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Abstract
We consider a cross-silo federated learning (FL)
setting where a machine learning model with
a fully connected first layer is trained between
different clients and a central server using Fe-
dAvg, and where the aggregation step can be per-
formed with secure aggregation (SA). We present
SRATTA an attack relying only on aggregated
models which, under realistic assumptions, (i) re-
covers data samples from the different clients, and
(ii) groups data samples coming from the same
client together. While sample recovery has al-
ready been explored in an FL setting, the ability to
group samples per client, despite the use of SA, is
novel. This poses a significant unforeseen security
threat to FL and effectively breaks SA. We show
that SRATTA is both theoretically grounded and
can be used in practice on realistic models and
datasets. We also propose counter-measures, and
claim that clients should play an active role to
guarantee their privacy during training.

1. Introduction and Background
Federated learning (FL) (Shokri & Shmatikov, 2015; McMa-
han et al., 2017) has been introduced as a privacy-preserving
technique to train a model on multiple data sources or clients.
The applications of FL now span multiple domains from
medicine (Ogier du Terrail et al., 2023) to finance (Long
et al., 2020), giving ways to unlock new sources of data
while remaining privacy-preserving (Zheng et al., 2022).
As the adoption of this new technology grows, so do con-
cerns about the limitations of FL regarding its actual pri-
vacy guarantees (Kairouz et al., 2021). Indeed, it has now
become clear that naïve gradient sharing is vulnerable to
data-reconstruction (Zhu et al., 2019), membership (Shokri
et al., 2017), and property inference (Ganju et al., 2018)
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attacks, which endangers privacy.

Various mechanisms to increase the privacy provided by FL
have been explored by the literature, in particular differential
privacy (DP) and secure aggregation (SA) protocols. De-
spite the absolute security guarantees they provide (Dwork
et al., 2014), current DP algorithms might impact the mod-
els’ performances (El Ouadrhiri & Abdelhadi, 2022). On the
other hand, SA is a cryptographic protocol that "allow[s]
a collection of mutually distrust parties, each holding a
private value, to collaboratively compute the sum of those
values without revealing the values themselves" (Bonawitz
et al., 2017). It can therefore be used to average model
updates during FL training, to hide individual contributions
from clients without impacting model performance. Such
techniques are being used in production (Heyndrickx et al.,
2022) as an effective way to protect user data. By hiding
individual contributions, the effect of SA is twofold: (i)
it virtually increases the number of accumulated gradients
in one update, making gradient and update-based attacks
more difficult and (ii) it prevents reconstructed samples to
be attributed to specific clients.

Recently, the efficiency of SA to prevent reconstruction at-
tacks has been questioned, as gradient attacks (Zhu et al.,
2019) can recover samples from large batches of raw gradi-
ents (Yin et al., 2021). In the FL setting, recent attacks (Geip-
ing et al., 2020; Xu et al., 2022; Dimitrov et al., 2022) have
built on these works and manage to partially reconstruct
data from FL updates in specific cases. Despite these re-
cent works in gradient (or FL-update) attacks targeting the
SA setting, the claim that, even though individual samples
might be recovered, SA prevents linking those samples back
to their respective clients has remained unchallenged so far.

In this work we demonstrate for the first time that the na-
ture of FL updates does allow one to link samples, despite
the use of SA, assuming the model has a fully connected
first layer and that we are in the cross-silo FL setting (num-
ber of clients from 2 to 50). Targeting this newly found
weakness, we devise an attack, named SRATTA (Sample
Re-ATTribution Attack against Secure Aggregation in Fed-
erated learning), to group samples belonging to individual
clients together, recovering per-client contributions up to a
permutation. This is done in the honest but curious setting,
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where the clients and server follow the protocol. This new
breach of privacy could have important consequences in
multiple real-world use-cases, such as healthcare applica-
tions, where the number of clients is typically limited. For
instance, the prior knowledge that one specific sample be-
longs to one specific client, could be propagated to other
recovered samples. In the worst-case scenario, this would
lead to a one to one assignment of all samples of an individ-
ual client exposing the entirety of its dataset. This grouping
threat on top of sample recovery should be addressed, as
it might create other important privacy-leakages. Indeed,
the knowledge that specific data are being collected by a
specific client could compromise its area of research or tar-
get market. We also believe that this threat advocates for
a paradigm shift in the design of privacy preserving bricks
in (cross-silo) FL: clients must take a more active part in
defending themselves, rather than only relying on a secure
central server.

Contributions. After presenting the attack environment and
assumptions we make on the model and data in Section 2,
we describe a theoretically justified attack which allows to
recover and group samples from the aggregated updates.
More specifically, we make the following contributions.

• A new analytical data-reconstruction attack on FL updates,
which can target any type of loss function, using a data prior
that can easily be constructed for many data modalities
(Section 3.2).

• A method to group recovered samples belonging to the
same client together in spite of the use of SA, unveiling a
new target for attacks on cross-silo FL trainings with SA
(Section 3.2).

• Evidence that SRATTA poses a real threat on several
benchmark datasets and machine learning tasks (Section 4).

• Defensive schemes against SRATTA, highlighting the
role clients can play to guarantee their own privacy (Sec-
tion 5).

We also provide a Python implementation of SRATTA, and
of the proposed defensive schemes.

2. Attack environment and assumptions
This section presents the setting and main assumptions, and
discusses them in light of the current literature. Section 2.1
formally introduces (i) the algorithm that SRATTA targets
and (ii) the quantities and information the attacker needs
to access in order to perform the attack. Section 2.2 states,
motivates and discusses the additional assumptions that we
make, in particular concerning the machine learning (ML)
models which SRATTA targets. Finally, in Section 2.3, we
further discuss the works related to this threat model and
our assumptions, both in and out the FL framework.

2.1. Attack Environment

Cross-silo federated learning setting We consider a cross-
silo FL setting (Kairouz et al., 2021), where a central server
trains an ML model on data distributed across K clients
identified by k P t1, . . . ,Ku. Each client k has a dataset
Dk of pairs px, yq P X ˆ Y , where x is the data sample, y
is the associated ground-truth label—where the term label
denotes any (un)supervised learning task. We denote with
D the complete "pooled" dataset D “

ŤK
k“1 Dk.

The machine learning model m is a function parametrized
by θ P Rp such that ry def

“ mθpxq P RC is the prediction for
sample x P X by the model mθ. We use a loss function
`pry, yq and assume that ` : RC ˆY Ñ R is differentiable in
its first variable. The training optimization procedure aims
at minimizing the average loss of the model predictions over
all data samples from all clients, that is

Lpθ;Dq “
ÿ

px,yqPD

`pmθpxq, yq “
K
ÿ

k“1

Lpθ;Dkq, (1)

where Lpθ;Dq def
“

ř

px,yqPD `pmθpxq, yq for any set D of
sample/label pairs. We make the following assumption,
which is standard in cross-silo FL (Kairouz et al., 2021).

Assumption 2.1 (cross-silo federated averaging). The loss
in Equation (1) is optimized using the original FedAvg
algorithm (McMahan et al., 2017) with local minibatch
SGD (Bottou, 2012), with all clients participating at each
round, and using SA at the averaging step. This algorithm
is described in Algorithms 1 and 2.

Algorithm 1 FedAvg

Require: Initialization θ0
for t “ 1 to tmax do

send model θt´1 to each server
for k “ 1 to K in parallel do
θt,k “ LocalUpdatepkqpθt´1q

end for
θt “

1
K

ř

θt,k // Done using Secure Aggregation
end for

Ensure: θtmax

Algorithm 2 LocalUpdate // Executed on server k

Require: initial model θt´1, local dataset Dk, batch size
b, learning rate η
θt,k,i“0 Ð θt´1

for i “ 0 to nupdates ´ 1 do
Bt,k,i Ð batch of size b from Dk
θt,k,i`1 Ð θt,k,i ´ η∇θLpθt,k,i, Bt,k,iq

end for
Ensure: θt,k,nupdates
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We refer the reader to the notation introduced in the pseudo-
code above throughout our demonstration. Regarding the
aggregation done with SA, in some cases, the server has
access to the aggregated parameters of the model θt while
in other implementations of SA (Cramer et al., 2015), the
central server either does not exist or cannot know the value
of θt. Following Pasquini et al. (2022), we do not make any
assumption on the actual implementation used to perform
SA as long as it works as intended. The shorthand SA thus
designates an ideal invocation of such a protocol.

Finally, note that Assumption 2.1 can be relaxed without
impacting the performances of SRATTA (see Appendix C).

Threat model
Assumption 2.2 (Threat model). We assume a honest but
curious threat model where each participant follows the
protocol but tries to infer as much information as possible
on the data of other participants from the quantities they
receive. We further assume that no client collusion is possi-
ble (two clients cannot agree to perform an attack together),
therefore placing ourselves in a particularly unfavorable set-
ting for the attacker. The attacker described in this work
is anyone who knows the target ML task, which only en-
tails knowing the data type of each feature and whether
additional preprocessing is used. In addition, the attacker
has access to the aggregated model after SA at each round:
θt for t P 0, . . . , tmax. If multiple trainings are performed
(when testing different seeds or learning rates), the attacker
has access to all the aggregated iterates from all training
phases.

The attacker does not need to have access to the client-
specific models. The attacker can be either the server if the
cryptographic protocols used do not prevent it, or any of the
clients.

2.2. Additional assumptions

Assumption on the model We assume that data samples
are vectors of dimension d (X “ Rd). The main limiting
assumption of our work is that the first layer of the model is
fully connected with H hidden neurons with bias.
Assumption 2.3 (Fully connected first layer with bias). The
model parameters can be decomposed as θ “ pW, b, φq
where W P RHˆd, b P RH and φ P Rr. The model is of
the form

mθpxq “ fφpReLUpWx` bqq, θ P Rp, x P Rd, (2)

where fφpzq is itself a (sub) differentiable model in z P RH .
W P RHˆd is referred to as the weights, and b P RH is
referred to as the bias. The couple W “ pW, bq P RHˆd ˆ
RH is referred to as the extended weights.

We also denote by Wh P Rd the h-th line of W , with
bh P R the bias of the h-th hidden neuron, and with

W
h
“ pWh, bhq P Rd`1 the extended weights of the h-

th hidden neuron. Finally, for any iterate θs described in the
FedAvg algorithm, we denote by Ws, bs,W

h

s ,W
h
s , b

h
s ,W s

the corresponding subset of parameters.

Assumption 2.3 is a strong assumption. It is satisfied by
multi-layer perceptron (MLP) architectures, which have
been scaled with success to a variety of problems such as
for tabular data (Kadra et al., 2021) or recently for computer
vision (Tolstikhin et al., 2021). These architectures are
therefore the main targets of SRATTA.

Finally, we make the following assumption.

Assumption 2.4. Samples of D are unique.

In the cross-silo FL applications we consider (notably asso-
ciated with FL for healthcare), we believe this assumption to
be satisfied in a vast majority of cases. Note however that in
cross-device FL settings, for example in NLP applications,
the repeated presence of certain relatively short sentences
could prevent Assumption 2.4 from holding.

In order to decide whether an element x P Rd is a true data
sample from one of the clients, we use a data prior. By
data prior, we mean a subset P Ă X which contains the
true data samples from the dataset D. This data prior will
be used in the first step of SRATTA (see Section 3.2) to
identify true data samples from a list of candidates defined
in that step.1 It will therefore have to be small enough to
filter out all false candidates. Our experiments will confirm
that this requirement is satisfied empirically. Indeed, while
the existence of a such a data prior may seem a strong
hypothesis, it can be easily built using knowledge of general
data properties, which are available to the attacker in our
threat model 2.2. This is the case in the following examples.

Example 1. If the possible values taken by certain fea-
tures F Ă t1, ..., du of the data samples x take values in a
known finite set V , we can take the data prior P “ tx P
Rd : pxf qfPF P Vu. This is the case with binary fea-
tures where V “ t0, 1uF , for most image datasets where
V “ tk{255, k “ 0, . . . , 255ud2, and for any multimodal
dataset where a single modality, corresponding to the fea-
tures F , belongs to a known discrete data prior (we illustrate
this in Section 4).

Example 2. If the dataset is normalized, we can use the data
prior P “ t||x|| “ 1u.

1If we do not have such a data prior, we can do as done by Pan
et al. (2022), and identify data samples as duplicates.

2If we further perform standardization of the image such as
scaling, the data prior still works but its values will be shifted.
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2.3. Related work

Our work uses recent results on analytical data reconstruc-
tion attacks, in order to take advantage of FL updates to
disaggregate SA.

Data reconstruction attacks

Optimization-based attacks on raw gradients. Zhu et al.
(2019) show that one can recover samples from a training
dataset using the gradients generated during training in the
case of classification tasks with cross-entropy loss and small
batches. Their approach consists in generating "dummy"
samples as close as possible to the real samples by matching
the gradients obtained when training using the "dummy"
samples with the ones observed during the real training.
While this work is not specific to FL, such attacks are par-
ticularly important in FL as the gradients -or the model
updates- are shared and sent over the network.

Multiple works improve the accuracy of such methods us-
ing different image priors (Zhao et al., 2020; Geiping et al.,
2020; Yin et al., 2021) and scaling the attack to handle
medium to large batches of gradients (Yin et al., 2021). Al-
though the grouping of samples in SRATTA is optimization-
based like the attacks above, our data recovery step is purely
analytical. Moreover, while previous attacks are limited to
the use of cross-entropy loss over images, SRATTA can
target different dataset types and any differentiable loss.

Analytical attacks on raw gradients. Aono et al. (2017);
Geiping et al. (2020); Pan et al. (2022) point out that, in the
case of a fully-connected layer, if only one sample activates
a hidden neuron, the gradients of the weights corresponding
to that hidden layer are proportional to the input of the layer,
and the proportionality coefficients correspond to the gradi-
ent of the bias irrespective of the loss used (cf Section 3.2).
Zhu & Blaschko introduce an analytical reconstruction at-
tack which recursively reconstructs activation maps layer
per layer. We make use of such results in SRATTA. How-
ever (i) we scale such attacks from gradients to multiple
FL updates, (ii) our method introduce the novel use of a
data prior to allow an analytical reconstruction, and (iii) the
core of SRATTA is grouping samples from the same clients
together, which is a new idea.

Attacks on FL updates. Geiping et al. (2020) and Xu et al.
(2022) show qualitatively that, if very small learning rates
are used (or single-batch approximation), original optimiza-
tion based attacks still work to some extent. A related
approach introduced by Dimitrov et al. (2022) leverages
higher-order automatic differentiation to fully simulate mul-
tiple gradient updates by optimizing over multiple dummy
batches simultaneously. While the two previous attack rely
on optimizing a gradient matching problem, a third line of
work introduced by Kariyappa et al. (2022) optimizes an
independent component analysis problem to recover indi-

vidual gradient, before applying gradient inversion attacks
to recover samples.

All attacks presented in this paragraph are optimization-
based gradient attacks and thus suffer from the same draw-
backs: they can only target image classification tasks (when
using gradient matching) and more importantly do not target
samples grouping at all. In addition, while all data recon-
struction attacks including ours are sensitive to the number
of updates, the learning-rate and the batch-size, we show
in Appendix E.4 that SRATTA can accomodate multiple
updates (up to 20 updates) and large batch-sizes (up to 32)
while still maintaining reasonable accuracy (ą 10%), which
is rare in this literature.

Leveraging multiple rounds and tranings. Both Xu et al.
(2022) and Dimitrov et al. (2022) exploit the redundancy of
samples between each round to increase the effectiveness
of the attack. SRATTA also exploits this redundancy, in
a novel way, when performing the grouping step (cf Sec-
tion 3.2).

From MLPs to convolutional neural networks (CNN). Many
of the works cited in this section, such as those by Pan et al.
(2022); Zhu & Blaschko; Boenisch et al. (2021); Kariyappa
et al. (2022), extend their gradient-based recovery strategy
from MLPs, which satisfy Assumption 2.3, to CNNs which
do not satisfy this assumption anymore, by inverting the
convolutional part of the network. While we believe the
techniques used in these works could also be applied in our
setting, our current work relies heavily on Assumption 2.3,
and is therefore not directly applicable to break SA for
CNNs.

Disaggregating Secure Aggregation. Different lines of
research tackle the problem of retrieving client-specific in-
formation from aggregated updates. However, they differ
from our work: they either assume a malicious threat model,
or do not group recovered samples together. Pasquini et al.
(2022) consider a threat model where the central server
controls the updates sent to each client, exposing the data
despite the use of SA, which is not the case in standard
cross-silo FL training. In this attack, the malicious aggre-
gator sends different models to each client. All but one
clients receive a model that produces null gradients while
one of the servers, the target, receives an unaltered model.
Therefore, after SA, the aggregator can obtain the gradient
from a single client. Within our threat model defined in Sec-
tion 2, such an attack is not possible as we assume that the
central server is honest-but-curious and that the protocol
prevents the aggregator from controlling the models sent to
each client. Similarly, Zhao et al. (2023); Fowl et al. (2022)
retrieve client data, but assuming a malicious threat model,
in which the aggregator can choose the model it sends to
each client. Lam et al. (2021) assume that the model up-
dates sent by each client are constant, or almost constant
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across the rounds, and that the participation differs between
each round. They recover therefore both the participation
matrix and the model updates of each client. Within our
threat model and framework, defined in Section 2, such an
approach does not hold as: (i) the matrix participation is
constant, (ii) only a small fraction of the local dataset might
be used at each step, therefore there is no reason for the
model updates to be constant across the rounds for a given
client. Finally, Pejó et al. (2022) considers a framework
similar to ours, but recover only a high level description of
the data quality of each client, and not the content of their
dataset.

In view of these different works, we believe there has been
no other related attempts to perform sample re-attribution
despite the use of SA under similar assumptions.

3. Presentation of SRATTA
In this section, we present SRATTA, our method to re-
cover and group client samples together. The full SRATTA
algorithm can be found in Algorithm 3.

3.1. Preliminary: activation sets

In this part, we introduce the central tool of our attack: ac-
tivation sets. Intuitively, activation sets consist in samples
which contribute linearly to a given weight update. We tar-
get these activation sets and partially recover them in our
attack. The rest of the subsection provides formal defini-
tions of batch and round-level activation sets, and states the
associated linear decompositions.

Batch-level activation sets Given a parameter θ, a batch B
and a neuron h, the batch-level activation set of the neuron h
for the batch B is defined as

Ahpθ,Bq
def
“ tx P B : Wh ¨ x` bh ą 0

and
BLpθ;x, yq
Bzh

‰ 0u,
(3)

where zh is the output of the first activation corresponding
to neuron h, and BLpθ;x,yq

Bzh
is the differential of the loss w.r.t.

zh at parameter θ and data point px, yq (cf Equation (12)).
This set characterizes the samples which contribute linearly
to the gradient of the loss L, as shown in the following
proposition.
Proposition 3.1. Fix a neuron h, a model parameter θ,
and a batch B. Denoting px1, ..., xN q the complete list of
samples in Ahpθ,Bq, there exists pλiq P Rzt0uN such that

∇WhLpθ,Bq “
N
ÿ

i“1

λixi,

∇bhLpθ,Bq “
N
ÿ

i“1

λi.

(4)

This result, proved in Appendix A, is an extension of Propo-
sition D.1 by Geiping et al. (2020).

Round-level activation sets Since the attacker only has
access to round-level updates ∆W

h

t
def
“ W

h

t ´W
h

t´1 and
not to individual batch gradients, we define the round-level
activation set of neuron h during round t as the union of all
batch-level activation sets encountered by all clients during
local training.

Ah
t “

K
ď

k“1

nupdates´1
ď

i“0

Ahpθt,k,i, Bt,k,iq. (5)

The batch-level linear decomposition property of Proposi-
tion 3.1 is preserved at round-level: the round-level update
can be decomposed on the round-level activation set.

Proposition 3.2. Fix a neuron h, and t P t1, ..., tmaxu.
Denoting px1, ..., xN q the complete list of samples in Ah

t ,
there exists pλiq P Rzt0uN such that

∆Wh
t “

N
ÿ

i“1

λixi,

∆bht “
N
ÿ

i“1

λi.

(6)

This proposition results from the nature of the FedAvg up-
dates and is proved in Appendix A.2. It is the cornerstone
of the first two steps of SRATTA.

3.2. Main steps of SRATTA

SRATTA consists of three main steps: (i) recovering sam-
ples using the data prior, (ii) recovering small activation sets,
and (iii) grouping samples coming from the same client to-
gether. We emphasize that (iii) is completely novel, and
highlights an important finding of the present paper: using
SA does not prevent attackers from recovering groups of
samples belonging to the same client.

Step 1. Sample recovery

The first step of SRATTA consists in recovering individual
data samples. It is based on the observation that certain
samples can be recovered as a ratio of round-level updates,
which is a direct consequence of Proposition 3.2.

Proposition 3.3. For any neuron h and round t, if the round-
level activation set Ah

t contains a single sample x, then x “
∆Wh

t {∆b
h
t . We say that such a sample x is an "isolated

sample".

To recover all isolated samples, we start by constructing the
family of ratios prht

def
“ ∆Wh

t {∆b
h
t qt,h from the round-level

updates, which are accessible to the attacker under Assump-
tion 2.2 (skipping pt, hq for which ∆bht “ 0). We then filter
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out elements by only keeping those which belong to the
data prior P , defined in Section 2.2. In SRATTA, the set of
recovered data samples R is therefore defined as

R def
“

 

rht P P : ∆bht ‰ 0
(

. (7)

While we are sure that R contains all isolated samples
by Proposition 3.3, R may still contain "false" data samples.
However, this has never happened in our experiments, and
we recover a reasonable proportion of the client datasets
(see Section 4). We explain this by the combination of two
factors. First, our data priors are discrete, hence "small" in
Rd. Second, if Ah

t is of size greater than two, the cor-
responding ratio rht is a sum of multiple data samples,
weighted by coefficients whose structure has no link with
the data prior (see Proposition 3.2).
Remark 3.4 (Analytical recovery of the samples). A re-
covered sample as defined in Equation (7) is analytically
recovered: samples are reconstructed up to machine pre-
cision. In our experiments, it will therefore be irrelevant
to measure the PSNR, the LPIPS or any similarity metric
between the reconstruction and the original sample.

Step 2. Reconstructing small activation sets

The second step of SRATTA consists in reconstructing
certain round-level activation sets; this will be needed to
group samples together in step 3.

To reconstruct an activation set Ah
t , we reverse engi-

neer Proposition 3.2, and look for a linear decomposition of
the round-level updates ∆W

h

t in the form of Equation (6),
where the samples are taken in R. More formally, for
all pt, hq, we look for N P N, pλrq1ďrďN P Rdzt0u and
pxrq1ďrďN P RN such that

∆Wh
t “

N
ÿ

r“1

λrxr (8a)

∆bht “
N
ÿ

r“1

λr. (8b)

In general, there is no unique solution to this problem: (i) it
could have no solution if the round-level activation set Ah

t is
not included in R, or (ii) it could have multiple solutions if
the elements of either Ah

t or R are not linearly independent.
The first issue is unavoidable as it depends on the quality of
the recovery step, but would simply result in not recovering
the specific Ah

t . The second issue is more problematic
as it could lead to "wrong" recovered activation sets. In
order to reduce the risk of linear dependencies, SRATTA
only attempts to recover activation sets of size smaller than
a fixed threshold Nmax ! d. In our applications, we set
Nmax “ 20, the smallest dataset dimension being d “ 180.

Together with the constraint that N ď Nmax, Equation (8)
becomes a sparse reconstruction problem ( Zhang et al.

(2015), see Appendix B for further details). Many algo-
rithms exist to tackle this problem, such as orthogonal
matching pursuit (OMP) by Mallat & Zhang (1993), or
the LASSO (Kim et al., 2007). While the assumptions to
guarantee the convergence of these algorithms to a solution
cannot be checked by the attacker, we found that using OMP
works well in practice. At the end of this step, SRATTA
recovers a set rAh

t of samples in R, for all pairs pt, hq P Lrec
whose associated problem 8 is solved by the OMP. While
the recovered rAh

t are not formally guaranteed to be equal to
Ah
t , we will assume they are to keep notations simple. This

step is the most computationally expensive of SRATTA.

Step 3a). Theoretical foundation of sample grouping

The third step of SRATTA consists in grouping samples
which belong to the same client dataset together, and is the
key contribution of the paper.

We start by providing the intuition and theoretical results
which allow for this grouping of samples, before effectively
using them in step 3b). For any t, h, we introduce the set

rAh
t,0

def
“ tx P Ah

t : Wh
t´1x` b

h
t´1 ą 0u, (9)

which is computable by SRATTA if pt, hq P Lrec. Intu-
itively, the set rAh

t,0 contains all samples which activate neu-
ron h at the beginning of round t. These samples are the
only ones which make the extended weights of the neuron h
move away from their initial value. Thus, if a given client
k has a sample which activates neuron h during round t,
its first sample to activate neuron h necessarily belongs
to rAh

t,0. This reasoning yields the following central result
(see Appendix A.3 for a proof).

Theorem 3.5. Under Assumption 2.4, if a sample from
client k is in Ah

t , then at least one sample from client k is
in rAh

t,0.

Theorem 3.5 can be exploited by attackers to group samples
together; while SRATTA exploits it by using Corollary 3.6,
there could be more elaborate ways of using this result.

Corollary 3.6. Under Assumption 2.4:

(i) if there is only one sample in rAh
t,0, all samples in Ah

t

belong to the same client.

(ii) if all the samples in rAh
t,0 belong to the same client, all

samples in Ah
t belong to that same client.

Step 3b). Effectively matching samples in SRATTA

In this last step, SRATTA leverages Corollary 3.6 to iter-
atively build a graph on the recovered samples R, where
edges are drawn between samples if they belong to the same
client. As a result, all samples in a connected component of
the graph come from the same client. Recall that at the end
of step 2, we assume that SRATTA has reconstructed Ah

t
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and hence rAh
t,0 for all pt, hq P Lrec. Initially, there are no

edges in the graph.

SRATTA starts by using (i) of corollary 3.6: for all pt, hq P
Lrec such that rAh

t,0 is of size 1, an edge is drawn between
all samples in Ah

t , as they belong to the same client.

SRATTA then iteratively adds edges by using (ii) of corol-
lary 3.6. For all pt, hq P Lrec, we check if rAh

t,0 is included
in a connected component of the graph. If this is the case,
all samples in rAh

t,0 belong to the same client: an edge is
drawn between all samples in Ah

t .

This procedure is stopped when no new edge is added.
SRATTA finally returns the connected components of the
graph, which is a partition pP1, ..., Ppq of the recovered
samples: P1 Y ...Y Pp “ R.

4. Applying SRATTA
In this section, we evaluate the performance of SRATTA on
different datasets. In Section 4.1, we show that SRATTA
allows (i) to recover an important proportion of the original
data samples (step 1 of our method) and (ii) to correctly
group those samples together. In Section 4.2, we compare
the grouping step of SRATTA to a simple baseline. This
comparison allows us to focus on an interesting feature
of SRATTA: the fact that the grouping of samples does
not depend on any heterogeneity in the sample distribu-
tion across clients: SRATTA works equally well in i.i.d or
non i.i.d. settings. The code for SRATTAis available at
https://github.com/owkin/SRATTA.

Dataset used We perform SRATTA on four differ-
ent datasets. Two of them are image datasets: CI-
FAR10 (Krizhevsky et al., 2009) and FashionMNIST (Xiao
et al., 2017). One is a binary dataset, the Primate Splice-
Junction Gene Sequences (hereafter DNA dataset) dataset
available in the OpenML suite (Vanschoren et al., 2014).
The final dataset is a multi-modal and multi-centric version
of the TCGA-BRCA (Tomczak et al., 2015; Ogier du Ter-
rail et al., 2022) dataset, containing binary, discrete and
continuous entries. Further details on the dataset used
are listed in Appendix E.2. For FashionMNIST and CI-
FAR10 the possible pixel values of data samples are in
P “ tk{255, k “ 0, . . . , 255ud, which we use as a data
prior for these datasets. The DNA data are binary, therefore
for this dataset P “ t0, 1ud. Finally for TCGA-BRCA, we
use a data prior on a subset of the features which are binary:
P “ t0, 1uF ˆ Rd´F .

Metrics As noted in Remark 3.4, as the sample recovery
process is exact up to machine precision, it is irrelevant
to compare the recovered data samples with their original
counterpart. Recall the definition of the groups Pi inferred
by the attacker in Step 3 (bis). We will use the following

metrics.

ρrecovered
def
“ #R{#D is the ratio of recovered samples

and measures the quality of the recovery process.

ρmatched
def
“ Rmatched{#D, where Rmatched is the number

of samples which have been recovered and grouped with at
least another sample.

ρcomponent is the ratio between the average size of the K
largest components in the partition pP1, ..., Ppq and the av-
erage size of a client’s dataset.

The metrics above measure the quality of the recovery step
but do not give indications on the quality of the grouping
of the recovered samples. This is why we also use the V -
measure of the partition pP1, ..., Ppq of R w.r.t. the true par-
tition of R between the K clients (Rosenberg & Hirschberg,
2007): Vrecovered. Informally, the V -measure, Vrecovered, is
a mix of two quantities, homogeneity: if grouped samples
are from the same client, and completeness: if samples from
the same client are in a single cluster.

Remark 4.1. Note that more standard metrics such as recall
or precision are insufficient to provide a satisfying ranking
of different groupings as they cannot measure completeness
of the partitions and would thus give a similar score to
groupings of drastically different qualities.

Finally we introduce Vnormalized
def
“ ρrecovered ˆ Vrecovered

the Vmeasure normalized by the recovery ration in order
to measure the quality of the attack as a whole (recovery
and grouping). All metrics have values in r0, 1s. This way,
reported numbers are not inflated in the case where one step
of the attack is failing indeed Vnormalized is equal to one
if and only if the attack works perfectly: ρrecovered “ 1,
ρmatched “ 1, ρcomponent “ 1 and Vnormalized “ 1.

For additional details on these metrics, we refer to Ap-
pendix E.1

Running the attack We assume that the attacker is in a
typical data science workflow where (i) multiple learning
rates are tested, in order to select the best one, and (ii)
different trainings will be run for each learning rate, in
order to have a measure of the uncertainty. Thus, it is
plausible that the attacker has access to training sequences
for different seeds and different learning rates.

4.1. Evaluating the attack on four datasets

For each dataset, we choose realistic hyper-parameters (HP)
(learning rate, number of hidden neurons), and we perform
FL trainings, with 5 clients each containing #Dk “ 100
data samples and with nupdates “ 5, tmax “ 20, as de-
scribed in Section 2.1 and Algorithm 1. We then perform
SRATTA using only the model parameters at each round θt
and report the metrics ρrecovered, ρmatched, ρcomponent and
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Vnormalized in Figure 1.

TCGA FashionMNIST CIFAR10 dna
0.0

0.2

0.4

0.6

0.8

1.0
recovered

matched

component

Vnormalized
Vnot normalized

Figure 1. Result of SRATTA for 4 different datasets. In each case,
we consider K “ 5 clients with datasets of size #Dk “ 100,
nupdates “ 5, tmax “ 20 with 20 training attacks in each case.
All the hyperparameters used in this figures are listed in Table 4.

Impact of the hyper-parameters In Appendix G, we ex-
plore in detail the impact of the different HP on the per-
formance of SRATTA on FashionMNIST. It confirms the
intuition that as the number of hidden neurons, trainings or
tmax grows, so does the performance. It also demonstrates
that increasing the batch size (1-32) or the number of up-
dates (1-20) significantly degrades the quality of SRATTA.
However, simply increasing these parameters would not
constitute a proper defense, as the proportion of recovered
samples is still significant (> 0.1). Finally, we show that
there is an optimal set of learning rates for which the group-
ing part of the attack works particularly well. This set of
learning rates does not necessarily contain the optimal learn-
ing rate in terms of performance, but is close enough so that
it will be tested during an HP search.

4.2. Dependence on inter-client datasets’ homogeneity

In this section, we explore the fact that a priori, our grouping
method is not sensitive to inter-client datasets’ homogene-
ity, as it relies on a combinatorial argument. Indeed its is
harder to group samples when clients’ datasets are simi-
lar (homogeneous). In order to test this hypothesis we use
Dirichlet sampling (Hsu et al., 2019) on samples’ labels to
build our clients with varying heterogeneity by varying the
α parameter of the Dirichlet distribution (cf Appendix E.3).
We compare SRATTA with a naïve attack which consists
in performing a K-means algorithm, K being the number
of clients, on the recovered data samples R (from Step 1).

We compare both methods using the normalized V measure
as defined above, which is particularly interesting as it takes

into account both the homogeneity, which favours SRATTA,
as well as completeness, which favour K-means. We report
the results in Fig.2. In this figure, each point of the curve
corresponds to a different dataset whose labels are more
homogeneously distributed amongst clients as α increases.
α is not a hyper-parameter chosen by the attacker or by the
clients, but a parametrization of intrinsic data heterogeneity.

The K-means attack works well in the heterogeneous case,
and not at all in the homogeneous case, while SRATTA
works reasonably well in all cases.

10 2 10 1 100 101 102

Dirichlet Parameter  (heterogeneity)

0.0

0.1

0.2

0.3

0.4

0.5

V n
or

m
al

ize
d

K-means
SRATTA

Figure 2. Success rate of SRATTA and K-means as a function of
inter-client homogeneity measured by the Dirichlet parameter α.
Cf Appendix E.3 and Table 4 for experimental details

5. Fighting secure disaggregation
To defend against this new type of attack, we believe that
clients should take matters into their own hands, actively
controlling the updates shared to the server.

We propose the following defense mechanism. At each
round t, each client k dynamically checks its own activation
set Ah

t,k of each neuron h (for a formal definition, see Equa-
tion (26) in Appendix F.1). If this activation set is too large
to be attacked (larger than a threshold q), the corresponding
update is shared. Otherwise, the neuron h is frozen:

If #Ah
t,k ď q, W

h

t,k,nupdates
is reset to W

h

t´1. (10)

This removes easy-to-recover activation sets with less than q
samples and nullifies the effect of SRATTA. This censoring
might reduce the final performance of the model. However
in table 1, we show that we are able to effectively defend
ourselves against SRATTA while preserving the accuracy
of the model. In Appendix F.1, Figures 6 and 7 we pro-
vide more evidence that this defense does not affect model
accuracy independently of the learning rate. This result is
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coherent with related works on gradient pruning (Sattler
et al., 2019) or dropout (Srivastava et al., 2014) where mod-
els are efficiently trained with a higher proportion of frozen
neurons than ours.

We observe situations where neurons were activated by sev-
eral samples but only one of them with significant amplitude,
allowing reconstruction. Moving from q “ 1 to q “ 4 im-
proves the resilience of the defense to this case.

Finally, note that the grouping part of SRATTA is relevant
only if nupdates ą 1. Enforcing nupdates “ 1 effectively
breaks sample matching, but it is out of the scope of this
paper, for reasons detailed in Appendix F.4.

Dataset ρrecovered Ó Vnormalized Ó Pcensored Model Acc. Ò
CIFAR10 (q “ 0) 0.585˘ 0.015 0.490˘ 0.019 0.000˘ 0.000 0.261˘ 0.039
CIFAR10 (q “ 1) 0.002˘ 0.002 0.002˘ 0.002 0.098˘ 0.011 0.272˘ 0.033
CIFAR10 (q “ 4) 0.000 ˘ 0.000 0.000 ˘ 0.000 0.180˘ 0.014 0.274 ˘ 0.040

DNA (q “ 0) 0.516˘ 0.080 0.233˘ 0.032 0.000˘ 0.000 0.929˘ 0.017
DNA (q “ 1) 0.035˘ 0.015 0.031˘ 0.013 0.005˘ 0.002 0.929˘ 0.019
DNA (q “ 4) 0.000 ˘ 0.001 0.000 ˘ 0.001 0.038˘ 0.006 0.932 ˘ 0.020

FashionMNIST (q “ 0) 0.476˘ 0.027 0.284˘ 0.015 0.000˘ 0.000 0.732 ˘ 0.053
FashionMNIST (q “ 1) 0.009˘ 0.004 0.006˘ 0.004 0.042˘ 0.006 0.729˘ 0.043
FashionMNIST (q “ 4) 0.000 ˘ 0.000 0.000 ˘ 0.000 0.149˘ 0.022 0.731˘ 0.046

TCGA (q “ 0) 0.279˘ 0.016 0.193˘ 0.010 0.000˘ 0.000 0.660 ˘ 0.065
TCGA (q “ 1) 0.051˘ 0.016 0.036˘ 0.012 0.135˘ 0.016 0.658˘ 0.071
TCGA (q “ 4) 0.000 ˘ 0.000 0.000 ˘ 0.000 0.257˘ 0.030 0.658˘ 0.071

Table 1. Influence of the defense on the efficiency of SRATTA
and on training performance. In this table we take the point of
view of the defender/client. The defense strategy must therefore
i) not impact the model accuracy compared to the baseline without
defense and ii) nullify the attack. Pcensored is the average propor-
tion of neurons censored per update on the total number of neurons.
We simulate an attack performed on clients defending themselves
while conducting a grid search where they test 20 different learning
rates. This experiment is repeated 10 times. The model accuracy
reported is the best one across learning rates, averaged over repe-
titions. This setting highlights the defense success to prevent the
attack, with almost no loss of accuracy.

5.1. Strengths and limitations of the defense

As in most adversarial settings, the defense mechanism we
present in this section is not proved to be absolute. Apart
from the empirical evidence presented in ??, two remarks
strengthen our belief that knowing the defense mechanism
does not result in a straightforward workaround for the
attacker.

• If the attacker knows that certain neurons have been
censored, retrieving them is not obvious, as this censor-
ing is done at client level, and is not directly reflected
in the aggregation.

• Even assuming that the attacker is able to trace which
neuron has been censored by which client, they can
only infer that the data point which trigerred the de-
fense lies in a certain half space (and this is assuming
the knowledge of the weights defining the half space,

which is not obvious considering they are modified by
local updates).

However, this does not provide a formal proof of the invio-
lability of the defense. Another point of concern could be
that the defense could impact model accuracy, in the case
where underrepresented samples are censored too often, and
which is not reflected in the datasets we studied. To mit-
igate this concern, we note that the defense only censors
the update for specific neurons for specific clients. Thus
a neuron censored by Client A can be updated by Client
B in this very round, and thus not be censored at another
round for the same sample. Moreover, for a sample to have
virtually no impact on any neuron during the training, all
neurons activated by the underrepresented sample need to
be censored.

6. Discussion
We believe SRATTA to be an important proof of concept
opening new interesting research avenues in both the design
of attacks, and of privacy layers in cross-silo FL settings. In
particular, it stresses the fact that clients have to play a bigger
role in actively defending themselves, and that relying on
secure centralized computations alone is not enough. In our
work, the restriction to models with a fully connected first
layer, such as MLPs, limits the impact of SRATTA.

Extension to CNNs. Assessing if this attack can be extended
to a broader class of models, such as CNNs, will be im-
portant to make sure that clients implement the appropriate
defense mechanisms. In Pan et al. (2022); Zhu & Blaschko;
Boenisch et al. (2021); Kariyappa et al. (2022), the attack
on MLPs is extended to CNNs by attacking the first fully
connected layer. The key component needed for SRATTA to
work on this setting, is a prior on the deep features allowing
to filter out reconstruction candidates relying solely on their
feature representations as is done now in SRATTA using
raw data. Previous work Pan et al. (2022); Zhu & Blaschko;
Dong et al. (2021) have shown that inverting the convolu-
tional part of the network is possible, which could allow
us to use priors on raw data space, and select reconstructed
deep features based on their inversion to the raw data space.
This is but one way to approach the problem, and we are
convinced subsequent works will be able to bridge this gap.
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A. Proofs of the theorems
A.1. Proof of Proposition 3.1

We provide here a proof of Proposition 3.1, which was already stated, with other notations in various works such as Aono
et al. (2017); Geiping et al. (2020); Pan et al. (2022). We start by computing the gradient of the loss at a single data point,
before proving the proposition on a batch, and finally extending it to a loss which is not decomposable on the points of the
batch (this will be useful for the Cox loss in the TCGA dataset).

In order to make differentials more explicit, we write mpx; θq
def
“ mθpxq for x P Rd, z P RH , φ P Rq and θ P Rp.

1. Gradient of the loss at a single point. Let px, yq P Rd ˆ Y . We recall that the neural network considered starts with a
fully connected layer, and hence

mpx; θq “ fφpzpxqq, zpxq
def
“ ReLUpWx` bq

For any 1 ď h ď H , denote with zh the activation of the h-th hidden neuron: zhpxq def
“ ReLUpWhx ` bhq. Note that

z “ pzhq1ďhďH . Using the chain rule, it holds

∇Wh`pmpx; θq, yq “
B`pfφpzpxqq, yq

Bzh
Bzhpxq

BWh
,

∇bh`pmpx; θq, yq “
B`pfφpzpxqq, yq

Bzh
Bzhpxq

Bbh
.

(11)

Note that in the main text (cf Equation (3)), we define

BLpθ;x, yq
Bzh

def
“
B`pfφpzpxqq, yq

Bzh
(12)

Therefore,

∇Wh`pmpx; θq, yq “
BLpθ;x, yq
Bzh

Bzhpxq

BWh
,

∇bh`pmpx; θq, yq “
BLpθ;x, yq
Bzh

Bzhpxq

Bbh
.

(13)

Now if Whxi ` b
h ď 0, then Bzhpxq

BWh “ 0 and Bzhpxq
Bbh

“ 0, taking the convention that the gradient of the ReLU is 0 at 0.

On the other hand, if Whx` bh ą 0, then the gradient of the ReLU is 1 and Bzhpxq
BWh “ x, Bz

h
pxq

Bbh
“ 1. In both cases, we

have

∇Wh`pmpx; θq, yq “ λpθ;x, yq x,

∇bh`pmpx; θq, yq “ λpθ;x, yq.
(14)

with λpθ;x, yq “ BLpθ;x,yq
Bzh

1Whx`bhą0.

2. Gradient of the loss on the whole batch. Now, let D “ pxi, yiq1ďiďb P Rb be a batch of size b.

The loss computed over a batch D is the following sum:

Lpθ;Dq “
b
ÿ

i“1

`pmpxi; θq, yiq (15)
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and hence, by applying the gradient and using Equation (14)

∇Wh`pmpx; θq, yq “
b
ÿ

i“1

λpθ;xi, yiq xi,

∇bh`pmpx; θq, yq “
b
ÿ

i“1

λpθ;xi, yiq.

(16)

By definition of the activation set Ahpθ,Dq in Equation (3), and that of λ above we have

λpθ;xi, yiq ‰ 0 i.i.f. xi P Ahpθ,Dq,

which concludes the proof.

3. Gradient of a loss which is not separable on a batch Assume now that the loss is not decomposable along points of
the batch, but that we have instead

Lpθ;Dq def
“ `pmθpxDq, Dq, where mθpxDq

def
“ pmθpxiqq1ďiďb P RCˆb, (17)

for some differentiable loss `p¨, Dq : RCˆb Ñ R on the batch. Then in the same way, we define the activation set as

Ahpθ,Dq
def
“ txi P D : Wh ¨ xi ` b

h ą 0

and
BLpθ;Dq
Bzhi

‰ 0u,
(18)

where BLpθ;Dq
Bzhi

is the differential of the loss w.r.t. the output of the first neuron at parameter θ on sample x, which is

formally the partial derivative of Z “ pz1, ..., zbq P RCˆb ÞÑ `ppfφpziqq1ďiďb, Dq with respect to rZshi “ zhi at point
Z “ pReLUpWxi ` bqq1ďiďb.

We can then compute the partial derivatives, and obtain exactly the same result as the one above.

A.2. Proof of Proposition 3.2

As the clients are performing standard SGD, the updates of the clients are a sum of the gradients computed at each update.
Besides, as the FL protocol is FedAvg, the aggregated model θt is a simple average of all the client updates. Therefore:

∆θt “ ´
η
K

K
ÿ

k“1

nupdates´1
ÿ

i“0

∇Lpθt,k,i, Bt,k,iq

And thus for the first layer’s weights and biases we have:

∆Wh
t “ ´

η
K

K
ÿ

k“1

nupdates´1
ÿ

i“0

b
ÿ

j“0

λpθt,k,i;x
Bi

k
j , y

Bi
k

j qxj

∆bht “ ´
η
K

K
ÿ

k“1

nupdates´1
ÿ

i“0

b
ÿ

j“0

λpθt,k,i;x
Bi

k
j , y

Bi
k

j q

Where xB
i
k

j indicates the j-th sample of the batch of client k at update i.

Therefore, Proposition 3.2 is a straightforward consequence of Proposition 3.1.

14



SRATTA

A.3. Proofs of Theorem 3.5

Let x P Ah
t . Assume that x is a sample from client k; since we suppose that Assumption 2.4 is satisfied, then x must be

in one of the batches of client k, i.e., must belong to one of the batches in the sequence pBt,k,iq0ďiďnupdates´1. Note that
if Assumption 2.4 were not satisfied, it could belong to another client’s batches.

Let ihk be the minimal index of a batch in the sequence pBt,k,iq0ďiďnupdates´1 containing a sample which activates neuron h,
(it is well defined because x is such an element), that is

ik “ mint0 ď i ď nupdates : Ahpθt,k,i, Bt,k,iq ‰ Hu.

Since for all i ă ihk , we have Ahpθt,k,i, Bt,k,iq “ H, by Proposition 3.1, we have ∇
W

hLpθt,k,i, Bt,k,iq “ 0, 0 ď i ă ihk .

Using the fact that SGD updates are performed, W
h

t,k,i`1 “ W
h

t,k,i ´ η∇
W

hLpθ,Bt,k,iq “ W
h

t,k,i for all 0 ď i ă ihk ,
meaning that

W
h

t´1 “W
h

t,k,0 “ ... “W
h

t,k,ihk
.

Let x1 be an element in Ahpθt,k,i, Bt,k,ihk q (it is possible that x1 is in fact x). It is in Ah
t by definition, and since W

h

t,k,ihk
“

W
h

t´1, it is also in rAh
t,0. Thus, we have proven that there is an element x1 from client k in rAh

t,0.

A.4. Proof of Corollary 3.6

Assume all elements of rAh
t,0 come from the same client k. Let’s consider x P Ah

t . According to Theorem 3.5, there exists
x1 P rAh

t,0 such that x and x1 are from the same client. As x1 comes from client k, x comes from client k. Therefore, all
elements x P Ah

t come from client k. In particular, if rAh
t,0 contains only one element, by Assumption 2.4, this element

belongs to one and only one client k. The result then follows.

B. Recovering the activation sets using Orthogonal matching pursuit
The goal of this section is to explain how we do the second step of SRATTA described in Step 2 of Section 3.2.

B.1. Problem reformulation

Recall from Equation (8) that for each couple pt, hq of neurons and rounds, we try to find N P N, pλrq1ďrďN and
pxrq1ďrďN P RN such that

∆Wh
t “

N
ÿ

r“1

λrxr (19a)

∆bht “
N
ÿ

r“1

λr (19b)

@r, λr ‰ 0 (19c)

Let us reformulate Equation (19). Denote with NR the number of recovered samples in R and let x1, .., xNR P R be the
list of recovered samples. Let X def

“ px1, ..., xNRq
J P RNRˆd be the matrix of recovered samples, and X def

“
`

X 1
˘

P

RNRˆpd`1q be the extended recovered samples matrix. Equation (19) can simply be written

Find λ P RNR s.t. X
J
λ “W

h

t , (20)

and a recovered activation set can be defined from λ as the set of recovered samples whose corresponding coefficient λr is
non zero, that is rAh

t pλq
def
“ txr P R : λr ‰ 0u.
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B.2. Restriction to small activation sets

Solving Equation (20) and using a resulting λ to build the recovered activation set rAh
t pλq is not satisfactory. Indeed, as

soon as NR ą d ` 1 there are infinitely many solutions to Equation (20), corresponding to potentially infinitely many
recovered activation set rAh

t pλq. In that case, there is no way of knowing which one of these approximations is actually the
true activation set.

As explained in the main text (see Section 3.2), to avoid this problem, we further constrain Equation (20) to the λ
corresponding to activation sets of size at most Nmax, where Nmax is a hyper-parameter selected by the attacker in order to
recover meaningful activation sets, and where Nmax ! d in order to avoid the problem of having infinitely many solutions.
This can be formalized as the following problem

Find λ P RNR such that }λ}0 ď Nmax and X
J
λ “W

h

t , (21)

where }λ}0 denotes the number of non zero coefficients of λ. The intuition behind this restriction is that (i) we wish to
recover small activation sets and (ii) it is much less likely that Equation (21) has a solution with a small Nmax, so that if we
find one, the corresponding rAh

t pλq is likely to be equal to the true activation set Ah
t . In practice, to solve Equation (21), we

solve the relaxed version

Find λ P RNR such that λ P arg min
}λ}0ďNmax

›

›

›
X
J
λ´W

h

t

›

›

›

2

. (22)

We then check that the recovered solution λ satisfies X
J
λ “W

h

t with sufficient precision (if it is not the case, this means
that Equation (21) has no solution). In the main paper, we denote with Lrec the set of couples pt, hq for which Equation (21)
has a solution.

This last formulation is quite standard, and can be solved using different methods, such as orthogonal matching pursuit
(OMP), (Rubinstein et al., 2008; Mallat & Zhang, 1993) or the LASSO method (Kim et al., 2007). In practice, we solve
this problem using OMP, and Nmax is selected in order to lead to clusters of reasonable size. OMP is based on a greedy
algorithm and builds the activation set iteratively. At each step, it adds to the activation set the sample which is most highly
correlated with the residual. It is called orthogonal matching pursuit because at each iteration, the residual is recomputed
using an orthogonal projection on the current state of the activation set. For more details, see Mallat & Zhang (1993) as well
as the scikit-learn documentation Pedregosa et al. (2011).

C. Relaxation of hypotheses
We note that although we assume full-participation in the rest of the article it is not strictly necessary for SRATTA to work.
In addition, the local and global learning rate, batch size, number of updates do not have to be fixed. The only important
thing is to perform multiple gradient updates, and that the learning rate is the same for the weights and the bias at each local
minibatch’s gradient step. The sum across clients could be weighted (in fact this can be included in the label variable, by
adding an extra label variable k for the client).

D. Pseudocode of SRATTA
The pseudocode of SRATTA can be found below in Algorithm 3.
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Algorithm 3 SRATTA

Require: number of trainings numtrainings, number of rounds per training tmax, number of hidden neurons in the first
layer of the modelH , model updates for all trainings, rounds, neurons p∆Wh

t ,∆b
h
t q, a data prior on the data P , maximum

number of samples allowed in the Orthogonal Matching Pursuit Nmax

—————- Step 1: Sample recovery —————-
RÐH

for training “ 1 to numtrainings do
for t “ 1 to tmax do

for h “ 1 to H do
candidate “ ∆Wh

t {∆b
h
t

if distancepcandidate,Pq « 0 then
RÐ RY tcandidateu

end if
end for

end for
end for

—————- Step 2: Reconstruction of activation sets —————-
Lrec ÐH

for training “ 1 to numtrainings do
for t “ 1 to tmax do

for h “ 1 to H do
tpλr, xrq : 1 ď r ď Nu Ð Orthogonal Matching PursuitpR,∆Wh

t , Nmaxq
Ah
t “ txr : 1 ď r ď Nu

if Ah
t ‰ H and ∆Wh

t «
řN
r“1 λrxr and ∆bht «

řN
r“1 λr then

Lrec Ð Lrec Y ph, tq
end if

end for
end for

end for
—————- Step 3a): Definitions —————-

for training “ 1 to numtrainings do
for ph, tq P Lrec do

rAh
t,0 Ð tx P Ah

t : Wh
t´1x` b

h
t´1 ą 0u

end for
end for
relationshiplistÐ rs

for training “ 1 to numtrainings do
for ph, tq P Lrec do
relationshiplist.appendpr rAh

t,0,Ah
t z

rAh
t,0sq

end for
end for

—————- Step 3b): Creating groups —————-
G Ð edgeless graph where each node P R
while the number of edges in G is growing do

for relationship P relationshiplist do
if all samples from relationshipr0s are connected then

Draw an edge in G between all samples in relationshipr0s and all samples in relationshipr1s
end if

end for
end while
clusteredclientsÐ connected components of G

Ensure: clusteredclients
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E. Details on numerical experiment
E.1. Details on numerical experiment

Additional details on the metrics used. We can see the output of SRATTA as a partition of the set of recovered samples
P1 Y ...Y Pp “ R, where the sets P1, ..., Pp which are disjoint. The sets Pi are inferred by the attacker in step 3b), and
represent the largest possible groups of samples which they can build. We will assess the quality of the sample recovery
process using the following different metrics.

ρrecovered
def
“ #R{#D is the ratio of recovered samples and measures the quality of the recovery process.

ρmatched is the ratio of samples in the dataset which have been recovered and grouped with at least another sample (that is
samples that belong to Pi with #Pi ą 1).

ρcomponent is the ratio between the average size of the K biggest elements in the partition pP1, ..., Ppq and the average size
of a client dataset #Dk (In practice, all client datasets will be of equal size). The intuition is that the K biggest elements of
the partition would ideally each correspond to a different client dataset.

Vnormalized
def
“ ρrecovered ˚Vrecovered is the normalized V -measure of the grouped recovered samples, where Vrecovered is the

V -measure (Rosenberg & Hirschberg, 2007) of the partition pP1, ..., Ppq of R with respect to the true partition of R into K
sets across the K-clients. Exactly in the same way that the F1 score mixes precision and recall, here, the V -measure mixes
two measures of the quality of the partition P1, ..., Pp: homogeneity h P r0, 1s and completeness c P r0, 1s. Homogeneity
measures the diversity of each class: h “ 1 if each Pi contains elements coming from only one client (this will be the case if
we have no false positive). Completeness measures how each true client is distributed amongst different groups Pi ; c “ 1 if
for all k, all elements belonging to client k are assigned to the same element of the partition Pik . Vrecovered is the harmonic
mean of these two quantities, so that Vrecovered “ 0 if either c, h “ 0 and Vrecovered “ 1 if both c, h “ 1. This measure
is particularly adapted to our setting as we do not have a natural metric to compare different clusterings with a different
number of clusters. We multiply by ρrecovered so that the attacker clusters all data points and to the right client if and only if
Vnormalized “ 1. ρrecovered can be seen as the recall but taken over all samples not only recovered samples.

E.2. Datasets used

E.2.1. CIFAR10

CIFAR10 (Krizhevsky et al., 2009) is one of the most well-known image classification datasets. There are 60, 000 object-
centric images of relatively low resolution 32x32x3 that are labeled with 10 different mutually exclusive classes (horse, frog,
truck, airplane, automobile, bird, cat, deer, dog, ship).

E.2.2. FASHIONMNIST

FashionMNIST (Xiao et al., 2017) was released as a more challenging alternative to MNIST (LeCun et al., 1998) with
grayscale images 28x28 of fashion items split across 10 classes (T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt,
Sneaker, Bag, Ankle boot). There are 70, 000 images in total.

E.2.3. DNA

Primate Splice-Junction Gene Sequences (or DNA dataset) dataset is a part of the OpenML suite (Vanschoren et al., 2014).
It consists of 3, 186 samples which are splice junctions. Each sample is a vector of 180 indicator binary variables and the
ML task is a 3-way classification task (ei, ie, neither). More details can be found in (Vanschoren et al., 2014).

For all the datasets above, we use MLP networks directly on raw pixels that are just rescaled to be between 0 and 1 (with
255 distinct values).

E.2.4. TCGA-BRCA

The Cancer Genome Atlas (TCGA) (Weinstein et al., 2013; Tomczak et al., 2015) is an open initiative to gather and make
available oncology patients’ data for multiple modalities such as tabular, radiology, histology and genomics and different
cancers. The TCGA is organized by study where each study focuses on a single cancer. BRCA is the BReast CAncer study.
The samples in TCGA were collected across multiple institutions that are tagged by barcodes and identifiable, this is also
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the case for BRCA. FLamby (Ogier du Terrail et al., 2022) uses such naturally split data inside TCGA-BRCA to provide a
realistic distributed dataset where the ML task is survival prediction (Jenkins, 2005). For a more complete treatment of the
ML task defined by this dataset see Appendix F in (Ogier du Terrail et al., 2022). We use this tabular dataset with 1088
patients and retrieve for each patient a feature obtained from its histology slides (see Primer on histology below if needed).
We detail below in Histology Preprocessing the exact process used to extract such features and join both datasets.

TCGA license

The data terms can be found https://gdc.cancer.gov/access-data/data-access-processes-and-tools. In particular, as per the
GDC data access policy, users should not attempt to identify individual human research participants from whom the data
were obtained.

Primer on histology

Histology slides (Ghaznavi et al., 2013) are large-size images obtained by digitizing stained slices of biopsies of the patient’s
tumor sites. Such images, called Whole Slide Images (WSI), generally comprises millions of pixels representing the slice at
different resolution and comprise a large uninformative background. This background has to be removed to maximize the
Peak-Signal-to-Noise-Ratio of the information inside the WSI. As this data usually does not fit in GPU RAM, its dimensions
are reduced using tiling and feature extraction (Courtiol et al., 2018).

Histology Preprocessing

Like in (Andreux et al., 2020), we use natural splits and retrieve the original histology sides corresponding to each patient
using the patient ID. As some patients have multiple histology slides we keep only the first one after alphabetical sorting.
We drop all patients for which histology slides could not be found (38 in total making a final total of 1050 patients). We then
tile the matter on each slide at x20 magnification using a U-net (Ronneberger et al., 2015) trained on an in-house dataset
and compute ResNet-50 features (He et al., 2016) pretrained on IMAGENET (Deng et al., 2009) for each extracted tile.
Therefore each patient is associated with a row of clinical data and a variable number of ResNet-50 features proportional to
the amount of matter found on the corresponding slide. We then train a linear autoencoder with bottleneck size 256 on the
ResNet-50 features from all slides using an L2 cost as is common practice (Schmauch et al., 2020). Once this autoencoder is
trained, we encode all features in each slide. Finally, we average all autoencoded features on each slide to get a fixed-sized
feature, following MeanPool architectures (Saillard et al., 2021). Therefore for each patient we build a feature vector of size
39` 256 “ 295 with 39 clinical features and 256 "histology" features.

Clinical Data Preprocessing We use FLamby(Ogier du Terrail et al., 2022)’s preprocessed version of TCGA-BRCA where
original features are filtered and binarized except for the age feature (of integer type), which is left unaltered. This allows
us to easily define the corresponding data prior to filter out candidates. See (Ogier du Terrail et al., 2022)’s Appendix F1
and (Andreux et al., 2020) for more details about the exact preprocessing steps.

Survival Loss function

One of the foundation models in survival analysis is the linear Cox proportional hazard (Cox, 1972). This model assumes:

hpt, xq “ h0ptq exppβTxq (23)

where h0 is the baseline hazard function (common to all patients and dependent on time only) and β is the vector of
parameters of our linear model. β is estimated by minimization of the negative Cox partial log-likelihood, which compares
relative risk ratios:

Lpβq “ ´
ÿ

i:δi“1

”

βTxi ´ log
`

ÿ

j:tjąti

exppβTxjq
˘

ı

(24)

where i and j index patients and δi “ 1 indicates an event. This loss is extended in our case to handling mθpxiq “
ReLUpWxi ` bq instead of raw xi where we backpropagate through W and b as well. This is a natural extension explored
in (Andreux et al., 2020):

Lpβq “ ´
ÿ

i:δi“1

”

βTmθpxiq ´ log
`

ÿ

j:tjąti

exppβTmθpxjqq
˘

ı

(25)

We minimize the negative Cox partial log-likelihood by mini-batch gradient descent w.r.t. β. We note that, as this loss is
non-separable, its gradient on mini-batches might be degenerate if the sampled batch contains only non-admissible pairs that
cannot be ranked together (Jenkins, 2005).
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All experiments in the article on the presented datasets are repeated 10 times in order to produce confidence intervals.

E.3. Dirichlet split of the dataset across the clients.

In Section 4.2 and Figure 2, we use the same method as (Hsu et al., 2019) to split the FashionMNIST dataset into different
clients, while parameterizing the heterogeneity of the data distribution by a parameter 0 ă α ă 8. A small value of α
corresponds to a heterogeneous data distribution, while a high value of α corresponds to a homogeneous data distribution.

More precisely, for a given value of α and a given client k, we draw a random vector ~q following a Dirichlet distribution of
parameter α of size L “ 10, where L is the number of labels present in FashionMNIST. Such a vector satisfies }~q}1 “ 1
and ql ě 0 for l “ 1, . . . , L. The density distribution of ~q is proportional to

ś

l q
α
l . For the client k, we then generate a

dataset of size #Dk, such that the number of samples with label l is roughly tql#Dku.

When αÑ8, we have ql Ñ 1{L for all l, therefore each client k as #Dk{L samples of each label. When αÑ 0, we have
~q Ñ p0., . . . , 0, 1, 0, . . . q, where the only non-zero component of ~q is randomly one of the L dimensions. In that case, each
client has samples coming from only one label.

We provide in Figure 3 an extension of Figure 2 where we added the performance of two extra clustering algorithms: the
BIRCH (Zhang et al., 1996) and the Affinity propagation (Frey & Dueck, 2007). We could not empirically make the attack
works with other standard clustering algorithms.
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Figure 3. Success rate of SRATTA and K-means, affinity propagation (Frey & Dueck, 2007) and BIRCH (Zhang et al., 1996) as a
function of inter-client homogeneity measured by the Dirichlet parameter α. Cf Appendix E.3 and Table 4 for experimental details
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E.4. Effect of different hyperparameters on the strength of SRATTA

In this section, we give more details as to the effect of different hyper parameters on the strength of SRATTA. Figures 4
and 5 shows the impact of the batch size, the number of hidden neurons, the learning rate, the number of rounds, the number
of trainings and the number of updates per round in the efficiency of SRATTA.
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Figure 4. Effects of batch size, number of hidden neurons, learning rate and number of rounds on the performance of SRATTA on
FashionMNIST. Hyper-parameters used are details in Table 4.

F. Defending against secure disaggregation
This section is devoted to the defense presented in Section 5, that we will name q-defense. We first state definitions used in
the main text then we provide details and extra-results on the q-defense in Appendix F.1. Then, in Appendix F.3, we develop
and implement another kind of defense, denoted β-defense, which is similar to the one presented in Appendix F.1, but relies
on another way of selecting the neurons to censor.

F.1. Additional definitions for the q-defense

In Section 5, given a client k, we define the individual client activation set of neuron h at round t as

Ah
t,k “

nupdates´1
ď

i“0

Ahpθt,k,i, Bt,k,iq. (26)

One can write the update of a specific client k as

∆W
h

t,k
def
“ W

h

t,k,nupdates
´W

h

t´1. (27)
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Figure 5. Effects of the number of trainings, number of local updates, number of centers and dataset size on the performance of SRATTA
on FashionMNIST. Hyper-parameters used are details in Table 4.

Exactly as is the case for the round-level activation set, the update of a specific client is a linear combination of the elements
in its activation set.

Fix a client k, a neuron h, and t P t1, ..., tmaxu. Let x1, ..., xN denote the activation points in Ah
t,k. There exists non zero

coefficients pλrq P Rzt0uN such that

∆Wh
t,k “

N
ÿ

r“1

λrxr (28)

∆bht “
N
ÿ

r“1

λr (29)

The q-defense, introduced in Section 5, consists in keeping track of the individual client activation set of all neurons, and
censoring the update for neurons whose individual client activation set is non-empty and of size inferior to q.

Considering a client k, let fix q “ 1 and h̃ be such a neuron, i.e:

#Ah̃
t,k “ 1. (30)

For this neuron, there exists a data sample such that txu “ Ah̃
t,k, which can be recovered by the first step of the attack, as
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from Equation (8):

∆W h̃
t,k “ λx (31a)

∆bh̃t,k “ λ (31b)

λ ‰ 0 (31c)

To avoid this situation, the defense relies on censoring this neuron, which means to set to zero the update sent to the server
for h̃. We define an integer threshold q, and censor neurons whose individual client activation sets are smaller than q. The
resulting algorithm is depicted in Algorithm 4. This defense therefore requires an active role of the client.

Algorithm 4 LocalUpdateDefended // Executed on server k

Require: initial model θt´1, local dataset Dk, batch size b, learning rate η
θt,k,i“0 Ð θt´1

for i “ 0 to nupdates ´ 1 do
Bt,k,i Ð batch of size b from Dk
θt,k,i`1 Ð θt,k,i ´ η∇θLpθt,k,i, Bt,k,iq

end for
for h “ 0 to d do

if #Ah
t,k ď q then

W
h

t,k,nupdates
ÐW

h

t´1

end if
end for

Ensure: θt,k,nupdates

?? and Table 2 shows the efficiency of the q-defense against the attack. Note that if some samples are still recovered with
q “ 1, using q “ 4 leads to a perfect defense (no sample recovered) in our experiments.

F.2. Additional results for q-defense

Table 2 shows the complete results of the q-defense on the different datasets, and Figure 7d shows the proportion of censored
neurons by q-defense for different learning rates.

Dataset ρrecovered Ó ρmatched Ó ρcomponent Ó Vnormalized Ó Pcensored Model Acc. Ò
CIFAR10 (q “ 0) 0.585˘ 0.015 0.514˘ 0.021 0.511˘ 1.951 0.490˘ 0.019 0.000˘ 0.000 0.261˘ 0.039
CIFAR10 (q “ 1) 0.002˘ 0.002 0.000˘ 0.001 0.000˘ 0.000 0.002˘ 0.002 0.098˘ 0.011 0.272˘ 0.033
CIFAR10 (q “ 4) 0.000 ˘ 0.000 0.000 ˘ 0.000 0.000 ˘ 0.000 0.000 ˘ 0.000 0.180˘ 0.014 0.274 ˘ 0.040

DNA (q “ 0) 0.516˘ 0.080 0.031˘ 0.018 0.022˘ 0.296 0.233˘ 0.032 0.000˘ 0.000 0.929˘ 0.017
DNA (q “ 1) 0.035˘ 0.015 0.000˘ 0.000 0.000˘ 0.000 0.031˘ 0.013 0.005˘ 0.002 0.929˘ 0.019
DNA (q “ 4) 0.000 ˘ 0.001 0.000 ˘ 0.000 0.000 ˘ 0.000 0.000 ˘ 0.001 0.038˘ 0.006 0.932 ˘ 0.020

FashionMNIST (q “ 0) 0.476˘ 0.027 0.285˘ 0.022 0.230˘ 0.015 0.284˘ 0.015 0.000˘ 0.000 0.732 ˘ 0.053
FashionMNIST (q “ 1) 0.009˘ 0.004 0.001˘ 0.003 0.000˘ 0.000 0.006˘ 0.004 0.042˘ 0.006 0.729˘ 0.043
FashionMNIST (q “ 4) 0.000 ˘ 0.000 0.000 ˘ 0.000 0.000 ˘ 0.000 0.000 ˘ 0.000 0.149˘ 0.022 0.731˘ 0.046

TCGA (q “ 0) 0.279˘ 0.016 0.199˘ 0.014 0.175˘ 1.349 0.193˘ 0.010 0.000˘ 0.000 0.660 ˘ 0.065
TCGA (q “ 1) 0.051˘ 0.016 0.024˘ 0.017 3.040˘ 1.158 0.036˘ 0.012 0.135˘ 0.016 0.658˘ 0.071
TCGA (q “ 4) 0.000 ˘ 0.000 0.000 ˘ 0.000 0.000 ˘ 0.000 0.000 ˘ 0.000 0.257˘ 0.030 0.658˘ 0.071

Table 2. Influence of the q-defense (presented in Section 5 and detailed in Appendix F.1) on both the attack efficiency and the training
performance. The attack is performed on a simulation of a grid search, with 20 training with different learning rates. The model accuracy
reported is the best one for all the learning rates tested. This setting highlights the defense success to prevent the attack for a range of
learning rates, with no-significant loss of model accuracy.

Both show the efficiency of the q-defense against SRATTA. Note that if some samples are still recovered with q “ 1, using
q “ 4 leads to perfect defense (no sample recovered) in our experiments. In practice, samples can be recovered if Ah̃

t,k is not
a singleton, in the case where one of the λr in Equation (28) is an order of magnitude larger than the others in absolute value.
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Figure 6. Effects of the q-defense (presented in Section 5 and detailed in Appendix F.1) on the model accuracy and the number of neurons
frozen. Pcensored corresponds to the proportion of neurons censored compared to the total number of neurons.
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Figure 7. Effects of the q-defense (presented in Section 5 and detailed in Appendix F.1) on the model accuracy and the number of neurons
frozen. Pcensored corresponds to the proportion of neurons censored compared to the total number of neurons.
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F.3. Another possible defense: the β-defense

We introduce in this section another defense, named "β-defense". Increasing the value of q is an efficient way to avoid
sample recovery. However, it might censor more neurons than needed. Indeed, as mentioned above, if #Ah̃

t,k ą 1 for a
given neuron h̃, a sample xr can be recovered if its associated λr in Equation (6) is larger than the other λj by an order of
magnitude. Note that for each neuron h, for each sample xr involved in the local training, the corresponding λhr can be
computed by the client. Following the computation of Appendix A.2, one can derive

∆Wh
t,k “ ´η

nupdates´1
ÿ

i“0

b
ÿ

j“0

λpθt,k,i;x
Bi

k
j , y

Bi
k

j qxj

∆bht,k “ ´η

nupdates´1
ÿ

i“0

b
ÿ

j“0

λpθt,k,i;x
Bi

k
j , y

Bi
k

j q

with λpθ;x, yq “ BLpθ;x,yq
Bzh

1Whx`bhą0. These last quantities are tractable by the client during the local update. We introduce
a threshold β and we censor all neurons for which there exists x̃ P

Ťnupdates´1
i“0 Ahpθt,k,i, Bt,k,iq, and its associated λ̃ such

that:

|λ̃|
řnupdates´1
i“0

řb
j“0 |λpθt,k,i;x

Bi
k

j , y
Bi

k
j q|

ě β (32)

In plain english, if the linear weight of a sample contributes to the update more than a fraction β, we censor the neuron.
We name this other defense β-defense, different to the q-defense in the way it selects the neurons to censor. The results
exhibited in Figures 6 and 7 and table 3 highlights that we are able while censoring less neurons using the β-defense than
when using the q-defense with q “ 4, we successfully defend ourselves against the attack. Note that in these results the
q-defense is never used, as the β-defense comes as a replacement of the q-defense.

Dataset ρrecovered Ó ρmatched Ó ρcomponent Ó Vnormalized Ó Pcensored Model Acc. Ò
CIFAR10 (β “ 0.0) 0.585˘ 0.015 0.514˘ 0.021 0.511˘ 0.020 0.490˘ 0.019 0.000˘ 0.000 0.261˘ 0.039
CIFAR10 (β “ 0.9) 0.000 ˘ 0.000 0.000 ˘ 0.000 0.000 ˘ 0.000 0.000 ˘ 0.000 0.094˘ 0.013 0.270˘ 0.034
CIFAR10 (β “ 0.99) 0.000 ˘ 0.000 0.000 ˘ 0.000 0.000 ˘ 0.000 0.000 ˘ 0.000 0.087˘ 0.014 0.271 ˘ 0.033
DNA (β “ 0.0) 0.516˘ 0.080 0.031˘ 0.018 0.023˘ 0.003 0.233˘ 0.032 0.000˘ 0.000 0.929˘ 0.017
DNA (β “ 0.9) 0.000 ˘ 0.000 0.000 ˘ 0.000 0.000 ˘ 0.000 0.000 ˘ 0.000 0.020˘ 0.007 0.931˘ 0.019
DNA (β “ 0.99) 0.000 ˘ 0.000 0.000 ˘ 0.000 0.000 ˘ 0.000 0.000 ˘ 0.000 0.008˘ 0.003 0.932 ˘ 0.021
FashionMNIST (β “ 0.0) 0.476˘ 0.027 0.285˘ 0.022 0.230˘ 0.015 0.284˘ 0.015 0.000˘ 0.000 0.732 ˘ 0.053
FashionMNIST (β “ 0.9) 0.000 ˘ 0.000 0.000 ˘ 0.000 0.000 ˘ 0.000 0.000 ˘ 0.000 0.053˘ 0.006 0.725˘ 0.042
FashionMNIST (β “ 0.99) 0.000 ˘ 0.000 0.000 ˘ 0.000 0.000 ˘ 0.000 0.000 ˘ 0.000 0.044˘ 0.005 0.727˘ 0.043
TCGA (β “ 0.0) 0.279˘ 0.016 0.199˘ 0.014 0.176˘ 0.013 0.193˘ 0.010 0.000˘ 0.000 0.660 ˘ 0.065
TCGA (β “ 0.9) 0.000 ˘ 0.000 0.000 ˘ 0.000 0.000 ˘ 0.000 0.000 ˘ 0.000 0.169˘ 0.032 0.655˘ 0.070
TCGA (β “ 0.99) 0.000 ˘ 0.000 0.000 ˘ 0.000 0.000 ˘ 0.000 0.000 ˘ 0.000 0.147˘ 0.025 0.658˘ 0.069

Table 3. Results on the relative defense presenting in Appendix F.3. Influence of the relative defense on both the attack efficiency and the
training performance. The attack is performed on a simulation of a grid search, with 20 training with different learning rates. The model
accuracy reported is the best one for all the learning rates tested. This setting highlights the defense success to prevent the attack for a
range of learning rates, with no-significant loss of model accuracy. This table highlights that the relative defense (β “ 0.99) is censoring
less neurons that the absolute defense with q “ 4 for the same efficiency at defending from the attack (ρrecovered “ 0).

F.4. Remark on preserving symmetry with nupdates “ 1.

The second part of the attack is relevant only if nupdates ą 1, which is the setting this paper focus on. It could be seen as a
possible way of defending against SRATTA. However enforcing nupdates “ 1 by either (i) considering one batch in each
round or (ii) accumulating gradient at the initial point θt´1, boils down to distributed SGD. This algorithm is not suitable in
all FL settings as it comes with high communication costs (McMahan et al., 2017), and is more sensitive to gradient attacks,
as studied by other work (Geiping et al., 2020; Huang et al., 2021; Hatamizadeh et al.; Xu et al., 2022). As a result we do
not explore this further.
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Figure 8. Effects of the β-defense on FashionMNIST and CIFAR (presented in Appendix F.3) on the model accuracy and the number of
neurons frozen. Pcensored corresponds to the proportion of neurons censored compared to the total number of neurons.β “ 0 means that
no defense is applied, neither β-defense nor q-defense.
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Figure 9. Effects of the β-defense on DNA and TCGA (presented in Appendix F.3) on the model accuracy and the number of neurons
frozen. Pcensored corresponds to the proportion of neurons censored compared to the total number of neurons.β “ 0 means that no
defense is applied, neither β-defense nor q-defense.
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G. Hyper-parameters used in numerical experiments
Table 4 lists the hyper-parameters used in the different numerical experiments shown in this paper.

Figure Dataset # centers #Dk # batch # hid. neur. nupdates tmax # trainings lr
Figure 1 CIFAR10 5 100 8 1000 5 20 20 0.1
Figure 1 FMNIST 5 100 8 1000 5 20 20 0.5
Figure 1 DNA 5 100 8 1000 5 20 20 1.0
Figure 1 TCGA 5 100 8 1000 5 20 20 0.8
Figures 2 and 3 FMNIST 5 100 8 1000 5 20 20 0.5
Figure 4a FMNIST 5 100 - 1000 5 20 20 0.5
Figure 4b FMNIST 5 100 8 - 5 20 20 0.5
Figure 4c FMNIST 5 100 8 1000 5 20 20 -
Figure 4d FMNIST 5 100 8 1000 5 - 20 0.5
Figure 5a FMNIST 5 100 8 1000 5 20 - 0.5
Figure 5b FMNIST 5 100 8 1000 - 20 20 0.5
Figure 5d FMNIST 5 - 8 1000 5 0.2#Dk 20 0.5
Figure 5c FMNIST - 100 8 1000 5 20 20 0.5
Figures 6a and 6b FMNIST 5 100 8 1000 5 20 20 -
Figures 8a and 8b FMNIST 5 100 8 1000 5 20 20 -
Figures 6c and 6d CIFAR10 5 100 8 1000 5 20 20 -
Figures 8c and 8d CIFAR10 5 100 8 1000 5 20 20 -
Figures 7a and 7b DNA 5 100 8 1000 5 20 20 -
Figures 9a and 9b DNA 5 100 8 1000 5 20 20 -
Figures 7c and 7d TCGA 5 100 8 1000 5 20 20 -
Figures 9c and 9d TCGA 5 100 8 1000 5 20 20 -

Table 4. Hyper-parameters used in the numerical experiments.
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