
Efficient Transformed Gaussian Processes for
Non-Stationary Dependent Multi-class Classification

Juan Maroñas 1 2 Daniel Hernández-Lobato 1

Abstract
This work introduces the Efficient Transformed
Gaussian Process (ETGP), a new way of creating
C stochastic processes characterized by: 1) the C
processes are non-stationary, 2) the C processes
are dependent by construction without needing a
mixing matrix, 3) training and making predictions
is very efficient since the number of Gaussian
Processes (GP) operations (e.g. inverting the
inducing point’s covariance matrix) do not depend
on the number of processes. This makes the ETGP

particularly suited for multi-class problems with
a very large number of classes, which are the
problems studied in this work. ETGP exploits the
recently proposed Transformed Gaussian Process
(TGP), a stochastic process specified by trans-
forming a Gaussian Process using an invertible
transformation. However, unlike TGP, ETGP is con-
structed by transforming a single sample from a
GP using C invertible transformations. We derive
an efficient sparse variational inference algorithm
for the proposed model and demonstrate its utility
in 5 classification tasks which include low/medi-
um/large datasets and a different number of
classes, ranging from just a few to hundreds. Our
results show that ETGP, in general, outperforms
state-of-the-art methods for multi-class classifica-
tion based on GPs, and has a lower computational
cost (around one order of magnitude smaller).

1. Introduction
Gaussian Processes (GPs) are stochastic processes char-
acterized by their finite-dimensional distributions being
multivariate Gaussian (Rasmussen & Williams, 2006),

1Machine Learning Group, Universidad Autónoma de
Madrid, Madrid, Spain 2Work done previous to joining Cog-
nizant, Madrid, Spain. Correspondence to: Juan Maroñas
<juan.maronnas@uam.es, jmaronasm@gmail.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

which have become a uniquely popular modeling tool. For
example, in the machine learning community GPs are used
as prior distributions over functions, used to solve tasks such
as regression, classification, feature extraction or hyper-
parameter optimization (Rasmussen & Williams, 2006;
Lawrence, 2003; Snoek et al., 2012). Their non-parametric
nature means that they become more expressive with more
data (Rasmussen & Williams, 2006). Furthermore, GPs are
characterized by a predictive distribution which provides
information about what the model does not know (Gal,
2016) and are easy to interpret since the covariance function
gives insights about the nature of the latent function to be
inferred (Duvenaud et al., 2013). GPs have also been applied
in spatial statistics (Krige, 1951), and to explain physics
phenomena such as those that arise when studying molec-
ular dynamics (Leimkuhler & Matthews, 2015; Uhlenbeck
& Ornstein, 1930). Moreover, they are used as a theoretical
tool to understand Deep Neural Networks (DNN) (Neal,
1996; Yang, 2019) and lie at the core of a recent family of
Deep Generative Models that generate samples attending
to the dynamics of a diffusion process (Song et al., 2021).

In this paper, we focus on multi-class classification prob-
lems with C > 2 classes. For this, one often defines C in-
dependent GPs, one per each class (Rasmussen & Williams,
2006). In this case, the number of GP operations (such as
inverting the covariance matrix associated to the inducing
points) grows linearly with C. Thus, if C is large, this can
be too expensive. Some speed-up tricks include sharing the
inducing points or the covariance function across GPs, but
this may reduce prediction performance, as we show in our
experiments. Even with this trick, computing the predictive
distribution still has complexity O(CM2) per datapoint.

We can gain additional performance by defining a prior
process using C dependent GPs, which can be done by com-
bining Q latent GPs with a mixing matrix Φ ∈ RQ×C . In
practice, however, these dependencies are often ignored
since the memory complexity scales as O(C2) per datapoint.
In fact, modern SOTA GP software’s like GPFLOW (Matthews
et al., 2017; van der Wilk et al., 2020) require significant
source code modification (up to early 2023) to handle these
dependencies in an efficient way.

A disadvantage of GPs is that they usually impose strong

1

Efficient Transformed Gaussian Processes

assumptions about the nature of the latent function. For ex-
ample, most covariance functions are stationary and assume
a constant level of smoothness for the latent function on
the input domain (Rasmussen & Williams, 2006). If this is
not the case, the performance can be degraded. GPs can be
made more expressive using non-stationary processes. How-
ever, this is usually only justified if one has prior knowledge
about the nonstationarity of the particular application, e.g.
in Bayesian Optimization (Snoek et al., 2014), Geostatistics
(Wang et al., 2020; Wilson et al., 2012; Hamelijnck et al.,
2019; Sampson & Guttorp, 1992; Schmidt et al., 2000) or
temporal gene expression modeling (Heinonen et al., 2016).

The flexibility of GPs can also be increased by using non-
linear transformations. Examples include deep GPs (DGPs)
(Damianou & Lawrence, 2013) and transformed GPs (TGPs)
(Maroñas et al., 2021). In DGPs, the output of a GP is used
as the input of another GP systematically, following a fully
connected neural network (NN) architecture in which units
are GPs. As a result of the concatenation, the resulting pro-
cess need not be stationary. By contrast, in TGPs the initial
GP prior is transformed iteratively using input-dependent
invertible transformations (Maroñas et al., 2021). Because
of this input dependence, the resulting process need not be
stationary. Importantly, TGPs often generate models that are
as accurate as DGPs at a lower computational cost.

In this work, we introduce the Efficient Transformed Gaus-
sian Process (ETGP), a new model where C processes are
specified by sampling from a single GP, and then transform-
ing this sample using C invertible transformations (through-
out the paper we refer to the invertible transformations by
flows or warping functions as well). By construction, the C
processes are non-stationary (due to the input-dependence
of the transformation) and dependent, with dependencies
modeled by the copula of the base GP1. Importantly, ETGP

does not have the computational and memory complexity of
an equivalent number of GPs, since only one GP is used in
the construction of the C processes. A special case of the
ETGP family specified by using a linear flow includes non-
stationary dependent GPs, which we also characterize and
study. We derive an efficient sparse variational inference
(VI) algorithm for training ETGPs and evaluate its prediction
performance and computational cost in the context of multi-
class problems with a large number of classes C. More
precisely, we carry out experiments on several large and
small datasets with up to 153 class labels. The results ob-
tained show that ETGP, in general, outperforms SOTA methods
for multi-class classification based on GPs. Moreover, ETGP

has a computational cost that is around one order of magni-
tude smaller. Finally, our experiments also show that usual
non-stationary covariance functions are not useful for black-

1This might not be the case for non-diagonal transformations
(Maroñas et al., 2021; Rios, 2020), not considered in this work.

box function approximation and that the particular inductive
bias of the ETGP gives better results.

2. Background
We start by introducing GPs for multi-class classification
problems and some notation. We also describe how to im-
prove GPs using the TGP method of Maroñas et al. (2021).

2.1. Multi-class Gaussian Process Classification

Consider assigning a class label y ∈ Y = {1, . . . , C},
with C the number of classes, to an input x ∈ X ⊆ Rd.
Our goal is to learn C functions mapping x to class label
probabilities. For this, we are given a set of N instances
D = {xn, yn}Nn=1 generated from some distribution. De-
fine X = (x1, . . . ,xN) and y = (y1, . . . , yN). One can
model each function by placing an independent GP over each
of them. This prior is then updated into a posterior over
functions given D using Bayes rule, resulting in a predictive
distribution for the label of new data.

A GP is a stochastic process whose finite-dimensional distri-
butions are given by a multivariate Gaussian. Specifically,
let f = (f (x1), . . . , f (xN))T and define fn := f (xn).
Then, f ∼ N (µν(X),Kν(X,X)), where the mean vec-
tor µν(X) = (µν(x

1), . . . , µν(x
N))T is given by a mean

function µν : X → R, and Kν(x,x) is a N × N matrix
whose i-th row and j-th column entry is Kν(x

i,xj), given
by Kν : X × X → R, a covariance function; both pa-
rameterized by ν. However, without loss of generality, we
assume zero mean GPs.

Consider C independent GPs and denote f = {f1, . . . fC},
where a bar over a letter x summarizes the corresponding
C elements x1, . . . , xC . Often, a Softmax link function
πc(fn) = exp(f c(xn)/

∑C
c′=1 exp(f

c′(xn)) is applied
to f to obtain class label probabilities πc (Rasmussen &
Williams, 2006). Then, these probabilities are linked to ac-
tual class labels y by a categorical likelihood. Under these
conditions, the joint distribution of y and f is:

p(y, f) = p(y | f)p(f) =
[∏N

n=1

∏C
c=1 πc(fn)

I(yn=c)
]

×∏C
c=1 N (f c | 0,Kc

ν(X,X)), (1)

where I(·) is the indicator function. To make predictions
we need to approximate the intractable posterior p(f | D).
However, even if tractable, its computation would scale cu-
bically with N (Rasmussen & Williams, 2006). For both
reasons, we use approximate sparse variational inference
(VI) GPs (SVGPs) (Chai, 2012; Titsias, 2009), with the modifi-
cations introduced in Hensman et al. (2013) to scale to very
large datasets. SVGPs work by introducing a set of M ≪ N
inducing points locations Z = (z1, . . . , zM), z ∈ X with
associated process values u = (f(z1), . . . , f(zM))T per

2

Efficient Transformed Gaussian Processes

each of the C functions (Titsias, 2009). The joint Gaussian
prior p(f ,u | X,Z) is easily obtained in terms of the co-
variance function. These inducing points act as sufficient
statistics of the data x, and represent the posterior p(f | D)
compactly using M points, reducing the overall training
complexity from O(CN3) to O(CM2).

The key point of Titsias (2009) is to treat Z as variational pa-
rameters, which are optimized by minimizing the Kullback-
Leibler Divergence (KL) between a variational posterior
q(f ,u) and the augmented joint posterior p(f ,u | D,Z),
or equivalently by maximizing the Evidence Lower Bound
(ELBO). Since Z are variational parameters, they are pro-
tected from overfitting. The speed-up is achieved by con-
straining the form of the variational distribution q(f ,u) =∏C

c=1 p(f
c | uc)q(uc), which is defined using the con-

ditional model’s prior p(f c | uc) and a Gaussian varia-
tional distribution q(uc) with mean and covariance matrix
mc ∈ RM and Sc ∈ RM×M . With this, the ELBO is:

ELBO =
∑N

n=1

∑C
c=1 I(yn = c)Eq

[
log πc(fn)

]
−∑C

c=1 KL[q(uc) || p(uc))], (2)

where KL[q(uc) || p(uc))] can be computed in closed
form and the expectation with respect to q can be approx-
imated by Monte Carlo. The above expression allows us-
ing stochastic VI to optimize the ELBO, by sub-sampling
the data using mini-batches (Hensman et al., 2013). We
use path-wise derivatives for black-box low-variance gradi-
ent estimations. The variational distribution q(f c(xn)) =∫
p(f c(xn) | uc)q(uc)duc is Gaussian with mean and

covariance given by Kc
ν(x

n,Zc)Kc
ν(Z

c,Zc)−1mc and
Kc

ν(x
n,xn) − Kc

ν(x
n,Zc)Kc

ν(Z
c,Zc)−1[Kc

ν(Z
c,Zc) +

Sc]Kc
ν(Z

c,Zc)−1Kc
ν(Z

c,xn), respectively. The predictive
distribution for the label y⋆ associated to a new point x⋆,
can also be efficiently approximated via Monte Carlo by
sampling from q(f c(x⋆)) for c = 1, . . . , C.

2.2. Transformed Gaussian Processes

A limitation of GPs is that they place strong assumptions
over the latent function. This can be for example assuming
the same level of smoothness across the input domain,
as it is often done by considering a stationary covariance
function (Rasmussen & Williams, 2006). The Transformed
Gaussian Process (TGP) (Maroñas et al., 2021) is a model
that increases the flexibility of GPs by non-linearly and
input-dependently transforming the GP prior using invertible
transformations. We describe the TGP, since is the building
block of the proposed approach ETGP.

Let f0(·) ∼ GP(0,Kν(·, ·)) be a GP sample. Consider a
composition of K individual invertible mappings Gθθθ =
Gθ0 ◦Gθ1 . . . ◦GθK−1

: F0 → FK each parameterized by
θ ∈ Θ, with θθθ = {θ0, θ1, . . . , θK−1}. The TGP, is defined

by the following generative procedure:

f0(·) ∼ GP(0,Kν(·, ·)) , fK(·) = Gθθθ(f0(·)) . (3)

An easy way to specify Gθθθ so that p(fK) is a consistent
finite-dimensional distribution (i.e. Kolmogorov extension
theorem applies) is to use element-wise mappings (also
known by diagonal flows), characterized by: ∀xn ∈ X ,
fK(xn) = Gθθθ(f0(x

n)), as described in Rios (2020)2. Due
to these element-wise mappings, the resulting process is
a Gaussian Copula process (Wilson & Ghahramani, 2010)
since it has arbitrary marginals with dependencies driven
by the copula of the GP, something derived from Sklar’s
theorem (Sklar, 1959). In other words, f0 and fK share the
same dependencies but differ in their marginal distributions.
By increasing K, we can make the flow as complicated as
we want, increasing flexibility.

Maroñas et al. (2021) show that one can create non-
stationary processes fK by making the parameters of the
flow depend on the input using a Neural Network (NN)
NN : X → Θ parameterized by W. In Maroñas et al.
(2021) they show that this non-stationary process is way
more expressive than a GP and also than a stationary TGP.
Since the parameters of the NN play the same role of hyper-
parameters in a GP, this work shows how using a Bayesian
Neural Network (BNN), with prior distribution p(W | λ),
can effectively avoid over-fitting as this makes the NN’s pa-
rameters play the same role in the graphical model as GP’s
latent functions, see Fig. 1.

TGP

x

λ

ν
f0 θ W

fK

y

C

N

ETGP

xf0
ν

θ W

fK
λ

y

C

N

Figure 1. Prob. graphical models for TGP (left) and ETGP (right).

In a classification problem, we can write the joint condi-
tional distribution over the C independent TGPs by applying
the change of variable formula and inverse function theorem
(Maroñas et al., 2021):

p(fK | W) = (4)∏C
c=1 p(f0 | νc)∏Kc−1

k=0 |det ∂Gc
θk(Wc,X)(f

c
k)

∂fck
|−1.

2App. A gives all mathematical details about equations describ-
ing the method an inference algorithm, which assumes diagonal
flows. See e.g. the appendix of Maroñas et al. (2021) for the
particularities that might arise for non-diagonal flows.

3

Efficient Transformed Gaussian Processes

This warping procedure can also be used when defining a
variational approximation q(fK ,uK) = p(fK | uK)q(uK),
where the cancellations of several factors in the ELBO result
in an efficient training algorithm (Maroñas et al., 2021).
Note that we use Kc since each flow for each class can have
a different functional form (linear, SAL, etc) and a different
number of compositions.

3. Efficient Transformed Gaussian Processes
In this section, we describe the proposed method for multi-
class GP classification, which we show is a more efficient
application of the TGP to classification problems with large
C. Moreover, it has the additional benefit of naturally model-
ing dependencies among the latent functions. Our proposed
method (ETGP) is specified by transforming a single sample
from a GP using C invertible transformations, each of them
mapping the GP to a latent function, one for each class label.
The generative process is:

f0(·) ∼ GP(0,Kν(·, ·)) ,
f1
K(·) = G1

θθθ(W1,x)(f0(·)) ,
...

fC
K(·) = GC

θθθ(WC ,x)(f0(·)). (5)

Using again the change of variable formula and inverse
function theorem employed in Sec. 2.2, the joint conditional
distribution of the C processes is given by:

p(fK | W) = p(f0)
∏K1−1

k=0 |det
∂G1

θk(W1,X)
(f1k)

∂f1k
|−1

×∏C
c=2 δ(f

c
K −Gc

θθθ(Wc,X) ◦H1
θθθ(W1,X)(f

1
K)), (6)

where δ(·) denotes the Dirac measure and we define H =
G−1 to be the corresponding inverse transformation. Note
that this decomposition is not unique. We label f1K as the
pivot and note that this joint distribution can be written
equivalently w.r.t. any other pivot f cK with c ̸= 1.

Our formulation has the advantage that a single GP is used
in practice. This implies a constant scaling of GP operations
w.r.t. the number of classes, speeding-up computations. By
contrast, a naive use of TGPs or the model described in Sec.
2.1 involves as many GPs as class labels. This motivates the
name given to our method: the Efficient Transformed Gaus-
sian Processes (ETGP), particularly suited for multi-class
problems with large C. Moreover, the resulting C processes
are dependent since they share the same latent sample f0
from the original process. Also, since we use NNs to param-
eterize the flows, the C processes are non-stationary. Fig.
1 compares the graphical models of the naive use of TGP

for multi-class classification and the proposed method ETGP,
highlighting their differences.

We describe ETGP as a good performance method at a low
computational cost. Therefore, we also propose an efficient
NN parameterization of the flow parameters, illustrated in
Fig. 2. In principle, we could use a NN per flow parameter,
implemented efficiently using batched operations (Black-
ford et al., 2002). However, by using a single NN whose
output layer coincides with the number of parameters per
flow times the number of classes, we achieve a more effi-
cient parameterization. For example, if we are modeling
Imagenet (C = 1000) with a linear flow (|θ| = 2), then we
would use an output layer of 2000 neurons. Besides being
more efficient, this could also serve as a possible regularizer
in the same fashion as sharing parameters regularizes DNNs,
something commonly used in computer vision applications
through a back-bone convolutional model.

Another appealing property of the ETGP is that we can effi-
ciently create C non-stationary dependent GPs, by using a
linear flow: fK(x) = a(x)f0(x) + b(x), as shown in Fig.
2. The next proposition characterizes the corresponding
joint conditional prior distribution p(fK | W):

Proposition 3.1. The joint conditional distribution of C
non-stationary GPs obtained via a linear flow is given by:

p(fK | W) = N (f1K | b1,A1Kν(X,X)AT
1)∏C

c=2 δ(f
c
K −Gc

θθθ(Wc,X) ◦H1
θθθ(W1,X)(f

1
K)),

with b1 = (b1(x1), . . . , b1(xN))T and A1 ∈ RN×N a di-
agonal matrix with entries a1 = (a1(x1), . . . , a1(xN))T.
Each marginal p(f cK) is Gaussian with mean and covari-
ance given by bc and AcKν(X,X)AT

c , respectively. The
covariance matrix between the pivot f1K and f cK , for c ̸= 1, is
given by: a1(ac)T ⊙Kν(X,X) with ⊙ denoting Hadamart
product. Proof given in App. A.

x1

...

xd

a1

b1

...

aC

bC

f1K = a1 · f0 + b1

fCK = aC · f0 + bC

Figure 2. Architecture of the NN used. Hidden layers are shared,
with the final layer giving each of the parameters of the C flows.

3.1. Approximate Inference

Our inference algorithm is inspired by the key observa-
tions of related works (Titsias, 2009; Hensman et al., 2013;

4

Efficient Transformed Gaussian Processes

Maroñas et al., 2021). More precisely, we rely on a sparse
VI algorithm where the variational distribution is defined so
that the conditional’s model prior p(fK | uK) cancels (Tit-
sias, 2009). We do not marginalize out the process values
at the inducing points to allow for mini-batch optimization
SVI (Hensman et al., 2013). Furthermore, we define the
variational distribution over the GP space and then warp it
with the same flows as the prior (Maroñas et al., 2021).

To start with, a set of M inducing points is defined on the
GP space f0(·). Note, however, that we can easily extend
our framework to use inter-domain inducing points (Lázaro-
Gredilla & Figueiras-Vidal, 2009), since we just need to
derive the corresponding cross-covariances. Let uK be
defined as fK in Eq. 6 summarizing the C transformed
process values at the inducing points Z. In App. A we show
that the joint conditional prior is:

p(fK ,uK | W) = p(f0 | u0)
∏K1−1

k=0 |det
∂G1

θk(W1,X)
(f1k)

∂f1k
|−1

×∏C
c=2 δ(f

c
K −Gc

θθθ(Wc,X) ◦H1
θθθ(W1,X)(f

1
K))

× p(u0)
∏K1−1

k=0 |det
∂G1

θk(W1,Z)
(u1

k)

∂u1
k

|−1

×∏C
c=2 δ(u

c
K −Gc

θθθ(Wc,Z) ◦H1
θθθ(W1,Z)(u

1
K)). (7)

This is possible because ETGP defines a valid stochastic
process (i.e. consistent finite dimensional joint distribu-
tion), which means we can extend its finite dimensional
distribution with inducing point locations as in standard GPs
(Maroñas et al., 2021).

The variational distribution is assumed to have a similar
form to the prior with some factors that are shared between
them and others that are specific of the posterior approx-
imation: q(fK ,uK ,W) = q(fK ,uK | W)q(W) as in
Maroñas et al. (2021), where the variational distribution over
the NN has parameters ϕ and is assumed to factorize across
classes. Following Titsias (2009); Maroñas et al. (2021),
the variational distribution over the values of the random
processes at X and Z, q(fK ,uK) = p(fK | uK)q(uK), is
defined using the conditionals model’s prior p(fK | uK),
given in Eq. 7, and a free form variational distribution
q(uK). As in Maroñas et al. (2021), q(uK) is defined by
warping a multivariate Gaussian defined on the original
f0 space q(u0 | m,S) using G, where m ∈ RM , S ∈
RM×M are the mean and covariance matrix variational pa-
rameters:

q(uK) = q(u0)
∏K1−1

k=0 |det
∂G1

θk(W1,Z)
(u1

k)

∂u1
k

|−1

×∏C
c=2 δ(u

c
K −Gc

θθθ(Wc,Z) ◦H1
θθθ(W1,Z)(u

1
K)) (8)

The resulting ELBO on the log-marginal-likelihood is, after

several factor cancellations, equal to:

ELBO =
{∑N

n=1

∑C
c=1 I(y

n = c)Eq(f0,n)q(W)

[log πc(G1
θθθ(W1,xn)(f0,n), . . . ,G

C
θθθ(WC ,xn)(f0,n))]

}
− KL[q(u0)||p(u0)]−

∑C
c=1 KL[q(Wc)||p(Wc))], (9)

where q(f0) is computed as in Sec. 2.1. The expectation
w.r.t. q(W) is computed via Monte Carlo and a single 1-
d quadrature is used to compute expectations over q(f0).
KL[q(u0) | | p(u0)] is tractable. KL[q(Wc) | | p(Wc))] can
be computed in closed form for certain choices of the prior
and variational posterior. However, we follow Maroñas
et al. (2021) and use Monte Carlo Dropout (Gal & Ghahra-
mani, 2016) (MCDROP) rather than VI to perform inference
on W. With this, the same NN can be used to make
non-Bayesian point estimate predictions (PE-ETGP) (Srivas-
tava et al., 2014) or Bayesian predictions (BA-ETGP) (Gal
& Ghahramani, 2016). This objective can be maximized
using stochastic optimization methods and the data can be
sub-sampled for mini-batch training. Readers concerned
with the cancellation of delta functions in Eq. 9 can replace
them with Gaussians with variance σ2 to then take the limit
σ2 → 0.

Predictions for y⋆ associated to a new x⋆ are computed
using an approximate predictive distribution:

p(y⋆ | x⋆,D) ≈ Eq(f0(x
⋆))q(W)[p(y

⋆ | G1
θθθ(W1,x⋆)(f0(x

⋆)),

. . . ,GC
θθθ(WC ,x⋆)(f0(x

⋆)))], (10)

where the integral is approximated by Monte Carlo and 1-d
quadrature methods, after having marginalized out uK .

3.2. Summary of the Proposed Method and
Computational Cost

ETGP creates C dependent processes since f0 is shared. We
have characterized the dependencies of these C processes
for a linear flow in Prop. 3.1. The flows, however, need not
be linear and can be arbitrarily complicated. Because Gc

θK
is input-dependent the C processes are also non-stationary.

Expectations w.r.t. the NN’s parameters can be computed
using batched matrix multiplications. Expectations w.r.t.
q(f0) in Eq. 9 and Eq. 10 can be computed with 1-d quadra-
ture. By contrast, the SVGP method from Sec. 2.1 cannot
use quadrature methods since it considers C independent
processes. Moreover, the number of GP operations in ETGP

is constant with C. To get q(f c) in SVGPs Sec. 2.1 one
needs a cubic operation to invert Kc

ν(z, z) and M2 oper-
ation to compute the variational parameters per class and
datapoint, giving a complexity of O(CM3+CNM2). This
can be alleviated by sharing Kν and Z across GPs, resulting
in O(M3 + CNM2), at the cost of limiting expressive-
ness, as we’ll show. ETGP cost is always O(M3 + NM2)

5

Efficient Transformed Gaussian Processes

(without considering the NN’s computations, which for the
architecture presented is often much faster and can be done
in parallel to GP operations).

4. Related Work
To model non-stationary data, the typical approach is to
use non-stationary covariance functions such as the Neural
Network (Williams, 1996) or the Arcosine (Cho & Saul,
2009). Our experiments, however, show that ETGP provides
superior results in the multi-class setting when compared
to a method using these kernels. One can also make sta-
tionary kernels non-stationary by making the parameters
of the kernel depend on the input (Heinonen et al., 2016).
However, the work in (Heinonen et al., 2016) is limited to
small datasets since it does not consider sparse GPs and it
relies on Hamilton Monte Carlo for approximate inference,
which is computationally expensive. A sparse GP approach
would require a GP per kernel hyperparameter which can
lead to a big number of GPs for high d. Another approach
to obtain non-stationary processes considers processes mix-
ing using hierarchical models (Wang et al., 2020), One can
also place GPs over the mixing matrix entries, achieving
input-dependent length scales and amplitudes (Wilson et al.,
2012). These works either don’t scale for high C (Wilson
et al., 2012) or require domain knowledge to avoid misspec-
ification (Wang et al., 2020).

Non-stationary data can also be modeled by warping the in-
put space. More precisely, one can use a non-linear transfor-
mation before introducing the data into the kernel (Sampson
& Guttorp, 1992; Schmidt et al., 2000; Calandra et al., 2016;
Wilson et al., 2016). These methods, however, either run
the risk of over-fitting, as a consequence of not regularizing
the parameters of the non-linear transformation nor using
a fully Bayesian approach, or either do not scale to large
datasets.

One can also use more sophisticated processes such as the GP

Product Model (Adams & Stegle, 2008), DGPs (Damianou &
Lawrence, 2013) or TGPs (Maroñas et al., 2021) to achieve
non-stationarity. The GP Product Model, however, does
not scale to large datasets. DGPs have been shown to give
similar results to those of TGPs. However, TGPs have a lower
computational cost than DGPs and slightly higher than SVGPs.
Therefore, the proposed method, ETGP, is expected to be
faster than TGPs and also faster than DGPs, in consequence.

From the dependence point of view, several approaches have
been considered, which range from using process convolu-
tions (Boyle & Frean, 2004), to combining latent GPs via
a mixing matrix (Álvarez et al., 2012) whose entries can
be parameterized by a GP (Wilson et al., 2012). More re-
cently, (Jankowiak & Gardner, 2019) extends Multi-output
GPs (Álvarez et al., 2012), Gaussian Process Regression Net-

works (Wilson et al., 2012) and DGP (Damianou & Lawrence,
2013) by using NNs to replace different building blocks of
these methods. Since the computational cost of consider-
ing several GPs for inference is high (not necessarily for
multi-class learning), several methods have tried to alle-
viate this cost by, e.g., using sparse methods (Alvarez &
Lawrence, 2008) or more recently by assuming that the data
lives around a linear subspace and then exploit a low-rank
structure of the covariance matrix (Bruinsma et al., 2020).
All these works, however, use several GPs for modeling the
data, unlike the proposed method ETGP, and are hence ex-
pected to be significantly more expensive computationally.

5. Experiments
We evaluate ETGP in 5 UCI datasets (Lichman, 2013) (see Fig.
3 for details). We compare ETGP with LINEAR, SAL and TANH

flows with Bayesian (BA-ETGP) and point estimate (PE-ETGP)
predictions. We compare against a stationary independent
(RBF), as described in Sec. 2.1, and dependent (RBFCORR)
SVGPs, where dependencies are obtained by mixing C latent
GPs (Álvarez et al., 2012). We also compare against two
non-stationary SVGP with an arccosine (ARCCOS) (Cho &
Saul, 2009) and a Neural Network (NNET) (Williams, 1996)
kernels. In SVGP, we run the model with separate/shared
kernels and inducing points for each class label, indicated
with separate/shared Kν in the results. We report accuracy
(ACC) here. App. B contains test log-likelihood (LL) results
and gives all training details. We highlight that on each
SVGP run (one per training hyperparameters), we pick the
best result on the test set, so that the comparison with the
ETGP is the most optimistic. By contrast, we perform model
selection with a validation set for ETGP. The code will
be released in this repository https://github.com/
jmaronas/Efficient_Multiclass_Gaussian_
Processes_using_TGP3.

5.1. Prediction Performance Analysis

We compare ETGP in terms of prediction performance against
stationary dependent/independent and non-stationary SVGPs.
The results obtained are displayed in Fig. 3 (and Fig. 9
in App. B.) We observe that on the big datasets with a
large number of classes C (i.e., characterfont and
devangari) ETGP clearly outperforms or gives compara-
ble results to SVGPs, but around one order of magnitude
faster, see Sec. 5.2 and Fig. 4. In the worst case, the
ACC gain goes from 0.34 RBFCORR to 0.36 TANH. In the
best case, we see a boost from 0.29 SVGP to 0.36 TANH in
characterfont. In devangari ETGPs are clearly bet-
ter in all cases boosting accuracy from 0.93 RBFCORR to

3This repository is being used for other projects so at the
moment stays closed. Drop us an email and we will happily share
the code.

6

https://github.com/jmaronas/Efficient_Multiclass_Gaussian_Processes_using_TGP
https://github.com/jmaronas/Efficient_Multiclass_Gaussian_Processes_using_TGP
https://github.com/jmaronas/Efficient_Multiclass_Gaussian_Processes_using_TGP

Efficient Transformed Gaussian Processes

0.55 0.60

ETGP LINEAR

ETGP SAL

ETGP TANH

SVGP RBF

SVGP RBFCORR

SVGP ARCCOS

SVGP NNET

vowel Dx=10
N=990 C=11

0.25 0.30 0.35

absenteeism Dx=19
N=708 C=17

0.95 1.00

avila Dx=10
N=20867 C=12

SVGP separate Kν Point Estimate ETGP Bayesian ETGP

0.30 0.35

characterfont Dx=400
N=57499 C=153

0.93 0.95 0.98

devangari Dx=1024
N=92000 C=46

Figure 3. Accuracy (right is better) comparing ETGP vs. independent/dependent stationary GPs. and non-stationary

0.1 1 2

ETGP LINEAR

ETGP SAL

ETGP TANH

SVGP RBF

SVGP RBFCORR

SVGP ARCCOS

vowel Dx=10
N=990 C=11

0.1 1 2

absenteeism Dx=19
N=708 C=17

0.001 0.01 0.02

avila Dx=10
N=20867 C=12

SVGP separate Kν SVGP shared Kν Point Estimate ETGP

0.1 0.5 1.0

characterfont Dx=400
N=57499 C=153

0.1 1 1.5

devangari Dx=1024
N=92000 C=46

Figure 4. Average training time per epoch in minutes (left is better) comparing ETGP with SVGPs. NNET kernel is omitted as it is slower.
Times for absenteeism and vowel are scaled by 103.

0.96 TANH and LINEAR, nearly matching the result obtained
by a convolutional neural network (0.98) (Acharya et al.,
2015). This increment in performance is obtained around
one order of magnitude faster as well. In avila, a medium
size dataset, ETGP (0.985 TANH 0.970 LINEAR) works bet-
ter than SVGP (0.962) and comparable to correlated SVGP

(0.988). However, again, ETGP is one order of magnitude
faster. In vowel we observe SVGP working better than
ETGP, being the model with shared kernel the best (see App.
B). Further analysis is provided in the appendix but we
observe it’s due to domain shift between training and test
sets and due to the way models are selected for the SVGP.
On absenteeism we observe that ETGP works similarly
to SVGP. However, ETGP is much faster to train. Finally,
across all datasets, the SAL flow is the worst one (see App.
B for possible explanations). This also suggests that the
results from Maroñas et al. (2021) can be improved since

they only used SAL flow in their non-stationary TGPs. We
remark the good performance of ETGP LINEAR, which defines
C non-stationary dependent GPs, opening its use in other
applications.

Regarding LL (see Fig. 9 in App. B), we observe similar
results across all datasets. For small datasets BA-ETGP pro-
vides much better uncertainty quantification (LL) than its
non-Bayesian counterpart ETGP. This is particularly the case
in vowel, supporting our previous justification about the
decrease in performance of ETGP relative to SVGP in this
dataset. In our experiments we observed that the models
trained with higher dropout probability worked even better
in the small datasets, since they are incorporating more epis-
temic uncertainty. However, this boost is not observed in
the medium/large datasets in either ACC or LL. This matches
findings from Maroñas et al. (2021) where being Bayesian

7

Efficient Transformed Gaussian Processes

does not show improvements in classification datasets. This
is expected as with big N epistemic uncertainty vanishes,
however for vowel and due to its domain-shift between
training and test set, a model with higher dropout probability
is not being selected. Overall, this suggests that alternatives
that fix the dropout probability depending on the number of
training points, such as concrete dropout (Gal et al., 2017),
are a potential line of research to enhance the performance
of ETGP.

Regarding comparison against non-stationary kernels, we
do not observe a general tendency in the way they per-
form. This remarks the importance of having background
knowledge about the non-stationarity of the particular task.
Our work and Maroñas et al. (2021) show that the non-
stationarity achieved by input-dependent flows is benefi-
cial and easy to interpret since we just make each of the
marginals depend directly on the part of the feature space
that we are modeling, with no cross interactions between
data points beyond those given by the base stationary kernel.
We do not report results for ARCCOS on absenteeism as
we found training runs to saturate numerically (using float64
precision).

5.2. Training Timing Comparison

We report average training time in Fig. 4 and prediction time
in App. B. By using MCDROP, the training time of the PE-

ETGP and BA-ETGP is the same. Predictions for the Bayesian
ETGPs can be computed in parallel. We observe that ETGP

is the fastest method, with a gain, in many cases, of one
order of magnitude, compared to SVGP. SVGP with shared
Kν is competitive with ETGP in terms of training time, but
has a drop in performance (see Sec. 5.3), unlike ETGP which
typically performs better.

5.3. Comparison with SVGPs with Shared Kernel and
Inducing Points and with DGPs

We observe that sharing Kν and Z across the C GPs clearly
drops performance as shown in Fig. 5 for accuracy and
also for log-likelihood (see App. B). We’ve refactorized
GPFLOW’s source code so that the shared correlated SVGP

Figure 5. Accuracy (right is better) comparing ETGP vs. SVGPs
with shared kernels.

Table 1. Results for 2 layers DGP.
Accuracy Log Likelihood Training Time

avila 0.888 −0.310 0.008
characterfont 0.171 −3.636 0.197
devangari 0.909 −0.369 0.177

Table 2. Ablation study comparing TGP and ETGP trained (not)
freezing the GP parameters.

avila characterfont devangari
ACC LL ACC LL ACC LL

LINEAR

ETGP Frozen 0.951 −0.146 0.269 −3.360 0.968 −0.133
ETGP 0.973 −0.089 0.301 −3.268 0.969 −0.132

TGP Frozen 0.956 −0.139 0.269 −3.374 0.969 −0.131
TGP 0.990 −0.044 0.327 −3.185 0.969 −0.132

TANH

ETGP Frozen 0.986 −0.050 0.373 −3.802 0.967 −0.173
ETGP 0.983 −0.055 0.378 −3.789 0.968 −0.168

TGP Frozen 0.985 −0.052 0.373 −3.688 0.966 −0.179
TGP 0.991 −0.029 0.376 −3.756 0.967 −0.179

model is more efficient, see App. C. This drop in per-
formance affects not only SVGPs but also a 2 layer’s DGPs
with the configuration from Salimbeni & Deisenroth (2017),
which shares Kν and Z across layers, as shown in Tab. 1.
Also, some of these models needed considerably more RAM
memory than the SVGP or ETGP. The results for vowel and
absenteeism are discussed in App. B. We also observe
that the training time of these shallow DGPs is superior to
ETGP.

5.4. Ablation Study and Comparison with TGP

We perform an ablation study that shows that the expres-
siveness of the ETGP and TGP not only comes from the BNN

but also from the GP. In other words, the ETGP cannot be
reduced to a model which could simply transform a white
noise process. We train several ETGPs and TGPs freezing the
parameters from the GP during optimization. Results in Tab.
2 shows that the GP part is relevant and that TGP is usually
more expressive than ETGP, as expected. Unsurprisingly
there is less difference between freezing and not freezing
the ETGP for the more expressive flow (TANH). This suggests
that in a real application, we could find a trade-off between
having a more expressive flow at the benefit of not training
the GP at all, or having a less expressive one, since more
expressive flows usually require higher computations4. This
would be a new stochastic process specified by transforming
a white-noise process, which we let for future work.

5.5. Comparison with Point Estimate Neural Networks

As suggested by one of the reviewers we run experiments
comparing with Neural Networks. In particular, we run two-
layers fully connected neural network with Relu activation

4Computations in this work can be speed up by running the
BNN in a GPU using a different computational thread so the com-
putations involved (GP and BNN) are triggered in parallel.

8

Efficient Transformed Gaussian Processes

Table 3. Results comparing against DNNs.

Accuracy Log Likelihood
characterfont 0.418 −2.809

devangari 0.974 −0.125

and a dropout probability of 0.5. We have optimized these
networks using different training hyperparameters and we
report those that obtained the best result on the test set
following our experimental procedure on the baselines.

We have avoided comparison with vowel and
absenteeism since these datasets have very few
training points and hence a DNN typically over-fits
(Hernández-Lobato & Adams, 2015). We also avoid
avila since it is a tabular dataset where it is known that
DNNs perform poorly and require specialized architectures
(Du et al., 2021).

Results for characterfont and devangari are pro-
vided in Tab. 3. As mentioned before a Convolutional
Neural Network obtains 0.98 ACC on devangari. We
observe that fully connected networks perform either bet-
ter (characterfont) or comparable (devangari) to
the method presented. This is to be expected as these are
image datasets with a similar structure to MNIST, where a
Fully Connected Neural Network works often better than a
standard GP, as reported in the literature (see, e.g., (van der
Wilk et al., 2017)). Notwithstanding, again, we would like
to remark that the results above for characterfont and
devangari are too optimistic and an upper bound of the
actual results of the DNN, since selection is done by looking
at test metrics.

6. Conclusions and Future Work
We have introduced the Efficient Transformed Gaussian Pro-
cess (ETGP) for creating C dependent non-stationary stochas-
tic processes in an efficient way. For this, a single initial GP

is transformed C times using (non-)linear invertible transfor-
mations. This has the benefit of reducing the computational
cost while providing enough model flexibility to learn com-
plex tasks. We have provided an efficient training algorithm
for ETGP based on variational inference. This method has
been evaluated in the context of multi-class classification.
Our results show that ETGP is competitive or even better than
typical sparse SVGPs, at a lower computational cost. A limita-
tion of ETGP is, however, that it leads to a model that is more
difficult to interpret than SVGPs, as a consequence of the
non-linear transformations. However, particular flows may
allow controlling the moments of the induced distributions,
improving interpretability (Rios & Tobar, 2019).

Future work may focus on extending ETGP to multi-task and

multi-label problems, where a large number of processes
may also be needed. The use of ETGP in a deep kernel
learning framework can also be investigated (Wilson et al.,
2016). Moreover, an analysis of how the dependencies
among process values are modeled by sharing the copula
of the base GP can be carried out. Additional dependencies
can be incorporated by further mixing each latent function
in ETGP using a mixing matrix. The use of concrete dropout
and GPs instead of NNs to parameterize each flow are also
alternatives to improve different aspects of ETGP, such as
computational performance, well-specified Bayesian priors,
and epistemic uncertainty. Their use is left for future work.

Societal Impact
This work introduces a new probabilistic machine learning
method that can be used to make predictions quantifying its
uncertainty. Uncertainty quantification makes probabilistic
methods particularly suited to be deployed in high-risk sce-
narios such as autonomous driving or medicine. In all these
problems it is required the model to be interpretable and to
provide reliable predictions. As a consequence, a careful
analysis of the correct modeling of these properties must be
done before deploying the model to avoid potential negative
societal impacts.

Also, one needs to consider the particular limitations of
the approximate inference algorithm and model assump-
tions on each particular application. For example, the pre-
sented inference algorithm can only be used with diagonal
flows, which leaves the dependencies (copula) of the GP un-
changed. Thus, if one believes the copula is non-Gaussian,
deploying ETGP can result in biased predictions that may
have harmful consequences.

Acknowledgements
The authors acknowledge funding coming from the Span-
ish Plan Nacional I+D+I, project PID2019-106827GB-I00 /
AEI / 10.13039/501100011033. We also acknowledge the
use of the computational resources from Centro de Com-
putación Cientı́fica (CCC) and the AUDIAS Laboratory both at
Universidad Autónoma de Madrid. We would like to thank
anonymous reviewers since their comments contributed to
improving the paper’s legibility. Part of this work was car-
ried out while J.M. was at the PRHLT Research Center at
Universidad Politécnica de Valencia.

References
Acharya, S., Pant, A. K., and Gyawali, P. K. Deep learning

based large scale handwritten Devanagari character recog-
nition. 2015 9th International Conference on Software,
Knowledge, Information Management and Applications

9

Efficient Transformed Gaussian Processes

(SKIMA), pp. 1–6, 2015.

Adams, R. P. and Stegle, O. Gaussian process product mod-
els for nonparametric nonstationarity. In Proceedings of
the 25th International Conference on Machine Learning,
pp. 1–8, 2008.

Alvarez, M. and Lawrence, N. Sparse convolved Gaussian
processes for multi-output regression. In Advances in
Neural Information Processing Systems, pp. 57–64, 2008.

Álvarez, M. A., Rosasco, L., and Lawrence, N. D. Kernels
for vector-valued functions: A review. Found. Trends
Mach. Learn., 4:195–266, 2012.

Bishop, C. M. Pattern recognition and machine learning,
5th Edition. Information science and statistics. Springer,
2007.

Blackford, L. S., Petitet, A., Pozo, R., Remington, K., Wha-
ley, R. C., Demmel, J., Dongarra, J., Duff, I., Hammar-
ling, S., Henry, G., et al. An updated set of basic linear
algebra subprograms (BLAS). ACM Transactions on
Mathematical Software, 28:135–151, 2002.

Boyle, P. and Frean, M. Dependent Gaussian processes. In
Advances in Neural Information Processing Systems, pp.
217–224, 2004.

Bruinsma, W., Perim, E., Tebbutt, W., Hosking, S., Solin,
A., and Turner, R. Scalable exact inference in multi-
output Gaussian processes. In Proceedings of the 37th
International Conference on Machine Learning, pp. 1190–
1201, 2020.

Calandra, R., Peters, J., Rasmussen, C. E., and Deisenroth,
M. P. Manifold Gaussian processes for regression. In
2016 International Joint Conference on Neural Networks
(IJCNN), pp. 3338–3345, 2016.

Chai, K. M. A. Variational multinomial logit Gaussian
process. The Journal of Machine Learning Research, 13:
1745–1808, 2012.

Cho, Y. and Saul, L. Kernel methods for deep learning. In
Advances in Neural Information Processing Systems, pp.
342–350, 2009.

Damianou, A. and Lawrence, N. Deep Gaussian processes.
In Proceedings of the Sixteenth International Confer-
ence on Artificial Intelligence and Statistics, pp. 207–215,
2013.

Du, L., Gao, F., Chen, X., Jia, R., Wang, J., Zhang, J., Han,
S., and Zhang, D. Tabularnet: A neural network architec-
ture for understanding semantic structures of tabular data.
In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, KDD ’21, pp.

322–331, New York, NY, USA, 2021. Association for
Computing Machinery. ISBN 9781450383325.

Duvenaud, D., Lloyd, J., Grosse, R., Tenenbaum, J., and
Zoubin, G. Structure discovery in nonparametric regres-
sion through compositional kernel search. In Interna-
tional Conference on Machine Learning, pp. 1166–1174,
2013.

Gal, Y. Uncertainty in Deep Learning. PhD thesis, Univer-
sity of Cambridge, 2016.

Gal, Y. and Ghahramani, Z. Dropout as a Bayesian approxi-
mation: Representing model uncertainty in deep learning.
In Proceedings of the 33rd International Conference on
International Conference on Machine Learning - Volume
48, pp. 1050–1059, 2016.

Gal, Y., Hron, J., and Kendall, A. Concrete dropout. In
Advances in Neural Information Processing Systems, vol-
ume 30, pp. 3581–3590, 2017.

Gardner, J. R., Pleiss, G., Weinberger, K. Q., Bindel, D.,
and Wilson, A. G. Gpytorch: Blackbox matrix-matrix
gaussian process inference with GPU acceleration. In
NeurIPS, pp. 7587–7597, 2018.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On cali-
bration of modern neural networks. In Precup, D. and Teh,
Y. W. (eds.), Proceedings of the 34th International Con-
ference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pp. 1321–1330. PMLR,
06–11 Aug 2017.

Hamelijnck, O., Damoulas, T., Wang, K., and Girolami,
M. Multi-resolution multi-task Gaussian processes. In
Advances in Neural Information Processing Systems, pp.
14025–14035, 2019.

Heinonen, M., Mannerström, H., Rousu, J., Kaski, S., and
Lähdesmäki, H. Non-stationary Gaussian process regres-
sion with Hamiltonian monte carlo. In Proceedings of the
19th International Conference on Artificial Intelligence
and Statistics, pp. 732–740, 2016.

Hensman, J., Fusi, N., and Lawrence, N. D. Gaussian
processes for big data. In Proceedings of the Twenty-
Ninth Conference on Uncertainty in Artificial Intelligence,
pp. 282–290, 2013.

Hensman, J., de G. Matthews, A. G., and Ghahramani, Z.
Scalable variational gaussian process classification. In
AISTATS, JMLR Workshop and Conference Proceedings,
2015.

Hernández-Lobato, J. M. and Adams, R. P. Probabilistic
backpropagation for scalable learning of bayesian neural

10

Efficient Transformed Gaussian Processes

networks. In Proceedings of the 32nd International Con-
ference on International Conference on Machine Learn-
ing - Volume 37, ICML’15, pp. 1861–1869. JMLR.org,
2015.

Jankowiak, M. and Gardner, J. Neural likelihoods for multi-
output Gaussian processes, 2019.

Krige, D. G. A statistical approach to some mine valuation
and allied problems on the Witwatersrand: by DG Krige.
PhD thesis, University of the Witwatersrand, 1951.

Lawrence, N. Gaussian process latent variable models for vi-
sualisation of high dimensional data. In Advances in neu-
ral information processing systems, pp. 329–336, 2003.

Lázaro-Gredilla, M. and Figueiras-Vidal, A. Inter-domain
Gaussian processes for sparse inference using inducing
features. In Advances in Neural Information Processing
Systems 22, pp. 1087–1095, 2009.

Leimkuhler, B. and Matthews, C. Molecular Dynamics:
With Deterministic and Stochastic Numerical Methods.
Interdisciplinary Applied Mathematics. Springer Interna-
tional Publishing, 2015.

Lichman, M. UCI machine learning repository, 2013.

Maroñas, J., Hamelijnck, O., Knoblauch, J., and Damoulas,
T. Transforming Gaussian processes with normalizing
flows. In Proceedings of The 24th International Confer-
ence on Artificial Intelligence and Statistics, pp. 1081–
1089, 2021.

Matthews, A. G. d. G., van der Wilk, M., Nickson, T., Fujii,
K., Boukouvalas, A., León-Villagrá, P., Ghahramani, Z.,
and Hensman, J. GPflow: A Gaussian process library us-
ing TensorFlow. Journal of Machine Learning Research,
18:1–6, 2017.

Neal, R. M. Bayesian Learning for Neural Networks. PhD
thesis, University of Toronto, 1996.

Petersen, K. B. and Pedersen, M. S. The matrix cookbook,
2012. Version 20121115.

Rasmussen, C. E. and Williams, C. K. I. Gaussian processes
for machine learning. Adaptive computation and machine
learning. MIT Press, 2006.

Rios, G. Transport Gaussian processes for regression, 2020.

Rios, G. and Tobar, F. Compositionally-warped Gaussian
processes. Neural Networks, 118:235–246, 2019.

Salimbeni, H. and Deisenroth, M. Doubly stochastic varia-
tional inference for deep gaussian processes. In Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R. (eds.), Advances in

Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017.

Sampson, P. D. and Guttorp, P. Nonparametric estimation of
nonstationary spatial covariance structure. Journal of the
American Statistical Association, 87:pp. 108–119, 1992.

Schmidt, A. M., O’Hagan, A., and Schmidt, R. M. Bayesian
inference for nonstationary spatial covariance structure
via spatial deformations. Journal of the Royal Statistical
Society, Series B, 65:745–758, 2000.

Sklar, A. Fonctions de répartition à n dimensions et leurs
marges. Publications de l’Institut de Statistique de
l’Université de Paris, 8:229–231, 1959.

Snelson, E. L., Rasmussen, C. E., and Ghahramani, Z.
Warped gaussian processes. In NIPS, pp. 337–344, 2003.

Snoek, J., Larochelle, H., and Adams, R. Practical Bayesian
optimization of machine learning algorithms. In Ad-
vances in neural information processing systems, pp.
2951–2959, 2012.

Snoek, J., Swersky, K., Zemel, R., and Adams, R. P. Input
warping for Bayesian optimization of non-stationary func-
tions. In Proceedings of the 31st International Confer-
ence on International Conference on Machine Learning -
Volume 32, pp. II–1674–II–1682, 2014.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. In International
Conference on Learning Representations, 2021.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. Journal of Machine
Learning Research, 15:1929–1958, 2014.

Titsias, M. Variational learning of inducing variables in
sparse Gaussian processes. In Proceedings of the Twelth
International Conference on Artificial Intelligence and
Statistics, pp. 567–574, 2009.

Uhlenbeck, G. E. and Ornstein, L. S. On the theory of the
Brownian motion. Physical review, 36:823, 1930.

van der Wilk, M., Rasmussen, C. E., and Hensman, J. Con-
volutional gaussian processes. In Guyon, I., Luxburg,
U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan,
S., and Garnett, R. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 30. Curran Associates,
Inc., 2017.

van der Wilk, M., Dutordoir, V., John, S., Artemev, A.,
Adam, V., and Hensman, J. A framework for interdomain
and multioutput Gaussian processes, 2020.

11

Efficient Transformed Gaussian Processes

Wang, K., Hamelijnck, O., Damoulas, T., and Steel, M. Non-
separable non-stationary random fields. In Proceedings of
the 37th International Conference on Machine Learning,
Proceedings of Machine Learning Research, pp. 9887–
9897, 2020.

Williams, C. Computing with infinite networks. In Advances
in Neural Information Processing Systems, pp. 295–301,
1996.

Wilson, A. G. and Ghahramani, Z. Copula processes. In Laf-
ferty, J. D., Williams, C. K. I., Shawe-Taylor, J., Zemel,
R. S., and Culotta, A. (eds.), Advances in Neural Infor-
mation Processing Systems 23, pp. 2460–2468, 2010.

Wilson, A. G., Knowles, D. A., and Ghahramani, Z. Gaus-
sian process regression networks. In Proceedings of the
29th International Coference on International Conference
on Machine Learning, pp. 1139–1146, 2012.

Wilson, A. G., Hu, Z., Salakhutdinov, R., and Xing, E. P.
Deep kernel learning. In Proceedings of the 19th Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 370–378, 2016.

Yang, G. Wide feedforward or recurrent neural networks of
any architecture are Gaussian processes. In Advances in
Neural Information Processing Systems, pp. 9947–9960,
2019.

12

Efficient Transformed Gaussian Processes

A. Math Appendix
In this appendix we provide a wider description of the equations involved in this paper, ranging from the model definition to
the sparse variational inference algorithm. For completeness, and to make the improvements of the proposed model clearer,
we start by describing the sparse variational inference algorithm applied to multi-class problems with and independent GP

prior, previous to the definition of our model. Although we compare against correlated GPs using a mixing matrix, we don’t
provide its derivation since it goes beyond the scope of this appendix. In the end of this appendix we proof Prop. 3.1. If
possible we keep all the conditioning set explicit in the equations presented.

A.1. Classification with Independent GP Priors

Given a classification problem with inputs x ∈ X ⊆ Rd and C outputs y ∈ Y ⊂ N, we want to learn C mapping functions
from x to the probability of belonging to each y ; given a set of observations D = {xn, yn}Nn=1 with X = (x1, . . . ,xN)
and y = (y1, . . . , yN).

If this modeling procedure is done using GPs, then we place an independent GP on each of these C functions, each one
parameterized by a mean function µν(x) (which we assume to be zero) and a covariance matrix Kc

ν(x,x), parameterized
by ν. Following the notation introduced in the main paper, the joint distribution of C processes at locations X is given by:

p(f0 | ν) =
C∏

c=1

N (f c0 | 0,Kc
ν(X,X)) (11)

where f0 = {f10 , . . . , fC0 }. This prior is combined with a likelihood p(y | f0) that links latent functions to observations. In
classification, a common choice is the Categorical Likelihood, giving the joint distribution:

p(y, f0) = p(y | f0)p(f0) =
[

N∏
n=1

C∏
c=1

πc(f0,n)
I(yn=c)

]
C∏

c=1

N (f c0 | 0,Kc
ν(X,X)) , (12)

where πc(f0,n) = exp(f c
0(x

n)/
∑C

c′=1 exp(f
c′

0 (xn)) is the Softmax link function mapping latent vectors to probabilities,
and I(·) the indicator function.

In Bayesian learning, we are interested in the posterior p(f0 | D), which is intractable for many likelihoods, and computa-
tionally unfeasible since its complexity scales cubically with the number of training points. We now introduce the variational
sparse derivation.

A.1.1. VARIATIONAL SPARSE DERIVATION

The idea behind sparse GPs is to use a set of M inducing points z ∈ X , with Z = (z1, . . . , zM), that acts as summary
statistics of the data. Each inducing point z has an associated latent value u0. Following the GP’s prior definition, then at Z
we have u0 ∼ GP(u0 | 0,Kν(Z,Z))). Thus, given X,Z the joint distribution is Gaussian given by:

p(f0,u0 | X,Z, ν) = N
(

f0 0
u0 0

,
Kν(X,X), Kν(X,Z)
Kν(Z,X), Kν(Z,Z)

)
(13)

One key contribution from Titsias (2009) is to define these inducing points to be variational parameters that are learned
by minimizing the KL between the approximate q(f0,u0) and true posterior p(f0,u0 | D,Z, ν). Since z do not belong to
the model parameters, then they don’t increase the model expressiveness hence protecting the learning procedure from
overfitting.

The other key contribution from Titsias (2009) is how the variational distribution is defined. In particular, q(f0,u0) = p(f0 |
u0)q(u0) so that the conditional’s model prior p(f0 | u0) gets canceled. Later, Hensman et al. (2013) propose to keep
q(u0 | m,S) explicit by parameterizing it with a Gaussian distribution with parameters m ∈ RM , S ∈ RM×M . With this,
the ELBO can be optimized with stochastic variational inference.

If C independent GPs are going to be used, we can easily extend the presented equations as follows. The joint prior factorizes

13

Efficient Transformed Gaussian Processes

across C as above:

p(f0,u0 | X,Z, ν) =

C∏
c=1

N
(

f c0 0
uc
0 0

,
Kc

ν(X,X), Kν(X,Zc)
Kc

ν(Z
c,X), Kν(Z

c,Zc)

)
(14)

and the approximate posterior can be defined by factorizing across C as well:

q(f0,u0 | X,Z, ν,m,S) =

C∏
c=1

p(f c0 | uc
0,X,Zc, νc)q(u

c
0 | mc,Sc) (15)

The KL minimization between the approximate posterior and the true posterior is equivalent to maximizing the Evidence
Lower Bound (ELBO), which we now derive:

ELBO =

∫
f10

. . .

∫
fC0

∫
u1

0

. . .

∫
uC

0

q(f0,u0) log
p(y | f0)p(f0,u0)

q(f0,u0)
df10 . . . dfC0 du1

0 . . . duC
0

=

∫
f10

. . .

∫
fC0

∫
u1

0

. . .

∫
uC

0

q(f0,u0) log p(y | f0)df10 . . . dfC0 du1
0 . . . duC

0︸ ︷︷ ︸
ELL

+

∫
f10

. . .

∫
fC0

∫
u1

0

. . .

∫
uC

0

q(f0,u0) log
p(f0,u0)

q(f0,u0)
df10 . . . dfC0 du1

0 . . . duC
0︸ ︷︷ ︸

−KL

(16)

where we have dropped the conditioning set for clarity. We now workout each term separately:

−KL =

∫
f10

. . .

∫
fC0

∫
u1

0

. . .

∫
uC

0

q(f0,u0) log
p(f0,u0)

q(f0,u0)
df10 . . . dfC0 du1

0 . . . duC
0

=

∫
u1

0

. . .

∫
uC

0

q(u0) log
�����
p(f0 | u0)p(u0)

�����
p(f0 | u0)q(u0)

du1
0 . . . duC

0

=

∫
u1

0

. . .

∫
uC

0

C∏
c=1

q(uc
0)

C∑
c′=1

log
p(uc′

0)

q(uc′
0)

du1
0 . . . duC

0 =

=

C∑
c′=1

∫
u1

0

. . .

∫
uC

0

C∏
c=1

q(uc
0) log

p(uc′

0)

q(uc′
0)

du1
0 . . . duC

0 =

=

C∑
c=1

∫
uc

0

q(uc
0) log

p(uc
0)

q(uc
0)

duc
0

= −
C∑

c=1

KL[q(uc
0)||p(uc

0)]

(17)

The Expected log likelihood (ELL) is given by:

ELL =

∫
f10

. . .

∫
fC0

∫
u1

0

. . .

∫
uC

0

q(f0,u0) log p(y | f0)df10 . . . dfC0 du1
0 . . . duC

0

=

∫
f10

. . .

∫
fC0

q(f0) log

N∏
n=1

p(yn | f0,n)df
1
0 . . . dfC0

=

∫
f10

. . .

∫
fC0

q(f10) . . . q(f
C
0) log

N∏
n=1

C∏
c=1

πc(f0,n)
I(yn=c)df10 . . . dfC0

=

N∑
n=1

C∑
c=1

I(yn = c)

∫
f1
0,n

. . .

∫
fC
0,n

q(f1
0,n) . . . q(f

C
0,n) log πc(f0,n)df

1
0,n . . . dfC

0,n

(18)

14

Efficient Transformed Gaussian Processes

recovering the bound of the main paper (Eq. 2):

ELBO =

N∑
n=1

C∑
c=1

I(yn = c)

∫
f1
0,n

. . .

∫
fC
0,n

q(f1
0,n) . . . q(f

C
0,n) log πc(f0,n)df

1
0,n . . . dfC

0,n

−
C∑

c=1

KL[q(uc
0)||p(uc

0)]

(19)

Note that this bound is amenable to stochastic optimization using minibatches, where the integrals are approximated by
Monte Carlo using reparameterized gradients (a.k.a. path-wise gradients). The KL can be computed in closed form. Most
importantly, each q(f c

0,n) is a univariate Gaussian distribution given by:

q(f c
0,n) = N (f c

0,n |Kc
νxn,ZcKc

νZc,Zc
−1mc,

Kc
νxn,xn −Kc

νxn,ZcKc
νZc,Zc

−1[Kc
νZc,Zc + Sc]Kc

νZc,Zc
−1Kc

νZc,xn)
(20)

obtained by solving
∫
u1

0
. . .

∫
uC

0

∏C
c=1 p(f

c
0 | uc

0,X,Zc, νc)q(u
c
0 | mc,Sc)du1

0 . . . duC
0 =

∏C
c=1

∫
uc

0
p(f c0 |

uc
0,X,Zc, νc)q(u

c
0 | mc,Sc)duc

0. This computation needs to be computed C times requiring a complexity of
O(CM3 + CNM2), which can be reduced to O(M3 + CNM2) if the inducing points are shared. We can gain ad-
ditional performance if the kernel is shared as noted in App. C. However, as shown in the experiments sharing kernel and
inducing points can drop performance.

A.2. Classification with Efficient Transformed Gaussian Processes

We now present the derivations required for the proposed model. This model is specified by transforming a single sample
from a GP using C invertible transformations Gθθθ by the following generative procedure:

f0(·) ∼ GP(0,Kν(·, ·))
f1
K(·) = G1

θθθ(W1,X)(f0(·)), · · · fC
K(·) = GC

θθθ(WC ,X)(f0(·)).
(21)

The prior distribution over C processes is derived as follows. For exemplification purposes consider C = 3 and consider the
processes evaluation at the index set X, then we have:

f0 ∼ p(f0 | X, ν)

f1K = G1
θθθ(W1,X)(f0); f1K = G1

θθθ(W1,X) ◦H2
θθθ(W2,X)(f

2
K); f1K = G1

θθθ(W1,X) ◦H3
θθθ(W3,X)(f

3
K)

f2K = G2
θθθ(W2,X)(f0); f2K = G2

θθθ(W2,X) ◦H1
θθθ(W1,X)(f

1
K); f2K = G2

θθθ(W2,X) ◦H3
θθθ(W3,X)(f

3
K)

f3K = G3
θθθ(W3,X)(f0); f3K = G3

θθθ(W3,X) ◦H1
θθθ(W1,X)(f

1
K); f3K = G3

θθθ(W3,X) ◦H2
θθθ(W2,X)(f

2
K)

(22)

with H := G−1. In order to define the prior probability of the classes we first observe that the following conditional
independence holds from the construction introduced above:

p(f1K , f2K , f3K) = p(f1K)p(f2K | f1K)p(f3K | f1K ,��f
2
K)

p(f2K , f1K , f3K) = p(f2K)p(f1K | f2K)p(f3K | f2K ,��f
1
K)

p(f3K , f1K , f2K) = p(f3K)p(f1K | f3K)p(f2K | f3K ,��f
1
K)

(23)

where we have chosen to write the 3 out of 6 possibilities just for exemplification purposes. This conditional independence
holds because the probability of f3K given f1K , f2K is given by a direct mapping either from f1K or f2K as illustrated in Eq. 22.
We define the pivot to be the member on which we always condition, i.e. if p(f3K | f2K , f1K) = p(f3K | f1K) then the pivot is f1K .
Note, however, that it will also be valid to choose any other member as a pivot, for example p(f3K | f2K , f1K) = p(f3K | f2K).
Finally, note that we can write the conditional distribution p(f3K | f1K) as:

p(f3K | f1K) = δ
(
f3K −G3

θθθ(W3,X) ◦H1
θθθ(W1,X)(f

1
K)

)
(24)

15

Efficient Transformed Gaussian Processes

with δ being the Dirac measure. Using both observations we can write the prior joint conditional distribution over the classes
as:

p(fK | Gθθθ,W,X, ν) = p(f0 | X, ν)

K1−1∏
k=0

∣∣∣∣∣det ∂G
1
θk(W1,X)(f

1
K)

∂f1K

∣∣∣∣∣
−1

C∏
c=2

δ
(
f cK −Gc

θθθ(Wc,X) ◦H1
θθθ(W1,X)(f

1
K)

) (25)

recovering the expression in Eq. 6 in the main paper. The overall joint is given by:

p(fK ,W | Gθθθ, λ,X, ν) = p(fK | Gθθθ,W,X, ν)p(W | λ) (26)

with p(W | λ) denoting the prior over the parameters of the Bayesian Neural Network (BNN).

A.2.1. PRIOR CONDITIONAL DISTRIBUTION p(fK | uK)

We now derive the prior conditional distribution p(fK | uK). In a similar vein to GPs we will derive a sparse variational
inference algorithm, from where inducing points need to be incorporated. Note that since we use diagonal flows, the
resulting joint distribution is consistent (i.e. is a finite dimensional realization of a stochastic process), which means we can
extend its index set introducing inducing points uK at inducing locations Z, similar to what we do in GPs.

First, note that following the previous section we can write the marginal distribution at the inducing points by:

p(uK | Gθθθ,W,Z, ν) = p(u0 | Z, ν)

K1−1∏
k=0

∣∣∣∣∣det ∂G
1
θk(W1,Z)(u

1
K)

∂u1
K

∣∣∣∣∣
−1

C∏
c=2

δ
(
uc
K −Gc

θθθ(Wc,Z) ◦H1
θθθ(W1,Z)(u

1
K)

)
.

(27)

The overall joint can be derived following a similar procedure. Note that we have:

f0,u0∼ p(f0,u0 | X,Z, λ)

f1K = G1
θθθ(W1,X)(f0); f1K = G1

θθθ(W1,X) ◦H2
θθθ(W2,X)(f

2
K); f1K = G1

θθθ(W1,X) ◦H3
θθθ(W3,X)(f

3
K)

u1
K = G1

θθθ(W1,Z)(u0); u1
K = G1

θθθ(W1,Z) ◦H2
θθθ(W2,Z)(u

2
K); u1

K = G1
θθθ(W1,Z) ◦H3

θθθ(W3,Z)(u
3
K)

f2K = G2
θθθ(W2,X)(f0); f2K = G2

θθθ(W2,X) ◦H1
θθθ(W1,X)(f

1
K); f2K = G2

θθθ(W2,X) ◦H3
θθθ(W3,X)(f

3
K)

u2
K = G2

θθθ(W2,Z)(u0); u2
K = G2

θθθ(W2,Z) ◦H1
θθθ(W1,Z)(u

1
K); u2

K = G2
θθθ(W2,Z) ◦H3

θθθ(W3,Z)(u
3
K)

f3K = G3
θθθ(W3,X)(f0); f3K = G3

θθθ(W3,X) ◦H1
θθθ(W1,X)(f

1
K); f3K = G3

θθθ(W3,X) ◦H2
θθθ(W2,X)(f

2
K)

u3
K = G3

θθθ(W3,Z)(u0); u3
K = G3

θθθ(W3,Z) ◦H1
θθθ(W1,Z)(u

1
K); u3

K = G3
θθθ(W3,Z) ◦H2

θθθ(W2,Z)(u
2
K)

Following similar ideas as before, the pivots are now defined to be f1K and u1
K . We can also apply a similar conditional

independence, and note that the joint distribution over the non pivots fK ,uK also factorizes. Conditional independence
holds because any f cK ,uc

K only depends on f1K ,u1
K by a direct mapping; and the conditional distribution over the non pivots

16

Efficient Transformed Gaussian Processes

p(f cK ,uc
K | f1K ,u1

K) = p(f cK | f1K)p(uc
K | u1

K) factorizes since f cK only depends on f1K and uc
K on u1

K . Writing:

p(f1K ,u1
K , f2K ,u2

K , f3K ,u3
K) =

p(f1K ,u1
K)p(f2K ,u2

K | f1K ,u1
K)p(f3K ,u3

K | f1K ,u1
K ,����f2K ,u2

K) =

p(f1K ,u1
K)p(f2K | f1K)p(u2

K | u1
K)p(f3K | f1K)p(u3

K | u1
K) =

p(f0 | u0)

K1−1∏
k=0

∣∣∣∣∣det ∂G
1
θk(W1,X)(f

1
K)

∂f1K

∣∣∣∣∣
−1

︸ ︷︷ ︸
p(f1K |u1

K)

p(u0)

K1−1∏
k=0

∣∣∣∣∣det ∂G
1
θk(W1,Z)(u

1
K)

∂u1
K

∣∣∣∣∣
−1

︸ ︷︷ ︸
p(u1

K)︸ ︷︷ ︸
p(f1K ,u1

K)

δ
(
f2K −G2

θθθ(W2,X) ◦H1
θθθ(W1,X)(f

1
K)

)
δ
(
u2
K −G2

θθθ(W2,Z) ◦H1
θθθ(W1,Z)(u

1
K)

)
︸ ︷︷ ︸

p(f2K ,u2
K |f1K ,u1

K)=p(f2K |f1K)p(u2
K |u1

K)

δ
(
f3K −G3

θθθ(W3,X) ◦H1
θθθ(W1,X)(f

1
K)

)
δ
(
u3
K −G3

θθθ(W3,Z) ◦H1
θθθ(W1,Z)(u

1
K)

)
︸ ︷︷ ︸

p(f3K ,u3
K |f1K ,u1

K)=p(f3K |f1K)p(u3
K |u1

K)

(28)

Because we use a diagonal flow, the full Jacobian factorizes as
∏K1−1

k=0

∣∣∣∣det ∂G1
θk(W1,X)

(f1K)

∂f1K

∣∣∣∣−1 ∏K1−1
k=0

∣∣∣∣det ∂G1
θk(W1,Z)

(u1
K)

∂u1
K

∣∣∣∣−1

,

allowing us to explicitly write p(f1K | u1
K) and p(u1

K) (see appendix of Maroñas et al. (2021)). Thus, the overall joint
distribution is given by:

p(fK ,uK ,W | Gθθθ,X,Z, λ, ν) =

C∏
c=1

p(Wc | λc)

p(f0 | u0,X,Z, ν)

K1−1∏
k=0

∣∣∣∣∣det ∂G
1
θk(W1,X)(f

1
k)

∂f1k

∣∣∣∣∣
−1 C∏

c=2

δ
(
f cK −Gc

θθθ(Wc,X) ◦H1
θθθ(W1,X)(f

1
K)

)
︸ ︷︷ ︸

p(fK |uK)

p(u0 | Z, ν)

K1−1∏
k=0

∣∣∣∣∣det ∂G
1
θk(W1,Z)(u

1
k)

∂u1
k

∣∣∣∣∣
−1 C∏

c=2

δ
(
uc
K −Gc

θθθ(Wc,Z) ◦H1
θθθ(W1,Z)(u

1
K)

)
︸ ︷︷ ︸

p(uK)

(29)

where now the pivots are u1
K and f1K . To fully characterize the joint distribution we shall derive where the expression for

p(fK | uK) in Eq. 29 comes from. This conditional distribution is derived by inspection as follows. We factorize the joint
distribution in the following two equivalent ways:

p(f1K , f2K , f3K ,u1
K ,u2

K ,u3
K) =

p(f1K , f2K , f3K | u1
K ,u2

K ,u3
K)p(u1

K ,u2
K ,u3

K) =

p(f1K ,u1
K)p(f2K ,u2

K | u1
K ,u1

K)p(f3K ,u3
K | f1K ,u1

K)

and used the form of the third line, which is the one we know how to write (Eq. 28), to derive the expression for the second

17

Efficient Transformed Gaussian Processes

line, which is the object of our interest. The expression for the third line has already been written and is given by:

p(f1K , f2K , f3K ,u1
K ,u2

K ,u3
K) =

p(f0 | u0)p(u0)

K1−1∏
k=0

∣∣∣∣∣det ∂G
1
θk(W1,X)(f

1
K)

∂f1K

∣∣∣∣∣
−1 K1−1∏

k=0

∣∣∣∣∣det ∂G
1
θk(W1,Z)(u

1
K)

∂u1
K

∣∣∣∣∣
−1

︸ ︷︷ ︸
p(f1K ,u1

K)

δ
(
f2K −G2

θθθ(W2,X) ◦H1
θθθ(W1,X)(f

1
K)

)
δ
(
u2
K −G2

θθθ(W2,Z) ◦H1
θθθ(W1,Z)(u

1
K)

)
︸ ︷︷ ︸

p(f2K ,u2
K |u1

K ,u1
K)

δ
(
f3K −G3

θθθ(W3,X) ◦H1
θθθ(W1,X)(f

1
K)

)
δ
(
u3
K −G3

θθθ(W3,Z) ◦H1
θθθ(W1,Z)(u

1
K)

)
︸ ︷︷ ︸

p(f3K ,u3
K |f1K ,u1

K)

(30)

Then, since we know the form of p(u1
K ,u2

K ,u3
K):

p(u1
K ,u2

K ,u3
K) =

p(u0)

K1−1∏
k=0

∣∣∣∣∣det ∂G
1
θk(W1,Z)(u

1
K)

∂u1
K

∣∣∣∣∣
−1

δ
(
u2
K −G2

θθθ ◦H1
θθθ(u

1
K)

)
δ
(
u3
K −G3

θθθ ◦H1
θθθ(u

1
K)

) (31)

then, by careful inspection of Eq. 30 we can derive the conditional distribution, which is given by:

p(f1K , f2K , f3K | u1
K ,u2

K ,u3
K) =

p(f0 | u0)

K1−1∏
k=0

∣∣∣∣∣det ∂G
1
θk(W1,X)(f

1
K)

∂f1K

∣∣∣∣∣
−1

δ
(
f2K −G2

θθθ(W2,X) ◦H1
θθθ(W1,X)(f

1
K)

)
δ
(
f3K −G3

θθθ(W3,X) ◦H1
θθθ(W1,X)(f

1
K)

) (32)

where we have just seen (marked in red in Eq. 30) which elements from the full joint belong to the marginal p(u1
K ,u2

K ,u3
K),

and thus the remaining must belong to the conditional. This gives the prior conditional for C processes:

p(fK | uK ,W,X,Z, ν) = p(f0 | u0,X,Z, ν)

K1−1∏
k=0

∣∣∣∣∣det ∂G
1
θk(W1,X)(f

1
K)

∂f1K

∣∣∣∣∣
−1

︸ ︷︷ ︸
p(f1K |u1

K)

C∏
c=2

δ
(
f cK −Gc

θθθ(Wc,X) ◦H1
θθθ(W1,X)(f

1
K)

) (33)

matching the result in Eq. 29. With this, we are now ready to derive the sparse variational inference algorithm.

A.2.2. MARGINAL VARIATIONAL DISTRIBUTION q(fK)

The variational distribution is defined following the ideas from Maroñas et al. (2021); Titsias (2009); Hensman et al. (2013):

q(fK ,uK ,W) = p(fK | uK ,W)q(uK | W)q(W) (34)

where we use the conditional model’s prior derived in the previous section and a marginal conditional variational distribution
that is defined by warping a multivariate Gaussian in the original GP space q(u0 | m,S) using G, where m ∈ RM , S ∈
RM×M , with the flows from the prior Gθθθ:

q(uK | m,S,W,Z) = q(u0 | m,S)

K1−1∏
k=0

∣∣∣∣∣det ∂G
1
θk(W1,Z)(u

1
k)

∂u1
k

∣∣∣∣∣
−1

C∏
c=2

δ
(
uc
K −Gc

θθθ(Wc,Z) ◦H1
θθθ(W1,Z)(u

1
K)

) (35)

18

Efficient Transformed Gaussian Processes

and where the distribution over the NN weights factorizes:

q(W | ϕ) =
C∏

c=1

q(Wc | ϕc) (36)

where ϕ denote variational parameters. Note that the dependence of the marginal q(uK) on W is required since this
distribution is parameterized by the flows of the prior and so inference over W requires dependence between q(uK) and
q(W | ϕ).
To derive our inference algorithm, we need to show how to integrate out inducing points, which turns out that can be done
analytically when using diagonal flows, as in Maroñas et al. (2021):

q(fK | W) =

∫
u1

K

. . .

∫
uC

K

p(fK | uK)q(uK)du1
K . . . duC

K

=

∫
u1

K

. . .

∫
uC

K

p(f1K | u1
K)

C∏
c=2

δ
(
f cK −Gc

θθθ(Wc,X) ◦H1
θθθ(W1,X)(f

1
K)

)
q(u1

K)

C∏
c=2

δ
(
uc
K −Gc

θθθ(Wc,Z) ◦H1
θθθ(W1,Z)(u

1
K)

)
du1

K . . . duC
K

=

C∏
c=2

δ
(
f cK −Gc

θθθ(Wc,X) ◦H1
θθθ(W1,X)(f

1
K)

)
∫
u1

K

. . .

∫
uC

K

p(f1K | u1
K)q(u1

K)

C∏
c=2

δ
(
uc
K −Gc

θθθ(Wc,Z) ◦H1
θθθ(W1,Z)(u

1
K)

)
du1

K . . . duC
K

=

C∏
c=2

δ
(
f cK −Gc

θθθ(Wc,X) ◦H1
θθθ(W1,X)(f

1
K)

)∫
u1

K

p(f1K | u1
K)q(u1

K)du1
K

=

C∏
c=2

δ
(
f cK −Gc

θθθ(Wc,X) ◦H1
θθθ(W1,X)(f

1
K)

)K1−1∏
k=0

∣∣∣∣∣det ∂G
1
θk(W1,X)(f

1
K)

∂f1K

∣∣∣∣∣
−1

∫
p(f0 | u0)q(u0)du0

=q(f0)

K1−1∏
k=0

∣∣∣∣∣det ∂G
1
θk(W1,X)(f

1
K)

∂f1K

∣∣∣∣∣
−1 C∏

c=2

δ
(
f cK −Gc

θθθ(Wc,X) ◦H1
θθθ(W1,X)(f

1
K)

)

(37)

where q(f0) is given by Eq. 20. Note that the form of this marginal variational distribution q(fK) implies the following
generative procedure already used in the definition of the ETGP:

f0 ∼ q(f0)

f1K = G1
θθθ(W1,X)(f0), f2K = G2

θθθ(W2,X)(f0) . . . fCK = GC
θθθ(WC ,X)(f0)

(38)

The sequence of steps used in the derivation are the followings. We start by writing the marginalization in terms of the
conditional distribution p(fK | uK ,W) and the proposed marginal variational q(uK | W). From second to third equality
we take out from the integral the terms that do not depend on uK . Then from third to fourth equality we integrate out all
uK except the pivot u1

K . Note that integration here is straightforward since the Dirac measure integrates to 15. This let us
with one integral over u1

K . From fourth to fifth equality, we write p(f1K | u1
K) using the expression in Eq. 33, and since

the Jacobian does not depend on u1
K it is taken out from the integral. Lastly, we apply the LOTUS rule (see appendix in

Maroñas et al. (2021) and below) by noting an expectation over q(u1
K), which give us a simple Gaussian integral, from

which analytical solution q(f0) is well known. This distribution coincides with the SVGP marginal variational given by Eq.
20, as in TGPs.

For self-contained purposes we copy the LOTUS rule definition in Maroñas et al. (2021):

5Readers concerned with the integration of the Dirac measure in this context can replace it by a Gaussian density taking the limit of
σ → 0.

19

Efficient Transformed Gaussian Processes

LOTUS rule: Given an invertible transformation G, and the distribution p(fK) induced by transforming samples from a
base distribution p(f0), then it holds that expectations of any function h() under p(fK) can be computed by integrating w.r.t.
the base distribution p(f0). This is formally known as probability under change of measure. Formally, the above statement
implies:

Ep(fK) [h(fK)] = Ep(f0)
[h(G(f0))] (39)

A.2.3. EVIDENCE LOWER BOUND ELBO

The Evidence Lower Bound resulting from the prior model and the variational approximate posterior can be written down as:

ELBO =

∫
fK

∫
uK

∫
W

q(fK ,uK | W)q(W)
log p(y | fK)p(fK ,uK | W)p(W)

q(fK ,uK | W)q(W)
dfKduKdW

=

∫
fK

∫
uK

∫
W

q(fK ,uK | W)q(W) log p(y | fK)dfKduKdW︸ ︷︷ ︸
ELL

+

∫
fK

∫
uK

∫
W

q(fK ,uK | W)q(W) log
p(fK ,uK | W)p(W)

q(fK ,uK | W)q(W)
dfKduKdW︸ ︷︷ ︸

−KL

(40)

where we again drop the conditioning set, except W, for clarity. Working each term separately yields:

−KL =

∫
fK

∫
uK

∫
W

q(fK ,uK | W)q(W) log
p(fK ,uK | W)p(W)

q(fK ,uK | W)q(W)
dfKduKdW

=

∫
fK

∫
uK

∫
W

q(fK ,uK | W)q(W) log(
((((((

p(fK | uK ,W)p(uK | W)p(W)

(((((((
p(fK | uK ,W)q(uK | W)q(W)

dfKduKdW

=

∫
fK

∫
uK

∫
W

q(fK ,uK | W)q(W) log(((((((((((((((((((∏C
c=2 δ

(
uc
K −Gc

θθθ(Wc,Z) ◦H1
θθθ(W1,Z)(u

1
K)

)

(((((((((((((((((((∏C
c=2 δ

(
uc
K −Gc

θθθ(Wc,Z) ◦H1
θθθ(W1,Z)(u

1
K)

)dfKduKdW

+

∫
fK

∫
uK

∫
W

q(fK ,uK | W)q(W) log
p(u1

K | W1)p(W)

q(u1
K | W1)q(W)

dfKduKdW

=

∫
uK

∫
W

q(u1
K | W1)

C∏
c=2

δ
(
uc
K −Gc

θθθ(Wc,Z) ◦H1
θθθ(W1,Z)(u

1
K)

)
q(W) log

p(u1
K | W1)p(W)

q(u1
K | W1)q(W)

duKdW

=

∫
u1

K

∫
W

q(u1
K | W1)q(W) log

p(u1
K | W1)p(W)

q(u1
K | W1)q(W)

du1
KdW

=

∫
W

q(W)

∫
u1

K

q(u1
K | W1) log

p(u1
K | W1)

q(u1
K | W1)

du1
KdW +

∫
W

q(W) log
p(W)

q(W)
dW

=

∫
W

q(W)

∫
u0

q(u0) log
p(u0)

q(u0)
du0dW +

∫
W

q(W) log
p(W)

q(W)
dW

= −KL[q(u0)||p(u0)]− KL[q(W)||p(W)]

(41)

where in the second and third equalities we cancel common terms. From equality 3 to 4 we integrate out all fK since nothing
depends on them. In step from equality 4 to 5 we integrate out the Dirac measures over all the non-pivot elements. From
equality 5 to 6 we separate expectations and step 6 to 7 can be derived in two ways. First, since KL is invariant under a
parameter transformation (reparameterization) and both the prior and variational distributions are transformed with the same
warping function Gθθθ, then the KL can be written as that on the original GP space. Another way to derive this KL is by noting
an expected value of a log-ratio w.r.t. q(uK), allowing us to apply the LOTUS rule, and corresponding Jacobian cancellations.

20

Efficient Transformed Gaussian Processes

More precisely: ∫
u1

K

q(u1
K) log

p(u1
K)

q(u1
K)

du1
K

=

∫
u1

K

q(u1
K) log

p(u0 | z, ν)
�������������∏K1−1

k=0

∣∣∣∣det ∂G1
θk(W1,Z)

(u1
k)

∂u1
k

∣∣∣∣−1

q(u0 | m,S)

�������������∏K1−1
k=0

∣∣∣∣det ∂G1
θk(W1,Z)

(u1
k)

∂u1
k

∣∣∣∣−1
du1

K

=

∫
u0

q(u0) log
p(u0 | z, ν)
q(u0 | m,S)

du0

(42)

which is a similar derivation to that in Maroñas et al. (2021). Note that we could also recognize the LOTUS rule being applied
from equality 3 to equality 7 directly in Eq. 41, by previously integrating out fK and without the δ(·) cancellations. In other
words, we can see the full KL over uK as a direct reparameterization applied to u0.

We next derive the ELL:

ELL =

∫
W

∫
fK

∫
uK

q(fK ,uK | W)q(W) log p(y | fK)dfKduKdW

=

∫
W

∫
fK

q(fK | W)q(W) log p(y | fK)dfKdW

=

∫
W

∫
f0

q(f0)q(W) log p(y | Gθθθ(W,X)(f0))df0dW

=

∫
W

∫
f0

q(f0)q(W) log

N∏
n=1

C∏
c=1

πc(GθK(W,xn)(f0,n))
I(yn=c)df0dW

=

N∑
n=1

C∑
c=1

I(yn = c)

∫
W

q(W)

∫
f0,n

q(f0,n) log πc(GθK(W,xn)(f0,n))df0,ndW

≈
N∑

n=1

C∑
c=1

I(yn = c)
1

S

S∑
s=1

∫
f0,n

q(f0,n) log πc(GθK(W
s
,xn)(f0,n))df0,n;Ws ∼ q(W)

(43)

where we first integrate out uK yielding the derived conditional marginal q(fK | W) and then apply the LOTUS rule to
expectation w.r.t. q(fK | W). The remaining steps are similar to SVGP when pluging the specific Categorical Likelihood
used in this work.

Using both derivations we recover the ELBO in the main paper (Eq. 9):

ELBO =
N∑

n=1

C∑
c=1

I(yn = c)

∫
W

q(W)

∫
f0,n

q(f0,n) log πc(GθK(W,xn)(f0,n))df0,ndW

− KL[q(u0)||p(u0)]− KL[q(W)||p(W)]

(44)

A.2.4. COMPUTATIONAL ADVANTAGES

We highlight differences between our proposed model and SVGPs. First, expectations w.r.t. q(f0) in Eq. 44 can be computed
with 1-d quadrature. By contrast, the SVGP method cannot use quadrature methods and require Monte Carlo. This makes
our algorithm computationally advantageous. On the other side expectations w.r.t. the NN’s parameters can be computed
using batched matrix multiplications and in practice we use Monte Carlo Dropout (Gal & Ghahramani, 2016) with one
Monte Carlo sample for training, making this computation very efficient. Moreover, the number of GP operations is constant
with C. To get q(f c) in SVGPs one needs a cubic operation to invert Kc

ν(Z,Z) and M2 operation to compute the variational
parameters per class and datapoint, giving a complexity of O(CM3 + CNM2). This can be alleviated by sharing Kν and
Z across GPs, resulting in O(M3 + CNM2), at the cost of limiting expressiveness, as shown in the experiment section.
ETGP cost is always O(M3 +NM2) (without considering the NN’s computations, which for the architecture presented is
often much faster and can be done in parallel to GP operations).

21

Efficient Transformed Gaussian Processes

A.3. Proof of Proposition 1

In this section we prove proposition 1, which we restate for clarity.
Proposition 1. The joint conditional distribution of C non-stationary GPs obtained via a linear flow is given by:

p(fK | W) = N
(
f1K | b1,A1Kν(X,X)AT

1

) C∏
c=2

δ
(
f cK −Gc

θθθ(Wc,X) ◦H1
θθθ(W1,X)(f

1
K)

)
, (45)

with b1 = (b1(x1), . . . , b1(xN))T and A1 ∈ RN×N a diagonal matrix with entries a1 = (a1(x1), . . . , a1(xN))T. Each
marginal p(f cK) is Gaussian with mean and covariance given by bc and AcKν(X,X)AT

c , respectively. The covariance
matrix between the pivot f1K and f cK , for c ̸= 1, is given by: a1(ac)T ⊙Kν(X,X) with ⊙ denoting Hadamart product.

The proof is divided in two steps. We first derive the marginal distributions {p(f cK)}Cc=1 and then the covariances. For all the
proof we will assume that the pivot is f1K . First, since a linear flow is used, we can write the flow mapping over a set of
samples X = (x1, . . . ,xN) in matrix form as:

f1K = A1f0 + b1 (46)

with A1 ∈ RN×N being a diagonal matrix with entries a1 = (a1(x1), . . . , a1(xN))T and b1 = (b1(x1), . . . , b1(xN))T.
Thus, using the fact that p(f0 | X, ν) = N (f0 | 0,Kν(X,X)) and the resulting density when applying a linear transforma-
tion to a Gaussian density, the marginal distribution over f1K is:

N
(
f1K | b1,A1Kν(X,X)AT

1

)
(47)

Note that for non-zero mean GP the mean would be given by b1 +A1µν(X). To derive the marginal distribution for each c
we solve the following integral:

p(f cK) =

∫
f1K

p(f1K)p(f cK | f1K)df1K

=

∫
f1K

N
(
f1K | b1,A1Kν(X,X)AT

1

)
δ
(
f cK −Gc

θθθ(Wc,X) ◦H1
θθθ(W1,X)(f

1
K)

)
df1K

(48)

Before solving it note that for any c we have:

f cK = Gc
θθθ(Wc,X) ◦H1

θθθ(W1,X)(f
1
K)

=

G︷ ︸︸ ︷
Ac A

−1
1

[
f1K − b1

]︸ ︷︷ ︸
H

+bc
(49)

yielding:

p(f cK) =

∫
f1K

N
(
f1K | b1,A1Kν(X,X)AT

1

)
δ(f cK −AcA

−1
1

[
f1K − b1

]
− bc)df1K

=

∫
f1K

N
(
f1K | b1,A1Kν(X,X)AT

1

)
δ(f cK −AcA

−1
1 f1K +AcA

−1
1 b1 − bc)df1K

(50)

We then rewrite this last expression to highlight the integral to be solved:∫
f1K

N
(
f1K | m,S

)
δ(f cK −Qf1K − r)df1K (51)

with:
m = b1

S = A1Kν(X,X)AT
1

Q = AcA
−1
1

r = −AcA
−1
1 b1 + bc

(52)

22

Efficient Transformed Gaussian Processes

The solution of this integral is obtained by the following procedure. First note that if Q = I we recognize a convolution
between a Gaussian and a Dirac delta function, easily solved by applying the selection property of Dirac delta functions:

N (f cK | m,S)⊛ δ(f cK − r) :=

∫ ∞

−∞
N

(
f1K | m,S

)
δ(f cK − f1K − r)df1K

=N (f cK − r | m,S) = N (f cK | m + r,S)

(53)

where the last step holds by writing the Gaussian density and checking f cK − r −m = f cK − (m + r). For Q ̸= I, we
perform an integration by substitution 6, since there is no way we can write the integral as a convolution between two
functions. More precisely let u = Qf1K + r. We have f1K = Q−1(u − r) and |det du/df1K | = |detQ| which implies the
substitution df1K = |1/detQ|du. Putting all together we have:

p(f cK) =

∫
f1K

N
(
f1K | m,S

)
δ(f cK −Qf1K − r)df1K

=

∫
f1K

N
(
Q−1(u− r) | m,S

)
δ(f cK − u)

∣∣∣∣ 1

detQ

∣∣∣∣ du

=
1

|detQ|N
(
Q−1(f cK − r) | m,S

)
(54)

Beyond the substitution the integral is solved by applying the selection property of the delta function. After applying some
standard algebra to the Gaussian distribution (see App. A.5) we have:

N
(
Q−1(f cK − r) | m,S

)
= |detQ| N

(
f cK | Qm + r,QSQT) (55)

Giving the final result:
p(f cK) = N

(
f cK | Qm + r,QSQT) (56)

since |detQ| cancels with 1/|detQ|. Note this result matches the one obtained with the convolution for Q = I. If we now
substitute the shortcuts for Q,S,m, r we have for the covariance:

QSQT = AcA
−1
1 A1Kν(X,X)AT

1

[
AcA

−1
1

]T

= AcA
−1
1 A1Kν(X,X)A1A

−1
1 Ac

= AcKν(X,X)Ac

(57)

where we apply some standard matrix identities. In particular the transpose of the product is the product of the transposes in
reverse order, and the transpose of a diagonal matrix is equal to the diagonal matrix. For the mean we have:

r+Qm =������−AcA
−1
1 b1 + bc

������
+AcA

−1
1 b1 = bc (58)

finishing the first part of the proof, which we re-emphasize:

The marginal distribution for any f cK has density given by: N
(
f cK | bc,AcKν(X,X)AT

c

)
Importantly, note that if non-zero GPs are used, this result is also matched with the particularity that the mean is given by
bc +Acµν(X). This is seen by replacing AcA

−1
1 b1 for AcA

−1
1 [b1 +A1µν(X)] in Eq. 58.

The second part of the proof characterizes some of the linear dependencies (covariance) in the joint distribution p(fK). We
note that in this paper we have not figured out the form of the joint distribution if the pivot is integrated out, i.e. how the pivot
couples the rest of latent functions. In other words, the distribution p(f2K , . . . , fCK) =

∫
f1K

p(f2K , . . . , fCK | f1K)p(f1K)df1K is
unknown, which limits the full characterization of the covariances in the joint distribution.

For this reason, in this proposition we just characterize the covariances between any f cK and the pivot f1K . For this we use the
expression:

COV[f1K , f cK] = E[f1K(f cK)
T
]− E[f1K]E[f cK]T (59)

6After this derivation we found a simpler way to obtain this solution which is given, for completeness, in App. A.4.

23

Efficient Transformed Gaussian Processes

The expected values can be directly obtained from the marginal distributions obtained in the first part of the proof. In
particular:

E
[
f1K

]
= b1

E [f cK] = bc (60)

To derive the covariance, it is easier to do it by just looking at its entries at two single points locations xn and xn′
and then

generalizing the result. Following the main paper notation we have f0,n := f0(x
n), bc(xn) := bcn and ac(xn) := acn.

A.3.1. COVARIANCE BETWEEN f1
K,n AND f c

K,n AT A SINGLE LOCATION n

For this we compute:

E
[
f1
K,nf

c
K,n

]
=∫

f1
K,n

∫
fc
K,n

f1
K,nf

c
K,nN

(
f1
K,n | b1n, a1nKν(x

n,xn)a1n
)
δ

(
f c
K,n − acn

a1n

[
f1
K,n − b1n

]
− bcn

)
df1

K,ndf c
K,n

=

∫
f1
K,n

[
acn
a1n

f1
K,nf

1
K,n − acn

a1n
b1nf

1
K,n + bcnf

1
K,n

]
N

(
f1
K,n | b1n, a1nKν(x

n,xn)a1n
)

df1
K,n

=
acn
a1n

[
a1nKν(x

n,xn)a1n +
(
b1n
)2]− acn

a1n

(
b1n
)2

+ bcnb
1
n

= acnKν(x
n,xn)a1n + bcnb

1
n

(61)

yielding,

COV[f1
K,n, f

c
K,n] = E

[
f1
K,nf

c
K,n

]
− E

[
f1
K,n

]
E
[
f c
K,n

]
= acnKν(x

n,xn)a1n + bcnb
1
n − bcnb

1
n

= acnKν(x
n,xn)a1n

(62)

So the covariance between two processes at all locations N will be given by the diagonal of Kν(X,X) element-wise
multiplied by the diagonal of a1(ac)T.

A.3.2. COVARIANCE BETWEEN f1
K,n AND f c

K,n′ AT DIFFERENT LOCATIONS n, n′

We again emphasize the main paper notation for easier presentation and re-highlight that for this particular section
f1K = (f1

K,n, f
1
K,n′)T and similar for any parameter short cut e.g. b1. For this we compute:

E
[
f1
K,nf

c
K,n′

]
=∫

f1
K,n

∫
f1
K,n′

∫
fc
K,n′

f1
K,nf

c
K,n′N

(
f1K | b1,A1Kν(X,X)AT

1

)
δ

(
f c
K,n′ − acn′

a1n′

[
f1
K,n′ − b1n′

]
− bcn′

)
df1

K,ndf1
K,n′df c

K,n′

=

∫
f1
K,n

∫
f1
K,n′

[
acn′

a1n′
f1
K,nf

1
K,n′ − acn′

a1n′
b1n′f1

K,n + bcn′f1
K,n

]
N

(
f1K | b1,A1Kν(X,X)AT

1

)
df1

K,ndf1
K,n′

=
acn′

a1n′

[
a1nKν(x

n,xn′
)a1n′ + b1n′b1n

]
− acn′

a1n′
b1n′b1n + bcn′b1n

= acn′a1nKν(x
n,xn′

) + bcn′b1n
(63)

yielding,

COV[f1
K,n, f

c
K,n′] = E

[
f1
K,nf

c
K,n′

]
− E

[
f1
K,n

]
E
[
f c
K,n′

]
= acn′a1nKν(x

n,xn′
) + bcn′b1n − b1nb

c
n′

= acn′a1nKν(x
n,xn′

)

(64)

Note that from the above integral is easy to see that COV[f1
K,n′ , f c

K,n] = acna
1
n′Kν(x

n′
,xn) .

24

Efficient Transformed Gaussian Processes

A.3.3. COVARIANCE BETWEEN f1K AND f cK

We have derived the covariance between the pivot and any other process at the same location xn and between two different
locations xn,xn′

. Note that for N arbitrary locations X, the covariance between any pair of elements can be obtained by
any of the two derivations shown above.

In summary, at a given location xn the covariance between two processes is ac(xn)a1(xn)Kν(x
n,xn) and at two different

locations xn and xn′
the covariance between two processes is ac(xn′

)a1(xn)Kν(x
n,xn′

).

Thus, the covariance abetween the processes at N locations X is given by a1(ac)
T ⊙Kν(X,X).

A.4. Alternative Derivation of Eq. 56

We found a simpler way of obtaining Eq. 56 by approximating the Dirac measure with a Gaussian and taking the limit of the
variance to 0. With this, we can apply standard Gaussian integration and yield the desired result.

First:
δ(f cK −Qf1K − r) = lim

λ→0
N

(
f cK | Qf1K + r, λI

)
(65)

and so the integral is solved by:

p(f cK) = lim
λ→0

∫
f1K

N
(
f1K | m,S

)
N

(
f cK | Qf1K + r, λI

)
df1K

= lim
λ→0

N
(
f cK | Qm + r, λI+QSQT)

= N
(
f cK | Qm + r,QSQT)

(66)

A.5. Algebra Manipulation of the Gaussian Distribution

We are interested in showing:

N
(
Q−1(fK − r) | m,S

)
= detQ N

(
fK | Qm + r,QSQT) (67)

We provide the steps to be performed since we haven’t found the steps available in the references searched. We can show
this equivalence either by the technique of completing the square or by making simple manipulations to the exponent in
the Gaussian distribution. We assume these Gaussian distributions have dimensionality n. Our manipulations use standard
matrix operations that can be found in the matrix cookbook (Petersen & Pedersen, 2012).

A.5.1. MANIPULATION OF THE EXPONENT

We have:

N
(
Q−1(fK − r) | m,S

)
=

1

(2π)n/2(detS)1/2
exp

{
(Q−1(fK − r)−m)TS−1(Q−1(fK − r)−m)

}
=

1

(2π)n/2(detS)1/2
exp

{
((Q−1fK)T − (Q−1r)T −mT)QT(QT)−1S−1Q−1Q(Q−1fK −Q−1r−m)

}
=

1

(2π)n/2(detS)1/2
exp

{
((Q−1fK)TQT − (Q−1r)TQT −mTQT)(Q−1)TS−1Q−1(fK − r−Qm)

}
=

1

(2π)n/2(detS)1/2
exp

{
(fK

T(QT)−1QT − rT(QT)−1QT − (Qm)T)(Q−1)TS−1Q−1(fK − r−Qm)
}

=
1

(2π)n/2(detS)1/2
exp

{
(fK

T − rT − (Qm)T)(QSQT)−1(fK − r−Qm)
}

=
1

(2π)n/2(detS)1/2
exp

{
(fK − r−Qm)T(QSQT)−1(fK − r−Qm)

}

(68)

This gives an unnormalized Gaussian distribution with mean Qm + r and covariance QSQT

25

Efficient Transformed Gaussian Processes

A.5.2. COMPLETING THE SQUARE METHOD

We can obtain a similar result by the technique of completing the square. Since we know that a scale and shift on a function
argument does not change the function shape, i.e. scaling and shifting a Gaussian will give a Gaussian curve, we can use the
technique of completing the square to recognize the mean and covariance matrix (Bishop, 2007).

From:

N
(
Q−1(fK − r) | m,S

)
=

1

(2π)n/2(detS)1/2
exp

{
(Q−1(fK − r)−m)TS−1(Q−1(fK − r)−m)

} (69)

We expand the quadratic form:

(Q−1(fK − r)−m)TS−1(Q−1(fK − r)−m)

= (Q−1(fK − r))TS−1(Q−1(fK − r))− 2(Q−1(fK − r))TS−1m +mTS−1m

= (Q−1fK)TS−1Q−1fK − (Q−1fK)TS−1Q−1r− (Q−1r)TS−1Q−1fK

+ (Q−1r)TS−1Q−1r− 2(Q−1fK)TS−1m + 2(Q−1r)TS−1m +mTS−1m

(70)

and first recognize the terms depending quadratically on fK :

(Q−1fK)TS−1Q−1fK = fK
T(Q−1)TS−1Q−1fK

= fK
T(QT)−1S−1Q−1fK

= fK
T(QSQT)−1fK

(71)

Recognizing the covariance to be QSQT. Now looking at the terms that depend linearly on fK we have:

− (Q−1fK)TS−1Q−1r− (Q−1r)TS−1Q−1fK − 2(Q−1fK)TS−1m

= −fK
T(Q−1)TS−1Q−1r− rT(Q−1)TS−1Q−1fK − 2fK

T(Q−1)TS−1m

= −fK
T(QSQT)−1r− rT(QSQT)−1fK − 2fK

T(Q−1)TS−1m

(72)

Looking closely at rT(QSQT)−1fK we have:

rT(QSQT)−1fK = fK
T((QSQT)−1)Tr

= fK
T((QSQT)T)−1r

= fK
T(QSTQT)−1r

= fK
T(QSQT)−1r

(73)

since S is symmetric i.e. S = ST. This yields a final linear term given by:

− fK
T(QSQT)−1r− fK

T(QSQT)−1r− 2fK
T(Q−1)TS−1m (74)

By rewriting −2fK
T(Q−1)TS−1m as:

− 2fK
T(Q−1)TS−1m = −2fK

T(Q−1)TS−1Q−1Qm

= −2fK
T(QSQT)−1Qm

(75)

We obtain the final desired linear term:

− fK
T(QSQT)−1r− fK

T(QSQT)−1r− 2fK
T(Q−1)TS−1m =

− 2fK
T(QSQT)−1r− 2fK

T(QSQT)−1Qm

= −2fK
T(QSQT)−1[Qm + r]

(76)

Recognizing Qm + r as the mean of the distribution.

26

Efficient Transformed Gaussian Processes

Finally, we would have to check if there is a way for the remaining constant terms to be re-written as [Qm+r]TS−1[Qm+r]
otherwise the probability density would not be correctly normalized. Since we know from the previous section that this
yields an unnormalized density we omit this step. Anyway we can skip this step since we know that function argument
scaling is a non-volume preserving transformation, something that can be trivially checked by computing the area of a
function x(t) = u(t)− u(t− 1) and its scaled version x(2t), where u(t) is the unit (or Heaviside) step function.

This can be more formally check if we consider the probability under change of variable. If we have y = f(x) for some
invertible function f(·) with y ∼ p(y), then:

p(x) = p(y = f(x))

∣∣∣∣det ∇f(x)

x

∣∣∣∣ (77)

for a linear transformation y = Qx + r, this gives:

p(x) = p(y = Qx + r) |detQ| (78)

formally showing that a scale in the argument of a density implies a non-volume preserving transformation and thus without
the Jacobian correction it would not be a proper normalized density.

A.5.3. THE REMAINING NORMALIZATION CONSTANT

It is clear that the scaling of the Gaussian argument gives an unnormalized density with mean Qm + r and covariance
QSQT. A proper normalized Gaussian density would have a multiplication constant equal to:

1

(2π)n/2(detQSQT)1/2
(79)

but our result has:
1

(2π)n/2(detS)1/2
(80)

Operating the determinant we see:

(detQSQT)
1/2 = (detQdetS detQT)

1/2

= (detS)
1/2(detQdetQ)

1/2 = (detS)
1/2|detQ|

(81)

where since the determinant is a scalar value we know that
√
x2 = |x|. This means that we need to scale our density by

1/| detQ|, or, in other words, our density has been unnormalized by multiplying it by |detQ|. With this, we conclude:

N
(
Q−1(fK − r) | m,S

)
= |detQ| N

(
fK | Qm + r,QSQT) (82)

27

Efficient Transformed Gaussian Processes

B. Experiment Appendix
In this appendix we provide training/evaluation details alongside additional results.

Information about the different datasets used can be found in the code, where a link to the website of each particular dataset
can be found. Information about dataset preprocessing can also be found in the code since datasets are very different
(images, tabular, tabular with discrete inputs etc) and so different preprocessing was done. General preprocessing steps
are the normalization to [0, 1] range of image datasets, normalization by the mean and standard deviation in continuous
tabular datasets, and different normalization procedures depending on the type of feature. For example, a dataset containing
working age information was normalized by dividing by 65 since that is the maximum number of years (on average) of a
standard worker’s life. Also for absenteeism we change the task target in order to increase the number of class labels.
With characterfont we did not use all the available data due to computational constraints. We did this since there is no
clear standarization about how these tasks should be evaluated and so we adapted to evaluate the proposed algorithm, which
needs high C and a reasonable amount of training data. All this information can be checked in the code’s repository.

Common to all experiments is the following information. Experiments are run using GPFLOW (Matthews et al., 2017; van
der Wilk et al., 2020). Unless mentioned we use default GPFLOW parameters. Inducing points are initialized using Kmeans
algorithm for vowel,absenteeism and avila with 10 reinitializations and parallel Kmeans for characterfont
and devangari with 3 reinitializations. The length scale of RBF kernels was initialized to 2.0 and the mixing matrix
randomly. Non-stationary kernels are initialized with a length scale of 2.0 for the arcosine and with an identity matrix for
the Neural Network kernel. All kernels employ automatic relevance determination if possible. The variational mean is
initialized to zero and the Cholesky factorization of the variational covariance to the identity matrix multiplied by 1e− 5. In
all the experiments the model used to compute the train/valid/test metrics was the model corresponding to the epoch with
the best (highest) ELBO. We use Adam optimizer with a batch size of 10000. This implies that on the small datasets we are
performing full batch gradient descent. This in addition with our deterministic initialization procedure removes most of the
randomness in the results, removing the necessity of running several times the same experiments with different seeds. Note
that in the ETGP, although the parameters of the NN are initialized randomly, we run an initialization procedure several times
removing the influence from the random initialization. On the big datasets we perform stochastic gradient descent however
running the models several times to remove possible noise in the stochastic gradient algorithm is unfeasible especially for
SVGPs where some of the models took 4 days to run in our computer cluster.

For all the SVGP models we run models with learning rate values of 0.01 and 0.001. For certain choices of hyper-parameters
if we saw that 0.01 was providing better results than 0.001 we keep searching just with 0.01. In some cases we also look
for other learning rates e.g. 0.05 in light of finding the best baseline model to compare against. We run either 10000 or
15000 epochs for vowel,absenteeism and avila and 100, 200, 500, 1000, 2000 epochs for characterfont and
devangari. For these last two dataset we do not always launch 2000 epochs, and only did it if we found a big increase
in performance from the run with 500 to 1000 epochs. Note that training times are averages over epochs and we do not
provide the full time of the experiment (which in turns imply that the ETGP is even faster since we run them just for 500
epochs). We run models with number of inducing points {100, 50, 20} for (vowel,absenteeism and avila) and 100
for characterfont and devangari. We also experiment with the parameters of the covariance (including the mixing
matrix parameters in RBFCORR) being frozen for 2000 (vowel,absenteeism and avila) or 50 (characterfont and
devangari) epochs or trained end to end, i.e. no freezing is applied, following Maroñas et al. (2021); Hensman et al.
(2015). Once all these experiments were launched, we select for each set of kernel, number of inducing points etc, the model
giving the best performance by directly looking at the test set, in order to evaluate the proposed model in the most optimistic
situation for each SVGP baseline.

For the ETGP model selection was done using a validation split with a different number of points per dataset. This
information is provided by looking at the code that loads the data. For the ETGP all the models are run for 15000 epochs for
vowel,absenteeism and avila and 500 epochs for characterfont and devangari (which implies that the total
training time of our models is even faster), and the best selected model on validation for 100 inducing points, is run for 50
and 20, in contrast with SVGP where each 50 and 20 inducing points model can have its own set of training hyperparameters.
Bayesian flows are trained with 1 Monte Carlo dropout sample and evaluated (i.e. posterior predictive computation) using 20
dropout samples. The learning rate experimented was 0.01 and 0.001 and all the parameters are trained from the beginning
without freezing. The NN architectures were chosen depending on the input size of the dataset. All these architectures have
an input layer equal to the dimensionality of the data and an output layer given by the number of parameters of the flow
multiplied by the number of classes. We tested LINEAR, SAL (Rios & Tobar, 2019) with length 3 and TANH (Snelson et al.,

28

Efficient Transformed Gaussian Processes

2003) with length 3 and 4 elements in the linear combination. The length of the flow corresponds to the value of K in the flow
parameterization, i.e. it is the number of, e.g. individual SAL transformations, being concatenated. All the NN use hyperbolic
tangent activation function and we use a variance of a Gaussian prior over flow parameters set to 5000, 50000, 50000 which
corresponds to a weight decay factor of 1e− 4, 1e− 5, 1e− 6 without considering the constant value of the Gaussian prior
that depends on the number of parameters. For vowel,absenteeism and avila we test networks with 0, 1, 2 hidden
layers with 25, 50, 100 neurons per layer and with dropout probabilities of 0.25, 0.5, 0.75 except avila that only uses
0.25, 0.5. We tested 0.75 to see if higher uncertainty in the NN posterior could help in regularizing the datasets with fewer
number of training points. For devangari we test 0, 1, 2 hidden layers with 512, 1024 neurons per layer. We also tested a
projection network of 0, 1 hidden layers with 512 neurons per hidden layer and 256 neurons per output layer. The output of
this projection network is feed into another neural network that maps the 256 dimensions to the number of parameters. This
second NN has 0, 1 hidden layers with 256, 128 neurons per layer. All these networks have a dropout probability of 0.5. For
characterfont we also use a dropout probability of 0.5 and NN with 0, 1, 2 hidden layers with 256 neurons per layer.
We also test projection networks of 0, 1, 2 hidden layers with 512, 256 neurons per hidden layer and output layer of 256
neurons. This is then feed into another neural network with 0, 1, 2 hidden layers and 256 neurons per layer.

Regarding the initialization of the flows we follow Maroñas et al. (2021) and initialize the flows to the identity by first
learning the identity mapping using a non-input dependent flow, and then learning the parameters of the neural network to
match each point in the training dataset to the learned non-input dependent parameters. Both initialization procedures are
launched 5 times with a learning rate of 0.05 and Adam optimizer for any dataset and flow architecture. The input-dependent
initialization is run for 1000 epochs in vowel,absenteeism and avila and for 100 epochs in characterfont and
devangari. Some preliminary runs were done to test if these hyperparameters allow the flow to be properly initialized and
then all these parameters were used for any flow initialization in our validation search without further analysis. We found
in general that with fewer epochs the flow could be also initialized properly, but decided to run a considerable number of
initialization epochs. We highlight that this procedure can be done in parallel to Kmeans initialization, for readers concerned
with the training time associated with this initialization procedure.

B.1. SAL Flow Discussion

In the work from Maroñas et al. (2021) input dependent TGPs only used the SAL flow parameterization. These flows have
the good property that they can recover the identity function, see (Rios & Tobar, 2019), making them suitable for these
applications since the marginal likelihood can penalize complexity in the warping function and ‘choose’ to use a GP by
setting a linear mapping.

In this work, we have shown that SAL flows provide, in general, worse results than the TANH or LINEAR flows. On one side,
this shows the potential improvements that can be achieved by the versatility of the different flows that can be parameterized.
Beyond being able to control moments of the induced distributions (Rios & Tobar, 2019), different flows combination can
be more expressive or make the training procedure more stable.

In particular, a problem with the SAL flow is that small changes in its parameters can lead to mappings with a high derivative
(like an exponential curve). This implies a big change in the gradients and thus while training we can suffer either from
numerical saturation or convergence issues. This can be a possible explanation for this performance drop. In fact, in our
experiments, we found SAL to be the most saturating flow, i.e. the one making the optimization procedure more unstable.

Nevertheless, exploring architectures with fewer parameters, such as SAL flows, that can learn arbitrary non-linear mappings
such as those of TANH, are an interesting line of research. For example, the TANH flow used has 12 parameter, which implies
an output NN layer of 1836 neurons for C = 153 which considerably increases the computational burden when making
Bayesian predictions, and also affects the speed improvement obtained. Anyway, this flow has similar training runs as SVGP

while providing much better performance.

B.2. Analysis of vowel and absenteeism Dataset

For this dataset we observe that SVGP with sharing kernel and inducing points works the best, see Figs. 7,8,3,9. This is
because the training and test sets were collected from different speakers pronouncing vowels, and this domain shift can’t be
captured by these models. As a consequence, the shared Kν model generalizes better since it under-fits the training set
(reflected by worse ACC, LL and ELL in the training set), unlike separate Kν and ETGP. Since ETGP chooses hyper-parameters
using validation data extracted from the training set, this method cannot capture this domain shift. Note that in this particular
case, choosing the SVGP with the best test performance is much more beneficial for the SVGP than in other datasets since this

29

Efficient Transformed Gaussian Processes

domain shift does not affect the model selected, i.e. the model selected is the one that best captures the domain shift, at the
cost of not representing as well the training data. It is expected that if we’d used a validation set to select between SVGP

shared and SVGP separate (in a real application), the selected model would be the separate SVGP. Also if the SVGP shared
would have been selected using a validation set it is expected that the more expressive one, i.e. the one giving higher training
and validation performance (as in ETGP) would likely suffer from domain shift.

As a follow up, we also noted that in some runs the ETGP (mostly those with higher dropout probability i.e. higher epistemic
uncertainty) was able to match the results of SVGP with shared covariances. This also supports our claim since when the
validation set is close to the training set, the model does not need high epistemic uncertainty to give reliable results on the
validation set, and thus a model with low dropout probability is chosen. We expect that techniques that adjust the dropout
probability depending on the number of training points will reliably model this dataset since dropout rate is removed from
the hyperparameters and its value is fixed depending on the entropy and the number of datapoints (Gal et al., 2017). In any
case, our experimental results reflect that epistemic uncertainty is beneficial in domain-shift small datasets, as expected.

We emphasize that this is not a problem of the ETGP but derived from the characteristics of the dataset itself since it is also
suffered by SVGP with separate Kν .

On absenteeism (fewer training points than vowel) we see that the proposed model (0.307 LINEAR and 0.315 TANH)
performs similarly to SVGP (0.314) and correlated SVGP (0.319) in terms of accuracy with separate kernels and inducing
points, and better than SVGP with shared kernels and inducing points. This is another sign that domain-shift is responsible for
the drop in performance of the more expressive models w.r.t. the SVGP with shared kernels and inducing points in vowel.
In terms of LL we observe the opposite, being the SVGP with shared kernels and inducing points the one performing best.
However, the reason behind this performance is that more expressive models tend to provide higher probabilities towards the
wrong class in the errors, increasing the log probability. In other words, the expressive model tends to be more overconfident
without sacrificing accuracy, something already observed in Deep Neural Networks (Guo et al., 2017). This is also observed
in the ETGP since the Bayesian LINEAR flow (simplest ETGP) performs best on the small datasets vowel and absenteeism.

B.3. Prediction Time Results

We provide the average prediction time results in Fig. 6, where we can see a similar trend as in the training time results.
Our model can be one order of magnitude faster while providing similar or better prediction results. We can see how the
reimplementation discussed in App. C boosts the computational performance of the SVGP RBFCORR considerably.

0.01 0.1 0.2

ETGP LINEAR

ETGP SAL

ETGP TANH

SVGP RBF

SVGP RBFCORR

SVGP ARCCOS

vowel Dx=10
N=990 C=11

0.01 0.1 0.2

absenteeism Dx=19
N=708 C=17

0.01 0.1 0.2

avila Dx=10
N=20867 C=12

SVGP separate Kν SVGP shared Kν Point Estimate ETGP

0.1 2.0 5.0

characterfont Dx=400
N=57499 C=153

0.1 1 2.0

devangari Dx=1024
N=92000 C=46

Figure 6. Average prediction time per epoch in minutes (left is better) comparing ETGP with SVGPs. NNET kernel is omitted as it is
slower.

B.4. Rest of Results

In this subsection, we provide the missing LL and ACC results. Fig. 7 provides the accuracy comparing ETGP with SVGP with
shared kernels and inducing points; Fig. 8 provides the log likelihood comparing ETGP with SVGP with shared kernels and
inducing points; Fig. 9 reports log likelihood comparing ETGP with SVGP with separate kernels and inducing points per GP

30

Efficient Transformed Gaussian Processes

and Figs. 10,11.

31

Efficient Transformed Gaussian Processes

0.55 0.60 0.65

ETGP LINEAR

ETGP SAL

ETGP TANH

SVGP RBF

SVGP RBFCORR

SVGP ARCCOS

SVGP NNET

vowel Dx=10
N=990 C=11

0.25 0.30 0.35

absenteeism Dx=19
N=708 C=17

0.80 1.00

avila Dx=10
N=20867 C=12

SVGP shared Kν Point Estimate ETGP Bayesian ETGP

0.20 0.30

characterfont Dx=400
N=57499 C=153

0.80 0.90

devangari Dx=1024
N=92000 C=46

Figure 7. Accuracy comparing ETGP against SVGP with shared kernel and inducing points.

−2 −1

ETGP LINEAR

ETGP SAL

ETGP TANH

SVGP RBF

SVGP RBFCORR

SVGP ARCCOS

SVGP NNET

vowel Dx=10
N=990 C=11

−4 −3

absenteeism Dx=19
N=708 C=17

−1 0

avila Dx=10
N=20867 C=12

SVGP shared Kν Point Estimate ETGP Bayesian ETGP

−4 −3

characterfont Dx=400
N=57499 C=153

−1 0

devangari Dx=1024
N=92000 C=46

Figure 8. Log Likelihood comparing ETGP against SVGP with shared kernel and inducing points.

−2 −1

ETGP LINEAR

ETGP SAL

ETGP TANH

SVGP RBF

SVGP RBFCORR

SVGP ARCCOS

SVGP NNET

vowel Dx=10
N=990 C=11

−4 −3

absenteeism Dx=19
N=708 C=17

−0.5 0.0

avila Dx=10
N=20867 C=12

SVGP separate Kν Point Estimate ETGP Bayesian ETGP

−3.5 −3.0

characterfont Dx=400
N=57499 C=153

−0.5 0.0

devangari Dx=1024
N=92000 C=46

Figure 9. Log Likelihood comparing ETGP against SVGP with separate kernel and inducing points.

32

Efficient Transformed Gaussian Processes

0.4 0.6

ETGP LINEAR

ETGP SAL

ETGP TANH

SVGP RBF

SVGP RBFCORR

SVGP ARCCOS

SVGP NNET

vowel Dx=10
N=990 C=11

0.25 0.30 0.35

absenteeism Dx=19
N=708 C=17

0.8 1.0

avila Dx=10
N=20867 C=12

SVGP separate Kν SVGP shared Kν Point Estimate ETGP Bayesian ETGP

0.2 0.3

characterfont Dx=400
N=57499 C=153

0.8 0.9

devangari Dx=1024
N=92000 C=46

Figure 10. Accuracy of all the models considered in this work. With this figure we can see the relative performance of the different models.
Note that the performance increase/decrease might look smaller due to the scale on the x-axis which is increased due to the shared SVGP
models. Zoomed versions of this figure are provided in the rest of the work.

−5.0 −2.5

ETGP LINEAR

ETGP SAL

ETGP TANH

SVGP RBF

SVGP RBFCORR

SVGP ARCCOS

SVGP NNET

vowel Dx=10
N=990 C=11

−7.5 −5.0 −2.5

absenteeism Dx=19
N=708 C=17

−1 0

avila Dx=10
N=20867 C=12

SVGP separate Kν SVGP shared Kν Point Estimate ETGP Bayesian ETGP

−4 −3

characterfont Dx=400
N=57499 C=153

−1 0

devangari Dx=1024
N=92000 C=46

Figure 11. Log Likelihood of all the models considered in this work. With this figure we can see the relative performance of the different
models. Note that the performance increase/decrease might look smaller due to the scale on the x-axis which is increased due to the shared
SVGP models. Zoomed versions of this figure are provided in the rest of the work.

33

Efficient Transformed Gaussian Processes

B.5. Using Less Inducing Points

In Maroñas et al. (2021) it is showed that TGPs could match SVGPs performance in regression problems using 20 times less
inducing points. We additionally found that using fewer inducing points can serve also as a regularizer, since the GP posterior
is expected to parameterize smoother functions in that case. With this goal, we report results for ETGP using 20, 50 and 100
inducing points, see Figs. 12,13. We observed that ETGP gets regularized when using fewer inducing points regarding ACC. In
vowel it improves results, and matches or improves SVGPs performance in avila and absenteeism. We also see how
the Bayesian flow provides, in the setting of fewer inducing point, better results than the point estimate. This is especially
significant in terms of LL, where we see that all the inducing points provide similar performance.

0.55 0.60 0.65

SVGP100

ETGP LINEAR100

ETGP LINEAR50

ETGP LINEAR20

ETGP SAL100

ETGP SAL50

ETGP SAL20

ETGP TANH100

ETGP TANH50

ETGP TANH20

vowel Dx=10
N=990 C=11

0.25 0.30 0.35

absenteeism Dx=19
N=708 C=17

SVGP separate Kν SVGP shared Kν Point Estimate ETGP Bayesian ETGP

0.8 0.9 1.0

avila Dx=10
N=20867 C=12

Figure 12. Results comparing ACC (right is better) using less inducing points.

−8 −6 −4 −2

SVGP100

ETGP LINEAR100

ETGP LINEAR50

ETGP LINEAR20

ETGP SAL100

ETGP SAL50

ETGP SAL20

ETGP TANH100

ETGP TANH50

ETGP TANH20

vowel Dx=10
N=990 C=11

−8 −6 −4 −2

absenteeism Dx=19
N=708 C=17

SVGP separate Kν SVGP shared Kν Point Estimate ETGP Bayesian ETGP

−1.0 −0.5 0.0

avila Dx=10
N=20867 C=12

Figure 13. Results comparing LL (right is better) using less inducing points.

34

Efficient Transformed Gaussian Processes

B.6. Complete Results of DGP

For the rest of datasets (vowel and absenteeism) we observe similar results as those with SVGP with shared kernel and
inducing points, e.g. DGPs do not suffer from domain shift due to lack of expressiveness. This suggests that even though
DGPs with this particular inference algorithm are more expressive than their SVGP counterpart (Salimbeni & Deisenroth,
2017), SVGPs with separate kernels and inducing points are even more expressive. We shall note that most of the experiments
in Salimbeni & Deisenroth (2017) require only one GP so there is no way we can compare shared/separate kernels and
inducing points. Overall this is an important observation regarding the expressiveness of DGPs, highlighting that the TGP and
ETGP family are a good computational and performance alternative to GPs and DGPs.

Table 4. Results for 2 layers DGP

Accuracy Log Likelihood Training Time
avila 0.888 −0.310 0.008

characterfont 0.171 −3.636 0.197
devangari 0.909 −0.369 0.177
vowel 0.658 −0.894 0.0007

absenteeism 0.292± 0.038 −2.579± 0.075 0.001± 3.278 · 10−5

35

Efficient Transformed Gaussian Processes

C. Refactorizing GPFLOW Source Code
In our experiments we found an issue in the source code of GPFLOW, which considerably speed-up the performance of SVGPs
where the kernel is shared. We used GPFLOW version 2.1.3 and have found that the current issue also appears in the last
stable version 2.5.2. However, since the source code has considerably changed, our provided implementation is only valid
for the earlier version.

We refactorize the source code in a way that is clear where the issue comes from, but note that better refactorizations could
be done but would require a high-level and careful check of all the elements involved and how it would generalize to other
computations.

The computation is concerned with the evaluation of the marginal variational distribution:

q(f c
0) = N (f c

0,n |Kc
νx,ZcKc

νZc,Zc
−1mc,

Kc
νx,x −Kc

νZc,Zc
−1[Kc

νZc,Zc + Sc]Kc
νZc,Zc

−1Kc
νZc,x)

of each of the C latent processes when they are later mixed by a mixing matrix. If we see, for a batch of
samples X we need to evaluate Kc

νx,x C times if the kernel is not shared and only 1 if the kernel is shared.
We found GPFLOW to always evaluate it C times regardless of the type of kernel when a mixing matrix is later
applied. In GPFLOW version 2.1.3 we can see that the LinearCoregionalization kernel does not differentiate if the la-
tent GP is shared or not, see https://github.com/GPflow/GPflow/blob/v2.1.3/gpflow/kernels/multioutput/kernels.py
line 174. Thus, when computing the covariance, we can see in line 130 here
https://github.com/GPflow/GPflow/blob/v2.1.3/gpflow/conditionals/multioutput/conditionals.py that the evaluation
is performed C times when it would be easier to evaluate it just once, and then tile C times, which is the basic refactorization
we perform. Also note that if the inducing points are not shared, but the kernel is, GPFLOW would also perform this inefficient
computation (see line 129 where the kernel instance is repeated C times). When the inducing points are shared and an
independent kernel (no mixing matrix) is used, then GPFLOW runs computations correctly (see lines 46 and 92).

We observed similar issues in the newest GPFLOW version 2.5.2. We see that the LinearCoregionalization kernel in
https://github.com/GPflow/GPflow/blob/v2.5.2/gpflow/kernels/multioutput/kernels.py line 199 do not make distinctions on
whether the latent kernel is shared or not and this kernel is still inheriting from ”Combination” class. Thus, the dispatcher
in https://github.com/GPflow/GPflow/blob/v2.5.2/gpflow/posteriors.py will not perform the computation starting in 778
(note it checks if the kernel is SharedIndependent but LinearCoregionalization is type Combination) but that starting in 791,
which again evaluates the kernel C times.

We found some improvements that can be done to GPFLOW source code and we plan to open corresponding issues and list
them under our Github implementation of this work. We think that this particular one could be easily solved by using a LMC

kernel for latent shared kernel and a LMC for latent separate independent kernel; or by explicitly checking if the elements
in the underlying kernel list share references; or by, easily, using a list with just one element if the kernel is shared and C
elements if the kernel is not shared; or by wrapping around SharedIndependent or SeparateIndependent kernels base classes
instead of using a list containing the kernels.

Another option, as employed by GPYTORCH (Gardner et al., 2018), could be to evaluate the kernel directly using batched
computations. We believe that the computational bottleneck comes from performing the kernel evaluation using a loop in
python. This is because computing the squared distance in most kernels has a linear cost, so at most the corresponding added
complexity should be O(Cd), with d the dimensionality of the data. However, we found that without doing our improvement
the code was much slower. Thus we further believe that computing the squared distance using batched computations rather
than loops would also bridge the gap between the computational times of the SVGP with a separate kernel and the ETGP.
Nevertheless our model is still competitive or even provides better results and faster since cubic computations do not scale
linearly with C which in a quick code snippet in TENSORFLOW we found to be 1 order of magnitude slower for C = 153 and
M = 100 and 5 times slower for C = 10. The code snippet is:

36

https://github.com/GPflow/GPflow/blob/v2.1.3/gpflow/kernels/multioutput/kernels.py
https://github.com/GPflow/GPflow/blob/v2.1.3/gpflow/conditionals/multioutput/conditionals.py
https://github.com/GPflow/GPflow/blob/v2.5.2/gpflow/kernels/multioutput/kernels.py
https://github.com/GPflow/GPflow/blob/v2.5.2/gpflow/posteriors.py

Efficient Transformed Gaussian Processes

1 import tensorflow as tf
2 import time
3 import numpy as np
4

5 C = 10
6 runs = 100
7

8 X_ = np.random.randn(1,100,100)
9 X = X_@X_.transpose(0,2,1)

10 X = tf.constant(X)
11

12 Y_ = np.random.randn(C,100,100)
13 Y = Y_@Y_.transpose(0,2,1)
14 Y = tf.constant(Y)
15

16 acc = 0.0
17 for i in range(runs):
18 start = time.process_time();
19 tf.linalg.cholesky(X);
20 acc += time.process_time()-start
21 print(acc/runs)
22

23 acc = 0.0
24 for i in range(runs):
25 start = time.process_time();
26 tf.linalg.cholesky(Y);
27 acc += time.process_time()-start
28 print(acc/runs)
29

37

