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Abstract

Understanding the effect of a feature vector x ∈
Rd on the response value (label) y ∈ R is the
cornerstone of many statistical learning problems.
Ideally, it is desired to understand how a set of
collected features combine together and influence
the response value, but this problem is notoriously
difficult, due to the high-dimensionality of data
and limited number of labeled data points, among
many others. In this work, we take a new perspec-
tive on this problem, and we study the question of
assessing the difference of influence that the two
given features have on the response value. We first
propose a notion of closeness for the influence of
features, and show that our definition recovers the
familiar notion of the magnitude of coefficients in
the parametric model. We then propose a novel
method to test for the closeness of influence in
general model-free supervised learning problems.
Our proposed test can be used with finite number
of samples with control on type I error rate, no
matter the ground truth conditional law L(Y |X).
We analyze the power of our test for two gen-
eral learning problems i) linear regression, and ii)
binary classification under mixture of Gaussian
models, and show that under the proper choice of
score function, an internal component of our test,
with sufficient number of samples will achieve
full statistical power. We evaluate our findings
through extensive numerical simulations, specifi-
cally we adopt the datamodel framework (Ilyas, et
al., 2022) for CIFAR-10 dataset to identify pairs
of training samples with different influence on
the trained model via optional black box training
mechanisms.
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1. Introduction
In a classic supervised learning problem, we are given a
dataset of n iid data points {(xi, yi)}i=1:n with feature vec-
tors x ∈ Rd and response value (label) y ∈ R. From the
inferential point of view, understanding the influence of
each individual feature i ∈ {1, . . . , d} on y is of paramount
importance. Considering a parametric family of distribu-
tions for L(Y |X) is among the most studied techniques
for this problem. In this setting, the influence of each fea-
ture can be seen by their corresponding coefficient value in
the parametric model. Essentially such methods can result
in spurious statistical findings, mainly due to model mis-
specification, where in the first place the ground-truth data
generating law L(Y |X) does not belong to the considered
parametric family. A natural remedy for this problem is to
relax the parametric family assumption, removing concerns
about model misspecification. Besides the difficulties with
the new model-free structure of the problem, we need a new
notion to capture the influence of features, as there is no
longer a coefficient vector as per class of parametric models.

In this paper, we follow the model-free structure, but take a
new perspective on the generic problem of investigating the
influence of features on the response value. In particular, as
a first step towards this notoriously hard question under no
class of parametric distribution assumption or whatsoever,
we are specifically interested in assessing the closeness of
influence of features. For this end, we posit the following
fundamental question:

(*) In a general model-free supervised learning problem,
for two given features, is it possible to assess the closeness

of their influence on the response value (label) in a
statistically sound way?

In this paper, we answer question (*) affirmatively. We char-
acterize a notion of closeness for the influence of features
on y under the general model-free framework. We show that
this notion aligns perfectly well with former expectations in
parametric models, where small difference in the coefficient
values imply close influence on the response value. We
then cast the closeness of influence question as a hypothesis
testing problem, and show that we can control associated
type I error rate with finite number of samples.
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1.1. Motivation Behind Question (*)

Beyond the inferential nature of Question (*) that helps to
better understand the data-generating process of on-hand
data, being able to answer this question has a myriad of
applications for other classic machine learning tasks. In
fact, inspired by the recent advancements in interpretable
machine learning systems, it is desired to strike a balance
between model flexibility in capturing the ground-truth law
L(Y |X) and using few number of explanatory variables.
For this goal, feature aggregation has been used to distill a
large amount of feature information into a smaller number
of features. In several parametric settings, features with
equal coefficients are naturally grouped together, e.g, in
linear regression new feature x1 + x2 is considered rather
than (x1, x2), in case that x1, x2 have equal corresponding
regression coefficients (Yan & Bien, 2021). In addition,
identifying features with near influence on the response
value can be used for tree-based aggregation schemes (Shao
et al., 2021; Bien et al., 2021; Wilms & Bien, 2022). This
is of paramount importance in learning problems involving
rare features, such as the count of microbial species (Bien
et al., 2021). In addition, in many learning problems, an
honest comprehensive assessment for characterizing the
behavior of Y with respect to a certain attribute A is desired.
This can be used to assess the performance of model with
respect to a sensitive attribute (fair machine learning), or
to check if two different treatments (different values of A)
have close influence on potential outcomes.

1.2. Related Work

In machine learning, the problem of identifying a group of
features that have the largest influence on the response value
is often formulated as variable selection. With a strong para-
metric assumption, the conditional law L(Y |X) is consid-
ered to belong to a known class of parametric models, such
as linear regression. For variable selection in the linear re-
gression setting, the LASSO (Tibshirani, 1996) and Dantzig
selector (Candes & Tao, 2007) are the most widely used. In
fact, there are several other works for variable selection in
the linear regression setting with output solutions satisfying
certain structures, such as (Bogdan et al., 2015; Tibshirani
et al., 2005). There has been another complimentary line
in the past years from model-X perspective (Candes et al.,
2018). In this setting, despite the classical setup, in which
a strong parametric assumption is considered on the condi-
tional law, it shifts the focus to the feature distribution X
and assumes an extensive knowledge on the distribution of
the features. This setting arises naturally in many learning
problems. For example, we can get access to distributional
information on features in learning scenarios where the
sampling mechanism can be controlled, e.g,. in datamodel
framework (Ilyas et al., 2022), and gene knockout experi-
ments (Peters et al., 2016; Cong et al., 2013). Other settings

include problems where an abundant number of unlabeled
data points (unsupervised learning) are available.

The other related line of work is to estimate and perform
statistical inference on certain statistical model parameters.
Specifically, during the past few years, there have been
several works (Javanmard & Montanari, 2014; Van de Geer
et al., 2014; Deshpande et al., 2019; Fei & Li, 2021) for
inferential tasks on low-dimensional components of model
parameters in high-dimensional (d > n) settings of linear
and generalized linear models. Another complementary line
of work, is the conditional independence testing problem
Xj ⊥⊥ Y |X−j to test if a certain feature Xj is independent
of the response value Y , while controlling for the effect of
the other features. This problem has been studied in several
recent works for both parametric (Crawford et al., 2018;
Belloni et al., 2014), and model-X frameworks (Candes
et al., 2018; Javanmard & Mehrabi, 2021; Liu et al., 2022;
Shaer & Romano, 2022; Berrett et al., 2020).

Here are couple of points worth mentioning regarding the
scope of our paper.

1. (Feature selection methods) However Question (*) has
a complete different nature from well-studied variable
selection techniques– with the goal of removing re-
dundant features, an assessment tool provided for (*)
can be beneficial for post-processing of feature selec-
tion methods as well. Specifically, we expect that two
redundant features have close (zero) influence on the
response value, therefore our closeness-of-influence
test can be used to sift through the set of redundant
features and potentially improve the statistical power
of the baseline feature selection methods.

2. (Regression models) We would like to emphasize that
however fitting any class of regression models would
yield an estimate coefficient vector, but comparing the
magnitude of coefficient values for answering Ques-
tion (*) is not statistically accurate and would result in
invalid findings, mainly due to model misspecification.
Despite such inaccuracies of fitted regression models,
our proposed closeness-of-influence test works under
no parametric assumption on the conditional law.

3. (Hardness of non-parametric settings) The finite-
sample guarantee on type-I error rate for our test does
not come free. Specifically, this guarantee holds when
certain partial knowledge on the feature distributions
L(X) is known. This setup is often referred as model-
X framework (Candes et al., 2018), where on con-
trary to the classic statistic setups, the conditional law
L(Y |X) is optional, and adequate amount of informa-
tion on features distribution L(X) is known. Such
requirements for features distribution makes the scope
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of our work distant from completely non-parametric
problems.

1.3. Summary of contributions and organization

In this work, we propose a novel method to test the closeness
of influence of a given pair of features on the response value.
Here is the organization of the three major parts of the paper:

• In Section 2, we propose the notion of symmetric in-
fluence and formulate the question (*) as a tolerance
hypothesis testing problem. We then introduce the
main algorithm to construct the test statistic, and the
decision rule. We later show that the type-I error is
controlled for finite number of data points.

• In Section 3, for two specific learning problems: 1)
linear regression setup, and 2) binary classification
under a mixture of Gaussians, we analyze the statistical
power of our proposed method. Our analysis reveals
guidelines on the choice of the score function, that is
needed for our procedure.

• In Section 5, we combine our closeness-of-influence
test with datamodels (Ilyas et al., 2022) to study the
influence of training samples on the trained black box
model. We consider CIFAR-10 dataset and identify
several pairs of training samples with different influ-
ence on the output models.

Finally, we empirically evaluate the performance of our
method in several numerical experiments, we show that
our method always controls type-I error with finite number
of data points, while it can achieve high statistical power.
We end the paper by providing concluding remarks and
interesting venues for further research.

1.4. Notation

For a random variable X , we let L(X) denote the probabil-
ity density function of X . For two density functions p, q let
dTV(p, q) denote the total variation distance. We use Φ(t)
and φ(t) respectively for cdf and pdf of standard normal
distribution. For and integer n let [n] = {1, . . . , n} and for
a vector x ∈ Rd and integers i, j ∈ [d] let xswap(i,j) be a
vector obtained by swapping the coordinates i and j of x.
We let N(µ,Σ) denote the probability density function of a
multivariate normal distribution with mean µ and covariance
matrix Σ.

2. Problem Formulation
We are interested in investigating that if two given fea-
tures i, j have close influence on the response value y.
Specifically, in the case of the linear regression setting

L(Y |X) = N(XTθ, σ2), two features i and j have an equal
effect on the response variable y, if the model parameter θ
has equal coordinates in i and j. In this parametric prob-
lem, the close influence analysis can be formulated as the
following hypothesis testing problem

H0 : |θi − θj | ≤ τ , HA : |θi − θj | > τ .

In practice, the considered parametric model may not hold,
and due to model misspecification, the reported results are
not statistically sound and accurate. Our primary focus is
to extend the definition of close influence of features on
the response value to a broader class of supervised learn-
ing problems, ideally with no parametric assumption on
L(Y |X) (model-free). For this end, we first propose the
notion of symmetric influence.

Definition 2.1 (Symmetric influence). We say that two
features i, j ∈ [d] have a symmetric influence on the re-
sponse value y if the conditional law pY |X does not change
once features i and j are swapped in x. More precisely, if
L(Y |X) = L(Y |Xswap(i,j)), where Xswap(i,j) is obtained
from swapping coordinates i and j in X .

While the perfect alignment between density function pY |X
and pY |Xswap(i,j)

is considered as equal influence, it is natural
to consider small (but nonzero) average distance of these
two density functions as having close influence of features
i, j on the response value. Inspired by this observation,
we cast the problem of closeness-of-influence testing as
a tolerance hypothesis testing problem 1. Before further
analyzing this extended definition, for two simple examples
we show that the symmetric influence definition recovers
the familiar equal effect notion in parametric problems. It is
worth noting that this result can be generalized to a broader
class of parametric models.

Proposition 2.2. Consider the logistic model P(Y =
1|X = x) = 1

1+exp(−xTθ)
. In this model, features i and

j have symmetric influence on y if and only if θi = θj . In
addition, for the linear regression setting y = xTθ + ε with
ε ∼ N(0, σ2), features i and j have symmetric influence on
y if and only if θi = θj .

We refer to Appendix A for proofs of all propositions and
theorems.

2.1. Closeness-of-influence testing

Inspired by the definition of symmetric influence given in
Definition 2.1, we formulate the problem of testing the
closeness of the influence of two features i, j on y as the
following:

H0 : E
[
dTV(pY |X , pY |Xswap(i,j)

)
]
≤ τ ,

HA : E
[
dTV(pY |X , pY |Xswap(i,j)

)
]
> τ . (1)
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Specifically, this hypothesis testing problem allows for gen-
eral non-negative τ values. We can test for symmetric in-
fluence by simply selecting τ = 0. In this case, we must
have pY |X = pY |Xswap(i,j)

almost surely (with respect to
some measure on X ). For better understanding of the main
quantities in the left-hand-side of 1, it is worth to note that
pY |Xswap(i,j)

(y|x) = pY |X(y|xswap(i, j)) and the quantity of
interest can be written as

E
[
dTV(pY |X , pY |Xswap(i,j)

)
]

=
1

2

∫ ∣∣∣pY |X(y|x)− pY |X(y|xswap(i,j))
∣∣∣pX(x)dydx .

We next move to the formal process to construct the test
statistics of this hypothesis testing problem.

Test statistics. We first provide high-level intuition behind
the test statistics used for testing 1. In a nutshell, for two
i.i.d. data points (x(1), y(1)) and (x(2), y(2)), if the density
functions pY |X is close to pY |Xswap(i,j)

, then for an optional

score functions applied on (x(1), y(1)) and (x
(2)
swap(i,j), y

(2)),
with equal chance (50%) one should be larger than the other
one. This observation is subtle though. Since we intervene
in the features of the second data point (by swapping its
coordinates), this shifts the features distribution, thereby
the joint distribution of (x(1), y(1)) and (x

(2)
swap(i,j), y

(2)) are
not equal. This implies that we must control for such distri-
butional shifts on features as well. The formal process for
constructing the test statistics Un is given in Algorithm 1.
We next present the decision rule for hypothesis problem 1.

Algorithm 1 Test statistic for hypothesis testing 1

Input: n data points {(x(m), y(m))}m=1:n with (x, y) ∈
Rd × R (for n being even–if not, remove one sample), two
features i, j ∈ {1, 2, ..., d}, and a score function T : X ×
Y → R.
Output: A test statistic Un .

For 1 ≤ m ≤ n
2 define

x̃(m) = x
(m+n

2 )

swap(i,j) , ỹ(m) = y(m+n
2 ) .

Define tests statistic Un

Un =
2

n

∑
m=1:n2

I
(
T
(
x(m), y(m)

)
≥ T

(
x̃(m), ỹ(m)

))
.

Decision rule. For the data set (X,Y) of size n and test
statistic Un as per Algorithm 1 at significance level α con-

sider the following decision rule

ψn(X,Y) = I

(∣∣∣Un − 1

2

∣∣∣ ≥ τ + τX +

√
log(2/α)

n

)
,

(2)
with τX being an upper bound on the total variation distance
between the original feature distribution, and the obtained
distribution by swapping coordinates i, j. More precisely,
for two independent features vectors X(1), X(2) let τX be
such that τX ≥ dTV

(
L(X(1)),L(X(2)

swap(i,j))
)

. In fact, in
several learning problems when features have a certain sym-
metric structure, the quantity τX is zero. For instance, when
features are multivariate Gaussian with isotropic covariance
matrix. More on this can be seen in Section 2.2.

Size of the test. In this section, we show that the obtained
decision rule 2 has control on type I error with finite number
of samples. More precisely, we show that the probability
of falsely rejecting the null hypothesis 1 can always be
controlled such that it does not exceed a predetermined
significance level α.

Theorem 2.3. Under the null hypothesis 1, decision rule 2
has type-I error smaller than α. More precisely

PH0(ψ(X,Y) = 1) ≤ α .

Based on decision rule 1, we can construct p-values for the
hypothesis testing problem 1. The next proposition gives
such formulation.

Proposition 2.4. Consider

p =

{
1 , |Un − 1/2| ≤ τ + τX ,

1 ∧ ηn(Un, τ, τX) , otherwise ,
(3)

with function ηn(u, τ1, τ2) being defined as

ηn(u, τ1, τ2) = 2 exp

(
−n
(∣∣∣u− 1

2

∣∣∣− τ1 − τ2

)2
)
.

In this case, the p-value p is super-uniform. More precisely,
under the null hypothesis 1 for every α ∈ [0, 1] we have

P(p ≤ α) ≤ α .

2.2. Effect of feature swap on features distribution

From the formulation of the decision rule given in 2, it can
be seen that an upper bound on total variation distance be-
tween density functions of X(1) and X(2)

swap(i,j) is required.
This quantity shows up as τX in 2. Regarding this change
on X distribution, two points are worth mentioning. First,
in several classes of learning problems the feature vectors
follow a symmetric structure which renders the quantity
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τX to zero. For instance, when features have an isotropic
Gaussian distribution (Proposition 2.5), or in the datamodel
sampling scheme (Ilyas et al., 2022), the formal statement
is given in Proposition 2.6. Secondly, the value of τX can
be computed when adequate amount of information is avail-
able on distribution of X , the so-called model-X framework
(Candes et al., 2018). We would also like to emphasize that
indeed we do not need the direct access to entire density
function pX information, and an upper bound on the quan-
tity dTV(L(X(1)),L(X(2)

swap(i,j))) is sufficient. In the next
proposition, for the case that features follow a general mul-
tivariate Gaussian distribution N(µ,Σ) we provide a valid
closed-form value for τX .

Proposition 2.5. Consider a multivariate Gaussian distri-
bution with the mean vector µ ∈ Rd and the covariance
matrix Σ ∈ Rd×d, for two features i and j the following
holds:

dTV

(
L(X(1)),L(X(2)

swap(i,j))
)

≤ 1

2

[
tr
(
− Id + PijΣ

−1PijΣ
)

+ (µ− Pijµ)
TΣ−1(µ− Pijµ)

]1/2
, (4)

where Pij is the permutation matrix that swaps the coordi-
nates i and j. More precisely, for every x ∈ Rd we have
Pijx = xswap(i,j).

It is easy to observe that in the case of isotropic Gaussian
distribution with zero mean, we can choose τX = 0. More
concretely, when µ = 0, and Σ = σ2I , then Proposition
2.5 reads τX = 0. We next consider a setting with binary
feature vectors that arise naturally in datamodels (Ilyas et al.,
2022), and will be used later in experiments of Section 5.

Proposition 2.6. Consider a learning problem with binary
features vector x ∈ {0, 1}d. For a positive integer m, we
suppose that x is sampled uniformly at random from the
space Sm = {x ∈ {0, 1}d :

∑
xi = m}. This means that

the output sample has binary entries with exactly m non-
zero coordinates. Then, in this setting for two independent
features vectors x(1), x(2), the following holds

dTV

(
L
(
X(1)

)
,L
(
X

(2)
swap(i,j)

))
= 0 .

3. Power Analysis
In this section, we provide a power analysis for our method.
For a fixed score function T : X×Y → R and two i.i.d. data
points (x(1), y(2)) and (x(2), y(2)) consider the following
cumulative distribution functions:

FT (t) = P
(
T (X(1), Y (1)) ≤ t

)
,

GT (t) = P
(
T (X

(2)
swap(i,j), Y

(2)) ≤ t
)
.

In the next theorem, we show that the power of our test
depends on the average deviation of the function FT ◦G−1

T

from the identity mappinp on the interval [0, 1].
Theorem 3.1. Consider the hypothesis testing problem 1 at
significance level α with n data points (X,Y). In addition,
suppose that score function T : X × Y → R satisfies the
following condition for some β ∈ (0, 1):∣∣∣∣∫ 1

0

(FT (G
−1
T (u))− u)du

∣∣∣∣ ≥ ρn(α, β, τ) + τX ,

with ρn(α, β, τ) = 2 exp(−nβ2) +
√

log(2/α)
n + τ . In

this case, the decision rule 2 used with the score func-
tion T has type II error not exceeding β. More precisely
P (Ψn(X,Y) = 1) ≥ 1− β .

The function FT ◦G−1
T is called ordinal dominance curve

(ODC) (Hsieh & Turnbull, 1996; Bamber, 1975). It can be
seen that the ODC is the population counterpart of the PP
plot. A direct consequence of the above theorem is that if the
ODC has a larger distance from the identity map i(u) = u,
then it would be easier for our test to flag smaller gaps
between the influence of features. We next focus on two
learning problems: 1) linear regression setting, and 2) bi-
nary classification under Gaussian mixture models. For each
problem, we use Theorem 3.1 and provide lower bounds on
the statistical power of our closeness-of-influence test.
Linear regression setup. In this setting, we suppose that
y = xTθ∗ + ε for ε ∼ N(0, σ2) and feature vectors drawn
iid from a multivariate normal distribution N(0, Id). Since
features are isotropic Gaussian with zero mean, by an ap-
plication of Theorem 2.5 we know that τX is zero. In the
next theorem, we provide an upper bound for hypothesis
testing problem 1 with n data points and the score function
T (x, y) = |y − xTθ̂| for some model estimate θ̂. We show
that in this example, the power of the test highly depends
on the value |θ∗i − θ∗j | and the quality of the model estimate
θ̂. Indeed, the higher the contrast between the coefficient
values θ∗i and θ∗j , the easier it is for our test to reject the null
hypothesis.
Theorem 3.2. Under the linear regression setting y =
xTθ∗ + ε with ε ∼ N(0, σ2) with feature vectors coming
from a normal population x ∼ N(0, Id), consider the hy-
pothesis testing problem 1 for features i and j with τ ∈
(0, 1). We run Algorithm 1 at the significance level α with
the score function T (x, y) = |y−xTθ̂| for a model estimate
θ̂ ∈ Rd. For β ∈ (0, 1) such that tan(π2 ρn(α, β, τ)) ≤

1
2 ,

suppose that the following condition holds

|θ∗i − θ∗j | ≥
2 tan(π

2
(ρn(α, β, τ)))

1− 2 tan(π
2
(ρn(α, β, τ)))

(
σ2 + ∥θ̂ − θ∗∥22

)
|θ̂i − θ̂j |

,

for ρn(α, β, τ) as per Theorem 3.1. Then, the type II error
is bounded by β. More precisely, we have P(Ψn(X,Y) =
1) ≥ 1− β .
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We refer to Appendix for the proof of Theorem 3.2. It can
be seen that the right-hand-side of the above expression can
be decomposed into two major parts. The first part involves
the problem parameters, such as the number of samples
n, and error tolerance values α and β. This quantity for a
moderately large number of samples n, and small tolerance
value τ can get sufficiently small. On the other hand, the
magnitude of the second part depends highly on the quality
of the model estimate θ̂ and the inherent noise value of the
problem σ2 which basically indicates how structured is the
learning problem. Another interesting observation is regard-
ing the |θ̂i − θ̂j |. Indeed, it can be inferred that small values
of this quantity renders the problem of discovering devia-
tion from the symmetric influence harder. This conforms
to our expectation, given that in the extreme scenario that
θ̂i = θ̂j it is impossible for the score function to discern
θ∗i and θ∗j , because of the additive nature of the considered
score function.

Binary classificaiton. In this section, we provide power
analysis of our method for a binary classification setting.
Specifically, we consider the binary classification under a
mixture of Gaussian model. More precisely, in this case the
data generating process is given by

y =

{
+1 , w.p q ,
−1 , w.p 1− q .

, x ∼ N(yµ, Id) . (5)

We consider the influence testing problem 1 with τ = 0. In
the next theorem, we provide a lower bound on the statistical
power of our method used under this learning setup.

Theorem 3.3. Under the binary classification setup 5, con-
sider the hypothesis testing problem 1 for τ = 0. We run
Algorithm 1 with the score function T (x, y) = yxTθ at the
significance level α, and suppose that for some nonnegative
value β the following holds

|µi − µj | ≥ Φ−1

(
1

2
+ ρn(α, β, 0)

) √
2∥θ̂∥2

|θ̂i − θ̂j |
,

where ρn(α, β, τ) is given as per Theorem 3.1. Then the
type-II error in this case is bounded by β. More concretely,
we have P(Ψn(X,Y) = 1) ≥ 1− β .

It is important to note that in this particular setting, the
features do not follow a Gaussian distribution with a zero
mean. Instead, they are sampled from a mixture of Gaussian
distributions with means µ and −µ. The reason why τX = 0
can be utilized is not immediately obvious. However, we
demonstrate that when testing for τ = 0 under the null
hypothesis, it is necessary for µi to be equal to µj , and
the distribution of features remains unchanged when the
coordinates i and j are swapped. As a result, we can employ
τX = 0 in this scenario. This argument is further elaborated
upon in the proof of Theorem 3.3.

From the above expression it can be observed that for suffi-
ciently large number of data points n and a small value τ ,
the value Φ−1(1/2 + ρn) will get smaller and converge to
zero. In addition, it can be inferred that an ideal model esti-
mate θ̂ must have small norm and high contrast between θ̂i
and θ̂j values. An interesting observation can be seen on the
role of other coordinate values in θ̂. In fact, it can be realized
that for the choice of the score function T (x, y) = yxTθ̂,
the support of the model estimate θ̂ must be a subset of two
features i and j, since this would decrease |θ̂| and increases
the value of |θ̂i − θ̂j |.

4. Experiments
In this section, we evaluate the performance of our proposed
method for identifying the symmetric influence across fea-
tures. We start by the Isotropic Gaussian model for feature
vectors. More precisely, we consider x ∼ N(0, Id) with
d = 10. In this case, we have τX = 0 and we consider the
hypothesis testing problem 1 for τ = 0 (symmetric influ-
ence).
Size of the test. We first start by examining the size of
our proposed method. For this end, we consider the condi-
tional law y|x ∼ N(xTSx, 1), for a semi-positive definite
matrix S with coordinate (i, j) being Si,j = 1 + I(i = j).
The conditional mean of y|x is a quadratic form and it
is easy to observe that in this case for every two features
i, j ∈ {1, . . . , 10} we have xTSx = xTswap(i,j)Sxswap(i,j),
and therefore the null hypothesis holds. We test for the
symmetric influence of each pair of features (

(
10
2

)
num-

ber of tests). We run our method with the score function
T (x, y) = |y − θ̂Tx| with θ̂ ∼ N(0, Id). The estimate θ̂ is
fixed across all 45 tests. We suppose that we have access
to 1000 data points, and we consider three different signif-
icance levels α = 0.1, 0.15, and 0.2. The results of this
experiment can be seen in Figure 1(b) where the reported
numbers (rejection rates) are averaged over 1000 indepen-
dent experiments. It can be observed that, in this case for
all three significance levels, the rejection rates are smaller
than α, and therefore the size of the test is controlled.

Power analysis. The linear regression setting is considered,
in which y|x ∼ N(xTθ∗, 1), for θ∗ ∈ Rd with d = 10. We
consider the following pattern for signal strength θ∗1 = θ∗2 =
1, θ∗3 = θ∗4 = 2, θ∗5 = θ∗6 = 3, θ∗7 = θ∗8 = 4, θ∗9 = θ∗10 = 5.
In this example, it can be observed that the following pairs
of features I = {(1, 2), (3, 4), (5, 6), (7, 8), (9, 10)} have
symmetric influence, and for any other pair the null hy-
pothesis 1 must be rejected. We use the score function
T (x, y) = |y − xTθ̂| at significance level α = 0.1 for three
different choices of θ̂. We follow this probability distribu-
tion θ̂ ∼ N(θ0, σ

2Id) for three different σ values σ = 1, 2,
and 3. A smaller value of σ implies a better estimation of
θ0. The average rejection rates are depicted in Figure 1(a),
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(a) Average rejection rate of the null hypothesis of 1 for τ = 0
and features with isotropic Gaussian distribution x ∼ N(0, I10).
In this experiment, we consider y|x ∼ N(xTθ∗, 1) for θ∗ =
(1, 1, 2, 2, 3, 3, 4, 4, 5, 5).
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(b) Average rejection rate of the null hypothesis 1 for τ = 0 and
features coming from an isotropic Gaussian distribution x ∼
N(0, I10). In this experiment, we consider y|x ∼ N(xTSx, 1)
for a positive definite matrix Si,j = 1+ I(i = j) (2 on diagonal
and 1 on off-diagonal entries).

Figure 1: Average Rejection Rates for Different Settings

where each 10×10 square corresponds to a different σ value
(three plots in total). Specifically, (i, j)-th cell in each plot
denotes the average rejection rate of the symmetric influ-
ence hypothesis for features i and j. The rejection rates are
obtained by averaging over 1000 independent experiments.
First, it can be inferred that for pairs belonging to the set
I the rejection rate is always smaller than the significance
level α = 0.1, thereby the size of the test is controlled. In
addition, by decreasing the σ value (moving from right to
left), it can be inferred that the test achieves higher power
(more dark blue regions). It is consistent with our prior ex-
pectation that the statistical power of our method depends on
the quality of the score function T and model estimate θ̂; see
Theorem 3.2. More on the statistical power of our method, it
can be observed that within each plot, pairs that have higher
contrast in the difference of coefficient magnitudes have
higher statistical power. For instance, this pair of features
(1, 10) with coefficient values θ∗1 = 1, θ∗10 = 5 has rejection
rates of 0.987, 0.768, 0.543 (for σ = 1, 2, 3, respectively)
while the other pair of features (6, 8) with coefficient values
θ∗6 = 3, θ∗8 = 4 has rejection rate of 0.294, 0.097, 0.055 (for
σ = 1, 2, 3, respectively).

5. Influence of Training Data on Output Model
In this section, we combine our closeness-of-influence test
with datamodel framework (Ilyas et al., 2022) to analyze
the influence of training samples on the evaluations of the
trained model on certain target examples. We first provide a
brief overview on datamodels and later describe the experi-
ments setup.

5.1. Datamodels

For training samples Dtrain = {(xi, yi)}i=1:N consider a
class of learning algorithm A, where by class we mean a
training mechanism (potentially randomized), such as train-
ing a fixed geometry of deep neural networks via gradient de-
scent and a fixed random initialization scheme. In datamod-
els (Ilyas et al., 2022), a new learning problem is considered,
where feature vectors S are binary 0-1 vectors with size N
with γ ∈ (0, 1) portion one entries, selected uniformly at
random. Here S is an indicator vector for participation of
N data points Dtrain in the training mechanism, i.e,. Si = 1
if and only if the i−th sample of Dtrain is considered for the
training purpose via A. For a fixed target example x, the
response value is the evaluation (will be described later) of
the output model (trained with samples indicated in S) on x,
denoted by fA(x;S). This random sampling of data points
from Dtrain is repeated m times, therefore data for the new
learning problem is {(Si, fA(x, Si))}i=1:m. The ultimate
goal of datamodels is to learn the mapping S → fA(x, S)
via surrogate modeling and a class of much less complex
models. In the seminal work of (Ilyas et al., 2022), they
show that using linear regression with ℓ1 penalty (LASSO
(Tibshirani, 1996)) performs surprisingly well in learning
the highly complex mapping of S → fA(x, S).

5.2. Motivation

We are specifically interested in analyzing the influence of
different pairs of training samples on a variety of test targets,
and discover pairs of training samples that with high cer-
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target training pairs

5.515 e-5

5.523 e-5

5.534 e-5

Figure 2: Summary of discoveries on CIFAR-10 dataset via
datamodels used with our closeness-of-influence test. For
each pair of 10 classes (can be similar), we choose random
samples from the training data along with a random target
image from dog pictures in the test data, and we repeat this
process 20 times. After running the Benjamini–Yekutieli
procedure on output p-values (2000 in total) at α = 0.2
three significant results are reported. The images of these
findings are plotted above, with their associated p-values.
This implies that with high certainty images in each pair
influence the target example differently.

tainty influence the test target differently. We use the score
function (fA(x, S)− xTθ̂)2 for our closeness-of-influence
test, where θ̂ is the learned datamodel. We adopt this score
function, mainly due to the promising performance of lin-
ear surrogate models in (Ilyas et al., 2022) for capturing
the dependency rule between S and fA(x;S). In addition,
the described sampling scheme in datamodels satisfies the
symmetric structure as per Proposition 2.6 (so τX = 0). We
would like to emphasize that despite the empirical success
of datamodels, the interpretation of training samples with
different coefficient magnitude in the obtained linear data-
model θ̂ is not statistically accurate. Here we approach this
problem through the lens of hypothesis testing and output
p-values, to project the level of confidence in our findings.

5.3. Experimental Setups and Results

We consider the CIFAR-10 dataset (Krizhevsky et al., 2009),
which has N = 50000 training samples along with 10000
test datapoints and 10 classes 1. We consider γ = 0.5
(portion of ones in Si samples), and follow the same heuris-
tics provided for fA(x;S) in (Ilyas et al., 2022), which is
the correct-class margin, defined as the logit value of the
true class minus the highest logit value among incorrect
classes. We use the datamodel data given in https://

1airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck

github.com/MadryLab/datamodels-data. The
provided data has 310k samplings, where for each target ex-
ample x (in the test data) the datamodel parameter θ̂ ∈ RN

is estimated via the first 300k samples (10000 total number
of datamodels θ̂ for each test data). We use the additional
10k samples to run our closeness-of-fit test with the lin-
ear score function (fA(x;S)− xTθ̂)2. Now, for each pair
of training samples and a specific target test example, we
can test for their closeness of influence. In the first exper-
iment, for each two classes (can be the same) we choose
two pictures as the training pair (randomly from the two
classes), and for the target sample, we select randomly from
the class of dog pictures. For each two classes, we repeat
this process 20 times, and run our test 1 with τ = 0, and
report all p-values (2000 in total). After running the Ben-
jamini–Yekutieli procedure (Benjamini & Yekutieli, 2001)
(with log factor correction to control for dependency among
p-values), we find three statistically significant results at
α = 0.2 with p-value=5× 10−5 (for all three discoveries).
Surprisingly, all three findings correspond to a similar test
image, the pictures of training pairs and the one test im-
age can be seen in Figure 2. It can be observed that in all
findings one of the reported images is visually closer to the
target image. This conforms well to obtained results that the
null hypothesis 1 which states that the two training images
have equal influence on the target sample is rejected. We
refer to Appendix B for the rest of experiments.

6. Concluding Remarks
In this paper, we proposed a novel method to test the close-
ness of influence of a given pair of features on the re-
sponse value. This procedure makes no assumption on
the conditional law between the response value and features
(L(Y |X)). We first proposed a notion called ”symmetric
influence” that generalized the familiar concept of equal
coefficient in parametric models. This notion is motivated
to characterize the sensitivity of the conditional law with
respect to swapping the features. We then formulated the
closeness-of-influence testing problem as a tolerance hy-
pothesis testing. We provide theoretical guarantees on type-I
error rate. We then analyzed statistical power of our method
for a general score function T , and show that for two spe-
cific learning problems i) linear regression settings, and 2)
binary classification under a mixture of Gaussian models
with a certain choice of score functions we can achieve full
statistical power. Finally, we adopt the datamodel frame-
work and use our closeness-of-influence test to find training
samples that have different influence on the trained model.

Several interesting venues for future research are in order.
In particular, extending this framework for multiple testing
(testing for multiple number of pairs) and still achieving
valid statistical results. This can be done with generic mul-
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tiple testing frameworks (similar to Benjamini–Yekutieli
procedure used in Section 5) on the obtained p-values, but
a method that is crafted for this setting can be more pow-
erful. In addition, extending this framework for studying
influence of a group of features (more that two) can be of
great interest.
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A. Proof of Theorems and Technical Lemmas
A.1. Proof of Theorem 2.3

Consider two data points z(1) = (x(1), y(1)), z(2) = (x(2), y(2)) drawn i.i.d. from the density function pX,Y . For two
features i, j, define

π = P
(
T
(
X(1), Y (1)

)
≥ T

(
X

(2)
swap(i,j), Y

(2)
))

.

We want to show that under the null hypothesis, the value π is concentrated around 1/2 with maximum distance of τX . First,
from the symmetry between two i.i.d. data points we have

P
(
T
(
X(1), Y (1)

)
≥ T

(
X(2), Y (2)

))
= 1/2 .

The underlying assumption is that in the case of equal values the tie is broken randomly. We introduce z̃(2) =

(x
(2)
swap(i,j), y

(2)). This brings us

π − 1

2
= P

(
T
(
X

(2)

swap(i,j), Y
(2)) ≤ T (Z1)

)
− P

(
T
(
X(2), Y (2)) ≤ T (Z1)

)
= E

[
P(T (Z̃(2)) ≤ T (Z(1))|Z(1), Y (2))

]
− E

[
P(T (Z(2)) ≤ T (Z(1))|Z(1), Y (2))

]
.

In the next step, we let T (1) = T (Z(1)), T (2) = T (Z(2)), and T̃ (2) = T (Z̃(2)). Then, by an application of Jenson’s inequality we get∣∣∣π − 1

2

∣∣∣ ≤ E
[∣∣P(T̃ (2) ≤ T (1)|Z(1), Y (2))− P(T (2) ≤ T (1)|Z(1), Y (2))

∣∣] (6)

On the other hand, for some values z ∈ Rd+1, y ∈ R consider the following measurable set:

Az,y = {x ∈ Rd : T (x, y) ≤ T (z)} .

By using this definition of set Az,y in 6 and shorthands W = (Z(1), Y (2)) we arrive at∣∣∣π − 1

2

∣∣∣ ≤ E
[∣∣P(X2

swap(i,j) ∈ AW |W )− P(X(2) ∈ AW |W )
∣∣]

≤ E
[
dTV
(
p
X

(2)
swap(i,j)

|W , pX(2)|W
)]
, (7)

where the last inequality follows the definition of the total variation distance. Since Z(1) and Z(2) are independent random variables, we
get that

dTV
(
p
X

(2)
swap(i,j)

|W , pX(2)|W

)
= dTV

(
p
X

(2)
swap(i,j)

|Y (2) , pX(2)|Y (2)

)
= dTV

(
pXswap(i,j)|Y , pX|Y

)
,

where the last relation comes from the fact that random variable (x, y) ∼ px,y and (x(2), y(2)) has a similar density function. Using the
above relation in 7 yields ∣∣∣∣π − 1

2

∣∣∣∣ ≤ E
[
dTV
(
pX

swap(i,j)
|Y , pX |Y

)]
= dTV

(
pXswap(i,j),Y , pX,Y

)
.

In the next step, for x ∈ Rd and y ∈ R let p(x, y) and q(x, y) respectively denote the density functions of (Xswap(i,j), Y ) and (X,Y ).
From the above relation we get ∣∣∣∣π − 1

2

∣∣∣∣ ≤ 1

2

∫
|p(x, y)− q(x, y)| dxdy .
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On the other hand, by rewriting the total variation distance of the joint random variables get

|p(x, y)− q(x, y)| = |p(x)p(y|x)− q(x)q(y|x)|
= |p(x)p(y|x)− p(x)q(y|x)
+ p(x)q(y|x)− q(x)q(y|x)|
≤ p(x)|p(y|x)− q(y|x)|
+ |p(x)− q(x)|q(y|x) .

Plugging this into the above relation yields ∣∣∣∣π − 1

2

∣∣∣∣ ≤ 1

2

∫
p(x)|p(y|x)− q(y|x)|dxdy

+
1

2

∫
|p(x)− q(x)|q(y|x)dxdy .

In the next step, by integration with respect to y we get∣∣∣∣π − 1

2

∣∣∣∣ ≤ 1

2

∫
p(x)|p(y|x)− q(y|x)|dxdy

+
1

2

∫
|p(x)− q(x)|dx .

This implies that ∣∣∣∣π − 1

2

∣∣∣∣ ≤ EX [dTV(pY |Xswap(i,j)
, pY |X)] + dTV(pX , pXswap(i,j)

) .

Finally, under the null hypothesis 1 and the fact that τX ≥ dTV(pX , pXswap(i,j)
) we get∣∣∣∣π − 1

2

∣∣∣∣ ≤ τX + τ . (8)

Any deviation from this range is accounted as evidence against the null hypothesis 1. In Algorithm 1, for each 1 ≤ m ≤ n/2, it is easy to

observe that each random variable I
(
T (X(m), Y (m)) ≥ T (X̃(m), Ỹ (m))

)
is a Bernoulli with success probability π. In the next step, by

an application of Hoeffding’s inequality for every t ≥ 0 and sum of n/2 independent Bernoulli random variables we get

P

∣∣∣ 2
n

n/2∑
i=1

I
(
T (xi, yi) ≤ T (x̃i, ỹi)

)
− π

∣∣∣ ≥ t

 ≤ 2 exp(−nt2) .

Therefore, for statistics Un as per Algorithm 1 we get

P(|Un − π| ≥ t) ≤ 2 exp(−nt2) , ∀t ≥ 0 (9)

We next consider δ ≥ τ + τX and use triangle inequality to obtain

P
(∣∣∣Un − 1

2

∣∣∣ ≥ δ

)
≤ P

(∣∣∣Un − π
∣∣∣+ ∣∣∣π − 1

2

∣∣∣ ≥ δ

)
≤ P(|Un − π| ≥ δ − τ − τX)

≤ 2 exp(−n(δ − τ − τX)2) .

Where in the penultimate relation we used 8, and the last relation follows 9. By letting α = δ − τ − τX , we get

P

∣∣∣Un − 1

2

∣∣∣ ≥ τ + τX +

√
log 2

α

n

 ≤ α .

This completes the proof.
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A.2. Proof of Proposition 2.2

We start with θi = θj , and we want to show that the symmetric influence property holds. We have

pY |Xswap(i,j)
(y|x) = pY |X(y|xswap(i,j))

= P(Y = 1|X = xswap(i,j))

=
(
1 + exp(−xTswap(i,j)β)

)−1

=
(
1 + exp

(
− βixj − βjxi −

∑
ℓ̸=i,j

xℓβℓ
))−1

.

Using βi = βj yields

pY |Xswap(i,j
(y|x) =

(
1 + exp

(
− βjxj − βixi −

∑
ℓ ̸=i,j

xℓβℓ
))−1

=
(
1 + exp

(
−
∑
ℓ

xℓβℓ
))−1

= pY |X(y|x) .

This completes the proof for the first part. For the other direction, suppose that the symmetric influence for i, j holds, thereby for every
x ∈ Rd we have

P(Y = +1|Xswap(i,j) = x) = P(Y = +1|X = x) .

By using pY |Xswap(i,j)
(y|x) = pY |X(y|xswap(i,j)) along with the logistic regression relation, we get

(
1 + exp

(
− βixj − βjxi −

∑
ℓ ̸=i,j

xℓβℓ
))−1

=
(
1 + exp

(
−
∑
ℓ

xℓβℓ
))−1

.

In the next step, using the function log( u
1−u

) on the both sides, we get

βixi + βjxj = βixj + βjxi .

Since this must hold for all xi, xj values, we must have βi = βj . The proof for the linear regression setting follows the exact similar
argument.

A.3. Proof of Proposition 2.5

Since x is a multivariate Gaussian, it means that its coordinates are jointly Gaussian random variables, therefore swapping the location of
two coordinates i and j does not change the joint Gaussian property. On the other hand, from the linear transform xswap(i,j) = Pijx it is
easy to arrive at xswap(i,j) ∼ N(Pijµ, PijΣPij). We are only left with upper bounding the KL divergence of density functions N(µ,Σ)
and N(Pijµ, PijΣPij). For this end, we borrow a result from (Duchi, 2007) for kl-divergence of multivariate Gaussian distributions.
Formally we have,

dkl (N (µ1,Σ1)∥N (µ2,Σ2))

=
1

2

(
log

detΣ2

detΣ1
− d+ tr(Σ−1

2 Σ1) + (µ2 − µ1)
TΣ−1

2 (µ2 − µ1)

)
.

By replacing Σ2 = Σ and Σ1 = PijΣPij along with the fact that detPij = −1, we arrive at

dKL
(
L(Xswap(i,j))∥L(X)

)
=

1

2

(
−d+ tr(Σ−1PijΣPij) + (µ− Pijµ)

TΣ−1(µ− Pijµ)
)
.

Finally using Pinsker’s inequality2 completes the proof.

2For two denisty functions p, q this holds dTV(p, q) ≤
√

dkl(p∥q)
2

13
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A.4. Proof of Proposition 2.6

In this setup, form the construction of the feature vector x ∈ {0, 1}d it is easy to get that for every α ∈ {0, 1}d we have

P(x = α) =
I(|α| = m)(

d
m

) .

From this structure, since swapping the coordinates does not change the number of non-zero entries of the binary feature vector, we get
|α| = |αswap(i,j)|. Thereby, we get

P(x = α) = P(xswap(i,j) = α) , ∀α ∈ {0, 1}d.

Therefore dTV
(
L(X),L(Xswap(i,j))

)
= 0.

A.5. Proof of Theorem 3.1

Let
π = P

(
T (X(1), Y (1)) ≥ T (X

(2)

swap(i,j), Y
(2)
)
.

For the sake of simplicity, we adopt the following shorthands: T1 = T (X(1), Y (1)) and T2 = T (X
(2)

swap(i,j), Y
(2)). This gives us

π = P(T1 ≥ T2)

= ET1 [P(T1 ≥ T2|T1)]

= ET1 [GT (T1)]

=

∫
GT (t)dFT (t)

=

1∫
0

GT (F
−1
T (u))du .

In the next step, we let δ = 2 exp(−nβ2), then by plugging this relation in the given condition in Theorem 3.1 we arrive at

|π − 1/2| ≥ δ + τ + τX +

√
log(2/α)

n
. (10)

We now focus on the decision rule 2. Let τ ′ = τ + τX , then we get

P(Ψ(X,Y) = 1) = P

(
|Un − 1/2| ≥ τ ′ +

√
log(2/α)

n

)
. (11)

On the other hand, from triangle inequality we have |Un − 1/2| ≥ |π − 1/2| − |Un − π|. Plugging this into 10 yields

|Un − 1/2| ≥ δ + τ ′ +

√
log(2/α)

n
− |Un − π|

Combining this with 11 gives us

P(Ψ(X,Y) = 1) ≥ P (δ ≥ |Un − π|)
= 1− P (δ ≤ |Un − π|) . (12)

In the next step, we return to the given relation for Un in Algorithm 1. From the definition of π, for each m we have

P
(
T
(
X(m), Y (m)) ≤ T

(
X̃(m), Ỹ (m))) = π .

Therefore by an application of the Hoeffding’s inequality we get

P (|Un − π| ≥ δ) ≤
√

log(2/δ)

n
.

Finally, recalling δ = 2 exp(−nβ2) yields

P (|Un − π| ≥ δ) ≤ β .

Using this in 12 completes the proof. In this case, statistical power not smaller than 1− β can be achieved.

14
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A.6. Proof of Theorem 3.2

From the isotropic Gaussian distribution, we have τX = 0. We next start by the ODC function GT ◦ F−1
T . For this end, we start by the

definition of FT where for some non-negative t we have:

FT (t) = P(|Y (1) − θ̂TX(1)| ≤ t)

= P(|(θ∗ − θ̂)TX(1) + ε1| ≤ t)

= P(−t ≤ (θ∗ − θ̂)TX(1) + ε1 ≤ t) .

On the other hand, we know that xT(θ̂ − θ∗) + ε has a Gaussian distribution N(0, ∥θ∗ − θ̂∥22 + σ2). This brings us

FT (t) = P(−t ≤ (θ∗ − θ̂)TX(1) + ε1 ≤ t)

= P

 −t√
∥θ∗ − θ̂∥22 + σ2

≤ (θ∗ − θ̂)TX(1) + ε1√
∥θ̂ − θ∗∥22 + σ2

≤ t√
∥θ̂ − θ∗∥22 + σ2


= Φ

 t√
σ2 + ∥θ∗ − θ̂∥22

− Φ

− t√
σ2 + ∥θ∗ − θ̂∥22


= 2Φ

 t√
σ2 + ∥θ∗ − θ̂∥22

− 1 , (13)

where the last line comes from the fact that Φ(t) + Φ(−t) = 1 for every real value t. We introduce the shorthand θ̂swap = θ̂swap(i,j), then
by a similar argument we get

GT (t) = P(|Y (2) − θ̂TX
(2)

swap(i,j)| ≤ t)

= P(|(θ∗ − θ̂swap)
TX(2) + ε2| ≤ t)

= 2Φ

 t√
σ2 + ∥θ∗ − θ̂swap∥22

− 1 , (14)

By combining 13 and 14 we get

FT ◦G−1
T (u) = 2Φ

(
σ2

σ1
Φ−1

(u+ 1

2

))
− 1 ,

for σ2 and σ1 given by
σ2
1 = σ2 + ∥θ∗ − θ̂∥22 , σ2

2 = σ2 + ∥θ∗ − θ̂swap∥22 .

We consider γ = σ2
σ1

. Plugging this into the power expression in Theorem 3.1 we arrive at

FT (G
−1
T (u))− u = 2

[
Φ

(
γΦ−1

(u+ 1

2

))
− u+ 1

2

]
.

In the next step, by using the change of variable v = u+1
2

we get∫ 1

0

[FT (G
−1
T (u))− u]du = 4

∫ 1

1
2

[
Φ
(
γΦ−1(v)

)
− v
]
dv .

We then introduce function ψ : [0,+∞] → R as following

ψ(γ) = 4

∫ 1

1
2

Φ
(
γΦ−1(v)

)
dv .

This implies that

ψ(γ)− ψ(1) =

∫ 1

0

[FT (G
−1
T (u))− u]du . (15)

15
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By differentiating ψ(.) with respect to γ in its original definition we obtain

dψ

dγ
= 4

∂

∂γ

∫ 1

1
2

Φ
(
γΦ−1(v)

)
dv

= 4

∫ 1

1
2

Φ−1(v)φ
(
γΦ−1(v)

)
dv .

We next use s = Φ−1(v) to arrive at the following

dψ

dγ
= 4

∫ +∞

0

sφ
(
γs
)
φ(s)ds

=
4

2π

∫ +∞

0

s exp
(
− s2

2
(1 + γ2)

)
ds

=
2

π(γ2 + 1)

∫ +∞

0

s exp(−s2/2)ds

=
2

π(γ2 + 1)
.

Since the differentiation of ψ with respect to γ is provided above, we then can use this and obtain the closed form equation for ψ(u). This
indeed is given by

ψ(γ) = C +
2

π
arctan(γ) ,

For some constant value C. In order to find C, note that ψ(1) = 4
1∫
1
2

vdv = 3
2

. This brings us ψ(γ) = 1 + 2
π
arctan(γ). Using this in

15 yields ∣∣∣∣∫ 1

0

[FT (G
−1
T (u))− u]du

∣∣∣∣ = |ψ(γ)− ψ(1)|

=
2

π
|arctan(γ)− arctan(1)| .

On the other hand, from the identity arctan(x)− arctan(y) = arctan x−y
1+xy

we arrive at:

∣∣∣∣∫ 1

0

[FT (G
−1
T (u))− u]du

∣∣∣∣ = 2

π

∣∣∣∣arctan(γ − 1

1 + γ

)∣∣∣∣
=

2

π
arctan

( |γ − 1|
1 + γ

)
,

where in the last relation we used arctan(|.|) = | arctan(.)| (note that γ ≥ 0). We next use γ = σ2/σ1 to get∣∣∣∣∫ 1

0

[FT (G
−1
T (u))− u]du

∣∣∣∣ = 2

π
arctan

(
|σ1 − σ2|
σ1 + σ2

)
. (16)

On the other hand, from σ2
1 + σ2

2 ≥ 2σ1σ2 we get

∆T =
|σ1 − σ2|
|σ1 + σ2|

≥ |σ2
1 − σ2

2 |
2(σ2

1 + σ2
2)

We then use this with the definition of σ1, σ2 to get

∆T ≥ 1

2

∣∣∣∥θ∗ − θ̂∥22 − ∥θ∗ − θ̂swap∥22
∣∣∣

2σ2 + ∥θ∗ − θ̂∥22 + ∥θ∗ − θ̂swap∥22

=
1

2

∣∣∣−2θ̂Tθ∗ + 2θ̂Tswapθ
∗
∣∣∣

2σ2 + 2∥θ∗∥22 + 2∥θ̂∥22 − 2θ̂Tθ∗ − 2θ̂Tswapθ∗
,

16
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where we used ∥θ∥2 = ∥θswap∥2. In the next step, since θ̂swap,ℓ = θ̂ℓ for all ℓ ̸= i, j we get

∆T ≥ 1

2

∣∣∣−θ̂iθ∗i − θ̂jθ
∗
j + θ̂iθ

∗
j + θ̂jθ

∗
i

∣∣∣
σ2 + ∥θ∗∥22 + ∥θ̂∥22 − θ̂Tθ∗ − θ̂Tswapθ∗

=
1

2

∣∣∣−θ̂iθ∗i − θ̂jθ
∗
j + θ̂iθ

∗
j + θ̂jθ

∗
i

∣∣∣
σ2 + ∥θ∗ − θ̂∥22 + θ̂Tθ∗ − θ̂Tswapθ∗

In the next step, by using the observation that θ̂swap,ℓ = θ̂ℓ for all ℓ ̸= i, j another time we get

∆T ≥ 1

2

|θ̂i − θ̂i||θ∗i − θ∗j |
σ2 + ∥θ∗ − θ̂∥2 + (θ∗i − θ∗j )(θ̂i − θ̂j)

Thereby we get

∆T ≥ 1

2

|θ̂i − θ̂i||θ∗i − θ∗j |
σ2 + ∥θ∗ − θ̂∥2 + |θ∗i − θ∗j ||θ̂i − θ̂j |

Using the above relation in 16 we get∣∣∣∣∫ 1

0

[FT (G
−1
T (u))− u]du

∣∣∣∣ ≥ 2

π
arctan

(
1

2

|θ̂i − θ̂i||θ∗i − θ∗j |
σ2 + ∥θ∗ − θ̂∥2 + |θ∗i − θ∗j ||θ̂i − θ̂j |

)
(17)

By recalling the given condition in Theorem 3.2 we have

|θ∗i − θ∗j | ≥
2 tan(π

2
(ρn(α, β, τ)))

1− 2 tan(π
2
(ρn(α, β, τ)))

(
σ2 + ∥θ̂ − θ∗∥22

)
|θ̂i − θ̂j |

,

By using tan(π
2
(ρn(α, β, τ))) ≤ 1

2
in the above relation we get

2

π
arctan

(
1

2

|θ̂i − θ̂i||θ∗i − θ∗j |
σ2 + ∥θ∗ − θ̂∥2 + |θ∗i − θ∗j ||θ̂i − θ̂j |

)
≥ ρn(α, β, τ). (18)

By combining 17 and 18 we get ∣∣∣∣∫ 1

0

[FT (G
−1
T (u))− u]du

∣∣∣∣ ≥ ρn(α, β, τ) .

Finally using Theorem 3.2 completes the proof,

A.7. Proof of Theorem 3.3

We first show that in this case, (τ = 0) for mixture of Gaussians, under the null hypothesis, we have τX = 0. For this end, from the
Bayes’ formula it is easy to get L(Y |X) = Bern(g(x, µ)) with

g(x, µ) =
1

1 + 1−q
q
e−xTµ

.

With a similar argument, it can be observed that

L(Y |X) = Bern(g(x, µswap(i,j))) .

Given that dTV(Bern(a),Bern(b)) = |a − b|, under the null hypothesis (with τ = 0) we must have g(x, µ) = g(x, µswap(i,j)) almost
surely for all x values. This implies that xTµ = xTµswap(i,j) almost surely, thereby we have µi = µj . In the next step, we show that if
µi = µj then τX = 0. We then note that

L(X) = qN(+µ, Id) + (1− q)N(−µ, Id) ,
L(Xswap(i,j)) = qN(+µswap(i,j), Id) + (1− q)N(−µswap(i,j), Id) .

17
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In the next step, using µi = µj we realize that µswap(i,j) = µ, therefore L(X) = L(Xswap(i,j)). This implies that τX = 0.

For the rest of the proof, we follow a similar argument as per proof of Theorem 3.2 and we first characterize cdf functions FT and GT . In
this case we have

FT (t) = P(Y (1)θ̂TX(1) ≤ t)

= qP(θ̂TX(1) ≤ t|Y (1) = +1)+

+ (1− q)P(−θ̂TX(1) ≤ t|Y (1) = −1)

= qP(Z+ ≤ t) + (1− q)P(Z− ≤ t) ,

where Z+ ∼ N(µTθ̂, ∥θ̂∥22) and Z− ∼ N(−µTθ̂, ∥θ̂∥22). This yields

FT (t) = qΦ
( t− θ̂Tµ

∥θ̂∥2

)
+ (1− q)

(
1− Φ

(−t+ θ̂Tµ

∥θ̂∥2

))

= Φ

(
t− θ̂Tµ

∥θ̂∥2

)
,

where in the last line we used Φ(t) + Φ(−t) = 1. We next introduce the shorthands θ̂swap = θ̂swap(i,j) and µswap = µswap(i,j), then by a
similar argument we arrive at

GT (t) = Φ

(
t− θ̂Tswapµ

∥θ̂swap∥2

)

Since θ̂Tswapµ = µT
swapθ̂ and ∥θ̂swap∥ = ∥θ̂∥ the expression for GT (t) can be written as the following:

GT (t) = Φ

(
t− θ̂Tµswap

∥θ̂∥2

)

In the next step, it is easy to compute the quantile function G−1
T (u) = ∥θ̂∥2Φ−1(u) + θ̂Tµswap. This brings us

FT (G
−1
T (u)) = Φ

(
Φ−1(u) +

θ̂T(µswap − µ)

∥θ̂∥2

)
.

By introducing λ =
θ̂T(µswap−µ)

∥θ̂∥2
and the function ρ(λ) =

∫ 1

0
Φ(Φ−1(u) + λ)du we obtain

∫ 1

0

FT (G
−1
T (u))du = ρ(λ) .

On the other hand, by differentiating ρ(λ) with respect to λ we get

∂ρ

∂λ
=

∂

∂λ

∫ 1

0

Φ(Φ−1(u) + λ)du

=

∫ 1

0

φ(Φ−1(u) + λ)du .

In the next step, by using the change of variable s = Φ−1(u) we get that

∂ρ

∂λ
=

∫ ∞

−∞
φ(s+ λ)φ(s)ds

=
1

2π

∫ ∞

−∞
exp

(
− (s+ λ)2

2
− s2

2

)
ds

=
exp(−λ2/4)

2π

∫ +∞

−∞
exp

(
− (

√
2s+ λ/

√
2)2

2

)
ds

=
exp(−λ2/4)

2
√
2π

∫ +∞

−∞
exp

(
− (t+ λ/

√
2)2

2

)
dt =

exp(−λ2/4)

2
√
π

.

18
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Therefore we get ρ(λ) = ρ(0) +
∫ λ

0

exp(−s2/4)

2
√
π

= ρ(0) + Φ( λ√
2
)− 1

2
, Since ρ(0) = 1/2, we arrive at ρ(λ) = Φ

(
λ√
2

)
. Next from the

definition of ρ(λ) we have ∫ 1

0

[
FT (G

−1
T (u))− u

]
du = ρ(λ)− ρ(0) .

In the next step, we use the equivalent value of λ in the function ρ(λ) to get

∫ 1

0

[
FT (G

−1
T (u))− u

]
du = Φ

(
θ̂T(µswap − µ)

√
2∥θ̂∥2

)
− Φ(0) .

Therefore we get ∣∣∣∣∫ 1

0

[
FT (G

−1
T (u))− u

]
du

∣∣∣∣ =
∣∣∣∣∣Φ
(
θ̂T(µswap − µ)

√
2∥θ̂∥2

)
− Φ(0)

∣∣∣∣∣ .
On the other hand, the normal cdf satisfies the following property∣∣∣∣Φ(t)− 1

2

∣∣∣∣ = Φ(|t|)− 1

2
, ∀t ∈ R

By using this we get ∣∣∣∣∫ 1

0

[
FT (G

−1
T (u))− u

]
du

∣∣∣∣ = Φ

(∣∣∣∣ θ̂T(µswap − µ)
√
2∥θ̂∥2

∣∣∣∣
)

− 1

2
. (19)

In the next step, by using the fact that µswap,ℓ = µℓ for ℓ ̸= i, j we get that

θ̂T(µswap − µ) = θ̂i(µswap,i − µi) + θ̂j(µswap,j − µj)

= θ̂i(µj − µi) + θ̂j(µi − µj)

= −(θ̂i − θ̂j)(µi − µj) .

Using this in 19 yields ∣∣∣∣∫ 1

0

[
FT (G

−1
T (u))− u

]
du

∣∣∣∣ = Φ

(
|(θ̂i − θ̂j)(µi − µj)|√

2∥θ̂∥2

)
− 1

2
(20)

On the other hand, by recalling the condition on |µi − µj | from Theorem 3.3 we have

|µi − µj | ≥ Φ−1

(
ρn(α, β, 0) + 2Φ

(
|µi − µj |√

2

)
− 1

2

) √
2∥θ̂∥2

|θ̂i − θ̂j |
(21)

Combining 20 and 21 yields ∣∣∣∣∫ 1

0

[
FT (G

−1
T (u))− u

]
du

∣∣∣∣ ≥ ρn(α, β, 0) .

Finally, using Theorem 3.1 completes the proof.

B. Additional Numerical Experiments
B.1. Size of the test (full experiments)

We refer to Figure 3 for experiment on the size of the test.

B.2. Power of the test (full experiments)

We refer to Figure 4 for experiment on power of the test.

B.3. binary classification under mixture of Gaussians

In this section, we consider the problem of testing for symmetric influence for binary classification under a mixture of Gaussian model. We
consider the data generative law 5 with q = 1/2 and feature dimension d = 10. We consider µ̃ = [1, 2, 3, . . . , 10] and let µ = µ̃

∥µ̃∥2
. We

follow the score function given in Theorem 3.3 and consider T (x, y) = yθ̂Tx for some θ̂ ∼ N(0, Id). We consider three different number
of samples n = 5000, 20000, 50000 for this experiment. Figure 5 denote the results. Each number is averaged over 1000 independent
experiments. It can be observed that pairs with higher contrast between their µ values are rejected more often.
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(b) α = 0.15
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(c) α = 0.2

Figure 3: Average rejection rate of the null hypothesis 1 for τ = 0 and features coming from an isotropic Gaussian distribution
x ∼ N(0, I10). In this experiment, we consider y|x ∼ N(xTSx, 1) for a positive definite matrix Si,j = 1 + I(i = j) (2
on diagonal and 1 on off-diagonal entries). The structure of S implies that the symmetric influence holds for every pair
of features. We consider three significance levels α = 0.1, 0.15, 0.2 (from left to right). The small cell (i, j) in each plot,
represents rejection rates for testing symmetric influence for features i and j. In this experiment, the number of data points
is 1000 and the method is run with the score function T (x, y) = |y − xTθ̂| for θ̂ ∼ N(0, I10). The reported numbers are
averaged over 1000 experiments. It can be seen that the size of the test is controlled at the pre-determined significance levels.

Train pair Target 1 Target 2 Target 3 Target 4 Target 5

pval=0.0023 pval=0.0026 pval=0.0092 pval=0.0173 pval=0.2108

pval=0.0023 pval=0.0026 pval=0.0084 pval=0.0188 pval=0.2108

Table 2. Verifying the robustness of our findings for two pairs of training samples, that are highly close to each other.

B.4. robustness of data models experiment

In the second experiment, we consider a pair of training samples with 5 target examples. The first four targets are statistically significant
(at level α = 0.05), while the target 5 gives pval = 0.21. We then replace the two training samples with some of their close other
pictures, and compute the p-values for the new pair of images. We can see that the obtained p-values are somewhat close to the previous
examples, which indicates the robustness of output results. The images along with p-values can be seen in Table 2.
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(b) σ = 2
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(c) σ = 3

Figure 4: Average rejection rate of the null hypothesis of 1 for τ = 0 and features with isotropic Gaussian distribution
x ∼ N(0, I10). In this experiment, we consider y|x ∼ N(xTθ∗, 1) for θ∗ = [1, 1, 2, 2, 3, 3, 4, 4, 5, 5]. In this experiment the
symmetric influence holds for pairs of features (1, 2), (3, 4), (5, 6), (7, 8), and (9, 10). The small cell (i, j) in each plot,
represents rejection rates for testing symmetric influence for features i and j at significance level α = 0.1. In this experiment,
the number of data points is 1000 and the method is run with the score function T (x, y) = |y − xTθ̂| for θ̂ ∼ N(θ∗, σ2I10)
for three different σ values σ = 1, 2, 3 (from left to right). The reported numbers are averaged over 1000 experiments.
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(a) n = 5000
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(b) n = 20000
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(c) n = 50000

Figure 5: Average rejection rate of the null hypothesis of 1 for τ = 0 and features with isotropic Gaussian distribution
x ∼ N(0, I10) In this experiment, we consider binary classification under the mixture of Gaussian model 5 for q = 1/2 and
µ = µ

∥µ̃∥2
for µ̃ = [1, 2, . . . , 10]. The small cell (i, j) in each plot, represents rejection rates for testing symmetric influence

for features i and j at significance level α = 0.1. In this experiment, three different values for number of data points is
considered n = 5000, 20000, 50000 (from left to right). We run Algorithm 1 with the score function T (x, y) = yxTθ̂ for
θ̂ ∼ N(0, I10). The reported numbers are averaged over 1000 experiments.
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