks very well (Table 2 and Figure 2).
Similarly, although the pre-trained model demonstrates near-
random performance on QNLI and RTE, we find that the
eNTK can solve these tasks. Moreover, although QNLI and
RTE could sometimes be solved by the eNTK, the results
suggest they do not induce the Linearization property of
kernel behavior very strongly. Altogether, these findings
suggest a deeper mystery around the fine-tuning dynamics
when solving entailment tasks.

6.3. Tasks without Kernel Behavior

TREC, MNLI, SNLI, QNLI, and MPQA consistently do not
induce kernel behavior (Table 1).8 Our theoretical analysis
suggests that when the prompt and label words do not format
the task as a subcase of pre-training, then the task will not
be natural in the infinite-width limit (Definition 5.3) and
hence will not induce kernel behavior.

Considering the prompt templates shown in Appendix A.1,
we suggest that the TREC prompt (simply a colon) provides
insufficient signal to the model to perform question type clas-
sification. For MNLI and SNLI, we observe that connecting
the premise and hypothesis with the label word “Maybe”
for neutral examples results in ungrammatical sentences.
Analogously, for QNLI, we note that the premise is often a
question without a clear yes or no answer, so the label words
are unnatural to place between the premise and hypothesis.
The prompt used for sentiment and polarity tasks is designed

8The eNTK can consistently solve AG News although
Adam-FT does not exhibit kernel behavior. This finding suggests
that our theory holds for the prompt used with AG News, but the
grid search over learning rates results in FT that does not exhibit
kernel behavior. In particular, the success of the eNTK suggests
the task can be solved with a very small learning rate, but the FT
trajectory achieving the best performance uses a larger learning
rate and thus exhibits more complex dynamics.

to follow a complete sentence or substantial phrase, so it is
less natural when used with MPQA examples, which are
often only one or two words. See Appendix B.2 for prompt
ablations.

7. Efficacy of Subspace-Based Fine-Tuning
Methods

We study subspace-based fine-tuning methods, which apply
updates to only a low-dimensional subspace of the high-
dimensional model parameter space during fine-tuning. Al-
though theoretical analysis of these methods seems complex,
the kernel view admits a simple interpretation. We directly
apply the Johnson-Lindenstrauss (JL) lemma in Johnson
(1984), which guarantees inner product preservation un-
der random projections, to suggest why LoRA (Hu et al.,
2021) works. Similar analysis yields results on parameter-
subspace FT methods used to study intrinsic dimension (Li
et al. (2018); Aghajanyan et al. (2021), see Appendix D).

Definition 7.1 (A-LoRA FT (Hu et al., 2021)). Let A be
a gradient-based optimization algorithm. For every weight
matrix W ∈ Rm×n, choose k ≪ m and initialize B ∈
Rm×k with i.i.d. zero-mean Gaussian values and A ∈ Rk×n

as 0. Set the weight to be W +BA. To fine-tune, fix W at
its pre-trained value and train only A and B using A.

We show that if SGD FT exhibits kernel behavior, then
so does SGD-LoRA FT, and SGD-LoRA FT using a suffi-
ciently large k does not modify the kernel or the dynamics.

Theorem 7.2 (Informal version of Theorem D.5). Let
K(SGD) be the kernel analog (Definition 3.3) to SGD FT
and K(SGD)

LoRA be the kernel analog to SGD-LoRA FT on a
downstream task Ξ with N examples. Then, with high prob-
abililty, K(SGD)

LoRA (i, j) ≈ K(SGD)(i, j) for all i, j ∈ [N ].

Proof sketch. Consider an individual layer in the network
and a task input ξ ∈ Ξ. LoRA causes ∇Bf(ξ; θ) to be a
random projection of ∇W f(ξ; θ), where ∇B denotes the
gradient with respect to B, and ∇Af(ξ; θ) = 0 since B
is initialized to zero. The rest of the proof follows from
applying JL to all input pairs ξ, ξ′ to show the inner product
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(and thus, the kernel entry) is preserved.

Remark 7.3. Theorem 7.2 states that the kernel analog of
SGD-FT is unchanged by LoRA in both prompt-based and
standard FT. However, the theorem only provides an expla-
nation for the success of A-LoRA FT when A FT exhibits
kernel behavior. Therefore, as per Sections 5 and 6, we con-
sider this theorem to only be meaningful when considering
prompt-based SGD and prompt-based LoRA-SGD.

Table 12 verifies that prompt-based SGD FT and SGD-
LoRA FT achieve similar performance on several tasks,
and K(SGD)

LoRA achieves performance similar to K(SGD).

8. Conclusion
We use NTKs to mathematically formalize the general intu-
ition that fine-tuning pretrained language models to solve
downstream tasks requires only a “small change.” We derive
a new kernel to describe Adam training (Section 4) and we
use it in Section 5 to show how prompt-based fine-tuning can
exhibit kernel behavior. Extensive experiments in Section 6
on 14 NLU tasks demonstrate that including a meaningful
prompt often causes FT to exhibit kernel behavior (Figure 1)
and that kernel dynamics describe prompt-based FT on tasks
that the eNTK can solve (Section 6.2). We demonstrate one
possible use of the kernel view to explain empirical phenom-
ena by applying it to understand subspace-based fine-tuning
methods (Section 7), and we note that the kernel has many
mathematically useful properties that can aid design and
study of alternate fine-tuning methods.

Our work suggests that a kernel-based view of language
model fine-tuning is plausible, but there are several limita-
tions. First, our experiments are limited to few-shot clas-
sification tasks and a single masked language model with
specific prompts. Extending to additional settings (e.g., in-
creasing k) and models require significant computational
cost because the eNTK is expensive to compute. The the-
oretical results also apply only to “early-stage” training
with Adam, and it is not clear how well they can describe
longer training schemes; concurrent work in Littwin & Yang
(2023) suggests that the reduction of Adam to SignGD is
crucial to observe kernel dynamics. Nevertheless, our work
provides substantial empirical and theoretical evidence that
fine-tuning can be analyzed in terms of kernel behavior.

As a future direction, one can use the kernel analog to
study the inductive bias of FT, as was done for gradient
descent from a random initialization in the past (Allen-Zhu
et al., 2019b;a; Li & Liang, 2018). For example, several
works (Cao & Gu, 2019; Arora et al., 2019a; Wei et al.,
2022) have shown that the spectrum of the kernel can bound
the generalization ability of the trained network, giving
insight into why few-shot fine-tuning does not result in
catastrophic overfitting. Our experiments show some tasks

do not induce kernel behavior during FT, suggesting that
future theoretical analysis of FT needs to account for the
downstream task and choice of prompt.
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A. Experimental Details
A.1. Datasets and Prompts

Dataset C #Train #Test Type Prompt Label words
SST-2 2 67,349 872 sentiment <S1> It was [MASK] . {great, terrible}
SST-5 5 8,544 1,000 sentiment <S1> It was [MASK] . {great, good, okay, bad, terrible}
MR 2 8,662 1,000 sentiment <S1> It was [MASK] . {great, terrible}
CR 2 3,175 500 sentiment <S1> It was [MASK] . {great, terrible}
MPQA 2 8,606 1,000 opinion polarity <S1> It was [MASK] . {great, terrible}
Subj 2 8,000 1,000 subjectivity <S1> This is [MASK] . {subjective, objective}
TREC 6 5,452 500 question cls. [MASK] : <S1> {Description, Expression, Entity,

Human, Location, Number}
AG News 4 120,000 7,600 news topic <S1> This article is about [MASK] news. {world, sports, business, tech}
MNLI 3 392,702 1,000 NLI <S1> ? [MASK] , <S2> {Yes, Maybe, No}
SNLI 3 549,367 1,000 NLI <S1> ? [MASK] , <S2> {Yes, Maybe, No}
QNLI 2 104,743 1,000 NLI <S1> ? [MASK] , <S2> {Yes, No}
RTE 2 2,490 277 NLI <S1> ? [MASK] , <S2> {Yes, No}
MRPC 2 3,668 408 paraphrase <S1> [MASK] , <S2> {Yes, No}
QQP 2 363,846 1,000 paraphrase <S1> [MASK] , <S2> {Yes, No}

Table 3. The statistics and prompts of the datasets we used in our experiments. The choices of prompts are adapted from (Gao et al., 2021)
and include a template and a set of label words that can fill in the [MASK]token. <S1> and <S2> refer to the first and the second (if any)
input sentence.

Table 3 shows the set of downstream tasks, which are adapted from (Gao et al., 2021). We consider 8 single sentence
classification datasets (SST-2 (Socher et al., 2013), SST-5 (Socher et al., 2013), MR (Pang & Lee, 2005), CR (Hu & Liu,
2004), MPQA (Wiebe et al., 2005), Subj (Pang & Lee, 2004), TREC (Voorhees & Tice, 2000), and AG News (Zhang et al.,
2015)), and 6 sentence pair datasets (MNLI (Williams et al., 2018), SNLI (Bowman et al., 2015), QNLI (Rajpurkar et al.,
2016), RTE (Dagan et al., 2005; Bar Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009), MRPC (Dolan &
Brockett, 2005) and QQP9. Our datasets represent 6/8 datasets of the GLUE benchmark (Wang et al., 2019) (SST-2, MNLI,
QNLI, RTE, MRPC, QQP).

In contrast to (Gao et al., 2021), we add AG News as an additional multi-label classification task, and make two modifications
to the test sets. First, we split CR into 500 test examples and 3,175 training examples to ensure enough training examples
for our 512-shot experiments and secondly, we limit the test sizes to 1,000 examples to speed up kernel evaluations.

To generate k-shot few-shot datasets, the original training data is used to randomly sample k examples per label for training
and another, separate k examples per label for the validation set. Unless otherwise stated, we usually run experiments over 5
seeds of few-shot data sets. We directly use the ‘manual’ prompt templates and label words proposed by (Gao et al., 2021),
which are reproduced in Table 3. We do include any demonstrations in our prompts.

A.2. Computing the Kernel

We use functorch (He & Zou, 2021) to compute the eNTK for RoBERTa-base (125M parameters), using a mix of backward-
mode auto-differentiation for computing the jacobians and forward-mode auto-differentiation for computing jacobian-vector
products (Novak et al., 2022) . Note thatK(SignGD) cannot be computed via jacobian-vector products and requires substantially
more memory and run-time in practice.

A.3. Solving the Kernel

In the standard NTK setting, the initial output of the model f(·; θ0) contains no information about solving the task, because
θ0 is a random initiaization. However, in the prompted FT setting, we expect the pre-trained model to be able to solve
the downstream task well even before any fine-tuning occurs (see Table 5). So, we add the pre-trained model’s output to
the output from the kernel. Furthermore, we run a grid search over scaling the labels in order to take advantage of any
pre-existing knowledge the model has about the downstream task. In particular, the kernel regression is based on the ℓ2

9https://www.quora.com/q/quoradata/
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distance to the ground truth one-hot vector, but the pre-trained model outputs the logits which will be used for cross-entropy
loss. Scaling the one-hot vector by f0 helps align its scaling with the logits. Our hyperparameter grid for f0 can be found in
Table 4, where∞ corresponds to not using the pre-trained model logits when solving the kernel.

Solving Multi-Class Tasks There are several options for how to solve C-way classification tasks (C > 2). We perform
the most general one, which scales with C2. Each logit is treated as an independent output of the network, essentially scaling
the size N of the original dataset by a factor of C. With CN examples, the kernel now has shape CN × CN . The labels
are also scaled up to treat the multi-class problem as many binary classification problems. Solving the multi-class task this
way allows the kernel regression model to view relationships between different logits.

Symmetric Kernel Given a symmetric kernel K ∈ RN×N , we solve the kernel regression problem. In particular, we use
the representer theorem to write that the empirical risk minimizer of the loss can be expressed as a linear combination of the
kernel features computed on the train set.

h∗(·) = argmin
h∈HK

1

N

N∑
i=1

ℓ(h(xi), yi) ↔ h∗(·) =
N∑
i=1

αiK(·, xi)

for a given loss function ℓ. The symmetric SignGD and SGD kernels train αi via gradient descent to minimize a regularized
logistic loss on the downstream task. We search over a grid of regularization strengths chosen proportional to ∥K∥op, see
Table 4. For a test input x, the kernel outputs the prediction h(x) =

∑
i αiK(x, xi).

Asymmetric Kernel We write how to solve the kernel regression problem with an asymmetric kernel, developed in (He
et al., 2022), here. Consider the augmented linear system:[

I/γ H
H⊤ I/γ

] [
α
β

]
=

[
1
1

]
where Hij = yiϕs(xi)

⊤ϕt(xj)yj with ϕs and ϕt as the two different feature maps and yi as the label for the ith example.
In our setting, ϕs is the gradient of the datapoint, and ϕt is the sign of the gradient. Define ω∗ and ν∗ as

ω∗ =
∑
i

β∗
i yiϕt(xi)

ν∗ =
∑
i

α∗
i yiϕs(xi)

Solving this system yields two discriminant functions:

fs(x) = K(x,X)(β∗ ⊙ Y )

ft(x) = K(X,x)(α∗ ⊙ Y )

where K(xi, xj) = ⟨ϕs(xi), ϕt(xj)⟩.
We can thus create one discriminant function as cfs(x) + (1 − c)ft(x) where c ∈ [0, 1] is some hyperparameter. When
ϕs = ϕt, we see that fs = ft and we reduce to the standard kernel problem (though with repeated equations). Note that per
He et al. (2022), this system is only meaningful in terms of stationary points when training α and β using the least squares
loss.

We now leverage some specific knowledge about the NTK setting. In particular, we know that we should only use fs as the
predictor in order to correctly represent a new test input in the kernel analog for SignGD.

Hyperparameters and Implementation We follow (Gao et al., 2021) in using the few-shot validation set to search
over hyperparameters and finding the best hyperparameter per few-shot dataset. We use value ranges given by (Gao et al.,
2021) and (Hu et al., 2021), and search over a wider range of values for SGD. Table 4 shows the hyperparameter grids for
fine-tuning and the kernel method. We fine-tune without weight decay and a learning rate schedule with a linear decay and
no warmup.
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Experiment Hyperparameters Values

SGD FT Batch size {2, 4, 8} ×
Learning rate {1e−4, 5e−4, 1e−3, 5e−3, 1e−2}

SGD-LoRA FT Batch size {4, 16} ×
Learning rate {1e−4, 1e−3, 1e−2} ×

(rLoRA, αLoRA) {(8, 16)}
Adam FT Batch size {2, 4, 8} ×

Learning rate {1e−5, 2e−5, 5e−5}
Adam-LoRA FT Batch size {4, 16} ×

Learning rate {1e−5, 4e−5, 4e−4} ×
(rLoRA, αLoRA) {(8, 16)}

K(SGD), K(SignGD) Kernel regularization {0, 0.001, 0.01, 0.1, 1} ×
f0 scaling {10, 100, 1000, 10000,∞}

K(A-SignGD) Kernel regularization {0, 0.001, 0.01, 0.1, 1} ×
f0 scaling {10, 100, 1000, 10000,∞} ×

Kernel γ {0.01, 0.1, 1, 10} ×
Kernel c {1}

Table 4. The hyperparameter grids used in our experiments.

Gao et al. (2021) train for 1000 steps in the 16-shot setting, and validate the performance every 100 steps to take the best
checkpoints. As we consider varying values of k, we use the formula of training for 32kC steps and validating every 4kC
steps, where C is the number of classes in the dataset. This gives a comparable number of training and validation steps for
binary tasks in the 16-shot setting.

B. Additional Experimental Results
Tables 6 and 5 contain the numerical results corresponding to Figures 1 and 2 respectively, and also report results for k = 64.
Table 7 measures how well the Fixed Features property holds for different tasks. A smaller value suggests that the condition
for kernel behavior (Definition 3.2) is satisfied more strongly.

B.1. Solvable Task Experiments

We run a preliminary empirical test to verify if various tasks are solvable in the infinite-width limit (see Definition 5.3).
Intuitively, the assumption states that wider models (with all other architecture and pre-training hyperparameters fixed)
will solve the downstream task better in a zero-shot fashion, and in the limit, an infinitely wide model will solve the task
perfectly. The cheap empirical test involves measuring the average output derivative χ of the loss w.r.t. the model output
(see Definition 3.1 for a definition of χ) over the entire dataset for two models of different widths. We note that our paper
uses RoBERTa-base (n = 768) for experiments, so a natural choice for a wider model would be RoBERTa-large (n = 1024).
However, RoBERTa-large is also deeper than RoBERTa-base, and indeed, in general, it is difficult to find two publicly
available pre-trained models with different widths and fixed depth. We nevertheless present the table of χ values for several
downstream tasks measured on RoBERTa-base and RoBERTa-large in Table 8.

B.2. Robustness to Choice of Prompt

We explore different choices of prompt and label words in Table 9. When using the results of the prompt and label search
from Gao et al. (2021), we find that the kernel approximation matches fine-tuning well,. However, the choice of prompt does
matter and K(SGD) performs poorly with the minimal “null prompts” from Logan IV et al. (2022) on sentiment classification
datasets, where the prompt is merely “<S1> [MASK]” and the label words remain {great, terrible}. We hypothesize this
failure is because the task is no longer solvable in the infinite width limit (Definition 5.3).
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(a) SGD-FT

SST-2 SST-5 MR CR MPQA Subj TREC AG News MNLI SNLI QNLI RTE MRPC QQP0
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(b) Adam-FT
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Figure 2. Accuracies of zero-shot pre-trained model (PT), linearized model (Lin., see Definition 3.2) and fine-tuned model (FT). Tasks
that induce the Linearization property of kernel behavior (Definition 3.2) will show that Lin. performance recovers a substantial amount
of the performance of SGD-FT and Adam-FT respectively. We plot the median and range of the test accuracies across 5 seeds and data
splits for k = 64.

SST-2 SST-5 MR CR
k-shot Lin. FT Lin. FT Lin. FT Lin. FT

0 —— 79.0 —— —— 32.6 —— —— 71.9 —— —— 86.2 ——
16 87.5(1.3) 88.3(1.2) 41.8(4.1) 45.4(2.6) 84.3(1.8) 81.3(6.1) 93.3(0.6) 93.0(1.6)
64 88.6(0.4) 89.3(0.7) 42.9(2.2) 48.5(2.0) 85.0(0.2) 86.0(0.4) 94.0(0.5) 93.7(0.8)

MQPA Subj TREC AG News
k-shot Lin. FT Lin. FT Lin. FT Lin. FT

0 —— 68.2 —— —— 54.6 —— —— 27.4 —— —— 68.7 ——
16 75.6(3.1) 82.8(2.2) 82.9(4.7) 87.4(2.1) 30.4(7.2) 79.6(6.1) 57.8(18.3) 84.0(1.6)
64 75.6(2.3) 85.0(0.2) 78.9(14.0) 92.7(0.6) 31.2(13.0) 92.6(1.3) 67.5(12.2) 86.8(1.1)

(a) Single-sentence tasks.

MNLI SNLI QNLI
k-shot Lin. FT Lin. FT Lin. FT

0 —— 48.1 —— —— 49.8 —— —— 51.2 ——
16 43.6(6.4) 56.8(2.9) 47.2(9.3) 64.6(4.1) 57.5(2.3) 63.1(3.5)

64 55.1(4.8) 67.9(1.0) 56.9(5.7) 76.9(1.4) 60.4(5.3) 74.2(3.2)

RTE MRPC QQP
k-shot Lin. FT Lin. FT Lin. FT

0 —— 53.1 —— —— 41.7 —— —— 42.7 ——
16 55.4(6.7) 57.6(6.3) 57.7(11.6) 68.9(2.4) 57.5(10.3) 61.7(6.5)

64 59.6(2.9) 67.3(2.7) 64.2(2.2) 73.8(1.7) 61.7(9.4) 72.7(1.8)

(b) Sentence-pair tasks.

Table 5. Accuracies of pre-trained model (0-shot), linearized model (Lin., see Definition 3.2) and fine-tuned model (FT). Tasks that exhibit
the Linearization property of kernel behavior (Definition 3.2) during fine-tuning will show that Lin. performance recovers a substantial
amount of the gain in performance achieved by performing fine-tuning with Adam. Accuracies are averaged across 5 fine-tuning seeds for
each value of k and measured on the test set. This table corresponds to the bar chart in Figure 2b.
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k-shot Prompt Method SST-2 SST-5 MR CR MPQA Subj TREC AG News

16 Prompt SGD FT 89.0(1.5) 44.6(1.4) 83.4(2.5) 93.3(0.2) 83.3(1.3) 88.5(2.6) 80.3(7.2) 84.2(1.1)

K(SGD) 88.3(0.3) 43.6(2.2) 84.7(1.5) 93.2(0.9) 76.4(2.7) 88.6(1.3) 56.0(9.2) 82.1(2.0)

Adam FT 88.3(1.2) 45.4(2.6) 81.3(6.1) 93.0(1.6) 82.8(2.2) 87.4(2.1) 79.6(6.1) 84.0(1.6)

K(SignGD) 88.3(0.5) 42.2(3.9) 84.3(1.5) 93.7(0.5) 76.7(3.3) 89.2(2.0) 58.1(6.5) 82.3(1.6)

K(A-)SignGD) 88.3(0.4) 43.7(1.7) 84.9(1.1) 93.4(0.5) 74.6(3.5) 88.6(1.8) 20.7(4.2) 83.6(1.0)

Standard SGD FT 79.7(4.5) 36.1(3.7) 64.8(5.2) 86.6(2.6) 69.1(6.8) 89.2(0.7) 62.7(3.8) 82.3(0.4)

K(SGD) 62.3(6.4) 32.0(1.5) 61.2(4.0) 67.5(2.3) 62.7(2.3) 86.7(1.5) 58.7(6.0) 81.3(1.5)

Adam FT 79.3(1.9) 37.9(5.2) 69.0(6.0) 83.9(5.2) 69.5(6.8) 89.5(1.0) 74.4(2.4) 82.7(2.1)

K(SignGD) 61.3(8.6) 32.2(2.2) 61.4(4.0) 72.6(3.1) 60.9(3.6) 87.8(1.7) 63.5(3.8) 81.6(1.2)

K(A-)SignGD) 59.1(11.4) 31.9(2.0) 58.3(8.8) 72.4(4.1) 60.7(4.6) 87.7(1.7) 64.6(4.1) 81.1(1.5)

64 Prompt SGD FT 89.7(0.4) 45.8(2.1) 85.8(1.0) 94.3(0.5) 84.8(0.8) 92.9(0.5) 93.2(1.0) 86.8(0.7)

K(SGD) 89.2(1.0) 46.0(1.3) 86.4(0.6) 93.7(0.4) 81.2(0.9) 91.4(0.7) 77.8(2.3) 85.6(0.7)

Adam FT 89.3(0.7) 48.5(2.0) 86.0(0.4) 93.7(0.8) 84.6(0.9) 92.7(0.6) 92.6(1.3) 86.8(1.1)

K(SignGD) 89.1(0.5) 49.1(1.6) 85.6(1.0) 93.9(0.2) 79.0(5.8) 92.4(0.5) 82.0(1.4) 85.9(0.7)

K(A-)SignGD) 88.9(0.9) 43.6(2.2) 85.6(1.0) 94.0(0.3) 81.8(1.1) 91.8(1.1) 22.8(2.9) 86.2(0.3)

Standard SGD FT 85.6(3.6) 41.1(2.1) 83.4(1.7) 92.7(1.2) 83.5(2.1) 92.6(0.4) 86.8(1.8) 86.8(0.8)

K(SGD) 77.7(2.8) 35.8(0.7) 73.6(2.0) 82.6(4.4) 74.9(2.2) 90.1(1.0) 81.9(2.0) 85.6(0.6)

Adam FT 86.2(2.3) 41.0(1.7) 83.9(1.9) 92.6(1.0) 83.5(1.8) 92.9(0.5) 91.5(1.4) 87.5(0.6)

K(SignGD) 79.6(1.7) 35.3(3.1) 75.8(2.0) 83.0(4.7) 75.0(2.1) 90.9(1.0) 82.5(1.8) 85.9(1.0)

K(A-)SignGD) 78.7(2.3) 36.8(2.3) 76.5(3.2) 85.6(3.8) 75.2(1.9) 91.1(1.1) 84.6(1.5) 86.2(0.8)

512 Prompt SGD FT 92.0(0.9) 53.5(1.5) 88.8(0.0) 94.3(0.4) 88.5(0.1) 95.4(0.1) 97.2(0.4) 89.9(0.7)

K(SGD) 91.0(0.2) 49.8(0.4) 88.0(0.9) 94.4(0.2) 84.4(0.9) 93.5(0.1) 88.2(0.8) 88.4(0.5)

Standard SGD FT 91.4(0.2) 50.2(1.6) 88.8(0.4) 95.4(0.3) 88.1(0.5) 95.0(0.7) 97.2(0.6) 90.1(0.4)

K(SGD) 85.9(1.6) 45.4(1.0) 83.1(1.1) 92.2(0.9) 83.4(0.5) 92.3(0.1) 93.3(1.5) 89.1(0.2)

(a) Single-sentence tasks

k-shot Prompt Method MNLI SNLI QNLI RTE MRPC QQP

16 Prompt SGD FT 59.2(2.7) 65.7(2.7) 62.1(3.1) 60.0(5.5) 73.9(2.7) 62.1(2.3)
K(SGD) 53.0(3.0) 57.8(2.3) 60.1(3.3) 60.0(4.7) 73.4(5.6) 58.2(0.9)
Adam FT 56.8(2.9) 64.6(4.1) 63.1(3.5) 57.6(6.3) 77.6(3.1) 61.8(4.5)
K(SignGD) 53.8(1.2) 54.9(2.7) 59.5(3.1) 55.4(4.2) 75.6(1.2) 60.7(2.2)
K(A-)SignGD) 51.9(4.0) 54.9(3.1) 56.0(1.9) 59.8(4.0) 75.2(2.6) 59.4(2.0)

Standard SGD FT 35.2(1.3) 41.3(2.2) 52.5(5.4) 50.2(2.1) 73.7(6.3) 55.3(5.2)
K(SGD) 34.9(1.8) 39.6(3.3) 50.3(1.4) 48.7(2.0) 69.2(6.9) 50.8(5.0)
Adam FT 38.7(3.5) 42.9(3.2) 57.6(4.2) 51.1(3.8) 75.6(7.1) 58.2(6.5)
K(SignGD) 36.1(1.3) 41.7(2.4) 51.9(1.5) 48.2(3.4) 73.3(5.3) 52.4(5.1)
K(A-)SignGD) 34.9(1.4) 41.7(2.5) 52.6(2.5) 48.2(2.5) 73.8(6.2) 50.8(8.8)

64 Prompt SGD FT 68.7(1.7) 77.3(0.9) 72.8(2.2) 68.9(2.5) 82.8(1.2) 69.2(1.3)
K(SGD) 60.4(1.8) 65.5(1.6) 67.3(1.6) 66.5(2.5) 79.2(2.5) 66.4(1.7)
Adam FT 67.9(1.0) 76.9(1.4) 74.2(3.2) 67.3(2.7) 80.9(1.2) 69.8(0.6)
K(SignGD) 60.8(1.7) 64.1(2.3) 65.4(1.7) 63.8(1.8) 77.4(2.3) 63.7(4.4)
K(A-)SignGD) 58.5(1.7) 66.8(1.1) 66.5(1.1) 63.8(2.2) 77.3(2.0) 66.1(3.4)

Standard SGD FT 50.0(5.0) 61.9(4.5) 65.4(4.2) 53.6(2.5) 78.7(1.1) 64.8(3.5)
K(SGD) 42.6(1.7) 50.1(1.7) 54.4(1.5) 50.0(4.4) 72.2(5.8) 48.4(19.3)

Adam FT 58.0(2.6) 67.8(2.0) 67.9(7.2) 53.9(4.2) 80.1(1.4) 66.8(3.1)
K(SignGD) 41.7(2.1) 50.5(2.1) 56.6(1.9) 52.7(3.8) 77.6(4.2) 61.3(2.0)
K(A-)SignGD) 42.8(1.7) 49.1(2.9) 55.3(3.7) 52.9(4.5) 74.5(2.5) 62.3(1.9)

512 Prompt SGD FT 78.4(0.3) 83.9(0.3) 81.9(1.2) 76.3(0.6) 89.2(0.1) 75.2(1.1)
K(SGD) 67.4(0.2) 74.6(0.3) 76.1(0.9) 74.2(1.2) 80.7(1.7) 72.0(0.9)

Standard SGD FT 77.8(1.1) 82.9(0.6) 81.0(0.5) 70.9(1.7) 90.2(0.7) 75.7(0.9)
K(SGD) 57.6(3.6) 67.0(1.2) 68.4(0.4) 55.7(1.7) 78.7(2.2) 69.1(1.3)

(b) Sentence-pair tasks

Table 6. Fine-tuning performance in the standard FT setting, where the contextual embedding of the [CLS] token is used for classification,
and the prompt-based FT setting, where a prompt is added and the embedding for the [MASK] token is used (see Section 3). In standard
FT, we initialize the new classification head (i.e., Γ) using the linear probing solution. This table gives the figures in Figure 1, and also
relates SGD fine-tuning performance to the more common fine-tuning with Adam. We report F1 for MRPC and QQP and accuracy
otherwise, and average the metrics over 5 seeds for 16-shot and 64-shot, and 3 seeds for 512-shot.
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Method k-shot SST-2 SST-5 MR CR MPQA Subj TREC AG News

K(SGD) 16 0.39(0.14) 0.70(0.35) 0.14(0.09) 0.32(0.03) 0.56(0.12) 0.60(0.31) 2.87(1.27) 3.52(4.44)

64 0.66(0.31) 0.97(0.55) 0.37(0.18) 0.66(0.43) 0.44(0.09) 1.04(0.19) 9.63(13.36) 1.74(0.60)

K(SignGD) 16 0.45(0.11) 0.61(0.17) 0.33(0.08) 0.35(0.13) 0.48(0.06) 0.40(0.21) 1.33(0.14) 1.50(0.56)

64 0.34(0.09) 0.77(0.03) 0.43(0.08) 0.36(0.04) 0.50(0.17) 0.54(0.07) 1.38(0.12) 1.44(0.15)

(a) Single-sentence tasks.

Method k-shot MNLI SNLI QNLI RTE MRPC QQP

K(SGD) 16 1.26(0.20) 0.58(0.17) 0.67(0.14) 0.40(0.25) 0.65(0.32) 0.79(0.39)
64 1.62(0.19) 0.75(0.04) 0.89(0.42) 1.04(0.16) 1.41(0.53) 1.00(0.14)

K(SignGD) 16 0.52(0.09) 0.68(0.16) 0.47(0.09) 0.48(0.13) 0.48(0.07) 0.58(0.07)
64 0.59(0.03) 0.62(0.04) 0.55(0.04) 0.54(0.02) 0.60(0.08) 0.56(0.02)

(b) Sentence-pair tasks.

Table 7. Average element-wise relative distance of K(SGD) and K(SignGD) computed on the pre-trained and best model fine-tuned with SGD
and Adam respectively. A smaller value indicates a higher likelihood that the Fixed Features property of kernel behavior (Definition 3.2)
holds when performing fine-tuning. Distances are averaged across 5 seeds for each value of k and measured on the held-out test set.

Model size SST-2 MR CR MPQA Subj QNLI RTE MRPC QQP

Base (n = 768) 0.32 0.32 0.26 0.38 0.43 0.48 0.48 0.56 0.49
Large (n = 1024) 0.32 0.25 0.25 0.40 0.46 0.48 0.47 0.52 0.52

Table 8. We measure the average output derivative (Definition 3.1) in the prompt-based FT setting for RoBERTa-base and RoBERTa-large.

k-shot Prompt + label format Method SST-2 MR CR QNLI RTE QQP

16 Manual
(Gao et al., 2021)

Adam-FT 88.3(1.2) 81.3(6.1) 93.0(1.6) 63.1(3.5) 57.6(6.3) 61.8(4.5)
SGD-FT 89.0(1.5) 83.2(2.4) 93.3(0.2) 62.1(3.1) 60.0(5.5) 62.1(2.3)
K(SGD) 88.3(0.3) 84.7(1.5) 93.2(0.9) 60.1(3.3) 60.0(4.7) 58.2(0.9)

Prompt + label search
(Gao et al., 2021)

Adam-FT 88.1(0.8) 81.6(3.8) 92.8(0.4) 56.3(3.8) 58.6(4.6) 58.6(4.5)
SGD-FT 89.2(1.2) 80.1(1.8) 93.2(0.5) 58.7(4.8) 61.6(2.6) 59.0(1.4)
K(SGD) 88.6(1.1) 78.5(1.2) 93.5(0.7) 56.7(1.7) 57.4(5.5) 60.2(2.0)

Null prompts
(Logan IV et al., 2022)

Adam-FT 87.6(0.9) 82.6(0.6) 92.8(0.6) 59.0(2.9) 56.4(4.7) 57.5(5.2)
SGD-FT 88.1(0.7) 82.8(3.6) 93.4(0.7) 59.0(3.4) 54.1(1.6) 57.6(5.5)
K(SGD) 78.3(4.3) 78.7(1.8) 91.7(0.8) 55.8(2.7) 55.5(2.3) 57.4(1.8)

Table 9. We experiment with different prompt formats and label words: using the top result of an automatic prompt search performed on
RoBERTa-large (Table E.1 in Gao et al. (2021)); and minimal null prompts (Table A3, Logan IV et al. (2022)), which add no additional
text to the prompt. We find that our observations are robust to the choice of prompt, with the exception of the more unnatural “null
prompts” on sentiment tasks (SST-2, MR, CR), which show a substantial gap between K(SGD) and fine-tuning. We report F1 for QQP and
accuracy otherwise, and average the metrics over 5 seeds.
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k-shot Method SST-2 SST-5 MR CR MPQA Subj TREC AG News

16 SignGD-FT 87.6(3.6) 43.4(3.9) 84.4(1.1) 92.8(1.4) 82.4(1.5) 90.3(1.8) 85.4(4.0) 85.2(1.4)

Adam-FT 88.3(1.2) 45.4(2.6) 81.3(6.1) 93.0(1.6) 82.8(2.2) 87.4(2.1) 79.6(6.1) 84.0(1.6)

K(SignGD) 88.3(0.5) 42.2(3.9) 84.3(1.5) 93.7(0.5) 76.7(3.3) 89.2(2.0) 58.1(6.5) 82.3(1.6)

K(A-SignGD) 88.3(0.4) 43.7(1.7) 84.9(1.1) 93.4(0.5) 74.6(3.5) 88.6(1.8) 22.7(2.8) 83.6(1.0)

64 SignGD-FT 87.6(2.5) 47.3(2.7) 86.2(1.2) 93.7(1.7) 85.3(1.7) 92.1(2.0) 93.7(0.5) 87.5(0.6)

Adam-FT 89.3(0.7) 48.5(2.0) 86.0(0.4) 93.7(0.8) 84.6(0.9) 92.7(0.6) 92.6(1.3) 86.8(1.1)

K(SignGD) 89.1(0.5) 49.1(1.6) 85.6(1.0) 93.9(0.2) 79.0(5.8) 92.4(0.5) 82.0(1.4) 85.9(0.7)

K(A-SignGD) 88.9(0.9) 43.6(2.2) 85.6(1.0) 94.0(0.3) 81.8(1.1) 91.8(1.1) 21.0(4.3) 86.2(0.3)

(a) Single-sentence tasks

k-shot Method MNLI SNLI QNLI RTE MRPC QQP

16 SignGD-FT 62.1(4.1) 67.7(2.7) 64.0(4.8) 60.9(5.8) 78.4(3.0) 66.2(2.1)
Adam-FT 56.8(2.9) 64.6(4.1) 63.1(3.5) 57.6(6.3) 77.6(3.1) 61.8(4.5)
K(SignGD) 53.8(1.2) 54.9(2.7) 59.5(3.1) 55.4(4.2) 75.6(1.2) 60.7(2.2)
K(A-SignGD) 51.9(4.0) 54.9(3.1) 56.0(1.9) 59.8(4.0) 75.2(2.6) 59.4(2.0)

64 SignGD-FT 69.3(1.2) 77.4(1.0) 76.8(2.2) 66.4(2.9) 84.1(1.3) 69.9(0.8)
Adam-FT 67.9(1.0) 76.9(1.4) 74.2(3.2) 67.3(2.7) 80.9(1.2) 69.8(0.6)
K(SignGD) 60.8(1.7) 64.1(2.3) 65.4(1.7) 63.8(1.8) 77.4(2.3) 63.7(4.4)
K(A-SignGD) 58.5(1.7) 66.8(1.1) 66.5(1.1) 63.8(2.2) 77.3(2.0) 66.1(3.4)

(b) Sentence-pair tasks

Table 10. Comparing the performnace SignGD-FT to Adam-FT, K(SignGD) and K(A-SignGD) in the prompt-based setting on the LM-BFF test
set (Gao et al., 2021). SignGD fine-tuning applies the sign function coordinate-wise to gradients before taking gradient steps, and leads to
surprisingly strong results, especially on sentence-pair tasks. We search over the same hyperparameter gird as for Adam-FT, see Table 4,
and we do not use momentum. Performance is measure by average test accuracy over 5 k-shot splits for all tasks except MRPC and QQP,
where it is F1.
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C. Kernel Behavior and the Parametrization
Neural network training can exhibit either kernel behavior or feature learning behavior. These were described in (Woodworth
et al., 2020) as the lazy regime and active regime, respectively, when training from a random initialization. Kernel behavior
provides a tractable tool to study the training of neural networks, but it is not believed to be a complete description of
practical deep learning settings. In particular, kernel behavior implies the feature (i.e., gradient) of the neural networks
remains unchanged in the overparameterized setting, which is not true in practical pre-training of large models.

(Yang & Hu, 2021) showed how the initialization variance, multiplier, and learning rate for each parameter can move training
from the kernel behavior to the feature learning behavior. They further developed the Maximal Update Parametrization
(abbreviated MUP or µP) where every parameter is updated maximally (in terms of scaling with width) while keeping the
network stable. (Yang et al., 2022) then extends µP to Transformers with Adam optimization, and showed empirically that
for pre-training of large language models using µP, the optimal hyperparameters remain the same when increasing width.
It allows more comprehensive hyperparameter searches on a smaller model and direct transfer of the resulting optimal
hyperparameters to the larger model, resulting in markedly improved pre-training performance.

This section discusses two of our formal results: Theorems 4.3 and 5.5. In general, we consider the overparameterized
setting in which the width of the network goes to infinity. Additionally, we assume that when initializing a weight matrix of
the model, each entry of the matrix is drawn from i.i.d. Gaussian distribution. In particular, we model a pre-trained model
as a non-random initialization that arose from training starting at a random initialization. We use Tensor Programs (Yang,
2020b) for our formal results.

This section is organized as follows. In Appendix C.1, we introduce the basic notation and ideas around Tensor Programs as
well as the assumptions we need to make in order for an infinite-width limit to be interesting to study. Then, Appendix C.2
gives the formal proof for the kernel analog to SignGD (Theorem 4.3). In Appendix C.3, we provide a formal proof of how
fine-tuning can exhibit kernel behavior (Theorem 5.5). The proof relies heavily on Tensor Programs, so we additionally
provide a more accessible and intuitive sketch on linear networks in Appendix C.5.

C.1. Preliminaries

Notations Let ξ ∈ Rdin be the input of the network. Let n be the hidden dimension of the network and dout be the output
dimension of the network. We define the network as a function of the following form:

f(ξ; {U i}i, {W j}j , V ) = V ⊤h(ξ; {U i}i, {W j}j),

where ξ is the input, U i ∈ Rn×din are the input weight matrices, W j ∈ Rn×n are hidden weight matrices, V ∈ Rn×dout is
the output weight matrix, and h(ξ; {U i}i, {W j}j) ∈ Rn is the input of last layer (readout layer). 10 We writeM as the set
of weight matrices, i.e.,M = {U i}i ∪ {W j}j ∪ {V }. For M ∈M, let∇Mf(ξ) be the gradient of f w.r.t. M at input ξ.

To simplify the notation, we assume din = 1 in this section. We will note when an extension to din > 1 requires a non-trivial
step. For any weight matrix M ∈M, let γM be the multiplier of M , such that M is multiplied by γM before performing
matrix multiplication. Let ηM be the learning rate of the weight M . Let σ2

M be the variance of entries of M at initialization,
so each entry of M is drawn N (0, σ2

M ) independently. Since our focus is the prompt-based fine-tuning, we assume no
change is made to the network at the beginning of fine-tuning, and the learning rates for pre-training and fine-tuning are the
same unless otherwise noted.

Because we are considering the infinite-width limit, f(ξ; {U i}i, {W j}j , V ) actually represents a series of increasingly
wide networks {fn(ξ; {U i,n}i, {W j,n}j , V n)}n>0 of the same architecture, but fn has a hidden dimension n. We use the
notation f to include the model architecture, the training optimizer of the model, and γM , ηM , σM for every weight matrix
M in the model.

Let Mt be the weight matrix at time step t of training. If the network is pre-trained, we let M−1 be the weight matrix before
pre-training, and M0 be the parameters right after pre-training. Let ∆Mt = Mt −Mt−1 be the change each training step
induces. Let ft be the network at step t that

ft(ξ) = f(ξ; {U i
t}i, {W j

t }j , Vt).

10We are able to describe transformers (without weight tying) in the definition. The bias can be regarded as input weights assuming
there is a coordinate in ξ that is always 1.
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Let ξt, yt be the training input and target at step t, and let the loss function at step t be ℓ(ft−1(ξt), yt). For ease of notation,
we often absorb yt into ℓ and denote ℓt(ft−1(ξt)) ≜ ℓ(ft−1(ξt), yt). Let χt = ℓ′t(ft−1(ξt)) be the derivative of the loss
function, as defined in Definition 3.1. We assume ℓ′′t (second derivative of ℓt) is bounded11, which is satisfied when ℓ is
mean square loss or cross entropy loss.

Big-O Notation For a series of scalar random variables c = {cn}n>0 and a function e : N → R, we say c = Θ(e(n))
if there exist A,B such that for sufficiently large n, |cn| ∈ [Ae(n), Be(n)] almost surely. For a series of vector random
variables x = {xn}n>0, we say that x is coordinate-wise Θ(na), or x = Θ(e(n)) if this series of scalar random variables
{∥xn∥2/

√
n}n>0 is Θ(e(n)). Similarly for the notation O(e(n)), Ω(e(n)), and o(e(n)). For convenience, we assume every

e(n) in this section is equal to na for some a.

Tensor Programs We refer reader to see Section 7 of (Yang & Hu, 2021) for detailed explanation and full definition of
Tensor Programs. Here, we provide a simple overview of Tensor Programs:

Definition C.1 (Definition 7.1 of (Yang & Hu, 2021)). A Tensor Program is a sequence of Rn-vectors and R-scalars
inductively generated via one of the following ways from an initial set C of random scalars, V of random Rn vectors, and a
setW of random Rn×n matrices.

MatMul Given W ∈ Rn×n and x ∈ Rn, we can generate Wx ∈ Rn or W⊤x ∈ Rn.

Nonlin Given ϕ : Rk × Rl → R, previous scalar θ1, . . . , θl ∈ R and vector x1, . . . , xk ∈ Rn, we can generate a new
vector

ϕ(x1, . . . , xk; θ1, . . . , θl) ∈ Rn

where ϕ(−; θ1, . . . , θl) applies coordinate-wise to each “α-slice ” (x1
α, . . . , x

k
α).

Moment Given the same setup as above, we can also generate a new scalar

1

n

n∑
α=1

ϕ(x1
α, . . . , x

k
α; θ1, . . . , θl) ∈ R.

Yang (2019; 2020a); Yang & Littwin (2021); Yang et al. (2022) show that Tensor Programs can express the computation,
SGD/Adam optimization, and the kernel of almost any general architecture.

The key result of the Tensor Programs is that we can represent the coordinates of any vector x in the Tensor Program
with a random variable Zx, and represent any scalar θ with a deterministic scalar θ̊. There is a way to define all θ̊ and Zx

correspond to the Tensor Program (cf. Definition 7.3 in (Yang & Hu, 2021)), and the Master Theorem of the Tensor Program
shows that θ → θ̊ when n→∞ (cf. Theorem 7.4 in (Yang & Hu, 2021)).

Although it is in general hard to compute Zx and θ̊, it allows us to reason about the scales of vectors in the training of a
network.

Assumptions Related to Tensor Programs. Since we are studying the infinite width limit and using Tensor Programs as
our framework, there are some mild assumptions that we need in order to apply Tensor Programs and results in (Yang & Hu,
2021).

Assumption C.2. We assume the network f satisfies the following

a) The forward pass of f in the infinite-width limit can be written as Tensor Programs.

b) The hidden vectors have Θ(1) coordinates at initialization.

c) The hidden vectors have O(1) coordinates during training.

d) For any training scheme12 and any constant t and any input ξ, ft(ξ) = O(1).

11For C-way classification, the assumption is extended to its multivariate version: each entry of Hessian of ℓt is bounded.
12Training scheme means a sequence of training examples {(ξt, yt}t>0, and loss function ℓ(ft(ξt), yt).
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e) There exist a training scheme and some constant t and input ξ such that ft(ξ)− f0(ξ) = Θ(1).

f) The activation function of f is tanh or σ-gelu for a small enough σ (so it approximates ReLU), where

σ-gelu(x) =
1

2
xerf(σ−1x) + σ

e−σ−2x2

2
√
π

+
x

2
.

Furthermore, we have two assumption on SignGD:

g) SignGD is approximated as the sign function being replaced with ϵ-sign for small enough ϵ when updating parameters,
where ϵ-sign(x) = x

|x|+ϵ is smoothed version of sign. We assume using different ϵ when computing the sign of ∇Mf ,
so that ϵ for ∇Mf match the maximum scale of∇Mf .

h) The ratio between the learning rate of SignGD in prompt-based fine-tuning and the learning rate of pre-training matches
the maximum χ after pre-training. That is, we assume ηM = Θ(ηPT

M · χmax) where ηPT
M is learning rate of pre-training

for SignGD, and χmax = max(ξ,y)∈Ξ χ(ξ, y, f0).

b), c), d) and e) in Assumption C.2 together recover the definition of nontrivial stable network in (Yang & Hu, 2021). b) and
c) ensure that the pre-activations in the network are not too large, so that activation functions (e.g., tanh) are not trivialized
to always output ±1. b) ensures that the pre-activations in the network are not too small at initialization, so the activation
function is not trivialized to its first-order Taylor expansion. d) ensures the network output is bounded. e) ensures that the
network is not frozen during training (i.e., learning can occur).

f) and g) in Assumption C.2 assures all non-linear functions that appear in the Tensor Programs is pseudo-Lipschitz, which
is required for the Master Theorem of Tensor Programs. g) also assures that ϵ-sign is not trivialize to 0 or sign when
∇Mf ̸= Θ(1).

h) in Assumption C.2 assures when χ = o(1), updates of SignGD in fine-tuning is not of bigger scale than SGD. It is also
observed in practice that the optimal learning rate for fine-tuning is smaller than the learning rate for pre-training.

C.2. SignGD Kernel Derivation

Definition C.3 (Formal Definition of Kernel Behavior). We say that this network training process demonstrates kernel
behavior if the following properties are satisfied.

1. Linearization: The change of the network can be approximated by its first order Taylor expansion, i.e.,

lim
n→∞

ft(ξ)− ft−1(ξ)

χmax
= lim

n→∞

∑
M∈M

〈
∇Mft−1(ξ),

∆Mt

χmax

〉
;

where χmax = max(ξ,y)∈Ξ χ(ξ, y, f0), Ξ is the training dataset.

2. Fixed Features: The gradients at step t are approximately the same as before training, i.e.,

∀M ∈M, lim
n→∞

∥∇Mft(ξ)−∇Mf0(ξ)∥22
maxξ′ ∥∇Mf0(ξ′)∥22

= 0.

Note that we define Linearization with both LHS and RHS divided by χmax so it is meaningful for the case of χ = o(1).
We do the same thing in the following theorem.

Theorem C.4 (SignGD Kernel). If SignGD training of f demonstrates kernel behavior, then under Assumption C.2,

lim
n→∞

ft(ξ)− ft−1(ξ)

χmax
= lim

n→∞

∑
M∈M

−η̃M ⟨∇Mf0(ξ), ϵ-sign(∇Mf0(ξt))⟩ ,

where η̃M = ηM sign(χt)/χmax.
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Note if ηM = η, the RHS of the equation above equals to

−η sign(χt)

χmax
⟨∇f0(ξ), ϵ-sign(∇f0(ξt)⟩ ≈ −

η sign(χt)

χmax
K(A-SignGD)(ξ, ξt),

where the approximation comes from the difference between ϵ-sign and sign.

Proof. By the update rule of SignGD, ∆Mt

χmax
= −η̃M ϵ-sign(∇Mft−1). It suffices to prove

η̃M ⟨∇Mft(ξ), ϵ-sign(∇Mft(ξt))⟩ = η̃M ⟨∇Mf0(ξ), ϵ-sign(∇Mf0(ξt))⟩

when n→∞.

Since

η̃M ⟨∇Mft(ξ), ϵ-sign(∇Mft(ξt))⟩ − η̃M ⟨∇Mf0(ξ), ϵ-sign(∇Mf0(ξt))⟩
= η̃M ⟨∇Mft(ξ)−∇Mf0(ξ), ϵ-sign(∇Mft(ξt))⟩+ (4)

η̃M ⟨∇Mft(ξ), ϵ-sign(∇Mft(ξt))− ϵ-sign(∇Mf0(ξt))⟩+ (5)
η̃M ⟨∇Mft(ξ)−∇Mf0(ξ), ϵ-sign(∇Mft(ξt))− ϵ-sign(∇Mf0(ξt))⟩ , (6)

we only need to prove Equations (4) to (6) are all 0 when n→∞.

Let ξ∗ = argmaxξ′ ∥∇Mf0(ξ
′)∥22 be the input of maximum gradient scale, then by Fixed Features, we have

∥∇Mft(ξ)−∇Mf0(ξ)∥2
∥∇Mf0(ξ∗)∥2

= o(1). (7)

Since ϵ-sign(x)− ϵ-sign(y) ≤ |x− y|/ϵ,

∥ϵ-sign(∇Mft(ξ))− ϵ-sign(∇Mf0(ξ))∥2 ≤ ∥∇Mft(ξ)−∇Mf0(ξ)∥2/ϵ. (8)

Combined with ∥∇Mf0(ξ
∗)∥2/

√
N = Θ(ϵ) (N is the number of entries of M , this is by g) of Assumption C.2), we have

∥ϵ-sign(∇Mft(ξ))− ϵ-sign(∇Mf0(ξ))∥2
∥ϵ-sign(∇Mf0(ξ∗))∥2

≤ ∥∇Mft(ξ)−∇Mf0(ξ)∥2/ϵ
∥ϵ-sign(∇Mf0(ξ∗))∥2

by Equation (8)

=
∥∇Mft(ξ)−∇Mf0(ξ)∥2

∥∇Mf0(ξ∗)∥2
· ∥∇Mf0(ξ

∗)∥2/
√
N

ϵ∥ϵ-sign(∇Mf0(ξ∗))∥2/
√
N

=
∥∇Mft(ξ)−∇Mf0(ξ)∥2

∥∇Mf0(ξ∗)∥2
·Θ(1) = o(1). (9)

By d) in Assumption C.2, and consider the training scheme that sets ξ1 = ξ∗ and the loss function ℓt so χ1 = Θ(1), then

f1(ξ
∗)− f0(ξ

∗)

χ1
= −ηM sign(χ1)

χ1
⟨∇Mf0(ξ

∗), ϵ-sign(∇Mf0(ξ
∗))⟩ = O(1).

By h) in Assumption C.2, the scale of η̃M is identical across different training scheme, so we have

−η̃M ⟨∇Mf0(ξ
∗), ϵ-sign(∇Mf0(ξ

∗))⟩ = O(1).

And it is easy to see that η̃M∥∇Mf0(ξ
∗)∥2∥ϵ-sign(∇Mf0(ξ

∗))∥2 has the same scale as
η̃M ⟨∇Mf0(ξ

∗), ϵ-sign(∇Mf0(ξ
∗))⟩, which is O(1).

Given Equations (7) and (9), we are about to prove Equations (4) to (6) divided by η̃M∥∇Mf0(ξ
∗)∥2∥ϵ-sign(∇Mf0(ξ

∗))∥2
are all 0 when n→∞. Provided that η̃M∥∇Mf0(ξ

∗)∥2∥ϵ-sign(∇Mf0(ξ
∗))∥2 = O(1), it will imply Equations (4) to (6)

are all 0 when n→∞, thus conclude our whole proof.
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For Equation (4),

η̃M ⟨∇Mft(ξ)−∇Mf0(ξ), ϵ-sign(∇Mft(ξt))⟩
η̃M∥∇Mf0(ξ∗)∥2∥ϵ-sign(∇Mf0(ξ∗))∥2

≤ ∥∇Mft(ξ)−∇Mf0(ξ)∥2∥ϵ-sign(∇Mft(ξt))∥2
∥∇Mf0(ξ∗)∥2∥ϵ-sign(∇Mf0(ξ∗))∥2

=
∥∇Mft(ξ)−∇Mf0(ξ)∥2

∥∇Mf0(ξ∗)∥2
= o(1). by Equation (7)

Similarly, for Equation (5),

η̃M ⟨∇Mft(ξ), ϵ-sign(∇Mft(ξt))− ϵ-sign(∇Mf0(ξt))⟩
η̃M∥∇Mf0(ξ∗)∥2∥ϵ-sign(∇Mf0(ξ∗))∥2

≤ ∥ϵ-sign(∇Mft(ξ))− ϵ-sign(∇Mf0(ξ))∥2
∥ϵ-sign(∇Mf0(ξ∗))∥2

= o(1), by Equation (9)

and for Equation (6),

η̃M ⟨∇Mft(ξ)−∇Mf0(ξ), ϵ-sign(∇Mft(ξt))− ϵ-sign(∇Mf0(ξt))⟩
η̃M∥∇Mf0(ξ∗)∥2∥ϵ-sign(∇Mf0(ξ∗))∥2

≤ ∥ϵ-sign(∇Mft(ξ))− ϵ-sign(∇Mf0(ξ))∥2
∥ϵ-sign(∇Mf0(ξ∗))∥2

· ∥∇Mft(ξ)−∇Mf0(ξ)∥2
∥∇Mf0(ξ∗)∥2

= o(1). by Equations (7) and (9)

C.3. Prompt-based Fine-Tuning

Prompt-based fine-tuning uses the pre-trained network directly without substituting or adding any parameters. Therefore,
without any additional assumptions, the behaviors of fine-tuning and pre-training are the same from the perspective of the
Tensor Programs. We thus adopt the assumption that χ = o(1) before fine-tuning (Definition 5.3). Without the assumption,
the fine-tuning of f will not exhibits kernel behavior if the pre-training is in feature learning regime. Intuitively, this
assumption is believable because wider pre-trained networks can solve downstream tasks better. In this section, we prove
that prompt-based fine-tuning exhibits kernel behavior when this assumption holds.

Theorem C.5. If the downstream task Ξ is natural for network f , that is,

χmax ≜ max
(ξ,y)∈Ξ

χ(ξ, y, f0) = o(1),

then under Assumption C.2, the fine-tuning of f exhibits kernel behavior (Definition C.3).

Below we provide a proof that is heavily based on Tensor Programs and the analysis in (Yang & Hu, 2021). For readers who
are not familiar with Tensor Programs, we provide intuitive examples in the next few subsections, where we focus on a
three-layer linear network parameterized with µP.

Proof. The high-level proof consists of two parts: 1) we prove after each step, the update of the function f is O(χt).
Combined ℓ′′t always bounded by some constant C, we can inductively prove χt ≤ χ(ξt, yt, f0) +C · |ft−1(ξt)− f0(ξt)| =
O(χmax) for all t. 2) Given χt = O(χmax) = o(1), we show the fine-tuning exhibits kernel behavior.

We first prove the theorem under the assumption that the network is a multilayer perceptron and the optimizer is SGD, which
is the same setting as (Yang & Hu, 2021). We will later extend this to more general cases.

Consider the following L-hidden-layer perceptron:

h1(ξ) = Uξ,

and
xl(ξ) = ϕ(hl(ξ)), hl+1(ξ) = W l+1xl(ξ), for l = 1, . . . , L− 1,
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and
f(ξ) = V xL(ξ).

Following (Yang & Hu, 2021), we let the learning rate for every parameter equal to ηn−c. Let W 1 = U and WL+1 = V ,
and for l = 1, . . . , L + 1, we parametrize W l as W l = γlw

l for actual trainable parameter wl, and we initialize each
coordinate wl i.i.d. fromN (0, σ2

l ). The setting covers all possible parameterizations based on Lemma C.6. For convenience,
we assume γl = n−al and σl = n−bl . Without loss of generality, we further assume that χmax = Θ(n−d). Below, we will
also inductively show χt = O(n−d) by showing |ft+1 − ft| = O(n−d).

By Theorem 3.3 of (Yang & Hu, 2021), stable network implies

r ≜ min(aL+1 + bL+1, 2aL+1 + c) + c− 1 +
L

min
l=1

[2al + I(l = 1)] ≥ 0.

Also by Theorem 3.8 of (Yang & Hu, 2021), for nontrivial stable network (included in Assumption C.2), if r > 0 then there
exists a kernel K such that

ft+1(ξ) = ft(ξ)− ηχtK(ξ, ξt),

which is very close to our definition of kernel behavior. In fact, we will prove that they are equivalent in the fine-tuning case.

Since χt = O(n−d) for fine-tuning, it is equivalent to set the learning rate to ηn−c−d and replace χt with χ̂t = ndχt = O(1).
Formally, we are considering the following training scheme: at the pre-training stage, r ≥ 0 (so it could demonstrate feature
learning or kernel behavior); at the fine-tuning stage, c is increased to c′ ≜ c+ d > c, thus, the corresponding r is increased
to be strictly greater than 0. Therefore, it suggests kernel behavior with following caveats.

Do we handle the case of different learning rates during pre-training and fine-tuning? The answer is effectively
YES, because the above scheme is equivalent to training from scratch with learning rate ηnc−d. First of all, the scale of the
update on W l, hl, xl and f are all multiplied by n−d when switching from the pre-training stage (ηn−c learning rate) to the
fine-tuning stage(ηn−c−d learning rate). The scales are exactly the same as training from scratch with ηn−c−d learning rate
except bL+1 needs to be changed to b′L+1 ≜ min(bL+1, aL+1 + c). Note this change of bL+1 does not affect the fact that r
is updated to r′ ≜ r + d > 0.

Does r′ > 0 formally imply our definition of kernel behavior (Definition C.3)? The answer is YES. We first prove
Fixed Features in Definition C.3. The gradient of matrix W l is equal to outer product between ∇hlf (gradient w.r.t. hl) and
xl−1. Let dhl

t be the normalized gradient w.r.t. hl at step t (so dhl
t = Θ(1)), and xl

t be the xl at step t (xl
t = Θ(1) without

normalization). It suffices to prove dhl
t − dhl

0 = O(1) and xl
t − xl

0 = o(1). The later was proved by Proposition H.27 of
(Yang & Hu, 2021). To prove dhl

t − dhl
0 = O(1), we let dxl

t be the the normalized gradient w.r.t. xl at step t, and compute
the scale of dhl

t − dhl
t−1 and dxl

t − dxl
t−1 inductively from l = L to l = 1. We obtain that they both has the same scale of

n−min(2aL+1+c−aL+1−b′L+1,aL+1+bL+1+c′−1+minL
m=l+1 2am) ≤ n−min(0,r′) = 1,

the inequality is because b′L+1 ≤ aL+1 + c and r′ ≤ aL+1 + bL+1 + c′ − 1 + minLm=l+1 2am.

Second, we prove Linearization in Definition C.3. We need to first make a slight modification to the Tensor Program in
(Yang & Hu, 2021), that is, changing the computation of ft(ξ) − ft−1(ξ) to nd(ft(ξ) − ft−1(ξ)). By Theorem H.32 of
(Yang & Hu, 2021) and its definition of Σ, we can show that

lim
n→∞

nd(ft(ξ)− ft−1(ξ)) = lim
n→∞

L+1∑
l=1

ηn−c χt

n−d
⟨∇W lft−1(ξ),∇W lft−1(ξt)⟩

= lim
n→∞

L+1∑
l=1

〈
∇W lft−1(ξ),

∆W l
t

n−d

〉
.

This is exactly Linearization in Definition C.3 if we multiply n−d/χmax on both side. Meanwhile, it also implies
ft(ξ)− ft−1(ξ) = O(n−d).
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From SGD to SignGD. Since sign(xy) = sign(x) sign(y), the update of matrix W l can still be written as outer product of
two vectors, i.e., ∆W l

t = ηn−c−d sign(χt) sign(∇hlft−1)⊗ sign(xl−1
t−1). After applying sign, the scale of vector changes.

If the parametrization is the same, the scales of vectors using SignGD will be different from those using SGD. This can be
easily resolved by changing learning rates for each parameter (as in Assumption C.2), so the scaling change brought by sign
is corrected. Furthermore, as also mentioned in Assumption C.2, we need to approximate sign by a smoothed version ϵ-sign
so the Master Theorem of Tensor Programs can still apply.

Extension to universal architectures. The theorem can apply to any network whose first forward pass can be written as
Tensor Programs. Given this condition, the forward pass, backward pass, and kernel of any step can be written as Tensor
Programs (Yang, 2020a;b). To analyse the scaling of the Tensor Program will need the following steps:

1. Extension to general computation graph. We can still inductively reason about the scale of preactivations and activations
by the topological order of the computation graph; and similarly reason about the gradient by the reverse topological
order.

2. Extension to weight sharing. We may use weights multiple times in a forward pass. The preactivations, activations and
their gradients will not be affected. Only the update of a weight is now a sum of several vector outer product depending
on the number of occurrence of the weight.

C.4. µP for SGD and SignGD

In the following subsections, we provide more intuition for Theorem C.5. Although we consider all types of pre-trained
models, we are mostly interested in models with feature learning behavior, because it is likely not true that gradients can be
approximated as fixed throughout the entirety of pre-training. For pre-trained models with kernel behavior, it is obvious that
fine-tuning with the same settings as pre-training (i.e., prompt-based FT) will also exhibit kernel behavior. Furthermore,
Theorem H.17 of (Yang & Hu, 2021) proved that if the last layer is replaced with a freshly initialized layer (i.e., standard
FT), fine-tuning from a pre-trained models with kernel behavior is the same as training on the downstream task from scratch.

Among all the pre-training schemes that exhibit feature learning behavior, µP is special because each parameter (except
the last layer) can on its own push the model to perform feature learning. Therefore, to build an intuitive description of
fine-tuning behavior, we assume that the model was pre-trained by µP. We note again that our main result does not require
this assumption.

The formulation of µP contains three sets of hyperparameters: initial variance of M , multiplier of M and learning rate of M
for M ∈ {U i}i ∪ {W j}j ∪ {V }. However, even if we restrict these three hyperparameters to be in the form of nα, µP is
not unique, because there is one degree of freedom for each weight according to the following lemma.

Lemma C.6 (Lemma J.1 of (Yang et al., 2022)). Consider a weight matrix M with learning rate C, initialized as
M ∼ N (0, B2), and with a multiplier A. Then for any γ > 0, ft(ξ) stays fixed for all t and ξ if we set

• A← Aγ,B ← B/γ,C ← C/γ2 if training with SGD.

• A← Aγ,B ← B/γ,C ← C/γ if training with Adam.

Note the conclusion about Adam in Lemma C.6 also extends to SignGD.

With Lemma C.6, we can always set the multiplier of any weight matrix M to be 1, which leave us only the initialization
variance σ2

M and learning rate ηM . Furthermore, in terms of the scale at initialization and the scale of updates, µP for SGD
and SignGD are entirely the same. The only difference would be learning rate. We provide details in Table 11 (recall M−1

is the weight M at initialization of pre-training, ∆M0 = M0 −M−1 is the overall change of weight in pre-training. We
further assume χt = Θ(n−d) for all t, thus ηMnd is the scale of learning rate for SignGD in pre-training).

Since we have different learning rate for different M , the kernel that we care is defined as

K(ξ, ξ′) =
∑

M∈M
η′M ⟨∇W f(ξ), ϕ(∇W f(ξ′))⟩ ,
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coordinate-wise scale M = U i M = W j M = V
M−1 Θ(1) Θ(1/

√
n) Θ(1/n)

∆M0 Θ(1) Θ(1/n) Θ(1/n)
ηM for SGD Θ(n) Θ(1) Θ(1/n)

ηM · nd for SignGD/Adam Θ(1) Θ(1/n) Θ(1/n)

Table 11. Scales of initialization, update and learning rate for µP in pre-training.

where ϕ is identity if the algorithm is SGD, ϕ = sign if the algorithm is SignGD, η′M = ηM for SGD, η′M = ηMnd for
SignGD. We use η′M to keep K(ξ, ξ′) = Θ(1).

And we want to prove the dynamic of the network follows

ft(ξ)− ft−1(ξ)

n−d
→ −χ̃tK(ξ, ξt) when n→∞,

where χ̃t = n−dχt for SGD, and χ̃t = sign(χt) for SignGD. In any case, χ̃t = Θ(1).

C.5. Prompt-based Fine-Tuning: A Linear Example

As an intuitive example, we consider a three-layer linear network

f(ξ;U,W, V ) = V ⊤WUξ.

For simplicity, we train the network with SGD, and freeze V so ηV = 0. Then we have ∇Uf = W⊤V ξ⊤ and ∇W f =
V (Uξ)⊤. We assume |⟨ξ, ξ′⟩| > 0 for any ξ, ξ′.

In what follows, we will prove that for pre-training f cannot be written as the first-order Taylor expansion (i.e., it exhibits
feature learning). Then we will prove that it is the opposite for fine-tuning. In fact, if we only look at one gradient step,
the only higher order term equals to ηW ηUχ

2
t∥V ∥2⟨ξt, ξ⟩ft−1(ξ) = Θ(χ2

tft−1(ξ)), where ft−1(ξ) is mostly Θ(1), χt is
mostly Θ(1) in pre-training13 and o(1) in fine-tuning (by Definition 5.3).

Zero step (Pre-training) We model the pre-training of f as one step of training with χ0 = Θ(1). Then we have ∆U0 =
−ηUχ0W

⊤
−1V ξ⊤0 , and ∆W0 = −ηWχ0V (U−1ξ0)

⊤. Since W⊤
−1 is independent from V , we have W⊤

−1V = Θ(1/n),
thus ∆U0 = Θ(1) matching Table 11. On the other hand, it is obvious that ∆W0 = Θ(1/n) because V = Θ(1/n) and
U = Θ(1), also matching Table 11.

Then the function is now

f0(ξ) = V ⊤(W−1 +∆W0)(U−1 +∆U0)ξ

= V ⊤(W−1 − ηWχ0V (U−1ξ0)
⊤)(U−1ξ − ηUχ0W

⊤
−1V ⟨ξ0, ξ⟩)

= V ⊤W−1U−1ξ − ηUχ0∥W⊤
−1V ∥22⟨ξ0, ξ⟩ − ηWχ0∥V ∥2⟨U−1ξ0, U−1ξ⟩

+ ηW ηUχ
2
0∥V ∥2⟨ξ0, ξ⟩V ⊤W−1U−1ξ.

It is not difficult to see that ηUχ0∥W⊤
−1V ∥22⟨ξ0, ξ⟩, ηWχ0∥V ∥2⟨U−1ξ0, U−1ξ⟩, and ηW ηUχ

2
0∥V ∥2⟨ξ0, ξ⟩ are all Θ(1).

Unfortunately, here V ⊤W−1U−1ξ = f−1(ξ) = o(1) in the infinite-width limit, but if we train one more step, it is easy to
see that all four terms of f0 is Θ(1). Therefore, pre-training with µP exhibits feature learning.

First step At the first step of fine-tuning, we have ∆U1 = −ηUχ1W
⊤
0 V ξ⊤1 and ∆W1 = −ηWχ1V (U0ξ1)

⊤. The function
can be written as

f1(ξ) = V ⊤(W0 +∆W1)(U0 +∆U1)ξ,

and

f1(ξ)− f0(ξ) = V ⊤∆W1U0ξ + V ⊤W0∆U1ξ + V ⊤∆W1∆U1ξ. (10)

13ft(ξ) is Θ(1) unless t = −1 or there are coincidental cancellations. χt is Θ(1) in pre-training until f memorizes the whole
pre-training dataset when n → ∞.
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Note that the sum of the first and second terms is exactly −χ1K(ξ, ξ1).
Plug in ∆W1 = −ηWχ1V (U0ξ1)

⊤ into the first term of Equation (10),

V ⊤∆W1U0ξ = −ηWχ1V
⊤V (U0ξ1)

⊤U0ξ = Θ(χ1),

because

(U0ξ1)
⊤U0ξ = (U−1ξ1 +∆U0ξ1)

⊤(U−1ξ +∆U0ξ)

= ⟨U−1ξ1, U−1ξ⟩ − ηUχ0⟨ξ1, ξ0⟩f−1(ξ)− ηUχ0⟨ξ, ξ0⟩f−1(ξ1) + ∥∆U0∥2⟨ξ1, ξ⟩
= Θ(n).

Plug in ∆U1 = −ηUχ1W
⊤
0 V ξ⊤1 into the second term of Equation (10), we have

V ⊤W0∆U1ξ = −ηUχ1V
⊤W0W

⊤
0 V ξ⊤1 ξ = Θ(χ1)

because

V ⊤W0W
⊤
0 V = ∥(W−1 +∆W0)

⊤V, (W−1 +∆W0)
⊤V ∥22

= ∥W⊤
−1V ∥22 + η2Wχ2

0∥V ∥42∥U−1ξ0∥22 − 2ηWχ0∥V ∥22f−1(ξ0) = Θ(1/n).

The third term of Equation (10) equals

ηUηWχ2
1V

⊤V (U0ξ1)
⊤W⊤

0 V ξ⊤1 ξ = ηUηWχ2
1∥V ∥2⟨ξ1, ξ⟩f0(ξ1) = Θ(χ2

1),

because f0(ξ1) = Θ(1) unlike f−1(ξ) in the “zero step” analysis. Therefore, f1(ξ)−f0(ξ)
χ1

→ −K(ξ, ξ1).

Second step At the second step of fine-tuning, we have ∆U2 = −ηUχ1W
⊤
1 V ξ⊤2 , and ∆W2 = −ηWχ1V (U1ξ2)

⊤ and

f2(ξ)− f1(ξ) = V ⊤∆W2U1ξ + V ⊤W1∆U2ξ + V ⊤∆W2∆U2ξ. (11)

Assuming χ2 and χ1 share the same order, then when n→∞,

f2(ξ)− f1(ξ)

χ2
→ V ⊤∆W2U1ξ/χ2 + V ⊤W1∆U2ξ/χ2

= − ηWV ⊤V (U1ξ2)
⊤U1ξ − ηUV

⊤W1W
⊤
1 V ξ⊤2 ξ

→ − ηWV ⊤V (U0ξ2)
⊤U0ξ − ηUV

⊤W0W
⊤
0 V ξ⊤2 ξ

= −K(ξ, ξ2).

tth step Same as the second step by noting ∆Ut, ∆Wt always have smaller order than ∆U0 and ∆W0.

C.6. LoRA FT Exhibits Kernel Behavior

Note Theorem C.5 works for any architecture, including LoRA. In order to apply the theorem to LoRA FT, we need to set
the initialization and learning rate of the matrices A and B in LoRA correctly so that they satisfy Assumption C.2.

Here we provide a relatively straightforward way to accomplish this (assuming only intermediate layers use LoRA):

• Let k = αn where α is a small constant irrelevant to n.

• Let the initialization scale of A be Θ(1/
√
n).

• Let the learning rate of A and B be Θ(1) for SGD, Θ(n−1−d) for SignGD / Adam.

In short words, the initialization and learning rate follows µP as in Table 11 by treating A and B as one of W j . This setup
easily generalizes to the case where U and V also use LoRA.
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D. Subspace-Based Fine-Tuning Methods
Experimental results related to LoRA FT are presented in Table 12. These results show that SGD-FT and SGD-LoRA FT
perform similarly in the few-shot setting for many tasks, although the original experiments in Hu et al. (2021) focused on
Adam. The closeness of K(SGD) and K(SGD)

LoRA to their respective fine-tuning methods suggests that FT and LoRA FT can
be described by kernel dynamics. Moreover, we show that K(SGD) and K(SGD)

LoRA achieve similar performance to each other,
providing empirical evidence for the claim in Theorem 7.2 that LoRA preserves the kernel.

k-shot Method SST-2 MR CR QNLI RTE QQP

16 SGD-FT 89.0(1.5) 83.2(2.4) 93.3(0.2) 62.1(3.1) 60.0(5.5) 62.1(2.3)

SGD-LoRA FT 89.1(0.6) 82.7(2.0) 92.6(0.8) 57.1(3.3) 58.2(2.9) 59.8(3.0)

K(SGD) 88.3(0.3) 84.7(1.5) 93.2(0.9) 60.1(3.3) 60.0(4.7) 58.2(0.9)

K(SGD)
LoRA 88.1(0.4) 84.9(1.4) 93.1(1.0) 59.4(3.7) 56.2(5.8) 58.2(3.2)

64 SGD-FT 89.7(0.4) 85.6(1.1) 94.3(0.5) 72.8(2.2) 68.9(2.5) 69.2(1.3)

SGD-LoRA FT 90.0(0.2) 85.7(1.2) 93.9(0.7) 73.8(2.7) 69.1(1.8) 68.3(2.4)

K(SGD) 89.2(1.0) 86.4(0.6) 93.7(0.4) 67.3(1.6) 66.5(2.5) 66.4(1.7)

K(SGD)
LoRA 89.2(0.7) 85.7(1.5) 93.6(0.4) 66.0(1.6) 63.5(3.5) 63.9(4.5)

Table 12. Performance of prompt-based SGD FT and prompt-based SGD-LoRA FT, along with their kernel analogs K(SGD) and K(SGD)
LoRA ,

on a subset of tasks. SGD FT and SGD-LoRA FT achieve comparable performance, and K(SGD) and K(SGD)
LoRA also achieve comparable

performance to each other. We report F1 for QQP and accuracy otherwise, and average the metrics over 5 seeds. These experiments
support Theorem 7.2.

D.1. IntrinsicDimension FT

We discuss IntrinsicDimension FT (Li et al., 2018; Aghajanyan et al., 2021) here. When analyzed through the kernel,
IntrinsicDimension FT and LoRA FT induce similar transformations in the optimization dynamics, but the former was
originally proposed as a way to measure the difficulty of downstream tasks, and the latter was proposed as an alternative
fine-tuning method.
Definition D.1 (A-IntrinsicDimension FT (Li et al., 2018; Aghajanyan et al., 2021)). Let θ ∈ RM be the model parameters
and fix a random projection Π ∈ RM×k. Set θ to θ +Πθ̂, where θ̂ ∈ Rk. To fine-tune, fix θ at its pre-trained value and only
train θ̂.

We show a similar result for IntrinsicDimension FT as for LoRA FT: using a sufficiently large k ≥ Θ(logN/ϵ2) ensures
that each element of the kernel is relatively unchanged.
Theorem D.2 (IntrinsicDimension FT preserves K(SGD)). Let Π be a random matrix with each entry draw i.i.d from
N (0, 1/k). Let K(SGD)

ID ∈ RN×N be the kernel analog to SGD-IntrinsicDimension FT (Definition D.1) on a downstream
task Ξ. Additionally, assume K(SGD)(i, j) ≤ c for any i, j ∈ [N ]. Then,

Pr
[
∃i, j ∈ [N ], |K(SGD)

ID (i, j)−K(SGD)(i, j)| ≥ cϵ
]
≤ 4N2 exp(−(ϵ2 − ϵ3)k/4).

D.2. Proofs

A key step of the proof is to show that if A FT exhibits kernel behavior, then so does A-LoRA FT. We show this step in
Appendix C.6, since it invokes the Tensor Programs framework again. Now that we know FT follows kernel dynamics, we
can move to showing how LoRA and IntrinsicDimension FT modify the kernel.

We restate the Johnson-Lindenstrauss lemma, which preserves inner products under random projection.
Lemma D.3 (Corollary of Johnson-Lindenstrauss, (Johnson, 1984)). Let u, v ∈ Rd such that ∥u∥2 ≤ c and ∥v∥2 ≤ c. Let
h(x) = 1√

k
Ax, where A ∈ Rk×d with each entry sampled i.i.d. from N (0, 1) or U(−1, 1). Then,

Pr[|u · v − h(u) · h(v)| ≥ cϵ] ≤ 4 exp(−(ϵ2 − ϵ3)k/4)
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Proof for Theorem D.2. Note ∇θ̂f = Π⊤∇θf , and

K(SGD)
ID (i, j)−K(SGD)(i, j) = ⟨∇θ̂f(ξi; θ),∇θ̂f(ξj ; θ)⟩ − ⟨∇θf(ξi; θ),∇θf(ξj ; θ)⟩.

The rest follows Lemma D.3 by setting u = ∇θf(ξj ; θ), v = ∇θf(ξi; θ), and union bounding all i, j pairs.

We can now look at LoRA (Hu et al., 2021) for a simple fully connected layer. The construction modifies each layer
independently and only acts on fully connected layers, so this is the only part of the kernel that can change when parametrizing
updates as in LoRA. For ease of notation, for any parameter or hidden vector w, we use dw to denote∇wf(ξ; θ), dw(i) to
denote ∇wf(ξi; θ), and wi denotes the resulting w when input is ξi.

Lemma D.4 (LoRA SGD Kernel). Let h = Wx+BAx as defined in the paper, where x ∈ Rn, W ∈ Rm×n, B ∈ Rm×k,
and A ∈ Rk×n with k ≪ n. B is initialized to 0 and A is initialized with i.i.d. zero-mean Gaussian samples. SGD Training
with LoRA (i.e., fixing W and allowing A and B to be updated) yields the kernel K(SGD)

LoRA , whereas full FT with SGD yields
the kernel K:

K(SGD)
LoRA = dHdH⊤ ⊙ (XA⊤AX⊤) K(SGD) = dHdH⊤ ⊙ (XX⊤)

where dH ∈ RN×m has dh(i) in the ith row and X ∈ RN×d has xi in the ith row.

Proof. We start by noting the well-known fact that dW = dh⊗ x, where dh is the gradient to h and ⊗ is the cross product.
Thus, K = dHdH⊤ ⊙ (XX⊤). In the LoRA setting, dA = 0 and dB = dh⊗Ax. Because we are in the kernel setting,
B = 0 and thus, dA = 0, throughout training. So,

KLoRA(i, j) = ⟨dB(i), dB(j)⟩ = ⟨dh(i), dh(j)⟩⟨Axi, Axj⟩.

Analogous reasoning yields
K(SGD)(i, j) = ⟨dh(i), dh(j)⟩⟨xi, xj⟩.

Theorem D.5 (K(SGD)
LoRA is likely not far fromK(SGD)). LetK(SGD)

LoRA ∈ RN×N andK(SGD) ∈ RN×N be defined as in Lemma D.4.
Additionally, assume that ∥dh∥2 ≤ c, ∥x∥2 ≤ c for any ξ in the downstream dataset. Then,

Pr
[
∃i, j ∈ [N ], |K(SGD)

LoRA (i, j)−K(SGD)(i, j)| ≥ c2ϵ
]
≤ 4N2 exp(−(ϵ2 − ϵ3)k/4).

Proof. By Lemma D.4,

|K(SGD)
LoRA (i, j)−K(SGD)(i, j)| = |⟨dh(i), dh(j)⟩(⟨Axi, Axj⟩ − ⟨xi, xj⟩)|

≤ c|⟨Axi, Axj⟩ − ⟨xi, xj⟩|.

The rest of the proof follows from Lemma D.3 and union bound.

Remark D.6. Theorem D.5 shows when k ≥ 20c4 logN/ϵ2, with high probability, the difference between the two kernels is
smaller than ϵ. Although Theorem D.5 focuses on a simple fully connected layer, the conclusion easily extends to the case
where LoRA is applied L times in the model because LoRA components are independent of each other:

Pr
[
∃i, j ∈ [N ], |K(SGD)

LoRA (i, j)−K(SGD)(i, j)| ≥ Lc2ϵ
]
≤ 4N2 exp(−L(ϵ2 − ϵ3)k/4).

The requirement of k becomes k ≥ Θ(Lc4 logN/ϵ2).
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