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Abstract
We show that the stochastic gradient bandit al-
gorithm converges to a globally optimal policy
at an O(1/t) rate, even with a constant step size.
Remarkably, global convergence of the stochastic
gradient bandit algorithm has not been previously
established, even though it is an old algorithm
known to be applicable to bandits. The new re-
sult is achieved by establishing two novel tech-
nical findings: first, the noise of the stochastic
updates in the gradient bandit algorithm satisfies
a strong “growth condition” property, where the
variance diminishes whenever progress becomes
small, implying that additional noise control via
diminishing step sizes is unnecessary; second,
a form of “weak exploration” is automatically
achieved through the stochastic gradient updates,
since they prevent the action probabilities from
decaying faster than O(1/t), thus ensuring that
every action is sampled infinitely often with prob-
ability 1. These two findings can be used to show
that the stochastic gradient update is already “suf-
ficient” for bandits in the sense that exploration
versus exploitation is automatically balanced in a
manner that ensures almost sure convergence to a
global optimum. These novel theoretical findings
are further verified by experimental results.

1. Introduction
Algorithms for multi-armed bandits (MABs) need to bal-
ance exploration and exploitation to achieve desirable
performance properties (Lattimore & Szepesvári, 2020).
Well known bandit algorithms generally introduce auxiliary
mechanisms to control the exploration-exploitation trade-off.
For example, the upper confidence bound strategies (UCB,
Lai et al. (1985); Auer et al. (2002a)), manage exploration
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explicitly by designing auxiliary bonuses that induce opti-
mism under uncertainty; Thompson sampling (Thompson,
1933; Agrawal & Goyal, 2012) maintains a posterior over
rewards that has to be updated and sampled from tractably.
The theoretical analysis of such algorithms typically fo-
cuses on bounding their regret, i.e., showing that the av-
erage reward obtained by the algorithm approaches that
of the optimal action in hindsight, at a rate that is statis-
tically optimal. However, managing exploration bonuses
via uncertainty quantification is difficult in all but simple
environments (Gawlikowski et al., 2021), while posterior
updating and sampling can also be computationally difficult
in practice, which make the UCB and Thompson sampling
challenging to apply in real world scenarios.

Meanwhile, stochastic gradient-based techniques have wit-
nessed widespread use across the breadth of machine learn-
ing. For bandit and reinforcement learning problems,
stochastic gradient yields a particularly simple algorithm—
the stochastic gradient bandit algorithm (Sutton & Barto,
2018, Section 2.8)—that omits any explicit control mech-
anism over exploration. This algorithm is naturally com-
patible with deep neural networks, in stark contrast to UCB
and Thompson sampling, and has seen significant practical
success (Schulman et al., 2015; 2017; Ouyang et al., 2022).
Surprisingly, the theoretical understanding of this algorithm
remains under-developed: the global convergence and regret
properties of the stochastic gradient bandit algorithm is still
open, which naturally raises the question:

Is the stochastic gradient bandit algorithm able to balance
exploration vs. exploitation to identify an optimal action?

Such an understanding is paramount to further improving
the underlying approach. In this paper, we take a step in
this direction by studying the convergence properties of the
canonical stochastic gradient bandit algorithm in the sim-
plest setting of multi-armed bandits, and answer the question
affirmatively: the distribution over the arms maintained by
this algorithm almost surely concentrates asymptotically on
a globally optimal action.

Of course, the broader literature on the use of stochastic
gradient techniques in reinforcement learning has a long
tradition, dating back to stochastic approximation (Rob-
bins & Monro, 1951) with likelihood ratios (“log trick”)
(Glynn, 1990) and REINFORCE policy gradient estima-
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Reference Convergence rate Learning rate η Remarks

Zhang et al. (2020a) Õ(1/
√
t) Õ(1/

√
t) Log-barrier regularization

Ding et al. (2021) O(1/
√
t) O(1/t) Entropy regularization

Zhang et al. (2021) O(1/
√
t) O(1/ log t) Gradient truncation + variance reduction

Yuan et al. (2022) Õ(1/t1/3) O(1/t) ABC assumptions
Mei et al. (2022) O(C∆/t) O(1/t) Oracle baseline, C∆ is initialization and problem dependent
This paper O(C∆/t) O(1) C∆ is initialization and problem dependent

Table 1. Global convergence results for gradient based methods. To simplify comparison, regret or sample complexity bounds have been
converted to convergence rates through the usual translations. (This comparison does not capture differences in other metrics like regret.)
We also compare the learning rates used in the underlying algorithm, since the ability to use a constant learning rate is a key insight of the
analysis presented and is generally preferred in practice. Note that Zhang et al. (2021) claimed a constant learning rate; however, their
learning rate must follow a decaying “truncation threshold”, which means the actual learning rate in (Zhang et al., 2021) is decaying.

tion (Williams, 1992). It is well known that REINFORCE
(Williams, 1992) with on-line Monte Carlo sampling pro-
vides an unbiased gradient estimator of bounded variance,
which is sufficient to guarantee convergence to a station-
ary point if the learning rates are decayed appropriately
(Robbins & Monro, 1951; Zhang et al., 2020b). However,
convergence to a stationary point is an extremely weak guar-
antee for bandits, since any deterministic policy, whether
optimal or sub-optimal, has a zero gradient and is therefore
a stationary point. Convergence to a stationary point, on
its own, is insufficient to ensure convergence to a globally
optimal policy or even to establish regret bounds.

Recently, it has been shown that if true gradients are used,
softmax policy gradient (PG) methods converge to a globally
optimal policy asymptotically (Agarwal et al., 2021), with
an O(1/t) rate (Mei et al., 2020b), albeit with initialization
and problem dependent constants (Mei et al., 2020a; Li
et al., 2021). However, these results do not apply to the
gradient bandit algorithm as it uses stochastic gradients, and
a key theoretical challenge is to account for the effects of
stochasticity from on-policy sampling and reward noise.

More recent results on the global convergence of PG meth-
ods with stochastic updates have been established, as sum-
marized in Table 1. In particular, Zhang et al. (2020b)
showed that REINFORCE (Williams, 1992) with O(1/

√
t)

learning rates and log-barrier regularization has Õ(1/
√
t)

average regret. Ding et al. (2021) proved that softmax PG
with O(1/t) learning rates and entropy regularization has
Õ(ϵ−2) sample complexity. Zhang et al. (2021) showed that
with gradient truncation softmax PG gives O(ϵ−2) sample
complexity. Under extra assumptions, Yuan et al. (2022)
obtained Õ(ϵ−3) sample complexity with O(1/t) learning
rates. Mei et al. (2022) analyzed on-policy natural PG
with value baselines and O(1/t) learning rates and proved
O(1/t) convergence rate. The results in these works are ex-
pressed in different metrics, such as average regret, sample
complexity, or convergence rate, which can sometimes make
comparisons difficult. However, for the bandit case, where

only one example is used in each iteration, these metrics be-
come comparable, such that O(ϵ−n) sample complexity is
equal to O(t−1/n) convergence rate, which is stronger than
O(t−1/n) average regret, but not necessarily vice versa.1

The two key shortcomings in these existing results are, first,
they introduce decaying learning rates (or regularization
and/or variance reduction) to explicitly control noise, and
second, such auxiliary techniques generally incur additional
computation and decelerate convergence to an O(1/

√
t)

or slower rate. The only exception to the latter is Mei
et al. (2022), which considers an aggressive O(1/t) learning
rate decay and still establishes O(1/t) convergence, but
leverages an unrealistic baseline to achieve this.

In this paper, we provide a new global convergence analysis
of stochastic gradient bandit algorithms with constant learn-
ing rates by establishing novel properties and techniques.
There are two main benefits to the results presented.

• By considering only constant learning rates, we show
that auxiliary forms of noise control such as learning
rate decay, regularization and variance reduction are
unnecessary to achieve global convergence, which jus-
tifies the use of far simpler algorithms in practice.

• Unlike previous work, we show that a practical and
general algorithm can achieve an optimal O(1/t) con-
vergence rate and O(log T ) regret asymptotically.

The remaining paper is organized as follows. Sections 2
and 3 introduce the gradient bandit algorithms and standard
stochastic gradient analysis respectively. Section 4 presents
our novel technical findings, characterizing the automatic
noise cancellation effect and global landscape properties,
which is then leveraged in Section 5 to establish novel global
convergence results. Section 6 discusses the effect of using

1It is worth noting that these works also contain results for
general Markov decision processes (MDPs). We express their
results for bandits here by treating this case as a single state MDP.
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baselines. Section 7 presents a simulation study to verify
the theoretical findings, and Section 8 provides further dis-
cussions. Section 9 briefly concludes this work.

2. Gradient Bandit Algorithms
A multi-armed bandit (MAB) problem is specified by an
action set [K] := {1, 2, · · · ,K} and random rewards with
mean vector r ∈ RK . For each action a ∈ [K], the mean
reward r(a) is the expectation of a bounded reward distribu-
tion,

r(a) =

∫ Rmax

−Rmax

x · Pa(x)µ(dx), (1)

where µ is a finite measure over [−Rmax, Rmax], Pa(x) ≥
0 is a probability density function with respect to µ, and
Rmax > 0 is the reward range. Since the sampled reward
is bounded, we also have r ∈ [−Rmax, Rmax]

K . We make
the following assumption on r.
Assumption 2.1 (True mean reward has no ties). For all
i, j ∈ [K], if i ̸= j, then r(i) ̸= r(j).
Remark 2.2. Assumption 2.1 is used in the proofs for The-
orem 5.1. In particular, “convergence toward strict one-hot
policies” above Theorem 5.1 is needed as a result of As-
sumption 2.1. We discuss intuition later for establishing the
same result without Assumption 2.1.

According to Sutton & Barto (2018, Section 2.8), the gradi-
ent bandit algorithm maintains a softmax distribution over
actions Pr (at = a) = πθt(a) such that πθt = softmax(θt),
where

πθt(a) =
exp{θt(a)}∑

a′∈[K] exp{θt(a′)}
, for all a ∈ [K], (2)

and θt ∈ RK is the parameter vector to be updated.

Algorithm 1 Gradient bandit algorithm (without baselines)
Input: initial parameters θ1 ∈ RK , learning rate η > 0.
Output: policies πθt = softmax(θt).
while t ≥ 1 do

Sample one action at ∼ πθt(·).
Observe one reward sample Rt(at) ∼ Pat

.
for all a ∈ [K] do

if a = at then
θt+1(a)← θt(a) + η · (1− πθt(a)) ·Rt(at).

else
θt+1(a)← θt(a)− η · πθt(a) ·Rt(at).

end if
end for

end while

It is obvious that Algorithm 1 is an instance of stochastic
gradient ascent with an unbiased gradient estimator (Ne-
mirovski et al., 2009), as shown below for completeness.

Proposition 2.3. Algorithm 1 is equivalent to the following
stochastic gradient ascent update on π⊤

θ r,

θt+1 ← θt + η ·
dπ⊤

θt
r̂t

dθt
(3)

= θt + η ·
(
diag(πθt)− πθtπ

⊤
θt

)
r̂t, (4)

where Et

[
dπ⊤

θt
r̂t

dθt

]
=

dπ⊤
θt

r

dθt
, and

(
dπθ

dθ

)⊤
= diag(πθ) −

πθπ
⊤
θ is the Jacobian of θ 7→ πθ := softmax(θ), r̂t(a) :=

I{at=a}
πθt (a)

·Rt(a) for all a ∈ [K] is the importance sampling
(IS) estimator, and we set Rt(a) = 0 for all a ̸= at.

Based on Proposition 2.3, Sutton & Barto (2018, Section
2.8) assert that Algorithm 1 has “robust convergence proper-
ties” toward stationary points without rigorous justification.
However, as mentioned in Section 1, convergence to station-
ary points is a very weak assertion in a MAB, since this does
not guarantee sub-optimal local maxima are avoided. Hence
this claim does not assure global convergence or sub-linear
regret for the gradient bandit algorithm.

3. Preliminary Stochastic Gradient Analysis
In this section, we start with local convergence of stochastic
gradient bandit algorithm. The understanding of the behav-
ior of the algorithm involves assessing whether optimization
progress is able to overcome the effects of the sampling
noise. This trade-off reveals inability of the vanilla analysis
and inspires our refined analysis.

To illustrate the basic ideas, we first recall some known re-
sults about the form of π⊤

θ r and the behavior of Algorithm 1
and make a preliminary attempt to establish convergence to
a stationary point. First, π⊤

θ r is a 5/2-smooth function of
θ ∈ RK (Mei et al., 2020b, Lemma 2), which implies that,

π⊤
θtr − π⊤

θt+1
r ≤ −

〈dπ⊤
θt
r

dθt
, θt+1 − θt

〉
+

5

4
· ∥θt+1 − θt∥22

= −η ·
〈dπ⊤

θt
r

dθt
,
dπ⊤

θt
r̂t

dθt

〉
+

5

4
· η2 ·

∥∥∥∥dπ⊤
θt
r̂t

dθt

∥∥∥∥2
2

,

where the last equation follows from Eq. (3). Second, as is
well known, the on-policy stochastic gradient is unbiased,
and its variance / scale is uniformly bounded over all πθ.

Proposition 3.1 (Unbiased stochastic gradient with bounded
variance / scale). Using Algorithm 1, we have, for all t ≥ 1,

Et

[
dπ⊤

θt
r̂t

dθt

]
=

dπ⊤
θt
r

dθt
, and Et

[∥∥∥∥dπ⊤
θt
r̂t

dθt

∥∥∥∥2
2

]
≤ 2R2

max,

where Et[·] is on randomness from the on-policy sampling
at ∼ πθt(·) and reward sampling Rt(at) ∼ Pat .
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Therefore, according to Proposition 3.1, we have,

π⊤
θtr − Et[π

⊤
θt+1

r] ≤ −η ·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥2
2

+
5R2

max

2
· η2. (5)

Since the goal is to maximize π⊤
θ r, we want the first term

on the r.h.s. of Eq. (5) (“progress”) to overcome the second
term (“noise”) to ensure that Et[π

⊤
θt+1

r] > π⊤
θt
r. Unfortu-

nately, this is not achievable using a constant learning rate
η ∈ Θ(1), since the “progress” contains a vanishing term

of
∥∥∥dπ⊤

θt
r

dθt

∥∥∥
2
→ 0 as t → ∞ while the “noise” term will

remain at constant level. Therefore, based on this bound, it
seems necessary to use a diminishing learning rate η → 0
to control the effect of noise for local convergence. In fact,
with appropriate learning rate control (Robbins & Monro,
1951; Ghadimi & Lan, 2013; Zhang et al., 2020b), it can be
shown that minimum gradient norm converge to zero. From
Eq. (5), by algebra and telescoping, we have,

min
1≤t≤T

E
[∥∥∥dπ⊤

θt
r

dθt

∥∥∥2
2

]
≤

E[π⊤
θT+1

r]−E[π⊤
θ1

r]∑T
t=1 ηt

+
5R2

max

2

∑T
t=1 η2

t∑T
t=1 ηt

.

Choosing ηt ∈ Θ(1/
√
t), the r.h.s. of the above inequality is

in Õ(1/
√
T ), i.e., the minimum gradient norm approaches

zero as T →∞ (Ghadimi & Lan, 2013; Zhang et al., 2020b).
However, the decaying learning rate will slow down the
convergence as is seen. Next, we will present our novel
technical characterization of the noise in stochastic gradient
bandit that can allow us to avoid this choice.

4. New Analysis: Noise Vanishes Automatically
As discussed in Section 3, noise control is at the heart of
standard stochastic gradient analysis, and different tech-
niques (entropy or log-barrier regularization, learning rate
schemes, momentum) are used to explicitly combat noise in
stochastic updates. Here we take a different perspective by
asking whether the sampling noise will automatically dimin-
ish in a way that there is no need to explicitly control it. In
particular, we investigate whether the constant order of the
second term in Eq. (5) (“noise”) is accurately characterizing
the sampling noise, or whether this bound can be improved.

Note that the “noise” constant 5R2
max in Eq. (5) arises from

two quantities: the standard smoothness constant of 5/2,
and the variance upper bound of 2R2

max in Proposition 3.1.
It turns out that both of these quantities can be improved.

4.1. Non-uniform Smoothness: Landscape Properties

The first key observation is a landscape property originally
derived in (Mei et al., 2021b) for true policy gradient set-
tings, which is also applicable for stochastic gradient update.

Lemma 4.1 (Non-uniform smoothness (NS), Lemma 2 in
(Mei et al., 2021b)). For all θ ∈ RK , and for all r ∈ RK ,

the spectral radius of the Hessian matrix d2{π⊤
θ r}

dθ2 ∈ RK×K

is upper bounded by 3 ·
∥∥∥dπ⊤

θ r
dθ

∥∥∥
2
, i.e., for all y ∈ RK ,∣∣∣∣y⊤ d2{π⊤

θ r}
dθ2

y

∣∣∣∣ ≤ 3 ·
∥∥∥∥dπ⊤

θ r

dθ

∥∥∥∥
2

· ∥y∥22. (6)

It is useful to understand the intuition behind this lemma.

Note that when the PG norm
∥∥∥dπ⊤

θ r
dθ

∥∥∥
2

is small, the policy

πθ is close to a one-hot policy, and the objective π⊤
θ r has a

flat local landscape; ultimately implying that the the Hessian
magnitude is upper bounded by the gradient.

However, directly using Lemma 4.1 remains challenging:
Consider two iterates θt and θt+1. Then in a Taylor ex-
pansion the PG norm of an intermediate point θζ :=
θt+ ζ · (θt+1− θt), ζ ∈ [0, 1], will appear, which is undesir-
able since ζ is unknown. Therefore, we require an additional
lemma to assert that for a sufficiently small learning rate,
the PG norm of θζ will be controlled by that of θt.

Lemma 4.2 (NS between iterates). Using Algorithm 1 with
η ∈

(
0, 2

9·Rmax

)
, we have, for all t ≥ 1,

D(θt+1, θt) ≤
β(θt)

2
· ∥θt+1 − θt∥22, (7)

where D(θt+1, θt) is Bregman divergence defined as,

D(θt+1, θt) :=

∣∣∣∣(πθt+1
− πθt)

⊤r −
〈dπ⊤

θt
r

dθt
, θt+1 − θt

〉∣∣∣∣,
and β(θt) =

6
2−9·Rmax·η ·

∥∥∥dπ⊤
θt

r

dθt

∥∥∥
2
.

With the learning rate requirement, Lemma 4.2 is no longer
only a landscape property, but also depends on updates.
Using Lemma 4.2 rather than standard smoothness, 5R2

max

in Eq. (5) can be replaced with β(θt), which implies that the

“noise” is also vanishing since
∥∥∥dπ⊤

θt
r

dθt

∥∥∥
2
→ 0 as t → ∞.

However, with simple constant upper bound of the variance
of noise in Proposition 3.1, the progress term in Eq. (5)

still decays faster than the noise term since
∥∥∥dπ⊤

θt
r

dθt

∥∥∥2
2
∈

o
(∥∥∥dπ⊤

θt
r

dθt

∥∥∥
2

)
. Unfortunately, this suggests that a decaying

learning rate is still necessary to control the noise. Therefore,
a further refined analysis of the noise variance is required.

4.2. Growth Conditions: Softmax Jacobian Behavior

Since only Lemmas 4.1 and 4.2 are still insufficient to guar-
antee progress without learning rate control, we need to
develop a more refined variance bound of the noise that
was previously unknown for gradient bandit algorithms. We
first consider an example to intuitively explain why a tighter
bound on the noise variance might be possible.
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Figure 1. Visualization and intuition for Lemma 4.3. (a) Stochastic gradient scale. (b) True gradient norm. (c) The ratio of true gradient
norm over 1 minus largest action probability. Color bars contain minimum and maximum values of corresponding quantities.

Illustration. Consider Figure 1(a), which depicts the prob-
ability simplex containing all policies πθ over K = 3 ac-
tions. Figure 1(a) shows the scale of the stochastic gradient

Ea∼πθ(·)

∥∥∥dπ⊤
θ r̂
dθ

∥∥∥2
2
, illustrating that when πθ is close to any

corner of the simplex, the stochastic gradient scale becomes
close to 0. This suggests that the 2R2

max in Proposition 3.1
is quite loose and improvable. Figure 1(b) presents a similar
visualization for the true gradient norm

∥∥∥dπ⊤
θ r
dθ

∥∥∥
2
, demon-

strating a similar behavior to the stochastic gradient scale.

We formalize this observation by proving that the stochas-
tic gradient scale is controlled by the true gradient norm,
significantly improving Proposition 3.1.

Lemma 4.3 (Strong growth condition; self-bounding noise
property). Using Algorithm 1, we have, for all t ≥ 1,

Et

[∥∥∥∥dπ⊤
θt
r̂t

dθt

∥∥∥∥2
2

]
≤ 8 ·R3

max ·K3/2

∆2
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

, (8)

where ∆ := mini ̸=j |r(i)− r(j)|.

The proof sketch of Lemma 4.3 is as follows. For any t ≥ 1,
let kt denote the action with the largest probability, i.e.,

kt := argmax
a∈[K]

πθt(a). (9)

Note that 1− πθt(kt) characterizes how close πθt is to any
corner of the probability simplex. We first prove that,

Et

[∥∥∥∥dπ⊤
θt
r̂t

dθt

∥∥∥∥2
2

]
≤ 4 ·R2

max · (1− πθt(kt)) , (10)

which formalizes the observation in Figure 1(a). Addi-

tionally, Figure 1(c) shows that
∥∥∥dπ⊤

θt
r

dθt

∥∥∥
2

/
(1− πθt(kt))

is larger than about 0.2044, which suggests that the true
gradient norm also characterizes a distance of πθ from any
corner of probability simplex since it has a “variance-like”

structure (Eq. (14)), which is formalized by proving that,

1− πθt(kt) ≤
2 ·Rmax ·K3/2

∆2
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

. (11)

Combining Eqs. (10) and (11) allows one to establish
Lemma 4.3, verifying the intuitive observation in Figure 1.

From this explanation, whenever the true PG norm
∥∥∥dπ⊤

θ r
dθ

∥∥∥
2

is small and πθ is close to a one-hot policy, the stochastic
PG norm

∥∥∥dπ⊤
θ r̂
dθ

∥∥∥
2

in Eq. (3) will also be small. A deeper

explanation is that the softmax Jacobian diag(πθ)− πθπ
⊤
θ

is involved in the stochastic PG in Eq. (4), which cancels
and annihilates the unbounded noise in reward estimator r̂
arising from the use of importance sampling.
Remark 4.4. The “strong growth condition” was first pro-
posed by Schmidt & Roux (2013) and later found to be sat-
isfied in supervised learning with over-parameterized neural
networks (NNs) (Allen-Zhu et al., 2019). There, given a
dataset D := {(x1, y1), (x2, y2), · · · (xN , yN )}, the goal is
to minimize a composite loss function,

min
w

f(w) = min
w

∑
i∈[N ]

fi(w). (12)

Since over-parameterized NNs fit all the data points, i.e.,
f(w) = 0 for some w, each individual loss is also fi(w) =
0 since fi(w) ≥ 0 for all i ∈ [N ] (e.g., squared loss and
cross entropy). This guarantees that when the true gradi-
ent ∇f(w) = 0, the stochastic gradient ∇fi(w) = 0 for
all i ∈ [N ]. Hence the strong growth conditions are sat-
isfied, and stochastic gradient descent (SGD) attains the
same convergence speed as gradient descent (GD) with an
over-parameterized NN (Allen-Zhu et al., 2019).
Remark 4.5. In probability and statistics, the property of
a variance bounded by the expectation is also called a self-
bounding property, which can be used to get strong variance
bounds (McDiarmid & Reed, 2006; Boucheron et al., 2009).

Lemma 4.3 proves that such strong growth conditions are
also satisfied in the stochastic gradient bandit algorithm, but
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for a different reason. For over-parameterized NNs, since
the model fits every data point, zero gradient implies that
the stochastic gradient is also zero. Here, in Lemma 4.3, the
strong growth condition alternatively arises because of the
landscape; that is, the presence of the softmax Jacobian in
the stochastic gradient update annihilates the sampling noise
and leads to the strong growth condition being satisfied.

4.3. No Learning Rate Decay

Finally, from Lemmas 4.2 and 4.3 we reach the result that ex-
pected progress can be guaranteed with a constant learning
rate for the stochastic gradient bandit update.

Lemma 4.6 (Constant learning rates). Using Algorithm 1
with η = ∆2

40·K3/2·R3
max

, we have, for all t ≥ 1,

π⊤
θtr − Et[π

⊤
θt+1

r] ≤ − ∆2

80 ·K3/2 ·R3
max

·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥2
2

.

Lemma 4.2 indicates that {π⊤
θt
r}t≥1 is a sub-martingale.

Since the reward is bounded r ∈ [−Rmax, Rmax], by
Doob’s super-martingale convergence theorem we have that,
almost surely, π⊤

θt
r → c ∈ [−Rmax, Rmax] as t→∞.

Corollary 4.7. Using Algorithm 1, we have, the sequence
{π⊤

θt
r}t≥1 converges w.p. 1.

Therefore, from Lemma 4.6 and Corollary 4.7 it follows

that
∥∥∥dπ⊤

θt
r

dθt

∥∥∥
2
→ 0 as t → 0 almost surely, which implies

that convergence to a stationary point is achieved without
a decaying learning rate (Robbins & Monro, 1951). From
Lemma 4.6, using telescoping we immediately have,

1

T
·
∑

1≤t≤T

E

[∥∥∥∥dπ⊤
θt
r

dθt

∥∥∥∥2
2

]
≤

E[π⊤
θT+1

r]− E[π⊤
θ1
r]

C · T
, (13)

where C := ∆2

80·K3/2·R3
max

. Comparing to Section 3, Eq. (13)
is a stronger result of averaged gradient norm approaches
zero, in terms of faster O(1/T ) rate and constant learning
rate. An interesting observation is that the average gradi-
ent convergence rate is independent with the initialization,
which is different with the global convergence results in
later sections. The key reason behind this outcome is that
Lemmas 4.1 and 4.3 establish that the “noise” in Eq. (5)

decays on the same order as the “progress”
∥∥∥dπ⊤

θt
r

dθt

∥∥∥2
2
, so

that a constant learning rate is sufficient for the “progress”
term to overcome the “noise” term (Lemma 4.6).

5. New Global Convergence Results
Given the refined stochastic analysis from Section 4 we are
now ready to establish new global convergence results for
the stochastic gradient bandit in Algorithm 1.

5.1. Asymptotic Global Convergence

First, note that the true gradient norm takes the following
“variance-like” expression,∥∥∥∥dπ⊤

θ r

dθ

∥∥∥∥2
2

=
∑

a∈[K]

πθ(a)
2 ·
(
r(a)− π⊤

θ r
)2
. (14)

According to
∥∥∥dπ⊤

θt
r

dθt

∥∥∥
2
→ 0 as t→ 0, we have that πθt ap-

proaches a one-hot policy, i.e., πθt(i)→ 1 for some i ∈ [K]
as t→∞. Asymptotic global convergence is then proved
by constructing contradictions against the assumption that
the algorithm converges to a sub-optimal one-hot policy.

Theorem 5.1 (Asymptotic global convergence). Using Al-
gorithm 1, we have, almost surely,

πθt(a
∗)→ 1, as t→∞, (15)

which implies that inft≥1 πθt(a
∗) > 0.

It is highly challenging to prove almost surely global con-
vergence because (i) the iteration {θt}t≥1 is a stochastic
process, which it different with the true gradient settings
(Agarwal et al., 2021), and (ii) the iteration θt ∈ RK is
unbounded, which makes Doob’s super-martingale conver-
gence results not applicable, unlike Corollary 4.7. The strat-
egy and insights of Theorem 5.1 are as follows. According
to Proposition 3.1, we have, for all a ∈ [K],

Et[θt+1(a)] = θt(a) + η · πθt(a) ·
(
r(a)− π⊤

θtr
)
. (16)

Now we suppose that using Algorithm 1, there exists a
sub-optimal action i ∈ [K], r(i) < r(a∗), such that,

πθt(i)→ 1, as t→∞, (17)

which implies that,

π⊤
θtr → r(i), as t→∞. (18)

Since r(i) < r(a∗), there exists a “good” action set,

A+(i) :=
{
a+ ∈ [K] : r(a+) > r(i)

}
. (19)

By Eqs. (16), (18) and (19), for all large enough t ≥ 1,

Et[θt+1(a
+)] ≥ θt(a

+), (20)

which means a “good” action’s parameter {θt(a+)}t≥1 is a
sub-martingale. The major part of the proofs are devoted to
the following key results. We have, almost surely,

inf
t≥1

θt(a
+) ≥ c1 > −∞, and (21)

sup
t≥1

θt(i) ≤ c2 <∞. (22)
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Eq. (21) is non-trivial since an unbounded sub-martingale
is not necessarily lower bounded and could have positive
probability of approaching negative infinity2, while Eq. (22)
is non-trivial since the behavior of θt(i) depends on different
cases of how many times “good” actions are sampled as
t→∞. With the above results, we have,

πθt(i) <
eθt(i)

eθt(i) +
∑

a+∈A+(i) e
θt(a+)

(
eθt(a

−) > 0
)

≤ eθt(i)

eθt(i) + ec1
(by Eq. (21))

≤ ec2

ec2 + ec1
(by Eq. (22))

̸→ 1,

which is a contradiction with the assumption of Eq. (17).
Therefore, the asymptotically convergent one-hot policy has
to satisfy r(i) = r(a∗), proving Theorem 5.1. The detailed
proof is provided in Appendix A.1.

Remark 5.2. As mentioned in Remark 2.2, the arguments
above Theorem 5.1, i.e., πθt approaches a one-hot policy,
is based on Assumption 2.1. With this result, Theorem 5.1
proves asymptotic global convergence by contradiction with
the assumption of Eq. (17). In general, without Assump-
tion 2.1, Eq. (14) approaches zero can only imply πθt ap-
proaches a “generalized one-hot policy” (rather than a strict
one-hot policy). The definition of generalized one-hot poli-
cies can be found in Eq. (141).
Remark 5.3. It is true that Eq. (14) approaches zero is
not enough for showing πθt approaches a one-hot policy.
However, Algorithm 1 is special that it is always making one
action’s probability dominate others’ when there are ties.
Consider r ∈ RK with r(1) = r(2). If πθt(1) > πθt(2),
then using the expected softmax PG update θt+1(a) ←
θt(a) + η · πθt(a) · (r(a)− π⊤

θt
r), we have,

πθt+1(1)

πθt+1(2)
=

πθt(1)

πθt(2)
· eη·(πθt

(1)−πθt
(2))·(r(1)−π⊤

θt
r) >

πθt(1)

πθt(2)
,

which means that after one update πθt+1
(1) will be even

larger than πθt+1(2). Therefore, we have,

θt+1(1)− θt+1(2) > θt(1)− θt(2) + C/t, (23)

for some C > 0, which implies that,

lim
t→∞

πθt(1)

πθt(2)
= lim

t→∞
eθt(1)−θt(2) =∞, (24)

i.e., πθt(1) → 1 as t → ∞. The above arguments illus-
trate the “self-reinforcing” nature of Algorithm 1, such that
whenever two (or more) actions have the same mean reward,
the update will make only one one of their probabilities

2Consider a random walk, Yt+1 = Yt + Zt, where Zt = ±1
with equal chance of 1/2. We have Et[Yt+1] ≥ Yt. However, we
also have lim inft→∞ Yt = −∞, and with positive probability,
inft≥1 Yt is not lower bounded.

larger and larger, until one eventually dominates the others
as t→∞. Generalizing the arguments to stochastic updates
will remove Assumption 2.1 in the proofs for Theorem 5.1.

5.2. Convergence Rate

Given Theorem 5.1, a convergence rate result can then be
proved using the following inequality (Mei et al., 2020b).

Lemma 5.4 (Non-uniform Łojasiewicz (NŁ), Lemma 3 of
Mei et al. (2020b)). Assume r has a unique maximizing
action a∗. Let π∗ = argmaxπ∈∆ π⊤r. Then,∥∥∥∥dπ⊤

θ r

dθ

∥∥∥∥
2

≥ πθ(a
∗) · (π∗ − πθ)

⊤r . (25)

Theorem 5.5 (Convergence rate and regret). Using Algo-
rithm 1 with η = ∆2

40·K3/2·R3
max

, we have, for all t ≥ 1,

E[(π∗ − πθt)
⊤
r] ≤ C

t
, and

E
[ T∑

t=1

(π∗ − πθt)
⊤
r

]
≤ min{

√
2Rmax C T ,C log T + 1},

where C :=
80·K3/2·R3

max

∆2·E[c2] , and c := inft≥1 πθt(a
∗) > 0 is

from Theorem 5.1.

In Theorem 5.5, the dependence on t is optimal (Lai et al.,
1985). However, the constant can be large, especially for
a bad initialization. In short, the stochastic gradient algo-
rithm inherits the initialization sensitivity and sub-optimal
plateaus from the true policy gradient algorithm with soft-
max parameterization (Mei et al., 2020a). The detailed proof
of Theorem 5.5 is elaborated in Appendix A.2.

Theorem 5.6. There exists a problem, initialization θ1 ∈
RK , and a positive constant C > 0, such that, for all
t ≤ t0 := C

δ·πθ1
(a∗) , we have

E[(π∗ − πθt)
⊤
r] ≥ 0.9 ·∆, (26)

where ∆ := r(a∗)−maxa ̸=a∗ r(a) is the reward gap of r.

6. The Effect of Baselines
The original gradient bandit algorithm (Sutton & Barto,
2018) uses a baseline, which is a slightly modification of
Algorithm 1. The difference is that Rt(at) in Algorithm 1 is
replaced with Rt(at)−Bt, where Bt ∈ R is an action inde-
pendent baseline, as shown in Algorithm 2 in Appendix B.

It is well known that action independent baselines do not in-
troduce bias in the gradient estimate (Sutton & Barto, 2018).
The utility of adding a baseline has typically been consid-
ered to be reducing the variance of the gradient estimates
(Greensmith et al., 2004; Bhatnagar et al., 2007; Tucker
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et al., 2018; Mao et al., 2018; Wu et al., 2018). Here we
show that a similar effect manifests itself through improve-
ments in the strong growth condition.
Lemma 6.1 (Strong growth condition, Self-bounding noise
property). Using Algorithm 2, we have, for all t ≥ 1,

Et

[∥∥∥∥dπ⊤
θt

(
r̂t − b̂t

)
dθt

∥∥∥∥2

2

]
≤ 8 R̄2

max Rmax K
3/2

∆2
·
∥∥∥∥dπ⊤

θtr

dθt

∥∥∥∥
2

,

where ∆ := mini ̸=j |r(i)− r(j)|, b̂t(a) := I{at=a}
πθt (a)

· Bt

for all a ∈ [K], and Rt(at)−Bt ∈ [−R̄max, R̄max].

Note that R̄max denotes the range of Rt(at)−Bt after minus
a baseline from sampled reward. Comparing Lemma 6.1 to
Lemma 4.3 shows that the only difference is that a constant
factor of R2

max is changed to R̄2
max. This indicates that a

deeper reason for the variance reduction effect of adding a
baseline is to reduce the effective reward range. The same
improved constant will carry over to all the similar results,
including larger constant learning rates, larger progress, and
better constants in the global convergence results.

It is worth noting that the effect of baseline differs between
algorithms. Here we see that without any baseline Algo-
rithm 1 already achieves global convergence, while adding
a baseline provides constant improvements. For a different
natural policy gradient (NPG) method (Kakade, 2002; Agar-
wal et al., 2021), it is known that without using baselines,
on-policy NPG can fail by converging to a sub-optimal de-
terministic policy (Chung et al., 2020; Mei et al., 2021a),
while adding a value baseline π⊤

θt
r restores a guarantee of

global convergence by reducing the update aggressiveness.

7. Simulation Results
In this section, we conduct several simulations to empir-
ically verify the theoretical findings of asymptotic global
convergence and convergence rate.

7.1. Asymptotic Global Convergence

We first design experiments to justify the asymptotic global
convergence. We run Algorithm 1 on stochastic bandit
problems with K = 10 actions. The mean reward r is
random generated in (0, 1)K . For each sampled action at ∼
πθt(·), the observed reward is generated as Rt(at) = r(at)+
Zt, where Zt ∼ N (0, 1) is Gaussian noise. For the baseline
in Algorithm 2, we use average reward as suggested in
(Sutton & Barto, 2018), i.e., Bt :=

∑t−1
s=1 Rs(as)/(t− 1)

for all t > 1. The learning rate is η = 0.01. We use
adversarial initialization, such that πθ1(a

∗) < 1/K.

As shown in Figure 2, πθt(a
∗) → 1 eventually, even if its

initial value πθ1(a
∗) is very small, verifying the asymptotic

global convergence in Theorem 5.1. On the other hand, the
long plateaus observed in Figure 2 verify Theorem 5.6.

0 0.5 1 1.5 2
105
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0.2

0.4

0.6

0.8

1

Without baselines
Average reward baseline

0 2 4 6 8
106

0

0.2

0.4

0.6

0.8

1

Without baselines
Average reward baseline

Figure 2. Both subfigures show results for πθt(a
∗). The left is for

πθ1(a
∗) = 0.03, and the right is for πθ1(a

∗) = 0.02.

One unexpected observation in Figure 2 is that average
reward baselines have worse performances, which is differ-
ent with Sutton & Barto (2018). After checking numerical
values, we found that since the initialization is bad, a sub-
optimal action with r(i) < r(a∗) will be pulled for most of
the time, which results in Bt ≈ r(i). This implies that when
a∗ is pulled, θt(a∗) is increased less than without baselines,
since the reward gap is also relatively small. Therefore,
the average reward baseline might not be a baseline that is
universally beneficial, which raises the question to design
adaptive baseline, which is out of the scope of this paper,
and we leave as our future work.

7.2. Convergence Rate

We further check the convergence rate empirically in the
same problem settings. We use uniform initialization i.e.,
πθ1(a) = 1/K for all a ∈ [K] and the results are shown
in Figure 3. Each curve is an average from 10 independent
runs, and the total iteration number is T = 2 × 106. As
shown in Figure 3(b), the slope in log scale is close to
−1, which implies that log (π∗ − πθt)

⊤
r ≈ − log t + C.

Equivalently, we have (π∗ − πθt)
⊤
r ≈ C ′/t, verifying the

O(1/t) convergence rate in Theorem 5.5.
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Slope = -1

Figure 3. Figure (a) shows the optimal action’s probability and (b)
shows log sub-optimal gap, which justifies our global convergence
rate in Theorem 5.5.

7.3. Average Gradient Norm Convergence

In this section, we empirically verify the finite-step conver-
gence rate in terms of average gradient norm. We follow
exactly the same experimental settings in Section 7.2, but

8
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evaluate the average gradient norm along the algorithm iter-
ations. We illustrate the results in log-scale in Figure 4. It
obviously aligned well with our convergence rate in terms
of average gradient norm in Eq. (13).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-5

-4

-3

-2

-1

0

1

Without baselines
Average reward baseline
Slope = -1

Figure 4. Average squared gradient norm 1
t
·

∑
1≤s≤t

E
[∥∥∥ dπ⊤

θs
r

dθs

∥∥∥2

2

]
in log scale (l.h.s. of Eq. (13)).

8. Boltzmann Exploration
The softmax parameterization used in gradient bandit al-
gorithms is also called Boltzmann distribution (Sutton &
Barto, 2018), based on which a classic algorithm EXP3
uses O(1/

√
t) learning rate and achieves a O(1/

√
t) rate

(Auer et al., 2002b). The Botlzmann distribution has also
been used in other policy gradient based algorithms. For
example, Lan et al. (2022) show that mirror decent (MD)
or NPG with strongly convex regularizers, increasing batch
sizes and O(1/t) learning rates achieves a O(log t/t) rate.
The convergence in (Lan et al., 2022) heavily relies on
batch observation for an accurate estimation of full gradi-
ent approximation, which is impossible in stochastic bandit
setting, and thus not applicable.

There are also existing results revealing the weakness of
Boltzmann distribution. Cesa-Bianchi et al. (2017) show
that without count based bonuses, “Boltzmann exploration
done wrong”. In particular, there exists a 2-armed stochastic
bandit problem with rewards bounded in [0, 1], when using
Pr (at = a) ∝ exp{ηt · µ̂t,a}, where

µ̂t,a :=

∑t
s=1 I {as = a} ·Rs(a)∑t

s=1 I {as = a}

is the empirical mean estimator for r(a), with ηt > 2 log t
for all t ≥ 1, would incur linear regret Ω(T ). Instead of the
aggressive update of parameters in softmax policy in (Cesa-
Bianchi et al., 2017), the stochastic gradient bandit can
be understood as a better way for parameter updates (with
weights diminishing if the action is not selected) to ensure
global convergence.

Cesa-Bianchi et al. (2017) also claim that the Boltzmann

exploration is equivalent to the rule selecting

at+1 = argmax
a∈[K]

(µ̂t,a + Zt,a),

which is the widely used “Gumbel-Softmax” trick (Jang
et al., 2016), where Zt,a is a Gumbel random variable inde-
pendent for all a ∈ [K]. Cesa-Bianchi et al. (2017) show a
O(log T ) regret when replacing Zt,a by βt,a · Zt,a, where
βt,a is determined by count information

∑t
s=1 I{at = a}.

This inspires us that we may incorporate other techniques
into gradient bandit algorithm and further improve it, es-
pecially for the poor initialization and problem dependent
constant in Theorem 5.1 as also observed in Figure 2.

9. Conclusions
This work provides the first global convergence result for the
gradient bandit algorithms (Sutton & Barto, 2018) using con-
stant learning rates. The main technical finding is that the
noise in stochastic gradient updates automatically vanishes
such that noise control is unnecessary for global conver-
gence. This work uncover a new understanding of stochastic
gradient itself manages to achieve “weak exploraton” in the
sense that the distribution over the arms almost surely con-
centrates asymptotically on a globally optimal action. One
important future direction is to improve stochastic gradi-
ent to achieve “strong” exploration with finite-time optimal
rates. Another direction of interest is to generalize the ideas
and techniques to reinforcement learning.
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A. Proofs for Algorithm 1
Proposition 2.3. Algorithm 1 is equivalent to the following stochastic gradient ascent update,

θt+1 ← θt + η ·
dπ⊤

θt
r̂t

dθt
(27)

= θt + η ·
(
diag(πθt)− πθtπ

⊤
θt

)
r̂t, (28)

where Et

[
dπ⊤

θt
r̂t

dθt

]
=

dπ⊤
θt

r

dθt
, and

(
dπθ

dθ

)⊤
= diag(πθ) − πθπ

⊤
θ is the Jacobian of θ 7→ πθ := softmax(θ), and r̂t(a) :=

I{at=a}
πθt (a)

·Rt(a) for all a ∈ [K] is the importance sampling (IS) estimator, and we set Rt(a) = 0 for all a ̸= at.

Proof. Using the definition of softmax Jacobian and r̂t, we have, for all a ∈ [K],

θt+1(a)← θt(a) + η · πθt(a) ·
(
r̂t(a)− π⊤

θt r̂t
)

(29)
= θt(a) + η · πθt(a) · (r̂t(a)−Rt(at)) (30)

= θt(a) +

{
η · (1− πθt(a)) ·Rt(a), if at = a ,

−η · πθt(a) ·Rt(at), otherwise .

Proposition 3.1 (Unbiased stochastic gradient with bounded variance / scale). Using Algorithm 1, we have, for all t ≥ 1,

Et

[
dπ⊤

θt
r̂t

dθt

]
=

dπ⊤
θt
r

dθt
, (31)

Et

[∥∥∥∥dπ⊤
θt
r̂t

dθt

∥∥∥∥2
2

]
≤ 2R2

max, (32)

where Et[·] is on randomness from the on-policy sampling at ∼ πθt(·) and reward sampling Rt(at) ∼ Pat
.

Proof. First part, Eq. (31). For all action a ∈ [K], the true softmax PG is,

dπ⊤
θt
r

dθt(a)
= πθt(a) ·

(
r(a)− π⊤

θtr
)
. (33)

For all a ∈ [K], the stochastic softmax PG is,

dπ⊤
θt
r̂t

dθt(a)
= πθt(a) ·

(
r̂t(a)− π⊤

θt r̂t
)

(34)

= πθt(a) · (r̂t(a)−Rt(at)) (35)
= (I {at = a} − πθt(a)) ·Rt(at). (36)

For the sampled action at, we have,

E
Rt(at)∼Pat

[
dπ⊤

θt
r̂t

dθt(at)

]
= E

Rt(at)∼Pat

[
(1− πθt(at)) ·Rt(at)

]
(37)

= (1− πθt(at)) · E
Rt(at)∼Pat

[
Rt(at)

]
(38)

= (1− πθt(at)) · r(at). (39)

For any other not sampled action a ̸= at, we have,

E
Rt(at)∼Pat

[
dπ⊤

θt
r̂t

dθt(a)

]
= E

Rt(at)∼Pat

[
− πθt(a) ·Rt(at)

]
(40)

= −πθt(a) · E
Rt(at)∼Pat

[
Rt(at)

]
(41)

= −πθt(a) · r(at). (42)

12
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Combing Eqs. (37) and (40), we have, for all a ∈ [K],

E
Rt(at)∼Pat

[
dπ⊤

θt
r̂t

dθt(a)

]
= (I {at = a} − πθt(a)) · r(at). (43)

Taking expectation over at ∼ πθt(·), we have,

Et

[
dπ⊤

θt
r̂t

dθt(a)

]
= Pr (at = a) · E

Rt(at)∼Pat

[
dπ⊤

θt
r̂t

dθt(a)

∣∣∣ at = a

]
+ Pr (at ̸= a) · E

Rt(at)∼Pat

[
dπ⊤

θt
r̂t

dθt(a)

∣∣∣ at ̸= a

]
(44)

= πθt(a) · (1− πθt(a)) · r(a) +
∑
a′ ̸=a

πθt(a
′) · (−πθt(a)) · r(a′) (45)

= πθt(a) ·
∑
a′ ̸=a

πθt(a
′) · (r(a)− r(a′)) (46)

= πθt(a) ·
(
r(a)− π⊤

θtr
)
. (47)

Combining Eqs. (33) and (44), we have, for all a ∈ [K],

Et

[
dπ⊤

θt
r̂t

dθt(a)

]
=

dπ⊤
θt
r

dθt(a)
, (48)

which implies Eq. (31) since a ∈ [K] is arbitrary.

Second part, Eq. (32). The squared stochastic PG norm is,∥∥∥∥dπ⊤
θt
r̂t

dθt

∥∥∥∥2
2

=
∑

a∈[K]

(
dπ⊤

θt
r̂t

dθt(a)

)2

(49)

=
∑

a∈[K]

(I {at = a} − πθt(a))
2 ·Rt(at)

2 (by Eq. (34)) (50)

≤ R2
max ·

∑
a∈[K]

(I {at = a} − πθt(a))
2

(by Eq. (1)) (51)

= R2
max ·

[
(1− πθt(at))

2
+
∑
a̸=at

πθt(a)
2

]
(52)

≤ R2
max ·

[
(1− πθt(at))

2
+
( ∑

a ̸=at

πθt(a)
)2]

(∥x∥2 ≤ ∥x∥1) (53)

= 2 ·R2
max · (1− πθt(at))

2
. (54)

Therefore, we have, for all a ∈ [K], conditioning on at = a,[∥∥∥∥dπ⊤
θt
r̂t

dθt

∥∥∥∥2
2

∣∣∣ at = a

]
≤ 2 ·R2

max · (1− πθt(a))
2
. (55)

Taking expectation over at ∼ πθt(·), we have,

Et

[∥∥∥∥dπ⊤
θt
r̂t

dθt

∥∥∥∥2
2

]
=
∑

a∈[K]

Pr (at = a) ·

[∥∥∥∥dπ⊤
θt
r̂t

dθt

∥∥∥∥2
2

∣∣∣ at = a

]
(56)

≤
∑

a∈[K]

πθt(a) · 2 ·R2
max · (1− πθt(a))

2 (57)

≤ 2 ·R2
max ·

∑
a∈[K]

πθt(a) (πθt(a) ∈ (0, 1) for all a ∈ [K]) (58)

= 2R2
max.
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Lemma 4.1 (Non-uniform smoothness (NS), Mei et al. (2021b, Lemma 2)). For all θ ∈ RK , the spectral radius of Hessian
matrix d2{π⊤

θ r}
dθ2 ∈ RK×K is upper bounded by 3 ·

∥∥∥dπ⊤
θ r
dθ

∥∥∥
2
, i.e., for all y ∈ RK ,∣∣∣∣y⊤ d2{π⊤

θ r}
dθ2

y

∣∣∣∣ ≤ 3 ·
∥∥∥∥dπ⊤

θ r

dθ

∥∥∥∥
2

· ∥y∥22. (59)

Proof. See the proof in Mei et al. (2021b, Lemma 2). We include a proof for completeness.

Let S := S(r, θ) ∈ RK×K be the second derivative of the map θ 7→ π⊤
θ r. Denote H(πθ) := diag(πθ) − πθπ

⊤
θ as the

softmax Jacobian. By definition we have,

S =
d

dθ

{
dπ⊤

θ r

dθ

}
(60)

=
d

dθ
{H(πθ)r} (61)

=
d

dθ

{
(diag(πθ)− πθπ

⊤
θ )r
}
. (62)

Continuing with our calculation fix i, j ∈ [K]. Then,

S(i,j) =
d{πθ(i) · (r(i)− π⊤

θ r)}
dθ(j)

(63)

=
dπθ(i)

dθ(j)
· (r(i)− π⊤

θ r) + πθ(i) ·
d{r(i)− π⊤

θ r}
dθ(j)

(64)

= (δij · πθ(j)− πθ(i) · πθ(j)) · (r(i)− π⊤
θ r)− πθ(i) · (πθ(j) · r(j)− πθ(j) · π⊤

θ r) (65)

= δij · πθ(j) · (r(i)− π⊤
θ r)− πθ(i) · πθ(j) · (r(i)− π⊤

θ r)− πθ(i) · πθ(j) · (r(j)− π⊤
θ r), (66)

where δij is the Kronecker’s δ-function defined as,

δij =

{
1, if i = j,

0, otherwise.
(67)

To show the bound on the spectral radius of S, pick y ∈ RK . Then,

∣∣y⊤Sy∣∣ = ∣∣∣∣ K∑
i=1

K∑
j=1

S(i,j) · y(i) · y(j)
∣∣∣∣ (68)

=

∣∣∣∣∑
i

πθ(i) · (r(i)− π⊤
θ r) · y(i)2 − 2 ·

∑
i

πθ(i) · (r(i)− π⊤
θ r) · y(i) ·

∑
j

πθ(j) · y(j)
∣∣∣∣ (69)

=
∣∣∣(H(πθ)r)

⊤
(y ⊙ y)− 2 · (H(πθ)r)

⊤
y ·
(
π⊤
θ y
)∣∣∣ (70)

≤
∣∣∣(H(πθ)r)

⊤
(y ⊙ y)

∣∣∣+ 2 ·
∣∣∣(H(πθ)r)

⊤
y
∣∣∣ · ∣∣π⊤

θ y
∣∣ (triangle inequality) (71)

≤ ∥H(πθ)r∥∞ · ∥y ⊙ y∥1 + 2 · ∥H(πθ)r∥2 · ∥y∥2 · ∥πθ∥1 · ∥y∥∞ (Hölder’s inequality) (72)

≤ 3 · ∥H(πθ)r∥2 · ∥y∥
2
2 , (73)

where⊙ is Hadamard (component-wise) product, and the last inequality uses ∥H(πθ)r∥∞ ≤ ∥H(πθ)r∥2, ∥y⊙y∥1 = ∥y∥22,
∥πθ∥1 = 1, and ∥y∥∞ ≤ ∥y∥2. Therefore, we have,∣∣y⊤Sy∣∣ ≤ 3 · ∥H(πθ)r∥2 · ∥y∥

2
2 (by Eq. (68)) (74)

= 3 ·
∥∥(diag(πθ)− πθπ

⊤
θ

)
r
∥∥
2
· ∥y∥22

(
H(πθ) := diag(πθ)− πθπ

⊤
θ

)
(75)

= 3 ·
∥∥∥∥dπ⊤

θ r

dθ

∥∥∥∥
2

· ∥y∥22 . (by Eq. (3))
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Lemma 4.2 (NS between iterates). Using Algorithm 1 with η ∈
(
0, 2

9·Rmax

)
, we have, for all t ≥ 1,

D(θt+1, θt) :=

∣∣∣∣∣(πθt+1
− πθt)

⊤r −
〈dπ⊤

θt
r

dθt
, θt+1 − θt

〉∣∣∣∣∣ ≤ β(θt)

2
· ∥θt+1 − θt∥22, (76)

where

β(θt) =
6

2− 9 ·Rmax · η
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

. (77)

Proof. Denote θζ := θt + ζ · (θt+1 − θt) with some ζ ∈ [0, 1]. According to Taylor’s theorem, we have,∣∣∣∣∣(πθt+1
− πθt)

⊤r −
〈dπ⊤

θt
r

dθt
, θt+1 − θt

〉∣∣∣∣∣ = 1

2
·

∣∣∣∣∣(θt+1 − θt)
⊤ d2π⊤

θζ
r

dθζ
2 (θt+1 − θt)

∣∣∣∣∣ (78)

≤ 3

2
·
∥∥∥∥dπ⊤

θζ
r

dθζ

∥∥∥∥
2

· ∥θt+1 − θt∥22. (by Lemma 4.1) (79)

Denote θζ1 := θt + ζ1 · (θζ − θt) with some ζ1 ∈ [0, 1]. We have,∥∥∥∥dπ⊤
θζ
r

dθζ
−

dπ⊤
θt
r

dθt

∥∥∥∥
2

=

∥∥∥∥∥
∫ 1

0

〈d2{π⊤
θζ1

r}
dθ2ζ1

, θζ − θt

〉
dζ1

∥∥∥∥∥
2

(Fundamental theorem of calculus) (80)

≤
∫ 1

0

∥∥∥∥∥d
2{π⊤

θζ1
r}

dθ2ζ1

∥∥∥∥∥
2

· ∥θζ − θt∥2 dζ1 (by Cauchy–Schwarz) (81)

≤
∫ 1

0

3 ·
∥∥∥∥dπ⊤

θζ1
r

dθζ1

∥∥∥∥
2

· ∥θζ − θt∥2 dζ1 (by Lemma 4.1) (82)

=

∫ 1

0

3 ·
∥∥∥∥dπ⊤

θζ1
r

dθζ1

∥∥∥∥
2

· ζ · ∥θt+1 − θt∥2 dζ1 (θζ := θt + ζ · (θt+1 − θt)) (83)

≤
∫ 1

0

3 ·
∥∥∥∥dπ⊤

θζ1
r

dθζ1

∥∥∥∥
2

· η ·
∥∥∥∥dπ⊤

θt
r̂t

dθt

∥∥∥∥
2

dζ1,

(
ζ ∈ [0, 1], and θt+1 = θt + η ·

dπ⊤
θt
r̂t

dθt

)
(84)

where the second inequality is because of the Hessian is symmetric, and its operator norm is equal to its spectral radius.
Therefore, we have,∥∥∥∥dπ⊤

θζ
r

dθζ

∥∥∥∥
2

≤
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

+

∥∥∥∥dπ⊤
θζ
r

dθζ
−

dπ⊤
θt
r

dθt

∥∥∥∥
2

(by triangle inequality) (85)

≤
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

+ 3 η ·
∥∥∥∥dπ⊤

θt
r̂t

dθt

∥∥∥∥
2

·
∫ 1

0

∥∥∥∥dπ⊤
θζ1

r

dθζ1

∥∥∥∥
2

dζ1. (by Eq. (80)) (86)

Denote θζ2 := θt + ζ2 · (θζ1 − θt) with ζ2 ∈ [0, 1]. Using similar calculation in Eq. (80), we have,∥∥∥∥dπ⊤
θζ1

r

dθζ1

∥∥∥∥
2

≤
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

+

∥∥∥∥dπ⊤
θζ1

r

dθζ1
−

dπ⊤
θt
r

dθt

∥∥∥∥
2

(87)

≤
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

+ 3 η ·
∥∥∥∥dπ⊤

θt
r̂t

dθt

∥∥∥∥
2

·
∫ 1

0

∥∥∥∥dπ⊤
θζ2

r

dθζ2

∥∥∥∥
2

dζ2. (88)

Combining Eqs. (85) and (87), we have,∥∥∥∥dπ⊤
θζ
r

dθζ

∥∥∥∥
2

≤

(
1 + 3 η ·

∥∥∥∥dπ⊤
θt
r̂t

dθt

∥∥∥∥
2

)
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

+

(
3 η ·

∥∥∥∥dπ⊤
θt
r̂t

dθt

∥∥∥∥
2

)2

·
∫ 1

0

∫ 1

0

∥∥∥∥dπ⊤
θζ2

r

dθζ2

∥∥∥∥
2

dζ2dζ1, (89)
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which, by recurring the above arguments, implies that,∥∥∥∥dπ⊤
θζ
r

dθζ

∥∥∥∥
2

≤
∞∑
i=0

(
3 η ·

∥∥∥∥dπ⊤
θt
r̂t

dθt

∥∥∥∥
2

)i

·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

. (90)

Next, we have,

3 η ·
∥∥∥∥dπ⊤

θt
r̂t

dθt

∥∥∥∥
2

≤ 3 η ·
√
2 ·R2

max · (1− πθt(at))
2

(by Eq. (49)) (91)

<
3 · 2

9 ·Rmax
·
√
2 ·Rmax

(
πθt(at) ∈ (0, 1), and η <

2

9 ·Rmax

)
(92)

< 1. (93)

Combining Eqs. (90) and (91), we have,∥∥∥∥dπ⊤
θζ
r

dθζ

∥∥∥∥
2

≤ 1

1− 3 η ·
∥∥∥dπ⊤

θt
r̂t

dθt

∥∥∥
2

·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

(
3 η ·

∥∥∥∥dπ⊤
θt
r̂t

dθt

∥∥∥∥
2

∈ (0, 1) from Eq. (91)

)
(94)

≤ 1

1− 3 η ·
√
2 ·Rmax

·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

(by Eq. (49)) (95)

<
1

1− 9
2 ·Rmax · η

·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

. (96)

Combining Eqs. (78) and (94), we have,∣∣∣∣∣(πθt+1
− πθt)

⊤r −
〈dπ⊤

θt
r

dθt
, θt+1 − θt

〉∣∣∣∣∣ ≤ 3

2
·
∥∥∥∥dπ⊤

θζ
r

dθζ

∥∥∥∥
2

· ∥θt+1 − θt∥22 (97)

≤ 3

2− 9 ·Rmax · η
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

· ∥θt+1 − θt∥22.

Lemma 4.3 (Strong growth conditions / Self-bounding noise property). Using Algorithm 1, we have, for all t ≥ 1,

Et

[∥∥∥∥dπ⊤
θt
r̂t

dθt

∥∥∥∥2
2

]
≤ 8 ·R3

max ·K3/2

∆2
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

, (98)

where ∆ := mini ̸=j |r(i)− r(j)|.

Proof. Given t ≥ 1, denote kt as the action with largest probability, i.e., kt := argmaxa∈[K] πθt(a). We have,

πθt(kt) ≥
1

K
. (99)

According to Eq. (56), we have,

Et

[∥∥∥∥dπ⊤
θt
r̂t

dθt

∥∥∥∥2
2

]
=
∑

a∈[K]

Pr (at = a) ·

[∥∥∥∥dπ⊤
θt
r̂t

dθt

∥∥∥∥2
2

∣∣∣ at = a

]
(100)

≤ 2 ·R2
max ·

∑
a∈[K]

πθt(a) · (1− πθt(a))
2 (101)

= 2 ·R2
max ·

[
πθt(kt) · (1− πθt(kt))

2
+
∑
a̸=kt

πθt(a) · (1− πθt(a))
2

]
(102)

≤ 2 ·R2
max ·

[
1− πθt(kt) +

∑
a̸=kt

πθt(a)

]
(πθt(a) ∈ (0, 1) for all a ∈ [K]) (103)

= 4 ·R2
max · (1− πθt(kt)) . (104)
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On the other hand, we have,∥∥∥∥dπ⊤
θt
r

dθt

∥∥∥∥2
2

=
∑

a∈[K]

πθt(a)
2 · (r(a)− π⊤

θtr)
2 (105)

=
∑

a′∈[K]

(r(a′)− π⊤
θtr)

2 ·
∑

a∈[K]

πθt(a)
2 ·

(r(a)− π⊤
θt
r)2∑

a′∈[K] (r(a
′)− π⊤

θt
r)2

(106)

≥
∑

a′∈[K]

(r(a′)− π⊤
θtr)

2 ·

[ ∑
a∈[K]

πθt(a) ·
(r(a)− π⊤

θt
r)2∑

a′∈[K] (r(a
′)− π⊤

θt
r)2

]2
(Jensen’s inequality) (107)

=
1∑

a′∈[K] (r(a
′)− π⊤

θt
r)2
·

[ ∑
a∈[K]

πθt(a) · (r(a)− π⊤
θtr)

2

]2
(108)

≥ 1

4 ·K ·R2
max

·

[ ∑
a∈[K]

πθt(a) · (r(a)− π⊤
θtr)

2

]2
,

(
r ∈ [−Rmax, Rmax]

K
)

(109)

which implies that, ∥∥∥∥dπ⊤
θt
r

dθt

∥∥∥∥
2

≥ 1

2 ·
√
K ·Rmax

·
∑

a∈[K]

πθt(a) · (r(a)− π⊤
θtr)

2. (110)

Using similar calculations in the proofs for Mei et al. (2021a, Lemma 2), we have,

∑
a∈[K]

πθt(a) · (r(a)− π⊤
θtr)

2 =

K∑
i=1

πθt(i) · r(i)2 −
[ K∑

i=1

πθt(i) · r(i)
]2

(111)

=

K∑
i=1

πθt(i) · r(i)2 −
K∑
i=1

πθt(i)
2 · r(i)2 − 2 ·

K−1∑
i=1

πθt(i) · r(i) ·
K∑

j=i+1

πθt(j) · r(j) (112)

=

K∑
i=1

πθt(i) · r(i)2 · (1− πθt(i))− 2 ·
K−1∑
i=1

πθt(i) · r(i) ·
K∑

j=i+1

πθt(j) · r(j) (113)

=

K∑
i=1

πθt(i) · r(i)2 ·
∑
j ̸=i

πθt(j)− 2 ·
K−1∑
i=1

πθt(i) · r(i) ·
K∑

j=i+1

πθt(j) · r(j) (114)

=
K−1∑
i=1

πθt(i) ·
K∑

j=i+1

πθt(j) ·
(
r(i)2 + r(j)2

)
− 2 ·

K−1∑
i=1

πθt(i) · r(i) ·
K∑

j=i+1

πθt(j) · r(j) (115)

=

K−1∑
i=1

πθt(i) ·
K∑

j=i+1

πθt(j) · (r(i)− r(j))
2
, (116)

which implies that,

∑
a∈[K]

πθt(a) · (r(a)− π⊤
θtr)

2 ≥
kt∑
i=1

πθt(i) ·
K∑

j=i+1

πθt(j) · (r(i)− r(j))
2

(fewer terms) (117)

≥
kt−1∑
i=1

πθt(i) · πθt(kt) · (r(i)− r(kt))
2
+ πθt(kt) ·

K∑
j=kt+1

πθt(j) · (r(kt)− r(j))
2

(fewer terms) (118)

= πθt(kt) ·
∑
a̸=kt

πθt(a) · (r(a)− r(kt))
2 (119)

≥ ∆2

K
· (1− πθt(kt)) , (by Eq. (99)) (120)
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where ∆ := mini ̸=j |r(i)− r(j)|. Therefore, we have,

Et

[∥∥∥∥dπ⊤
θt
r̂t

dθt

∥∥∥∥2
2

]
≤ 4 ·R2

max · (1− πθt(kt)) (by Eq. (100)) (121)

≤ 4 ·R2
max ·K
∆2

·
∑

a∈[K]

πθt(a) · (r(a)− π⊤
θtr)

2 (by Eq. (117)) (122)

≤ 4 ·R2
max ·K
∆2

· 2 ·
√
K ·Rmax ·

∥∥∥∥dπ⊤
θt
r

dθt

∥∥∥∥
2

(by Eq. (110)) (123)

=
8 ·R3

max ·K3/2

∆2
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

.

Lemma 4.6 (Constant learning rates). Using Algorithm 1 with η = ∆2

40·K3/2·R3
max

, we have, for all t ≥ 1,

π⊤
θtr − Et[π

⊤
θt+1

r] ≤ − ∆2

80 ·K3/2 ·R3
max

·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥2
2

. (124)

Proof. Using the learning rate,

η =
∆2

40 ·K3/2 ·R3
max

(125)

=
4

45 ·Rmax
· ∆2

R2
max

· 1

K3/2
· 45
4
· 1
40

(126)

≤ 4

45 ·Rmax
· 4 · 1

2 ·
√
2
· 45
4
· 1
40

, (∆ ≤ 2 ·Rmax, and K ≥ 2) (127)

<
4

45 ·Rmax
, (128)

we have η ∈
(
0, 2

9·Rmax

)
. According to Lemma 4.2, we have,

∣∣∣∣∣(πθt+1
− πθt)

⊤r −
〈dπ⊤

θt
r

dθt
, θt+1 − θt

〉∣∣∣∣∣ ≤ 3

2− 9 ·Rmax · η
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

· ∥θt+1 − θt∥22 (129)

≤ 3

2− 9 ·Rmax · 4
45·Rmax

·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

· ∥θt+1 − θt∥22 (by Eq. (128)) (130)

=
5

2
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

· ∥θt+1 − θt∥22, (131)

which implies that,

π⊤
θtr − π⊤

θt+1
r ≤ −

〈dπ⊤
θt
r

dθt
, θt+1 − θt

〉
+

5

2
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

· ∥θt+1 − θt∥22 (132)

= −η ·
〈dπ⊤

θt
r

dθt
,
dπ⊤

θt
r̂t

dθt

〉
+

5

2
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

· η2 ·
∥∥∥∥dπ⊤

θt
r̂t

dθt

∥∥∥∥2
2

, (133)
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where the last equation uses Algorithm 1. Taking expectation over at ∼ πθt(·) and Rt(at) ∼ Pat
, we have,

π⊤
θtr − Et[π

⊤
θt+1

r] ≤ −η ·
〈dπ⊤

θt
r

dθt
,Et

[
dπ⊤

θt
r̂t

dθt

]〉
+

5

2
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

· η2 · Et

[∥∥∥∥dπ⊤
θt
r̂t

dθt

∥∥∥∥2
2

]
(134)

= −η ·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥2
2

+
5

2
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

· η2 · Et

[∥∥∥∥dπ⊤
θt
r̂t

dθt

∥∥∥∥2
2

]
(by Proposition 3.1) (135)

≤ −η ·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥2
2

+
5

2
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

· η2 · 8 ·R
3
max ·K3/2

∆2
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

(by Lemma 4.3) (136)

=

(
−η + η2 · 20 ·R

3
max ·K3/2

∆2

)
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥2
2

(137)

= − ∆2

80 ·K3/2 ·R3
max

·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥2
2

. (by Eq. (125))

Corollary 4.7. Using Algorithm 1, we have, the sequence {π⊤
θt
r}t≥1 converges w. p. 1.

Proof. Setting Yt = r(a∗) − π⊤
θt
r, we have Yt ∈ [−Rmax, Rmax] by Eq. (1). Define Ft as the σ-algebra generated

by {a1, R1(a1), a2, R2(a2), . . . , at−1, Rt−1(at−1)}. Note that Yt is Ft-measurable since θt is a deterministic function of
a1, R1(a1), . . . , at−1, Rt−1(at−1). According to Lemma 4.6, using Algorithm 1, we have, for all t ≥ 1, π⊤

θt
r−Et[π

⊤
θt+1

r] ≤
0, which indicates that E[Yt+1|Ft] ≤ Yt. Hence, the conditions of Doob’s super-martingale theorem (Theorem C.1) are
satisfied and the result follows.

A.1. Proof of Theorem 5.1

Theorem 5.1 (Asymptotic global convergence). Using Algorithm 1, we have, almost surely,

πθt(a
∗)→ 1, as t→∞, (138)

which implies that inft≥1 πθt(a
∗) > 0.

Proof. According to Algorithm 1, for each a ∈ [K], the update is,

θt+1(a) = θt(a) + η · πθt(a) ·
(
I {at = a}
πθt(a)

·Rt(a)−Rt(at)

)
. (139)

Given i ∈ [K], define the following set P(i) of “generalized one-hot policy”,

A(i) := {j ∈ [K] : r(j) = r(i)} , (140)

P(i) :=
{
π ∈ ∆(K) :

∑
j∈A(i)

π(j) = 1

}
. (141)

We make the following two claims.

Claim 1. Almost surely, πθt approaches one “generalized one-hot policy”, i.e., there exists (a possibly random) i ∈ [K],
such that

∑
j∈A(i) πθt(j)→ 1 almost surely as t→∞.

Claim 2. Almost surely, πθt cannot approach any “sub-optimal generalized one-hot policies”, i.e., i in the previous claim
must be an optimal action.

From Claim 2, it follows that
∑

j∈A(a∗) πθt(j)→ 1 almost surely, as t→∞ and thus the policy sequence obtained almost
surely convergences to a globally optimal policy π∗.

Proof of Claim 1. According to Corollary 4.7, we have that for some (possibly random) c ∈ [−Rmax, Rmax], almost surely,

lim
t→∞

π⊤
θtr = c . (142)
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Thanks to π⊤
θt
r ∈ [−Rmax, Rmax] and π⊤

θt
r − Et[π

⊤
θt+1

r] ≤ 0 by Lemma 4.6, we have that Xt = π⊤
θt
r (t ≥ 1) satisfies the

conditions of Corollary 3 in (Mei et al., 2022). Hence, by this result, almost surely,

lim
t→∞

Et[π
⊤
θt+1

r]− π⊤
θt+1

r = 0 , (143)

which, combined with Eq. (142) also gives that limt→∞ Et[π
⊤
θt+1

r] = c almost surely. Hence,

lim
t→∞

Et[π
⊤
θt+1

r]− π⊤
θtr = c− c = 0, a.s. (144)

According to Lemma 4.6, we have,

Et[π
⊤
θt+1

r]− π⊤
θtr ≥

∆2

80 ·K3/2 ·R3
max

·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥2
2

(145)

=
∆2

80 ·K3/2 ·R3
max

·
K∑
i=1

πθt(i)
2 ·
(
r(i)− π⊤

θtr
)2

. (by Eq. (14)) (146)

Combining Eqs. (144) and (145), we have, with probability 1,

lim
t→∞

K∑
i=1

πθt(i)
2 ·
(
r(i)− π⊤

θtr
)2

= 0, (147)

which implies that, for all i ∈ [K], almost surely,

lim
t→∞

πθt(i)
2 ·
(
r(i)− π⊤

θtr
)2

= 0. (148)

We claim that c, the almost sure limit of π⊤
θt
r, is such that almost surely, for some (possibly random) i ∈ [K], c = r(i)

almost surely. We prove this by contradiction. Let Ei = {c = r(i)}. Hence, our goal is to show that P(∪iEi) = 1. Clearly,
this follows from P(∩iEci ) = 0, hence, we prove this. On Eci , since limt→∞ π⊤

θt
r ̸= r(i), we also have

lim
t→∞

(
r(i)− π⊤

θtr
)2

> 0, almost surely on Eci . (149)

This, together with Eq. (148) gives that almost surely on Eci ,

lim
t→∞

πθt(i)
2 = 0. (150)

Hence, on ∩iEci , almost surely, for all i ∈ [K], limt→∞ πθt(i)
2 = 0. This contradicts with that

∑
i πθt(i) = 1 holds for all

t ≥ 1, and hence we must have that P(∩iEci ) = 0, finishing the proof that P(∪iEi) = 1.

Now, let i ∈ [K] be the (possibly random) index of the action for which c = r(i) almost surely. Recall that A(i) contains
all actions j with r(j) = r(i) (cf. Eq. (140)). Clearly, it holds that for all j ∈ A(i),

lim
t→∞

π⊤
θtr = r(j), a.s., (151)

and we have, for all k ̸∈ A(i),

lim
t→∞

(
r(k)− π⊤

θtr
)2

> 0, a.s., (152)

which implies that,

lim
t→∞

∑
k ̸∈A(i)

πθt(k)
2 = 0, a.s. (153)

Therefore, we have,

lim
t→∞

∑
j∈A(i)

πθt(j) = 1, a.s., (154)
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which means πθt a.s. approaches the “generalized one-hot policy” P(i) in Eq. (141) as t→∞, finishing the proof of the
first claim.

Proof of Claim 2. Recall that this claim stated that limt→∞
∑

j∈A(a∗) πθt(j) = 1. The brief sketch of the proof is as
follows: By Claim 1, there exists a (possibly random) i ∈ [K] such that

∑
j∈A(i) πθt(j)→ 1 almost surely, as t→∞. If

i = a∗ almost surely, Claim 2 follows. Hence, it suffices to consider the event that {i ̸= a∗} and show that this event has
zero probability mass. Hence, in the rest of the proof we assume that we are on the event when i ̸= a∗.

Since i ̸= a∗, there exists at least one “good” action a+ ∈ [K] such that r(a+) > r(i). The two cases are as follows.

2a) All “good” actions are sampled finitely many times as t→∞.

2b) At least one “good” action is sampled infinitely many times as t→∞.

In both cases, we show that
∑

j∈A(i) exp{θt(j)} <∞ as t→∞ (but for different reasons), which is a contradiction with
the assumption of

∑
j∈A(i) πθt(j)→ 1 as t→∞, given that a “good” action’s parameter is almost surely lower bounded.

Hence, i ̸= a∗ almost surely does not happen, which means that almost surely i = a∗. Let us now turn to the details of the
proof. We start with some useful extra notation. For each action a ∈ [K], for t ≥ 2, we have the following decomposition,

θt(a) = θt(a)− Et−1[θt(a)]︸ ︷︷ ︸
Wt(a)

+Et−1[θt(a)]− θt−1(a)︸ ︷︷ ︸
Pt−1(a)

+θt−1(a), (155)

while we also have,

θ1(a) = θ1(a)− E[θ1(a)]︸ ︷︷ ︸
W1(a)

+E[θ1(a)], (156)

where E[θ1(a)] accounts for possible randomness in initialization of θ1.

Define the following notations,

Zt(a) := W1(a) + · · ·+Wt(a), (“cumulative noise”) (157)
Wt(a) := θt(a)− Et−1[θt(a)], (“noise”) (158)
Pt(a) := Et[θt+1(a)]− θt(a). (“progress”) (159)

Recursing Eq. (155) gives,

θt(a) = E[θ1(a)] + Zt(a) + P1(a) + · · ·+ Pt−1(a)︸ ︷︷ ︸
“cumulative progress”

. (160)

We have that Et[Wt+1(a)] = 0, for t = 0, 1, . . . . Let

It(a) =

{
1, if at = a ;

0, otherwise .
(161)

The update rule (cf. Algorithm 1) is,

θt+1(a) = θt(a) + η · πθt(a) ·
(
I {at = a}
πθt(a)

·Rt(a)−Rt(at)

)
, (162)

where at ∼ πθt(·), and xt(a) ∼ Pa. Let Ft be the σ-algebra generated by a1, x1(a1), · · · , at−1, xt−1(at−1):

Ft = σ({a1, R1(a1), · · · , at−1, Rt−1(at−1)}) . (163)

Note that θt, It are Ft-measurable and x̂t is Ft+1-measurable for all t ≥ 1. Let Et denote the conditional expectation with
respect to Ft: Et[X] = E[X|Ft].
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Using the above notations, we have,

Wt+1(a) = θt+1(a)− Et[θt+1(a)] (164)

= θt(a) + η · [It(a)− πθt(a)] ·Rt(at)−
[
θt(a) + η · πθt(a) ·

(
r(a)− π⊤

θtr
)]

(165)

= η · [It(a)− πθt(a)] ·Rt(at)− η · πθt(a) ·
[
r(a)− π⊤

θtr
]
, (166)

which implies that,

Zt(a) = W1(a) + · · ·+Wt(a) (167)

=

t∑
s=1

η · [Is(a)− πθs(a)] ·Rs(as)− η · πθs(a) ·
[
r(a)− π⊤

θsr
]
. (168)

We also have,

Pt(a) = Et[θt+1(a)]− θt(a) = η · πθt(a) ·
[
r(a)− π⊤

θtr
]
. (169)

Now we apply Theorem 1 in Abbasi-Yadkori et al. (2011) to bound Zt(a). Fix any a. Let

ηt = η, Xt = πθt(a) ·
[
r(a)− π⊤

θtr
]
, (170)

V̄t = 1 +

t∑
s=1

X2
s , St =

t∑
s=1

ηsXs, (171)

then ∥ηt∥ = η and hence is η
2 -Sub-Gaussian. Consequently, there exists event E1 such that P(E1) ≥ 1− δ, and when E1

holds,

∥St∥2V̄ −1
t
≤ η2

2
log

(
det(V̄t)

1/2

√
2δ

)
, (172)∣∣∣∣∣

t∑
s=1

Ps(a)

∣∣∣∣∣ ≤ η ·

√
1 + S1

t (a)

2
log

(
(1 + S1

t (a))
1/2

√
2δ

)
, (173)

where S1
t (a) =

∑t−1
s=1 πθs(a)

2 ·
(
r(a)− π⊤

θs
r
)2

. Noted that |Rt(at)| ≤ Rmax for all t. Similarly, there exists event E2 such
that P(E2) ≥ 1− δ, and when E2 holds,∣∣∣∣∣

t−1∑
s=1

It(a) ·Rs(as)

∣∣∣∣∣ ≤ Rmax ·

√
1 + S2

t (a)

2
log

(
(1 + S2

t (a))
1/2

√
2δ

)
, (174)

where S2
t (a) =

∑t−1
s=1 Is(a)

2; there exists event E3 such that P(E3) ≥ 1− δ, and when E3 holds,∣∣∣∣∣
t−1∑
s=1

πθs(a) ·Rs(as)

∣∣∣∣∣ ≤ Rmax ·

√
1 + S3

t (a)

2
log

(
(1 + S3

t (a))
1/2

√
2δ

)
, (175)

where S3
t (a) =

∑t−1
s=1 πθs(a)

2. Let

A =

t−1∑
s=1

It(a), B =

t−1∑
s=1

πθs(a), (176)

Since 0 ≤ It(a) ≤ 1 and 0 ≤ πθt(a) ≤ 1 for all t, we have

S2
t (a) ≤

t−1∑
s=1

|Is(a)| = A, S3
t (a) ≤

t−1∑
s=1

|πθs(a)| = B. (177)
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When E2 and E3 hold, Eqs. (174) and (175) indicate that

|A−B| ≤ A+B ≤

√
− log(

√
2δ)

2
·
(√

A log(1 +A) +
√
B log(1 +B)

)
. (178)

Let C1 =
√
− log(

√
2δ)/2, we have

A ≤ B + C1 ·
√
A log(1 +A) +B + C1 ·

√
B log(1 +B) (179)(√

A− C1 ·
log(1 +A)

2

)2

≤ B + C1 ·
√
B log(1 +B) +

C2
1 · (log(1 +A))2

4
. (180)

There exists C2 ≥ C1, A′ > 10 such that when A ≥ A′, C1 ·
√
log(1 +A) < C2 ·A1/4 and

√
A ≤

√
B + C1 ·

√
B log(1 +B) +

C2
1 · (log(1 +A))2

4
+ C1 ·

log(1 +A)

2
(181)

√
A ≤

√
(1 + C1) ·B +

C2
2 ·
√
A

4
+

C2 ·A1/4

2
≤
√

(1 + C1) ·B +
C2 ·A1/4

2
+

C2 ·A1/4

2
(182)

√
A− C2 ·A1/4 ≤

√
(1 + C1) ·B (183)

A1/4 ≤
√√

(1 + C1) ·B +
C2

2

4
+

C2

4
(184)

√
A ≤ 2

(√
(1 + C1) ·B +

C2

4
+

C2

4

)
(185)

A ≤ 4

(
(1 + C1) ·B +

C2

4

)
≤ 4C1 ·B + 4 + C2. (186)

When A ≤ A′,

A ≤ C1 ·
√
A′ log(1 +A′) +B + C1 ·

√
B log(1 +B). (187)

Hence, whether A ≤ A′ or not, we have

A ≤ max {4 · C1, 1 + C1} ·B +max
{
4 + C2, C1 ·

√
A′ log(1 +A′)

}
. (188)

Moreover, there exists C3 such that∣∣∣∣∣
t−1∑
s=1

(It(a)− πθt(a))

∣∣∣∣∣ ≤ C3 ·Rmax ·

√√√√1 +
∑t−1

s=1 πθs ·Rs(as)

2
log

(
(1 +

∑t−1
s=1 πθs ·Rs(as))1/2√

2δ

)
(189)

≤ C3 ·Rmax ·

√
1 + S4

t (a)

2
log

(
(1 + S4

t (a))
1/2

√
2δ

)
, (190)

where S4
t (a) =

∑t−1
s=1 πθs(a). Since C1 and C2 only depends on δ, C3 only depends on δ. In other words, C3 is a constant

when δ is fixed. Since It(a)− πθt(a) = (1− πθt(a))− (1− It(a)) and 0 ≤ 1− πθt(a) ≤ 1, 0 ≤ 1− It(a) ≤ 1, using the
similar calculation to that of deriving Eq. (190), we can show that, there exists event E4 such that P(E4) ≥ 1− 2δ, and when
E4 holds,∣∣∣∣∣

t−1∑
s=1

(It(a)− πθs(a))

∣∣∣∣∣ ≤ C3 ·Rmax ·

√√√√1 +
∑t−1

s=1 πθs ·Rs(as)

2
log

(
(1 +

∑t−1
s=1 πθs ·Rs(as))1/2√

2δ

)
(191)

≤ C3 ·Rmax ·

√
1 + S5

t (a)

2
log

(
(1 + S5

t (a))
1/2

√
2δ

)
, (192)
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where S5
t (a) =

∑t−1
s=1(1− πθs(a)).

Recall that i is the index of the (random) action I ∈ [K] with

lim
t→∞

∑
j∈A(I)

πθt(j) = 1, a.s. (193)

As noted earlier we consider the event {I ̸= a∗}, where a∗ is the index of an optimal action and we will show that this event
has zero probability. Since {I ̸= a∗} = ∪i∈[K]{I = i, i ̸= a∗}, it suffices to show that for any fixed i ∈ [K] index with
r(i) < r(a∗), {I = i, i ̸= a∗} has zero probability. Hence, in what follows we fix such a suboptimal action’s index i ∈ [K]
and consider the event {I = i, i ̸= a∗}.

Partition the action set [K] into three parts using r(i) as follows,

A(i) := {j ∈ [K] : r(j) = r(i)} , (from Eq. (140)) (194)

A+(i) :=
{
a+ ∈ [K] : r(a+) > r(i)

}
, (195)

A−(i) :=
{
a− ∈ [K] : r(a−) < r(i)

}
. (196)

Because i was the index of a sub-optimal action, we haveA+(i) ̸= ∅. According to Eq. (193), on {I = i} ⊃ {I = i, i ̸= a∗},
we have π⊤

θt
r → r(i) as t→∞ because

∣∣r(i)− π⊤
θtr
∣∣ = ∣∣∣∣ ∑

k ̸∈A(i)

πθt(k) · (r(i)− r(k))

∣∣∣∣ (197)

≤
∑

k ̸∈A(i)

πθt(k) · |r(i)− r(k)| (198)

≤ 1−
∑

j∈A(i)

πθt(j).
(
r ∈ [0, 1]K

)
(199)

Therefore, there exists τ ≥ 1 such that almost surely on {I = i, i ̸= a∗} τ <∞ while we also have

r(a+)− c′ ≥ π⊤
θtr ≥ r(a−) + c′, for all t ≥ τ, (200)

for all a+ ∈ A+(i), a− ∈ A−(i), where c′ > 0. Hence, for all t ≥ τ , a+ ∈ A+(i), a− ∈ A−(i), Pt(a
+) > 0 > Pt(a

−).
For all a+ ∈ A+(i), when t > τ ,

S1
t (a

+) =

t−1∑
s=1

πθs(a
+)2 · (r(a+)− π⊤

θsr)
2 ≤ R2

max ·
t∑

s=1

πθs(a
+)2 ≤

t−1∑
s=1

πθs(a
+) = R2

max · S4
t (a

+), (201)

t∑
s=τ

Ps(a
+) =

t∑
s=τ

η · πθs(a
+) · (r(a+)− π⊤

θsr) ≥ η · c′ ·
t∑

s=τ

πθs(a
+). (202)

24



Stochastic Gradient Succeeds for Bandits

Hence, when E1, E2 and E3 hold, we have

θt(a
+) = E[θ1(a+)] + Zt(a

+) + P1(a
+) + · · ·+ Pτ−1(a

+) + Pτ (a
+) + · · ·+ Pt−1(a

+)
(
by Eq. (160)

)
(203)

≥ E[θ1(a+)]− η ·

√
1 + S1

t (a
+)

2
log

(
(1 + S1

t (a
+))1/2√

2δ

)
(204)

− η · C3 ·Rmax ·

√
1 + S4

t (a
+)

2
log

(
(1 + S4

t (a
+))1/2√

2δ

)
(205)

+ P1(a
+) + · · ·+ Pτ−1(a

+) + Pτ (a
+) + · · ·+ Pt−1(a

+) (by Eqs. (173) and (190)) (206)

≥ E[θ1(a+)]−

η ·R2
max · (1 + C3) ·

√√√√1 +
∑t−1

s=1 πθs(a
+)

2
log

(
(1 +

∑t−1
s=1 πθs(a

+))1/2√
2δ

)︸ ︷︷ ︸
(♠)

(207)

+ P1(a
+) + · · ·+ Pτ−1(a

+) + η · c′ ·
t∑

s=τ

πθs(a
+)︸ ︷︷ ︸

(♡)

. (208)

If
∑∞

s=1 πθs(a
+) <∞, θt(a+) is always finite and inft≥1 θt(a

+) > −∞; if
∑∞

s=1 πθs(a
+) =∞, we have (♡) goes to∞

faster than (♠), and inft≥1 θt(a
+) > −∞.

Now take any ω ∈ E := {I = i, i ̸= a∗}. Because P(E \ (E ∩ E1 ∩ E2 ∩ E3)) ≤ P(Ω \ (E1 ∩ E2 ∩ E3)) ≤ 3δ → 0 as
δ → 0, we have that P-almost surely for all ω ∈ E ′ there exists δ > 0 such that ω ∈ E ∩ E1 ∩ E2 ∩ E3 while Eq. (208) also
holds for this δ. Take such a δ. By Eq. (208),

inf
t≥1

θt(a
+)(ω) > −∞. (209)

Hence, almost surely on E ,

c1(a
+) := inf

t≥1
θt(a

+) > −∞. (210)

Furthermore,

c1 := min
a+∈A+

inf
t≥1

θt(a
+) = min

a+∈A+
c1(a

+) > −∞. (211)

Similarly, we can show that, almost surely on E ,

c2 := max
a−∈A−

sup
t≥1

θt(a
−) <∞. (212)

First case. 2a). Consider the event,

E0 :=
⋂

a+∈A+(i)

{
N∞(a+) <∞

}︸ ︷︷ ︸
E0(a+)

, (213)

i.e., any “good” action a+ ∈ A+(i) has finitely many updates as t→∞. Pick a+ ∈ A+(i), such that P(N∞(a+) <∞) > 0.
According to the extended Borel-Cantelli lemma (Lemma C.2), we have, almost surely,{∑

t≥1

πθt(a
+) =∞

}
=
{
N∞(a+) =∞

}
. (214)

Hence, taking complements, we have, {∑
t≥1

πθt(a
+) <∞

}
=
{
N∞(a+) <∞

}
(215)
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also holds almost surely. Note that, for all “good” action a+,

θt+1(a
+)← θt(a

+) +

{
η · (1− πθt(a

+)) ·Rt(a
+), if at = a+ ,

−η · πθt(a
+) ·Rt(at), otherwise .

(216)

Since the first update will be conducted finitely many times, and the second update will be conducted for infinitely many
times, we have

c3 := sup
t≥1

θt(a
+) <∞. (217)

Next,

1−
∑

j∈A(i)

πθt(j) =

∑
a+∈A+(i) e

θt(a
+) +

∑
a−∈A−(i) e

θt(a
−)∑

a∈[K] e
θt(a)

(218)

≤
∑

a+∈A+(i) e
θt(a

+) +
∑

a−∈A−(i) e
c2∑

a∈[K] e
θt(a)

(219)

=

∑
a+∈A+(i) e

θt(a
+) + ec2−c1 ·

∑
a−∈A−(i) e

c1∑
a∈[K] e

θt(a)
(220)

=

∑
a+∈A+(i) e

θt(a
+) + ec2−c1 · |A

−(i)|
|A+(i)| ·

∑
a+∈A+(i) e

c1∑
a∈[K] e

θt(a)

(
|A+(i)| ≥ 1

)
(221)

≤
∑

a+∈A+(i) e
θt(a

+) + ec2−c1 · |A
−(i)|

|A+(i)| ·
∑

a+∈A+(i) e
θt(a

+)∑
a∈[K] e

θt(a)
(222)

=

(
1 + ec2−c1 · |A

−(i)|
|A+(i)|

)
·

∑
a+∈A+(i)

πθt(a
+). (223)

According to Eq. (214), N∞(a+) <∞ for all a+ ∈ A+(i). Since

∑
t≥1

∑
a−∈A−(i)

πθt(a
−) ≤ ec2−c1 · |A

−(i)|
|A+(i)|

·
∑
t≥1

∑
a+∈A+(i)

πθt(a
+) <∞, (224)

we have N∞(a−) <∞ for all a− ∈ A−(i). Therefore.
∑

j∈A(i) N∞(i) =∞, which indicates that for all j ∈ A(i), the
first update of i will be conducted for infinitely many times, and the second update will be conducted for finitely many times.
According to Assumption 2.1, we have |A(i)| = 1, and for all j ∈ A(i), we have

θt(j) ≤ θ1(j) + η · r(j) ·
t−1∑
s=1

(1− πθs(j)) (225)

≤ θ1(j) + η · r(j) ·
(
1 + ec2−c1 · |A

−(i)|
|A+(i)|

)
·
∑
t≥1

∑
a+∈A+(i)

πθt(a
+) <∞. (226)

Hence, we have

c4 := lim sup
t→∞

θt(j) <∞. (227)
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Therefore, we have

∑
j∈A(i)

πθt(j) =

∑
j∈A(i) e

θt(j)∑
j∈A(i) e

θt(j) +
∑

a+∈A+(i) e
θt(a+) +

∑
a−∈A−(i) e

θt(a−)
(228)

≤
∑

j∈A(i) e
θt(j)∑

j∈A(i) e
θt(j) +

∑
a+∈A+(i) e

θt(a+)

(
eθt(a

−) > 0
)

(229)

≤
∑

j∈A(i) e
θt(j)∑

j∈A(i) e
θt(j) + ec2 · |A+(i)|

(by Eq. (212)) (230)

≤ ec4 · |A(i)|
ec4 · |A(i)|+ ec2 · |A+(i)|

(by Eq. (227)) (231)

̸→ 1, (232)

which is a contradiction with the assumption of Eq. (193), showing that P(E0 ∩ E ′) = 0.

Second case. 2b). Consider the complement Ec0 of E0, where E0 is by Eq. (213). Ec0 indicates the event for at least one
“good” action a+ ∈ A+(i) has infinitely many updates as t→∞.

We now show that also P(E ′) = 0 where E ′ = Ec0 ∩ {I = i, i ̸= a∗} = (∪a+∈A(i){N∞(a+) = ∞}) ∩ {I = i, i ̸= a∗}.3

Let Ã+(i) := {a+ ∈ A+(i) : N∞(a+) =∞}, and

E∞(a+) := ∪a+∈A(i){N∞(a+) =∞} = ∩a+∈Ã+(i){N∞(a+) =∞}. (233)

Then E ′ = E∞(a+) ∩ {I = i, i ̸= a∗}. Since E ′ ⊂ E∞(a+), the statement follows if P(E∞(a+)) = 0. Hence, assume that
P(E∞(a+)) > 0.

Fix δ ∈ [0, 1]. Using a similar calculation to that of Eq. (208), there exists an event Eδ such that P(Eδ) ≥ 1− 2δ, and on Eδ ,
for all t ≥ τ , for all a+ ∈ Ã+(i),

θt(a
+) = E[θ1(a+)] + Zt(a

+) + P1(a
+) + · · ·+ Pτ−1(a

+)
(
by Eq. (160)

)
(234)

+ Pτ (a
+) + · · ·+ Pt−1(a

+) (235)

≥ E[θ1(a+)]−

η ·R2
max · (1 + C3) ·

√√√√1 +
∑t−1

s=1 πθs(a
+)

2
log

(
(1 +

∑t−1
s=1 πθs(a

+))1/2√
2δ

)︸ ︷︷ ︸
(♠)

(236)

+ P1(a
+) + · · ·+ Pτ−1(a

+) + η · c′ ·
t∑

s=τ

πθs(a
+)︸ ︷︷ ︸

(♡)

(by Eqs. (173) and (190)) . (237)

On E∞(a+) ∩ Eδ, Nt−1(a
+) → ∞ as t → ∞, which with Eq. (214) indicates that

∑
t≥1 πθt(a

+) = ∞. When t → ∞,
both (♠) and (♡) go to infinity while (♡) goes to infinity faster than (♠). Hence, we have θt(a

+)→∞ as t→∞.

Since P(E∞(a+) \ (E∞(a+) ∩ Eδ))→ 0 as δ → 0, with an argument parallel to that used in the previous analysis (cf. the
argument after Eq. (208)), we have, almost surely on E∞(a+),

lim
t→∞

θt(a
+) =∞, (238)

which implies that there exists τ1 ≥ 1 such that on E ′(= E∞(a+) ∩ {I = i, i ̸= a∗}) we have almost surely that τ1 < +∞
while we also have that for all t ≥ τ1, for all a+ ∈ Ã+(i),∑

a−∈A−(i)

r(i)− r(a−)

exp{θt(a+)− c1}
< c′ :=

r(a+)− r(i)

2
. (239)

3Here, E ′ is redefined to minimize clutter; the previous definition is not used in this part of the proof.
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For all ā+ ∈ A+(i)/Ã+(i), since limt→∞ ā+ <∞, we have

max
ā+∈A+(i)/Ã+(i)

θt(ā
+) <∞. (240)

Recall in Eq. (212) we show c2 = maxa−∈A− supt≥1 θt(a
−) <∞. We have

max
a∈(A+∪A−)/Ã+(i)

θt(a) <∞. (241)

Fix any ã+ ∈ Ã+, since limt→∞ θt(a
+) =∞, there exists τ2 <∞ such that when t ≥ τ2,∑

a∈(A+∪A−)/Ã+(i)

exp{θt(a)} ≤ 0.1 · exp{θt(ã+)} (242)

∑
a∈(A+∪A−)/Ã+(i)

πθt(a) ≤ 0.1 · πθt(ã
+) (243)

1−
∑

j∈A(i)

πt(j) =
∑

a∈(A+∪A−)/Ã+(i)

πθt(a) +
∑

a+∈Ã+

πθt(a
+) ≤ 0.1 · πθt(ã

+) +
∑

a+∈Ã+

πθt(a
+) ≤ 1.1 ·

∑
a+∈Ã+

πθt(a
+).

(244)

Hence, on E ′, for t ≥ τ1, almost surely,

π⊤
θtr =

∑
j∈A(i)

πθt(j) · r(i) +
∑

a−∈A−(i)

πθt(a
−) · r(a−) +

∑
a+∈A+(i)

πθt(a
+) · r(a+) (245)

= r(i)−
∑

a−∈A−(i)

πθt(a
−) ·

(
r(i)− r(a−)

)
+

∑
a+∈A+(i)

πθt(a
+) ·

(
r(a+)− r(i)

)
(246)

≥ r(i)−
∑

a−∈A−(i)

πθt(a
−) ·

(
r(i)− r(a−)

)
+

∑
ã+∈Ã+(i)

πθt(ã
+) ·

(
r(ã+)− r(i)

)
(247)

(
r(a+)− r(i) > 0, Eq. (195)

)
(248)

= r(i) +
∑

ã+∈Ã+(i)

πθt(ã
+) ·

[ (
r(a+)− r(i)

)
−

∑
a−∈A−(i)

πθt(a
−)

πθt(ã
+) · |Ã+(i)|

·
(
r(i)− r(a−)

) ]
(249)

≥ r(i) +
∑

ã+∈Ã+(i)

πθt(ã
+) ·

[ (
r(a+)− r(i)

)
−

∑
a−∈A−(i)

πθt(a
−)

πθt(ã
+)
·
(
r(i)− r(a−)

) ]
(250)

= r(i) +
∑

ã+∈Ã+(i)

πθt(ã
+) ·

[ (
r(ã+)− r(i)

)
−

∑
a−∈A−(i)

r(i)− r(a−)

exp{θt(ã+)− θt(a−)}

]
(251)

≥ r(i) +
∑

a+∈Ã+(i)

πθt(a
+) ·

[ (
r(a+)− r(i)

)
−

∑
a−∈A−(i)

r(i)− r(a−)

exp{θt(a+)− c2}

]
(by Eq. (212)) (252)

> r(i) + c′ ·
∑

a+∈Ã+(i)

πθt(a
+) . (by Eq. (239)) (253)

Therefore, on E ′, for all t ≥ τ1, for any j ∈ A(i), almost surely, by Eq. (169), we have

Pt(j) = η · πθt(j) · (r(j)− π⊤
θtr) < −c

′ ·
∑

a+∈Ã+(i)

πθt(i) · πθt(a
+) < 0. (254)

Since |A(i)| = 1, by Assumption 2.1, limt→∞ πθt(i) = 1, there exists τ2 such that when t ≥ τ3, πθt(i) > 1/2. Hence,
when t ≥ max{τ1, τ3}, we have Pt(j) < −c′ ·

∑
a+∈Ã+(i) πθt(a

+)/2. Let τ ′ = max{τ1, τ2, τ3}. When t > τ ′, for
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j ∈ A(i),

S1
t (j) =

t−1∑
s=1

πθs(j)
2 · (r(j)− π⊤

θsr)
2 =

t−1∑
s=1

(
Ps(j)

η

)2

, (255)

S5
t (j) =

t−1∑
s=1

(1− πθs(j)) =

τ ′−1∑
s=1

(1− πθs(j)) +

t−1∑
s=τ ′

[
1−

∑
j∈A(i)

πθs(j)
]

(256)

≤
τ ′−1∑
s=1

(1− πθs(j)) + 1.1 ·
t−1∑
s=τ ′

∑
a+∈Ã+

πθs(a
+). (by Eq. (244)) (257)

Hence, for t ≥ τ ′, when E1 and E4 hold, we have

θt(j) = E[θ1(j)] + Zt(j) + P1(j) + · · ·+ Pτ−1(j) + Pτ (a
+) + · · ·+ Pt−1(j)

(
by Eq. (160)

)
(258)

≤ E[θ1(j)] + η ·

√
1 + S1

t (j)

2
log

(
(1 + S1

t (j))
1/2

√
2δ

)
+ η · C3 ·Rmax ·

√
1 + S5

t (j)

2
log

(
(1 + S5

t (j))
1/2

√
2δ

)
(259)

+ P1(j) + · · ·+ Pτ ′−1(j) + Pτ ′(j) + · · ·+ Pt−1(j) (by Eqs. (173) and (192)) (260)

≤ E[θ1(j)] + η ·

√
1 + S1

t (j)

2
log

(
(1 + S1

t (j))
1/2

√
2δ

)
︸ ︷︷ ︸

(♠)

+ η · C3 ·Rmax ·

√
1 + S5

t (j)

2
log

(
(1 + S5

t (j))
1/2

√
2δ

)
︸ ︷︷ ︸

(♡)

(261)

+ P1(j) + · · ·+ Pτ ′−1(j)−
1

2
·

t∑
j=τ ′

|Ps(j)|︸ ︷︷ ︸
(♣)

− c′

4
·
∑

a+∈Ã+

πθt(a
+)

︸ ︷︷ ︸
(♢)

. (262)

Since (♣) and (♢) go to infinity when t→∞, (♣) goes to infinity faster than (♠), (♢) goes to infinity faster than (♡), we
have supt≥1 θt(j) <∞.

Let E ′δ = E1 ∩ E4. Since P(E ′cδ ) ≤ 2δ → 0 as δ → 0, with an argument parallel to that used in the previous analysis (cf. the
argument after Eq. (208)), we get that there exists a random constant c5(j) such that almost surely on E ′, c5(j) <∞ and
supt≥τ1 θt(j) ≤ c5(j). Define c5 := maxj∈A(i) c5(j). Then, almost surely on E ′, c5 <∞ and

sup
t≥τ1

max
j∈A(i)

θt(j) ≤ c5 . (263)

By Eq. (238), there exists a+ ∈ A+(i), τ ′′ ≥ 1, such that almost surely on E ′, τ ′′ <∞ while we also have

inf
t≥τ ′′

θt(a
+) ≥ 0, (264)

for all t ≥ τ ′′. Hence, on E ′, almost surely for all t ≥ max(τ ′, τ ′′),∑
j∈A(i)

πθt(j) =

∑
j∈A(i) e

θt(j)∑
j∈A(i) e

θt(j) +
∑

ã+∈A+(i) e
θt(ã+) +

∑
a−∈A−(i) e

θt(a−)
(265)

≤
∑

j∈A(i) e
θt(j)∑

j∈A(i) e
θt(j) + eθt(a+)

(
eθt(k) > 0 for any k ∈ [K]

)
(266)

≤
∑

j∈A(i) e
θt(j)∑

j∈A(i) e
θt(j) + 1

(by Eq. (264) ) (267)

≤ ec5 · |A(i)|
ec5 · |A(i)|+ 1

(by Eq. (263)) (268)

̸→ 1 . (269)
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Hence, P(E ′) = 0, finishing the proof.

Lemma 5.4 (Non-uniform Łojasiewicz (NŁ), Mei et al. (2020b, Lemma 3)). Assume r has a unique maximizing action a∗.
Let π∗ = argmaxπ∈∆ π⊤r. Then, ∥∥∥∥dπ⊤

θ r

dθ

∥∥∥∥
2

≥ πθ(a
∗) · (π∗ − πθ)

⊤r . (270)

Proof. Using the definition of softmax Jacobian, we have,∥∥∥∥dπ⊤
θ r

dθ

∥∥∥∥2
2

=
∑

a∈[K]

πθ(a)
2 ·
(
r(a)− π⊤

θ r
)2

(271)

≥ πθ(a
∗)2 ·

(
r(a∗)− π⊤

θ r
)2

, (fewer terms) (272)

which implies Eq. (270).

A.2. Proof of Theorem 5.5

Theorem 5.5 (Convergence rate and regret). Using Algorithm 1 with η = ∆2

40·K3/2·R3
max

, we have, for all t ≥ 1,

E[(π∗ − πθt)
⊤
r] ≤ C

t
, and (273)

E
[ T∑

t=1

(π∗ − πθt)
⊤
r

]
≤ min{

√
2Rmax C T,C log T + 1}, (274)

where C :=
80·K3/2·R3

max

∆2·E[c2] , and c := inft≥1 πθt(a
∗) > 0 is from Theorem 5.1.

Proof. First part, Eq. (273). According to Lemma 4.6, we have,

Et[π
⊤
θt+1

r]− π⊤
θtr ≥

∆2

80 ·K3/2 ·R3
max

·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥2
2

(275)

≥ ∆2 · πθt(a
∗)2

80 ·K3/2 ·R3
max

·
(
r(a∗)− π⊤

θtr
)2

(by Lemma 5.4) (276)

≥ ∆2 · inft≥1 πθt(a
∗)2

80 ·K3/2 ·R3
max

·
(
r(a∗)− π⊤

θtr
)2

(277)

=
∆2 · c2

80 ·K3/2 ·R3
max

·
(
r(a∗)− π⊤

θtr
)2

. (by Theorem 5.1) (278)

Denote δ(θt) := (π∗ − πθt)
⊤
r as the sub-optimality gap. We have,

δ(θt)− Et[δ(θt+1)] = (π∗ − πθt)
⊤
r −

(
π∗ − Et[πθt+1

]
)⊤

r (279)

= Et[π
⊤
θt+1

r]− π⊤
θtr (280)

≥ ∆2 · c2

80 ·K3/2 ·R3
max

· δ(θt)2. (281)

Taking expectation, we have,

E [δ(θt)]− E [δ(θt+1)] ≥
∆2 · E[c2]

80 ·K3/2 ·R3
max

· E [δ(θt)
2]

(
c := inf

t≥1
πθt(a

∗) > 0 is independent with t

)
(282)

≥ ∆2 · E[c2]
80 ·K3/2 ·R3

max

· (E [δ(θt)])
2

(by Jensen’s inequality) (283)

=
1

C
· (E [δ(θt)])

2
. (284)
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Therefore, we have,

1

E [δ(θt)]
=

1

E [δ(θ1)]
+

t−1∑
s=1

[
1

E [δ(θs+1)]
− 1

E [δ(θs)]

]
(285)

=
1

E [δ(θ1)]
+

t−1∑
s=1

1

E [δ(θs+1)] · E [δ(θs)]
· (E [δ(θs)]− E [δ(θs+1)]) (286)

≥ 1

E [δ(θ1)]
+

t−1∑
s=1

1

E [δ(θs+1)] · E [δ(θs)]
· 1
C
· (E [δ(θs)])

2
(by Eq. (282)) (287)

≥ 1

E [δ(θ1)]
+

t−1∑
s=1

1

C
(E [δ(θs)] ≥ E [δ(θs+1)] > 0) (288)

=
1

E [δ(θ1)]
+

1

C
· (t− 1) (289)

≥ t

C
,

(
E [δ(θ1)] ≤ 2Rmax ≤ C = max

s≤t

80 ·K3/2 ·R3
max

∆2 · E[c2]

)
(290)

which implies Eq. (273).

Second part, Eq. (274). According to Eq. (285),we have,

E
[ T∑

t=1

δ(θt)

]
=

T∑
t=1

E[δ(θt)] ≤
T∑

t=1

C

t
≤ C · log T + 1. (291)

On the other hand, we have

T∑
t=1

E[δ(θt)] ≤
√
T ·

[
T∑

t=1

(E [δ(θt)])
2

] 1
2

(by Cauchy–Schwarz) (292)

≤
√
T ·

[
T∑

t=1

C · (E[δ(θt)]− E[δ(θt+1)])

] 1
2

(by Eq. (282)) (293)

=
√
C · T · (E[δ(θ1)]− E[δ(θT+1)]) (294)

≤
√
C · T · 2 ·Rmax, (E[δ(θT+1)] ≥ 0. and E[δ(θ1)] ≤ 2Rmax) (295)

Combining Eqs. (291) and (292), we have Eq. (274).

B. Proofs for Using Baselines
The following Algorithm 2 is same as the gradient bandit algorithm in Sutton & Barto (2018, Section 2.8).

Proposition B.1. Algorithm 2 is equivalent to the following stochastic gradient ascent update on π⊤
θ r.

θt+1 ← θt + η ·
dπ⊤

θt

(
r̂t − b̂t

)
dθt

(296)

= θt + η ·
(
diag(πθt)− πθtπ

⊤
θt

) (
r̂t − b̂t

)
, (297)

where
(
dπθ

dθ

)⊤
= diag(πθ) − πθπ

⊤
θ is the Jacobian of θ 7→ πθ := softmax(θ), and r̂t(a) := I{at=a}

πθt (a)
· Rt(a) for all

a ∈ [K] is the importance sampling (IS) estimator, and we set Rt(a) = 0 for all a ̸= at. The baseline is defined as
b̂t(a) :=

I{at=a}
πθt (a)

·Bt for all a ∈ [K].
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Algorithm 2 Gradient bandit algorithm with baselines
Input: initial parameters θ1 ∈ RK , learning rate η > 0.
Output: policies πθt = softmax(θt).
while t ≥ 1 do

Sample one action at ∼ πθt(·).
Observe one reward sample Rt(at) ∼ Pat

.
Choose a baseline Bt ∈ R.
for all a ∈ [K] do

if a = at then
θt+1(a)← θt(a) + η · (1− πθt(a)) · (Rt(at)−Bt).

else
θt+1(a)← θt(a)− η · πθt(a) · (Rt(at)−Bt).

end if
end for

end while

Proof. Using the definition of softmax Jacobian, r̂t and b̂t, we have, for all a ∈ [K],

θt+1(a)← θt(a) + η · πθt(a) ·
(
r̂t(a)− b̂t(a)− π⊤

θt

(
r̂t − b̂t

))
(298)

= θt(a) + η · πθt(a) ·
(
r̂t(a)− b̂t(a)− (Rt(at)−Bt)

)
(299)

= θt(a) +

{
η · (1− πθt(a)) · (Rt(at)−Bt) , if at = a ,

−η · πθt(a) · (Rt(at)−Bt) , otherwise .

Lemma B.2 (Unbiased stochastic gradient with bounded variance / scale). Using Algorithm 2, we have, for all t ≥ 1,

Et

[
dπ⊤

θt

(
r̂t − b̂t

)
dθt

]
=

dπ⊤
θt
r

dθt
, (300)

Et

[∥∥∥∥dπ⊤
θt

(
r̂t − b̂t

)
dθt

∥∥∥∥2
2

]
≤ 2 R̄2

max, (301)

where Et[·] is on randomness from the on-policy sampling at ∼ πθt(·) and reward sampling Rt(at) ∼ Pat , and R̄max is the
range of reward minus baselines, i.e.,

Rt(at)−Bt ∈ [−R̄max, R̄max]. (302)

Proof. First part, Eq. (300). For all action a ∈ [K], the true softmax PG is,

dπ⊤
θt
r

dθt(a)
= πθt(a) ·

(
r(a)− π⊤

θtr
)
. (303)

For all a ∈ [K], the stochastic softmax PG is,

dπ⊤
θt

(
r̂t − b̂t

)
dθt(a)

= πθt(a) ·
(
r̂t(a)− b̂t(a)− π⊤

θt

(
r̂t − b̂t

))
(304)

= πθt(a) ·
(
r̂t(a)− b̂t(a)− (Rt(at)−Bt)

)
(305)

= (I {at = a} − πθt(a)) · (Rt(at)−Bt) . (306)
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For the sampled action at, we have,

E
Rt(at)∼Pat

[
dπ⊤

θt

(
r̂t − b̂t

)
dθt(at)

]
= E

Rt(at)∼Pat

[
(1− πθt(at)) · (Rt(at)−Bt)

]
(307)

= (1− πθt(at)) · E
Rt(at)∼Pat

[
Rt(at)−Bt

]
(308)

= (1− πθt(at)) · (r(at)−Bt) . (309)

For any other not sampled action a ̸= at, we have,

E
Rt(at)∼Pat

[
dπ⊤

θt

(
r̂t − b̂t

)
dθt(a)

]
= E

Rt(at)∼Pat

[
− πθt(a) · (Rt(at)−Bt)

]
(310)

= −πθt(a) · E
Rt(at)∼Pat

[
Rt(at)−Bt

]
(311)

= −πθt(a) · (r(at)−Bt) . (312)

Combing Eqs. (307) and (310), we have, for all a ∈ [K],

E
Rt(at)∼Pat

[
dπ⊤

θt

(
r̂t − b̂t

)
dθt(a)

]
= (I {at = a} − πθt(a)) · (r(at)−Bt) . (313)

Taking expectation over at ∼ πθt(·), we have,

Et

[
dπ⊤

θt

(
r̂t − b̂t

)
dθt(a)

]
= Pr (at = a) · E

Rt(at)∼Pat

[
dπ⊤

θt

(
r̂t − b̂t

)
dθt(a)

∣∣∣ at = a

]
(314)

+ Pr (at ̸= a) · E
Rt(at)∼Pat

[
dπ⊤

θt

(
r̂t − b̂t

)
dθt(a)

∣∣∣ at ̸= a

]
(315)

= πθt(a) · (1− πθt(a)) · (r(a)−Bt) +
∑
a′ ̸=a

πθt(a
′) · (−πθt(a)) · (r(a′)−Bt) (316)

= πθt(a) ·
∑
a′ ̸=a

πθt(a
′) ·
[
(r(a)−Bt)− (r(a′)−Bt)

]
(317)

= πθt(a) ·
(
r(a)− π⊤

θtr
)
. (318)

Combining Eqs. (303) and (314), we have, for all a ∈ [K],

Et

[
dπ⊤

θt

(
r̂t − b̂t

)
dθt(a)

]
=

dπ⊤
θt
r

dθt(a)
, (319)

which implies Eq. (300) since a ∈ [K] is arbitrary.

Second part, Eq. (301). The squared stochastic PG norm is,∥∥∥∥dπ⊤
θt

(
r̂t − b̂t

)
dθt

∥∥∥∥2
2

=
∑

a∈[K]

(
dπ⊤

θt

(
r̂t − b̂t

)
dθt(a)

)2

(320)

=
∑

a∈[K]

(I {at = a} − πθt(a))
2 · (Rt(at)−Bt)

2
(by Eq. (304)) (321)

≤ R̄2
max ·

∑
a∈[K]

(I {at = a} − πθt(a))
2

(by Eq. (302)) (322)

= R̄2
max ·

[
(1− πθt(at))

2
+
∑
a ̸=at

πθt(a)
2

]
(323)

≤ R̄2
max ·

[
(1− πθt(at))

2
+
( ∑

a̸=at

πθt(a)
)2]

(∥x∥2 ≤ ∥x∥1) (324)

= 2 · R̄2
max · (1− πθt(at))

2
. (325)
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Therefore, we have, for all a ∈ [K], conditioning on at = a,[∥∥∥∥dπ⊤
θt

(
r̂t − b̂t

)
dθt

∥∥∥∥2
2

∣∣∣ at = a

]
≤ 2 · R̄2

max · (1− πθt(a))
2
. (326)

Taking expectation over at ∼ πθt(·), we have,

Et

[∥∥∥∥dπ⊤
θt

(
r̂t − b̂t

)
dθt

∥∥∥∥2
2

]
=
∑

a∈[K]

Pr (at = a) ·

[∥∥∥∥dπ⊤
θt

(
r̂t − b̂t

)
dθt

∥∥∥∥2
2

∣∣∣ at = a

]
(327)

≤
∑

a∈[K]

πθt(a) · 2 · R̄2
max · (1− πθt(a))

2 (328)

≤ 2 · R̄2
max ·

∑
a∈[K]

πθt(a) (πθt(a) ∈ (0, 1) for all a ∈ [K]) (329)

= 2 R̄2
max.

Lemma B.3 (NS between iterates). Using Algorithm 2 with η ∈
(
0, 2/(9 R̄max)

)
, we have, for all t ≥ 1,

D(θt+1, θt) :=

∣∣∣∣∣(πθt+1
− πθt)

⊤r −
〈dπ⊤

θt
r

dθt
, θt+1 − θt

〉∣∣∣∣∣ ≤ β(θt)

2
· ∥θt+1 − θt∥22, (330)

where R̄max is from Eq. (302), and

β(θt) =
6

2− 9 · R̄max · η
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

. (331)

Proof. In the proofs for Lemma 4.2, replacing Rmax with R̄max, and replacing
dπ⊤

θt
r̂t

dθt
with

dπ⊤
θt

(r̂t−b̂t)

dθt
, we have the

results.

Lemma 6.1 (Strong growth conditions / Self-bounding noise property). Using Algorithm 2, we have, for all t ≥ 1,

Et

[∥∥∥∥dπ⊤
θt

(
r̂t − b̂t

)
dθt

∥∥∥∥2
2

]
≤ 8 · R̄2

max ·Rmax ·K3/2

∆2
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

, (332)

where ∆ := mini ̸=j |r(i)− r(j)|, and R̄max is from Eq. (302).

Proof. Given t ≥ 1, denote kt as the action with largest probability, i.e., kt := argmaxa∈[K] πθt(a). We have,

πθt(kt) ≥
1

K
. (333)

According to Eq. (327), we have,

Et

[∥∥∥∥dπ⊤
θt

(
r̂t − b̂t

)
dθt

∥∥∥∥2
2

]
=
∑

a∈[K]

Pr (at = a) ·

[∥∥∥∥dπ⊤
θt

(
r̂t − b̂t

)
dθt

∥∥∥∥2
2

∣∣∣ at = a

]
(334)

≤
∑

a∈[K]

πθt(a) · 2 · R̄2
max · (1− πθt(a))

2 (335)

= 2 · R̄2
max ·

[
πθt(kt) · (1− πθt(kt))

2
+
∑
a ̸=kt

πθt(a) · (1− πθt(a))
2

]
(336)

≤ 2 · R̄2
max ·

[
1− πθt(kt) +

∑
a ̸=kt

πθt(a)

]
(πθt(a) ∈ (0, 1) for all a ∈ [K]) (337)

= 4 · R̄2
max · (1− πθt(kt)) . (338)
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Therefore, we have,

Et

[∥∥∥∥dπ⊤
θt

(
r̂t − b̂t

)
dθt

∥∥∥∥2
2

]
≤ 4 · R̄2

max · (1− πθt(kt)) (339)

≤ 4 · R̄2
max ·K
∆2

·
∑

a∈[K]

πθt(a) · (r(a)− π⊤
θtr)

2 (by Eq. (117)) (340)

≤ 4 · R̄2
max ·K
∆2

· 2 ·
√
K ·Rmax ·

∥∥∥∥dπ⊤
θt
r

dθt

∥∥∥∥
2

(by Eq. (110)) (341)

=
8 · R̄2

max ·Rmax ·K3/2

∆2
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

.

Lemma B.4 (Constant learning rate). Using Algorithm 2 with η = ∆2

40·K3/2·R̄2
max·Rmax

, we have, for all t ≥ 1,

π⊤
θtr − Et[π

⊤
θt+1

r] ≤ − ∆2

80 ·K3/2 · R̄2
max ·Rmax

·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥2
2

, (342)

where R̄max is from Eq. (302).

Proof. Using the learning rate,

η =
∆2

40 ·K3/2 · R̄2
max ·Rmax

(343)

=
4

45 · R̄max
· ∆2

R̄max ·Rmax
· 1

K3/2
· 45
4
· 1
40

(344)

≤ 4

45 · R̄max
· 4 · 1

2 ·
√
2
· 45
4
· 1
40

,
(
∆ ≤ 2 ·Rmax, ∆ ≤ 2 · R̄max, and K ≥ 2

)
(345)

<
4

45 · R̄max
, (346)

we have η ∈
(
0, 2/(9 R̄max)

)
. According to Lemma B.3, we have,

∣∣∣∣∣(πθt+1
− πθt)

⊤r −
〈dπ⊤

θt
r

dθt
, θt+1 − θt

〉∣∣∣∣∣ ≤ 3

2− 9 · R̄max · η
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

· ∥θt+1 − θt∥22 (347)

≤ 3

2− 9 · R̄max · 4
45·R̄max

·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

· ∥θt+1 − θt∥22 (by Eq. (346)) (348)

=
5

2
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

· ∥θt+1 − θt∥22, (349)

which implies that,

π⊤
θtr − π⊤

θt+1
r ≤ −

〈dπ⊤
θt
r

dθt
, θt+1 − θt

〉
+

5

2
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

· ∥θt+1 − θt∥22 (350)

= −η ·
〈dπ⊤

θt
r

dθt
,
dπ⊤

θt

(
r̂t − b̂t

)
dθt

〉
+

5

2
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

· η2 ·
∥∥∥∥dπ⊤

θt

(
r̂t − b̂t

)
dθt

∥∥∥∥2
2

, (351)
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where the last equation uses Algorithm 2. Taking expectation over at ∼ πθt(·) and Rt(at) ∼ Pat
, we have,

π⊤
θtr − Et[π

⊤
θt+1

r] ≤ −η ·
〈dπ⊤

θt
r

dθt
,Et

[
dπ⊤

θt
r̂t

dθt

]〉
+

5

2
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

· η2 · Et

[∥∥∥∥dπ⊤
θt
r̂t

dθt

∥∥∥∥2
2

]
(352)

= −η ·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥2
2

+
5

2
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

· η2 · Et

[∥∥∥∥dπ⊤
θt

(
r̂t − b̂t

)
dθt

∥∥∥∥2
2

]
(by Lemma B.2) (353)

≤ −η ·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥2
2

+
5

2
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

· η2 · 8 · R̄
2
max ·Rmax ·K3/2

∆2
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥
2

(by Lemma 6.1) (354)

=

(
−η + η2 · 20 · R̄

2
max ·Rmax ·K3/2

∆2

)
·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥2
2

(355)

= − ∆2

80 ·K3/2 · R̄2
max ·Rmax

·
∥∥∥∥dπ⊤

θt
r

dθt

∥∥∥∥2
2

. (by Eq. (343))

Theorem B.5. Using Algorithm 2, we have, the sequence {π⊤
θt
r}t≥1 converges with probability one.

Proof. As in the proof for Theorem 5.1, we set

Wt+1(a) = θt+1(a)− Et[θt+1(a)] (356)

= θt(a) + η · [It(a)− πθt(a)] · (Rt(at)−Bt)−
[
θt(a) + η · πθt(a) ·

(
r(a)− π⊤

θtr
)]

(357)

= η · [It(a)− πθt(a)] · (Rt(at)−Bt)− η · πθt(a) ·
[
r(a)− π⊤

θtr
]
, (358)

which implies that,

Zt(a) = W1(a) + · · ·+Wt(a) (359)

=

t∑
s=1

η · [Is(a)− πθs(a)] · (Rs(as)−Bs)− η · πθs(a) ·
[
r(a)− π⊤

θsr
]
. (360)

We also have,

Pt(a) = Et[θt+1(a)]− θt(a) = η · πθt(a) ·
[
r(a)− π⊤

θtr
]
. (361)

In the remaining part of the proofs for Theorem 5.1, replacing Rmax with R̄max, we have the results.

C. Miscellaneous Extra Supporting Results
Recall that (Xt,Ft)t≥1 is a sub-martingale (super-martingale, martingale) if (Xt)t≥1 is adapted to the filtration (Ft)t≥1

and E[Xt+1|Ft] ≥ Xt (E[Xt+1|Ft] ≤ Xt, E[Xt+1|Ft] = Xt, respectively) holds almost surely for any t ≥ 1. For brevity,
let Et[·] denote E[·|Ft] where the filtration should be clear from the context and we also extend this notation to t = 0 such
that E0U = E[U ].

Theorem C.1 (Doob’s supermartingale convergence theorem (Doob, 2012)). If (Yt)t≥1 is an {Ft}t≥1-adapted sequence
such that E[Yt+1|Ft] ≤ Yt and supt E[|Yt|] <∞ then {Yt}t≥1 almost surely converges (a.s.) and, in particular, Yt → Y
a.s. as t→∞ where Y = lim supt→∞ Yt is such that E[|Y |] <∞.

Lemma C.2 (Extended Borel-Cantelli Lemma, Corollary 5.29 of (Breiman, 1992)). Let (Fn)n≥1 be a filtration, An ∈ Fn.
Then, almost surely,

{ω : ω ∈ An infinitely often } =

{
ω :

∞∑
n=1

P(An|Fn)

}
.
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