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Abstract
Multimodal learning is defined as learning over
multiple heterogeneous input modalities such as
video, audio, and text. In this work, we are con-
cerned with understanding how models behave as
the type of modalities differ between training and
deployment, a situation that naturally arises in
many applications of multimodal learning to hard-
ware platforms. We present a multimodal robust-
ness framework to provide a systematic analysis
of common multimodal representation learning
methods. Further, we identify robustness short-
comings of these approaches and propose two in-
tervention techniques leading to 1.5×-4× robust-
ness improvements on three datasets, AudioSet,
Kinetics-400 and ImageNet-Captions. Finally, we
demonstrate that these interventions better utilize
additional modalities, if present, to achieve com-
petitive results of 44.2 mAP on AudioSet 20K.

1. Introduction
Machine learning models in the real world operate on a wide
range of hardware platforms and sensor suites. Deployed
models must operate on platforms ranging from wearable
devices to autonomous vehicles in which a diverse suite of
sensors provide a continuous commentary about the environ-
ment. Building a traditional machine learning model in this
setting is challenging because jointly measuring data across
all sensors might be infeasible. Likewise, sensor modalities
may be added (or fail) at any time indicating that the tacit
assumption of i.i.d. data may not occur in the real world.

Hence, properties of robustness across modalities become
paramount when deploying a machine learning system to
operate in a multimodal setting. First, a model should be
able to operate on modalities not explicitly observed dur-
ing training. For instance, we hope that the presence of
additional modalities with no explicit labels may still bene-
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Figure 1. Multimodal experimental setup and results. We study
representation learning for multimodal models which exhibit dis-
crepancies between training and evaluation modalities. We define
an analysis framework for this setup, study existing pretraining
methods, and propose methods to improve robustness and perfor-
mance.

fit overall predictive performance. Second, models should
gracefully degrade in the absence of modalities at test time.
Both properties are unique to the multimodal setting.

To address these challenges, we study the problem of multi-
modal robustness. How do models behave when arbitrary
combinations of modalities may be added or removed at
test time? Supervised learning typically trains a model on a
labeled dataset and examines how performance deteriorates
as the hold-out validation set diverges from the training
set (Recht et al., 2019; Shankar et al., 2021; Hendrycks &
Dietterich, 2019). In our setting, we wish to instead build
models in which one may flexibly swap in or out individ-
ual modalities that the model has seen during pretraining,
downstream training, or both (Fig. 1).

One approach for achieving a flexible and performant repre-
sentation to a suite of modalities is to have a model to learn
a shared representation invariant to the modality identities
– and subsequently train a discriminative model on top of
that learned representation (Goodfellow et al., 2016). Sev-
eral approaches for learning a shared representation have
been explored in the literature, but recently, two promi-
nent approaches – masked autoencoders (Gong et al., 2022;
Geng et al., 2022) and contrastive learning (Radford et al.,
2021; Wu et al., 2022b) – have demonstrated extraordinary
promise in the setting of multimodal representations (Akbari
et al., 2021). We focus our work on benchmarking robust-
ness in representation learning, and ask how to improve
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such representations through new training strategies.

In this work we introduce a framework for measuring ro-
bustness in multimodal settings. We define a new robustness
metric to capture variability across modalities by focusing
on both average and worst-case performance across training
and evaluation setups. Furthermore, we stratify these met-
rics across common scenarios such as adding, dropping, or
completely swapping the modalities fed into the model.

We focus our experiments on representation learning with
the AudioSet dataset (Gemmeke et al., 2017) in which three
prominent modalities – audio, video and text – may be
systematically manipulated. Additionally, we explore the
generality of our results on Kinetics-400 (Kay et al., 2017)
and ImageNet-Captions (Fang et al., 2022a).

We measure average and worst case performance when
modalities are added or dropped at test time. To alleviate
these degradations, we introduce two approaches to improve
representation learning in a multimodal setting. The first
approach — derived from knowledge distillation (Hinton
et al., 2015) – termed Modality Augmented Self-Distillation
(MASD), encourages consistency in the learned representa-
tions across labeled and unlabeled modalities. The second
approach, derived from WiseFT (Wortsman et al., 2022),
leverages a weighted combination of finetuned downstream
weights and the initialization pretrained weights to induce
robustness. We summarize our contributions as follows:

1. Introduce metrics and characterize performance in a mul-
timodal setting on several datasets in terms of worst and
average case performance.

2. Demonstrate training interventions (e.g. MASD,
WiseFT) may additively lead to 1.5×-4× improve-
ment of robustness on AudioSet, Kinetics-400 and
ImageNet-Captions.

3. Increasing the number of modalities used to learn a repre-
sentation improves downstream performance. In partic-
ular, we obtain SOTA results (44.2 mAP) on AudioSet-
20K by leveraging text as an additional pretraining
modality.

We hope that these results may accelerate the field of mul-
timodal learning by offering simple, standard metrics and
strong benchmarks for future improvements.

2. Related Work
2.1. Robustness

Robust machine learning has been a subject of study for
decades. The support vector machine algorithm was pre-
sented as a “robust” prediction method (Boser et al., 1992)
by finding the maximum margin classifier. Recently how-
ever there has been a push towards more practical forms of
robustness for models operating on vision, natural language,

speech and other modalities.

Worst case adversarial examples have been extensively stud-
ied in many domains (Szegedy et al., 2013; Alzantot et al.,
2018; Carlini & Wagner, 2018) and while many effective
“defense” methods have been proposed (Madry et al., 2017;
Carlini et al., 2022; Carmon et al., 2019) it has been shown
that these defenses reduce benign (non-adversarial) accu-
racy and don’t generalize to other more natural forms of
robustness (Taori et al., 2020). A similar story arises with
synthetic “corruption” robustness (Hendrycks & Dietterich,
2019; Geirhos et al., 2018) where robust methods have been
proposed but they fail to generalize to non synthetic corrup-
tions.

For the class of natural corruptions or distribution shifts
recent large scale multimodal image-text models (Radford
et al., 2021; Pham et al., 2021) have shown unprecedented
robustness when evaluated in a zero-shot manner (Recht
et al., 2019; Barbu et al., 2019; Shankar et al., 2021; Gu et al.,
2019). Subsequent work has demonstrated improvements
for robustness in fine-tuned models (Wortsman et al., 2022).

2.2. Multimodal Learning

A natural way to learn a representation in a self-supervised
manner from streams of multimodal data is to (1) have a
set of modality encoders and an aggregator producing a
single representation from all available modalities and (2) to
consider paired modalities as positive examples. This way
of thinking naturally lends itself to contrastive learning that
embeds different modalities in a common space (Radford
et al., 2021; Sohn, 2016). Most of the current work focuses
on image and text only (Radford et al., 2021; Alayrac et al.,
2022; Yuan et al., 2021; You et al., 2022) with a number
of recent efforts in including video, audio, and even tabular
data (Akbari et al., 2021; Alayrac et al., 2020; Liang et al.,
2022).

An alternative to contrastive learning is a masked reconstruc-
tion objective. Most previous approaches have focused on
single modalities, such as text (Devlin et al., 2018), images
(He et al., 2022), videos (Feichtenhofer et al., 2022), and au-
dio (Baade et al., 2022; Chong et al., 2022). More recently,
this approach has also been adopted in multimodal settings
(Geng et al., 2022; Wang et al., 2022). Other works em-
ploy both masked reconstruction and contrastive objectives
(Gong et al., 2022; Yang et al., 2022; Fang et al., 2022b;
Singh et al., 2021).

From a model architecture perspective, it remains an open
question how best to fuse information from different modal-
ities (Dou et al., 2021; Liu et al., 2018). The flexibility of
transformers (Vaswani et al., 2017) enables them to be read-
ily adapted to other modalities beyond language (Akbari
et al., 2021; Liang et al., 2022; Jaegle et al., 2021; Nagrani
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Figure 2. Multimodal experiment setup: pretraining, down-
stream task training, and evaluation (see Sec. 3), using as an
example three modalities: video, audio, and text. The task at
hand is classification, hence the presence of a label. At pretraining
all modalities are present, while for a task only a subset is present.
We describe three important setup corresponding to whether the
evaluation contains more or less modalities, or a completely dif-
ferent set of modalities than at training: Missing at Test, Added at
Test, and Transferability (see Sec. 4).

et al., 2021; Yang et al., 2022).

Increasing the number of modalities poses a challenge in
training and in understanding the models. In supervised
learning, the greedy nature of learning can be observed and
quantified (Wu et al., 2022a; Hessel & Lee, 2020), as well
as intra-modality and inter-modality heterogeneity (Liang
et al., 2022).

3. Evaluation of Multimodal Representations
3.1. Setup and Notation

In this work we make several assumptions for our data that
hold for a wide range of applications (see Fig. 2). First, we
assume that we have readily available multimodal data con-
sisting of several parallel input streams of different aligned
modalities. Second, the above data can be acquired indepen-
dently of the tasks of interest, although it might be related
to it, and thus does not contain supervision.

We will refer to these data as unsupervised pretraining
data D and the set of n modalities present in it by M =
{m1, . . . ,mn}. Since we focus on subsets of modalities, it
will be useful to refer to the data points x and datasets D
restricted to a set of modalities m ⊆ M by:

x|m and D|m = {x|m, x ∈ D} (1)

Further, for a downstream task we have data with super-
vision for both training and evaluation. It is reasonable

to expect that the data with supervision are substantially
smaller in quantity than the pretraining data. We refer to
these data as downstream training data DT with training
modalities MT ⊆ M , and downstream evaluation data DE

with evaluation modalities ME ⊆ M . Importantly, the train-
ing and evaluation modality sets are allowed to be different,
MT ̸= ME , leading to robustness issues as shown later.

Downstream Task. Denote by fθ(x) the downstream task
model with weights θ. Note that f is multimodal, i.e. it can
be applied on any subset m ⊆ M of modalities, and such
an application is denoted by fθ(x|m).

The parameters of the model are estimated by training for
the downstream task on DT using a task specific loss L:

Ltask(DT |MT
) =

∑
x∈DT

L(fθ(x|MT
) (2)

where we explicitly say that the model is applied on x using
only the modalities in MT .

3.2. Multimodal Robustness Metrics

It is fair to assume that the downstream task of interest has a
well established performance score p that can be measured
for our model f . If this score is computed on the evaluation
data DE |ME

using modalities ME after the model has been
trained on DT |MT

using modalities MT , we denote this
performance score by p(ME ;MT ), where for brevity we
skip the model and dataset notation.

Given a set of training modalities MT , we propose to mea-
sure two aspects across all evaluation setups. The first is the
average score, called performance, and represents how well
the modalities MT train a model when evaluated across all
possible circumstances:

P (MT ) = avg
ME⊆M

p(ME ;MT ) (3)

The second is the the worst score, called robustness, rep-
resenting the worst possible deployment scenario for the
model trained on MT :

R(MT ) = min
ME⊆M

p(ME ;MT ) (4)

To produce a single set of metrics for a model across all
possible training setups MT , we propose to aggregate the
above average and worst case performances in two ways.
First, if one has control over picking an optimal training set,
it makes sense to find the best performance and robustness.
If we would like to evaluate on all possible training sets, then
it makes sense to compute the average across training setups.
We will refer to the former metrics as best Performance
(Pbest) and Robustness (Rbest), and to the latter as simply
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Performance (P ) and Robustness (R):

Pbest = max
MT⊆M

P (MT ), Rbest = max
MT⊆M

R(MT ) (5)

P = avg
MT⊆M

P (MT ), R = avg
MT⊆M

R(MT ) (6)

Stratification of Performance and Robustness. The above
metrics are originally defined over all possible evaluation
modality sets ME ⊆ M for each training set . However,
as motivated in Sec. 1 there can be various types of dis-
crepancies. To better capture this, we refine P (MT ) and
R(MT ) to be computed over a subset of possible evaluation
modality sets ME (Fig. 2):

1. Missing at Test: Testing modalities are a strict subset
of the training modalities: ME ⊂ MT . This setup corre-
sponds to having incomplete information at test time.

2. Added at Test: Testing modalities are a strict super-
set of the training modalities: MT ⊂ ME . This setup
corresponds to modalities not present during training.

3. Transferability: Testing and training modalities are
completely distinct: MT ∩ME = ∅. This is the most ex-
treme setup, and tests the ability to transfer a task learned
on one set to a completely different set of modalities.

We impose the above constraints on MT and ME in the
computation of P and R in Eq. (3) and Eq. (4), and by
proxy in Eq. (4).

Note that when the data has only two modalities, i.e.
|M | = 2, for Added at Test and Transferability robustness
and performance are identical R = P , as for every training
modality set, there is only one evaluation modality set satis-
fying Added at Test and Transferability combinations. Then,
the average and minimum opertions in Eq. (3) and Eq. (4)
result in the same values.

4. Multimodal Self-Supervised Learning
4.1. Models

Pretraining. Multimodal data, as paired streams of dif-
ferent modalities, is a natural candidate for self-supervised
learning as it is reasonable to assume that different modali-
ties present different views of the same underlying content.
This can be operationalized using contrastive (Radford et al.,
2021; Jia et al., 2021) or masked reconstruction (He et al.,
2022) objectives.

For the multimodal setup, we encode the different modalities
with modality-specific encoders. In the case of contrastive
learning, we follow closely the VATT architecture by Akbari
et al. (2021), and formulate pair-wise InfoNCE losses (Gut-
mann & Hyvärinen, 2010; Oord et al., 2018) across all
possible pairs of input modalities. This objective tries to
learn per-modality representations that are as similar as pos-
sible for paired modalities. For MAE, we closely follow

Label Text

f

Task 
Loss

f f

Self-
Distillation 

Loss

StudentTeacher

+Loss =

Downstream Task 

training example 

from 

Pretraining unlabeled

example from 

Stop 
Gradient

Figure 3. Diagram of Modality Augmented Self-Distillation. The
Downstream task loss on the left receives labeled examples with
MT modalities (in this example Video), while the self-distillation
loss receives unlabeled examples with all modalities, MT are
routed to the teacher network and M \MT to the student (in this
example, Audio and Text).

the AV-MAE baseline architecture described in Gong et al.
(2022). Although masked reconstruction does not explicitly
enforce a shared representation space for modalities, the
hope is that the final shared-modality encoder layer contains
information transferable from one modality to another. For
further details of the formulation as well as architecture, we
refer the reader to the Appendix and Sec. 5.

Downstream Training. After learning a representation us-
ing SSL, we apply it for a downstream task. In particular, de-
note by Ei the encoder for modality mi that embeds an input
x|mi

of this modality into a Euclidean space Ei(x|mi
) ∈ Rd

(see Sec. 3.1 for notation). Suppose, at downstream training
or inference time, the data D|M ′ have a subset of modalities
M ′ ⊆ M . Then, the final representation for x ∈ D:

E(x) =
1

|M ′|
∑

m′∈M ′

Em′(x|m′) (7)

This representation is used, for example in the case of a
classification downstream task, to learn a classifier.

4.2. Improving Multimodal Robustness

We hypothesize that during downstream task learning, we
see only a subset of all possible modalities, and as such this
learning can ‘damage’ the pretrained model and diminish
its ability to deal with the modalities not seen during down-
stream training. To address this challenge, we propose to
apply ideas from transfer learning.

4.2.1. MODALITY AUGMENTED SELF-DISTILLATION

One way to mitigate the problem is to use the pretraining
data that contain all modalities but no supervision. These
data can be used to regularize the performance of the model
on all the modalities, even if this model is trained with a
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subset of the modalities present in the downstream training
data. To achieve this, we draw inspiration from (Li & Hoiem,
2017; Castro et al., 2018; Hou et al., 2018; Rebuffi et al.,
2017) to use Knowledge Distillation (Hinton et al., 2015)
on the pretraining data.

In more detail, assume that the downstream task is clas-
sification and the model fθ(y, x) produces probabilities
over labels y for a given input x. Then, the teacher model
fθ(y, x|MT

) is the same model trained over the downstream
training modalities MT and data DT . The student model
is the same model fθ(y, x|M\MT

) as well (same weights),
however, restricted over the modalities M \MT not present
in the downstream training data. Since the student and
teacher models share the same weights, but have different
input modalities, we call this loss self-distillation:

Lself-dist(D) = −
∑
x∈D

∑
y

fθ(y, x|MT
) log

(
fθ(y, x|M\MT

)
)

The final objective of MASD combines the above loss with
the downstream task loss from Eq. (2) (see Fig. 3):

LMASD = Ltask(DT |MT
) + Lself-dist(DSD) (8)

where the self-distillation loss is defined of a subset DSD ⊂
D of the pre-training data.

Since both the student and teacher model share the same
weights θ, the above loss makes sure that the model is well
behaved across all modalities M . Note that for training
stability we stop the gradient flow through the teacher.

4.2.2. APPLYING WISE-FT TO MASD MODELS

There has been a recent line of work on improving the dis-
tributional robustness of finetuned large scale image-text
models by weight-space ensembling (WISE-FT) the fine-
tuned models and its pretrained (non finetuned) counterpart
(Wortsman et al., 2022; Ilharco et al., 2022). While prior
work used this procedure to obtain robustness on out-of-
distribution test sets, we use the procedure to improve the
robustness of our model when there is a difference between
the train and test modalities.

Denote by θmasd be the weights obtained by MASD and θlp
be the weights obtained via linear probing. We compute our
new weights by taking a weighted average:

θwise = αθmasd + (1− α)θlp (9)

The only deviation from Wortsman et al. (2022) is that they
averaged the finetuned image network with the pretrained
network weights and “zero-shot” weights induced by the text
embeddings of the class names. Since we finetune all the
encoders and want a procedure that is modality agnostic we
replace the text based zero-shot weights with linear probe

Text Labels

Muzik tipiko di Korsou/ Traditional
Curacao music

Flamenco, Music, Mandolin,
Music of Latin America

Tie Down Roping - 2013 NFR Round 8 Bang
COUPLES YOGA CHALLENGE Music, Speech, Breathing
Eventide Timefactor Delay Pedal Part 2 Effects unit, Guitar, Music,

Musical instrument, Chorus effect,
Plucked string instrument

Klakson, który zwala z nóg Vehicle, Speech
A Cappella Pitch Perfect Mashup Singing, Music, Choir,

Vocal music, A capella

Table 1. Random examples of text and associated labels from Au-
dioSet evaluation set.

weights. While the choice of α can be tuned with cross-
validation we find a constant value of α = 0.75 works well
for our experiments.

5. Experimental Setup
AudioSet (Gemmeke et al., 2017) is a video, audio, and
text multi-label audio classification dataset over 527 classes.
Prior work has largely leveraged the audio and/or video, but
we also include the title of the video as text. AudioSet con-
sists of an unbalanced training set of 1,743,790 examples,
used as unlabeled pretraining data; a training and evaluation
sets of 18,649 and 17,065 examples respectively used for
the downstream task.

Note that the title is related to the content but rarely contains
the audio event label (in 25.5% of the training video titles we
have the label word mentioned; for examples see Table 1).
Thus, the text presents a strong modality but does not make
the problem trivial.

Kinetics-400 (Kay et al., 2017) is a video and audio action
recognition dataset over 400 classes. It consists of a train-
ing and evaluation sets of 246,245 and 40,000 examples
respectively used for the downstream task.

ImageNet-Captions (Fang et al., 2022a) is an image-text
dataset created by extracting Flickr captions for images
from the original ILSVRC2012 training dataset. It contains
999/1000 of the original ImageNet classes. The dataset
contains 448,896 examples which we randomly split into
359,116 training and 89,779 evaluation images.

Preprocessing. We employ standard preprocessing before
inference and training for each modality (e.g. (Gong et al.,
2021; Nagrani et al., 2021)). Briefly, audio is extracted
as single-channel 8 sec snippet sampled at 16 kHz with
necessary padding. We compute log Mel spectrograms (128
frequency bins, 25ms Hamming window, 10 ms stride),
and extract 16 × 16 patches. During training, videos are
randomly short-side rescaled between 256 and 320 pixels,
and randomly cropped to 224 × 224. During inference,
videos are fixed short-side rescaled to 256 pixels following
by a center crop to 224× 224.
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Data Augmentations We largely follow (Huang et al., 2022)
for audio, (Feichtenhofer et al., 2022) for video, and (Rad-
ford et al., 2019) for text. This also includes applying mixup
(Zhang et al., 2017) with rate 0.5 on all inputs/labels except
text, drop path (Huang et al., 2016) with drop rate 0.1, and
SpecAug (Park et al., 2019) with time/frequency masking
of 192/48.

For videos, during both pretraining and downstream training
we also use color augmentations for brightness (max delta
= 0.2), contrast (max delta=0.1), saturation (max delta=0.0),
hue (max delta=0.025). Also, we ensure the 8 seconds of
audio/video are aligned such that the audio segment begins
at the first sampled video frame and ends at the last sampled
video frame.

For pretraining MAE, we follow (Feichtenhofer et al., 2022)
and adopt repeated sampling, where each batch is dupli-
cated/repeated some number of times (for us, we set the
number of repeats per batch to 2), which improves training
throughput due to the high cost of loading audio/video. This
only makes sense for MAE with high masking ratios (we
mask out 80% of the audio and 90% of the video during
pretraining).

Pretraining. We use a ViT-B/16 architecture (Dosovit-
skiy et al., 2020) for all three modalities with appropriate
modality specific positional encodings for both contrastive
learning and MAE.

In the case of contrastive, we initialize weights with CLIP
ViT-B/16 (Radford et al., 2021). In paticular, for text, we
load the CLIP text encoder as-is. For video, we adopt the
separable positional encoding ((Feichtenhofer et al., 2022))
and initialize the spatial component with the weights from
CLIP’s image encoder. For audio, we perform bilinear
interpolation of the positional encodings (Dosovitskiy et al.,
2020) to accommodate the input audio shape of 800× 128.

After the aforementioned initialization, for AudioSet and
Kinetics-400 we learn multimodal representation using Au-
dioSet 2M. For ImageNet-Captions we use the OpenAI
released ViT-B-16 CLIP representation.

For MAE, due to architectural differences, we cannot easily
initialize from CLIP, so those models are pretrained from
scratch1. Following (Gong et al., 2022), our MAE consists
of modality-separate encoders with the ViT-B/16 architec-
tures, with the final layer shared across modalities. For
audio, we use a fixed 2D sinusoidal positional encoding as
described in (Huang et al., 2022) and (He et al., 2022). For
text, we use fixed 1D sinusoidal positional encodings as

1This is partially why MAE is pretrained for 256 epochs,
whereas the contrastive models are pretrained for 32 epochs. An-
other reason our contrastive method is pretrained for fewer epochs
is because it was challenging to avoid overfitting if we pretrained
any longer.

described in (Vaswani et al., 2017).

We pretrain the models with a 1024 batch size using the
AdamW optimizer (Loshchilov & Hutter, 2017) with a learn-
ing rate of 8e-4. We pretrain the MAE and contrastive
models 256 and 32 epochs, respectively.

Downstream Training. In the MASD loss in Eq. 8 we need
a modality complete unlabeled data DSD for self distillation.
For experiments on AudioSet DSD is a random 20K sample
from the pre-training AudioSet data. For experiments on
Kinetics DSD is either a random 20K sample from pre-
training AudioSet data or 20% random sample from the
Kinetics training data. In the latter case the downstream task
training data consists of the remaining 80%.

We run the downstream training 30 epochs after pretraining.
Note that before we train the full model we learn a linear
classifier on top of the frozen pretrained weights (referred
to as linear probing), which is then used for initializing the
classifier for the downstream training. Following (He et al.,
2022), during linear probing we include BatchNorm without
the affine transformation before the final classifier.

For all hyperparameters consult Table 2

Config Pretraining Linear Probing Finetuning
Contr. MAE Contr. MAE Contr. MAE

global batch 1024 1024 256 128 128 64
learning rate 8e-4 8e-4 1e-2 1e-2 1e-4 1e-4
LR warmup 1000 2000 200 200 1000 2000

epochs 32 256 360 360 30 60
optimizer AdamW AdamW AdamW AdamW AdamW AdamW

Table 2. Training hyperparameters used for pretraining, linear prob-
ing, and finetuning.

6. Multimodal Robustness Analysis
In the following we provide an analysis of multimodal mod-
els focusing on the following high level questions:

1. How do different multimodal representation learning
methods fare against discrepancies between downstream
training and evaluation modalities?

2. What type of discrepancies have the strongest impact on
peformance and/or robustness?

3. What is the effect of the proposed interventions from
Sec. 4.2 on multimodal robustness?

6.1. Analysis of multimodal learned representations

We focus on learned representations from standard con-
trastive learning and MAE presented in Sec. 4.1. Perfor-
mance and Robustness metrics are presented in Tab. 3.

More modalities are better. To motivate the use of multi-
ple modalities during pretraining, training and evaluation
we measure the performance of contrastive learning, the
better performing SSL model during both pretraining and

6



Robustness in Multimodal Learning

Performance

20

26.25

32.5

38.75
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One modality Two modalities Three Modalities

49.4
42.7

32.3

36.8

28.7

Pretrained on Audio and Video
Pretrained on Audio, Video, and Text

Figure 4. Increasing the number of modalities at pretraining
improves performance. We consider two models pretrained using
Contrastive Learning, one using audio and video, and a second
using audio, video, and text. These are applied on a downstream
task using 1-3 modalities. The performance numbers are averages
across all possible combinations of 1-3 modalities, accordingly.
Note, that the only the 3-modality pretrained model can be applied
on 3 modalities, hence the right side of the plot has only one model.

downstream training, while maintaining MT = ME . We
compute Performance per Eq. 6 where we average only
across modality sets of a fixed size |MT | = |ME | = k. We
vary k ∈ {1, 2, 3}.

Performance consistently improves as a model trains and
tests on additional modalities (Fig. 4). Furthermore, the
models benefit from more modalities at both pretraining and
downstream training time. More specifically, pretraining
on more modalities boosts performance further by 3.5 - 6.0
points (Fig. 4, light vs dark blue).

Multimodal representation struggles at downstream task
for modalities not seen during training. The metrics
introduced in Tab. 3 (Overall) aggregate across all possible
training and evaluation combinations. To better understand
which combinations challenge these models the most, we
utilize the startified Performance and Robustness metrics
Added at Test, Missing at Test, and Transferability defined
in Sec. 3.2. Table 3 (right) shows results over these metrics.

The first observation is that the models are most robust when
we have additional modalities at evaluation. In addition, the
gap between robustness and average performance for both
SSL methods is quite small in this case, which means that
additional modalities during evaluation tend to only improve
results. It’s worth noting that, since the additional evalua-
tion modalities were not present during downstream training,
many of their associated parameters have not changed since
pretraining, and yet they can still be combined with the fine-
tuned parameters and improve evaluation performance. This
is particular interesting for MAE, since all input modalities

Performance
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Robustness
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Two modalities One modality No common modality

22.8
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40.8

21.9

26.5

40.9

13.8
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40.3

Figure 5. MASD and WiseFT improves performance and ro-
bustness. Average Performance (P) and Robustness (R) as the
number of overlapping modalities between training/test goes from
Two, to One, to None, for Contrastive Learning, Contrastive +
MASD, and Contrastive + MASD + WiseFT.

must pass through the final modality-shared encoder layer.

In the case of missing modalities at evaluation we see a
small performance drop and a large robustness drop for
both methods, although the degradation is worse for MAE
2. Of course, some performance degradation is expected
when modalities are removed. Ideally, performance should
degrade gracefully, meaning it performs not significantly
worse on the evaluation modalities than it would if those
were the same modalities used during training.

In the case of completely different modalities at evaluation,
we see that contrastive learning exhibits some transferability
properties, but MAE collapses completely. This is again
expected due to the difference in pretraining objectives, and
since the only modality-shared parameters for contrastive
models are the final linear classifier head whereas the MAE
encoder also has modality-shared parameters in its final
transformer layer. This seems to be the most challenging
setup for all SSL methods.

6.2. Analysis of Robustness Interventions

The performance and robustness of propsed interventions
from Sec. 4.2 and baseline models are shown in Table 3.
These metrics are presented as an average across all train-
ing/evaluation modality combinations as well as across com-
bination slices identified in Sec. 4.

MASD improve both performance and robustness As
a first observation, MASD leads to a Performance im-
provement and substantial improvement of Robustness, for
AudioSet, Kinetics-400, and ImageNet-Captions. Thus,
MASD is addressing the weaknesses of original SSL meth-
ods. In particular, it reduced the degradation in case of
Added at Test and Transferability, and in the case of Con-
trastive Learning, MASD doubles both Performance and Ro-
bustness. These results are consistent across both datasets,
which demonstrates the generality of the learnings. The

2For example, on an AVT trained model, AV performance is
84.8% and 74.3% of AVT for contrastive and MAE, respectively.
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Contrastive Loss Pretraining Method

Dataset Downstream
Task Training

Overall Missing at Test Added at Test Transferability
Pbest Rbest P R P R P R P R

AudioSet

linear probe 33.7 22.1 28.0 15.0 29.6 24.0 34.2 33.5 16.0 13.9
fine-tune 36.5 20.8 29.9 13.8 31.2 23.6 38.1 37.4 15.1 13.0
WiseFT 37.3 22.3 29.5 13.5 31.4 24.5 37.6 36.9 14.0 12.0
MASD 37.4 24.1 33.5 21.9 30.5 22.4 40.4 39.7 26.1 24.1

MASD+WiseFT 37.3 24.8 33.9 22.8 31.3 24.1 40.2 39.5 26.3 24.3
fine-tune on 2M 37.0 21.8 32.7 18.2 30.5 23.5 41.3 40.3 20.3 18.2

Kinetics-
400

linear probe 42.2 21.7 34.7 17.0 34.4 18.5 36.8* 16.2*

fine-tune 45.5 11.1 36.2 6.1 29.1 11.1 47.8* 3.6*

MASD, distill-on-AS 49.8 23.5 40.6 18.5 37.7 17.5 49.0* 19.1*

MASD, distill-on-Kinetics 52.0 26.9 45.2 19.9 29.1 11.1 59.0* 33.7*

ImageNet-
Captions

linear probe 70.5 68.4 66.0 48.8 70.5 68.4 74.3* 39.1*

fine-tune 78.7 66.7 75.4 58.7 72.0 66.7 85.3* 54.7*

MASD 84.3 80.8 82.4 76.0 72.0 66.7 90.9* 80.8*

Masked Autoencoder Pretraining Method

Dataset Downstream
Task Training

Overall Missing at Test Added at Test Transferab.
Pbest Rbest P R P R P R P R

AudioSet
linear probe 23.4 5.5 14.0 1.8 17.2 7.7 17.8 17.0 1.5 1.2
fine-tuned 28.9 3.8 20.0 1.3 21.4 10.0 30.8 30.3 1.1 0.9

MASD 30.6 15.1 26.6 9.5 21.6 10.3 35.4 34.4 18.5 15.1

Kinetics-
400

linear probe 30.6 11.0 19.8 3.9 19.6 11.0 7.1* 0.4*

fine-tuned 50.5 17.1 38.2 5.9 40.2 17.1 47.0* 0.3*

MASD, distill-on-AS 49.0 19.2 41.4 15.7 38.5 19.2 50.6* 14.0*

MASD, distill-on-Kinetics 53.1 27.6 49.1 21.5 40.2 17.1 61.9* 34.7*

Table 3. Best Performance (Pbest), Best Robustness (Rbest), Average Performance (P) and Robustness (R) for two pretraining techniques
with and without MASD, WiseFT: top is Contrastive Learning, bottom is Mask Autoenconder. We show results on AudioSet using audio,
video, and text; Kinetics-400 using audio and video; and ImageNet-Captions with image and text. On the left side under Overall we show
metrics computed over all possible training/evaluation modalities, on the right we show results for specific training/evaluation modality
combinations (see Sec. 6.1). For Kinetics and AudioSet experiments we pretrain on AudioSet only. During self-distillation on Kinetics,
we provide experiments by using AudioSet or a held-out portion of Kinetics.* For datasets with two modalities, per Sec. 6, the values for
robustness and performance for these training/evaluation combinations are identical.

SSL
Pretraining

Downstream
Task Training

Downstream Task Training Modalities
V A T AV AT VT

Contrastive fine-tune AVT A AVT AVT AT AVT
Contrastive MASD AVT AVT AVT AVT AVT AVT
Contrastive MASD+WiseFT AVT AVT AVT AVT AVT AVT

MAE fine-tune VT AT T AVT AT VT
MAE MASD AVT AVT AVT AVT AVT AVT

Table 4. For each training modality set, we show the combination
of evaluation modalities yielding the highest performance (see
text). We abbreviate video=V, audio=A, text=T.

only degradation is in Missing at Test which is fixed by
Wise-FT. Furthermore, our results show that MASD gener-
alizes across three different types of modality sets across
AudioSet, Kinetics-400, and ImageNet-Captions.

To further see the benefit of our proposed interventions we
plot Robustness vs Performance for each possible training
modality set in Fig. 6. While we see that Robustness is
generally correlated with Performance, our interventions
when combined consistently improve Robustness beyond
the trend line. This is similar to a notion of “high effective
robustness” as defined in (Taori et al., 2020).

Model Pretrain Training/Evaluation Modalities
A V AV AVT

Contrastive, FT AS2M 39.5 25.6 43.7 49.4
Contrastive, MASD+WiseFT AS2M 39.5 30.0 44.2 49.4
MBT (Nagrani et al., 2021) IN21K 31.3 27.7 43.9

CAV-MAE (Gong et al., 2022) AS2M 37.7 19.8 42.0
VATT (Akbari et al., 2021) IN 39.4

Audio-MAE (Huang et al., 2022) AS2M 37.0

Table 5. Mean Average Precision on AudioSet 20K test for stan-
dard Contrastive Learning, MASD, and other competitive ap-
proaches on AudioSet. For pre-training, one can used either AS2M,
ImageNet, or ImageNet 21K (Deng et al., 2009). Results not
present in the literature are empty.

MASD improves robustness beyond supervised learning
on more examples A natural question is whether down-
stream supervised training on larger labeled data can address
multimodal robustness issues. In Table 3, we present down-
stream training on 2M labeled examples, which is 100×
than the labeled downstream training data for all other ex-
periments. Although we see a 50% boost in robustness com-
pared to regular downstream fine-tuning, this experiments
still underperforms MASD on Robustness, in particular for
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Transferability, while using substantially more labeling.

Robustness gains correlate with train-test modality gap.
To better understand MASD, we compute metrics as we de-
crease the number of common modalities between training
and evaluation. In Fig. 5, we show Performance and Robust-
ness for k = |MT ∩ME | ∈ {0, 1, 2} (see Eq. (6)), i.e. zero,
one, or two common modalities. We can see that as the
number of common modalities decreases, MASD degrades
more gracefully compared to standard Contrastive Learning.
WiseFT provides an additional stability in performance.

MASD helps better utilize all modalities at evaluation
time. Another property of MASD is that it can utilize all
modalities present at downstream evaluation, even if these
are not available at downstream training. To see this, for
each downstream training modality set MT we identify the
evaluation modality set ME yielding highest performance:
argmaxME⊆M p(ME ;MT ) for each MT ⊆ M .

We summarize the best evaluation modalities for each train-
ing modality set in Table 4. We can see that for the original
Contrastive learning, in 2 out of 6 training setups the model
attains best performance using the same evaluation modali-
ties it has been trained on, ME = MT . However, for MASD
we see that it always works best when we use all modalities,
ME = {A, V, T}. For MAE, we see an even bigger utiliza-
tion – while in 5 cases the original model prefers a subset
of the modalities at evaluation, with MASD the model in all
6 cases benefits from having all modalities at evaluation.

MASD achieves competitive performance compared to
other approaches To better put MASD in perspective, we
compare its performance to other approaches in the litera-
ture. In Table 5, we show results using the same training and
evaluation modalities, we do so for four different modality
sets: audio only, video only; audio and video; audio, video,
and text. When using AudioSet 20K downstream training
set as only labeled data, MASD achieves higher or equal
performance to other reported approaches, across all studied
modality combinations. Further, if using text, we obtain
even superior performance (although other approaches do
not use text). This shows that MASD not only fixes ro-
bustness issues for underlying SSL methods, but also keeps
competitive results across various evaluation setups. We
note that our AV number is the best reported number among
all methods that only have access to the AS-20k labels.

7. Discussion
In this paper we quantified the notion of robustness in a
multimodal representation. We introduced several simple
definitions of robustness based on average and worst case
performance across subsets of modalities. We characterized
the robustness of state-of-the-art learned representations
based on contrastive learning and masked autoencoders.
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Figure 6. Interventions improve robustness. WiSE-FT + MASD
provide substantial improvements to robustness across most train-
ing modality sets MT . For each of the four methods and each
possible training modality set MT ⊆ {audio, video, text}, we plot
robustness vs performance per Eq. (4) and (3).

We found that performance degrades with greater discrep-
ancies between training and testing modalities, however
these degradations may be alleviated with training improve-
ments based on MASD distillation and WiseFT aggregation.
Using these techniques we are able to improve upon state-
of-the-art with AudioSet by leveraging multimodal data not
available to the downstream task.

We observe several limitations for this current work, and op-
portunities for extensions and next steps. First, we focused
our representation learning on homogenous multimodal data
and it is unclear how this work will succeed in large scale
hetergenous datasets. Further, although our benchmarks
quantify the multimodal behavior on several datasets, it
is unclear what is truly achievable given the structure and
features of a given dataset. We strongly suspect that these
results may be heavily dependent on the specifics of a given
multimodal dataset but much work remains to characterize
how the trends identified persist and how these benchmarks
vary across typical multimodal conditions.
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