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Abstract
Quantum machine learning implemented by vari-
ational quantum circuits (VQCs) is considered
a promising concept for the noisy intermediate-
scale quantum computing era. Focusing on ap-
plications in quantum reinforcement learning, we
propose an action decoding procedure for a quan-
tum policy gradient approach. We introduce a
quality measure that enables us to optimize the
classical post-processing required for action selec-
tion, inspired by local and global quantum mea-
surements. The resulting algorithm demonstrates
a significant performance improvement in several
benchmark environments. With this technique,
we successfully execute a full training routine on
a 5-qubit hardware device. Our method introduces
only negligible classical overhead and has the po-
tential to improve VQC-based algorithms beyond
the field of quantum reinforcement learning.

1. Introduction
Reinforcement learning (RL) currently receives increasing
attention due to its potential in a multitude of applications.
In an RL setup, an agent aims to learn a control strategy, i.e.,
a policy, for a specific problem. Training such a policy can
require approximating a complex, multimodal distribution,
which is often done with a deep neural network (DNN).
With increasing problem difficulty, this approach potentially
has an undesirable sampling and model complexity (Kakade,
2003; Nielsen, 2015; Poggio et al., 2020). Training data is
obtained by interaction with the environment via actions,
which returns a reward value and a new state. One can opti-
mize the parameters of the policy to maximize the long-term
reward with gradient-based techniques, forming a policy gra-
dient (PG) algorithm. Real-world applications can be found
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Figure 1. Proposed method: The prepared quantum state is mea-
sured in the computational basis. The results are post-processed
(with a function maximizing our proposed globality measure) be-
fore selecting an action. The update of the parameters Θ = (θ,λ)
utilizes the same post-processing scheme.

e.g. in the domains of self-driving cars (Bojarski et al., 2016)
or MIMO beamforming (Maksymyuk et al., 2018).

Exploring the possibilities of other computing paradigms
might elevate the impact of RL, e.g. by circumventing the
problems caused by increasing parameter complexity of
DNN-based models. Quantum computing (QC), based on
the idea of exploiting quantum mechanical properties for
computation, might offer advantages in the approximation
and sampling from complex distributions. Although the
development of quantum computers is still in its infancy, a
number of studies have already claimed experimental results
beyond classical capabilities on specific tasks (Arute et al.,
2019; Zhong et al., 2020; Wu et al., 2021).

The nowadays available quantum devices are consid-
ered noisy intermediate-scale quantum (NISQ) hard-
ware (Preskill, 2018), i.e., they only provide a limited
amount of qubits that are heavily affected by noise. There-
fore, a major part of current research focuses on strategies
and algorithms that are able to cope with these restrictions,
while at the same time aiming for computational power
beyond what is possible classically. A promising idea sug-
gests using variational quantum algorithms as a platform for
quantum machine learning (QML) (Benedetti et al., 2019;
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Cerezo et al., 2021), for which a certain degree of resilience
to the inevitable hardware noise has been reported (Li et al.,
2017; Moll et al., 2018; Sharma et al., 2020; Fontana et al.,
2021). Variational quantum algorithms use a VQC, which
incorporates trainable parameters, and a classical optimiza-
tion routine to optimize these parameters. When viewing
the VQCs as function approximators, the property of uni-
versal function approximation holds under certain condi-
tions (Goto et al., 2021; Schuld et al., 2021). For specific
problems, variational quantum algorithms are known to ex-
hibit provable quantum advantage (Liu et al., 2021; Sweke
et al., 2021).

Contribution. In variational quantum algorithms, it is nec-
essary to extract classical information from the prepared
quantum state. Whereas there has been work on obtain-
ing a maximal amount of information about the state via a
limited amount of measurements (Huang et al., 2020), our
goal is to group measured bitstrings from a readout in the
computational basis, such that a well performing RL strat-
egy emerges. Those aspects have, to our knowledge, not
yet been explored for VQC-based quantum policy gradient
(QPG) algorithms. For the quantum reinforcement learn-
ing (QRL) setup, we refer to this task as action decoding.
Motivated by the RAW-VQC policy (Jerbi et al., 2021) in
Section 3, we start with a formulation in terms of projective
measurements in Section 4.1. This is then decomposed into
a measurement in the computational basis and the succes-
sive application of a classical post-processing function in
Section 4.2. Our developed globality measure allows to
compare specific instances of those functions. Furthermore,
we propose a routine to construct an optimal (w.r.t. the glob-
ality measure) post-processing function. It is important to
mention that, in contrast to the approach by Jerbi et al., our
procedure is feasible for problems with large action spaces.

We observe a strong correlation between RL performance
and our globality measure in Section 5.1 in the RL envi-
ronments CartPole, FrozenLake, and different config-
urations of ContextualBandits. Training converges
much faster (or even at all) for policies with an underlying
post-processing function that has a large globality value.
The results are supported by an analysis of the effective di-
mension and Fisher information spectrum in Section 5.2. As
our technique only marginally increases the classical over-
head (while reducing the required VQC size) it suggests
itself as a tool for execution on NISQ devices. To demon-
strate the efficiency of our algorithm, we execute the full RL
training routine for a ContextualBandits problem on
a 5-qubit quantum hardware device in Section 5.3.

2. Related Work
A summary of the current body of work on QRL can be
found in Meyer et al. (Meyer et al., 2022). Specific QRL

routines have already been realized experimentally (Saggio
et al., 2021). An early instance of VQC-based QRL pro-
poses to use a VQC as an approximator for the action-value
function (Chen et al., 2020). We follow the lines of Jerbi
et al., which uses the VQC for policy approximation, form-
ing a QPG algorithm. Additional work on the QPG approach
include an extension to quantum environments (Sequeira
et al., 2022), and a modified parameter update to reduce
sampling complexity (Meyer et al., 2023). The ideas of
value-function and policy approximation are combined into
actor-critic approaches (Wu et al., 2020; Kwak et al., 2021),
which also can benefit from our contribution.

While the algorithmic routine of QPG follows the idea of
classical PG, the design of the VQC function approxima-
tor is an ongoing research field. The typical architecture
features three different blocks, i.e., a data encoding layer,
(potentially multiple) variational layers with trainable pa-
rameters, and some measurement observables that extract
information from the prepared quantum state. There are
some guidelines for designing data encoding (Pérez-Salinas
et al., 2020; Schuld et al., 2021; Periyasamy et al., 2022)
and variational layers (Sim et al., 2019; Kandala et al.,
2017), based on the specific problem type. We focus on the
necessary measurements, which require special attention
in the context of quantum information theory (Braginsky
et al., 1995; Nielsen & Chuang, 2010), and also QML with
VQCs (Schuld & Petruccione, 2018; Cerezo et al., 2021;
Schuld, 2021). However, the question how to best measure
VQC outputs and classically post-process them to optimize
QRL performance, yet alone QPG performance, is still open.

3. Quantum Policy Gradient Algorithm
RL is an algorithmic concept to solve a complex task, where
data is generated by interaction of an agent with an environ-
ment. The setup is usually described as a Markov Decision
Process (MDP), i.e. a 5-tuple (S,A,R, p, γ), where S is
the state set, A is the set of available actions,R ⊂ R is the
reward space, p : S × R × S × A → [0, 1] describes the
environment dynamics, and 0 ≤ γ ≤ 1 is a discount factor.
At each timestep t, the agent observes the environment state
st, and decides on an action at. This decision is sampled
from the current policy π : S ×A → [0, 1], which defines a
probability density function (PDF) over all possible actions
a for a given state s. The selected action is executed, and
the agent receives a scalar reward rt ∈ R, after which the
environment transitions to state st+1, following its dynam-
ics p. The objective is to learn a policy, which maximizes
the (discounted) return Gt :=

∑H−1
t′=t γ

t′−t · rt′ for some
horizon H <∞ (Sutton & Barto, 2018).

Our work follows the hybrid QPG algorithm proposed
by Jerbi et al.. The approach is inspired by the classi-
cal REINFORCE idea with function approximation (Sutton
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Uθi
=

Rz(θi,0) Ry(θi,1)

Rz(θi,2) Ry(θi,3)

· · · · · ·

Rz(θi,2n−2) Ry(θi,2n−1)

(a) Variational block with 1-qubit Rz

and Ry gates parameterized by θ.

Uent =

· · ·

· · ·

· · ·

· · ·

· · ·
(b) All-to-all structure of CZ gates (hard-
ware experiment uses CX gates).

Us,λi
=

Ry(λi,0 · s0) Rz(λi,1 · s0)

Ry(λi,2 · s1) Rz(λi,3 · s1)

· · · · · ·

Ry(λi,2n−2 · sn−1) Rz(λi,2n−1 · sn−1)

(c) The n-dim RL state s is encoded using 1-qubit
Ry and Rz rotations, with scaling parameters λ.

|0⟩⊗n
H Uθ0 Uent Us,λ1 Uθ1 Uent · · · Us,λd Uθd Uent

Figure 2. Hardware-efficient quantum circuit, adapted from Jerbi et al.. The parameters are summarized in Θ = (θ,λ). Depending on
circuit depth d, the encoding blocks Us,λ, combined with variational blocks Uθ and entanglement blocks Uent, are repeated (i.e. for
d ≥ 2 data re-uploading (Pérez-Salinas et al., 2020) is used). Measurements are performed in the computational basis.

et al., 1999), also referred to as vanilla policy gradient. Its
centerpiece is the parameterized policy πΘ : S×A 7→ [0, 1],
where Θ denotes the trainable parameters of the function
approximator. The parameters are updated with a gradient
ascent technique, i.e., Θ ← Θ + α · ∇ΘJ(Θ), with learn-
ing rate α, and some scalar performance measure J(Θ).
The policy gradient theorem (Sutton et al., 1999) states the
gradient of the performance measure as

∇ΘJ(Θ) = EπΘ

[
H−1∑
t=0

∇Θ lnπΘ(at | st) ·Gt

]
. (1)

In practice, the expectation value in Equation (1) is ap-
proximated by averaging over several trajectories τ (i.e.,
sequences of current state, executed action, and received
reward for some timesteps), that are generated by follow-
ing the current policy πΘ. For a DNN, the gradient of the
log-policy w.r.t. the parameters can be obtained using back-
propagation (Rumelhart et al., 1986). For VQCs executed
on quantum hardware one typically resorts to the parameter-
shift rule (Mitarai et al., 2018; Schuld et al., 2019) – as in
this paper – or simultaneous perturbation stochastic approx-
imations (SPSA) (Spall, 1998; Wiedmann et al., 2023).

3.1. VQC-Model Architecture

We use a VQC with a subsequent measurement as a replace-
ment for the DNN, which usually approximates the policy in
deep RL (Jerbi et al., 2021). The VQC acts on |0⟩⊗n (where
|0⟩ denotes the 1-qubit computational zero state) with the
unitary Us,λ,θ, which prepares the quantum state |ψs,λ,θ⟩.
We introduce only the fundamentals of QC and refer the
interested reader to Nielsen & Chuang for more details.

Similar to Jerbi et al. we use the hardware-efficient ansatz in
Figure 2. Besides the variational parameters θ, there are also
trainable scaling parameters λ to enhance the expressivity
of the model. For ease of notation we denote Θ = (θ,λ).

Extracting classical information from the quantum state
|ψs,Θ⟩ is crucial when using VQCs in a hybrid algorithm.
Usually, we measure some Hermitian operator O to esti-
mate the expectation ⟨O⟩s,Θ. For a projective measurement
and spectral decomposition O =

∑
i µi |vi⟩ ⟨vi|, the post-

measurement state corresponds to one of the eigenstates |vi⟩,
and we observe the corresponding eigenvalue µi with proba-
bility ⟨ψs,Θ | vi⟩ ⟨vi | ψs,Θ⟩. We restrict our considerations
to measuring only 1-qubit Pauli observables σ ∈ {X,Y, Z}.

3.2. Reformulation of the RAW-VQC Policy

Jerbi et al. define the RAW-VQC and the SOFTMAX-VQC
and suggest, that the latter formulation is superior in terms
of RL performance. However, we argue in Appendix A, that
is has several drawbacks w.r.t. circuit sampling complexity.
We experimentally demonstrate in Section 5, that the RL per-
formance of an improved version of the RAW-VQC policy is
competitive. As the original definition is impractical for the
upcoming discussions, we introduce a slight reformulation:

Definition 3.1 (RAW-VQC). Given a VQC acting on n
qubits, taking as input an RL state s ∈ Rn, rotation an-
gles θ ∈ [−π, π]|θ|, scaling parameters λ ∈ R|λ|, with
Θ = (θ,λ), such that it produces the quantum state
|ψs,Θ⟩ = Us,Θ |0⟩⊗n, we define the RAW-VQC policy:

πΘ(a | s) = ⟨Pa⟩s,Θ , (2)

where ⟨Pa⟩s,Θ = ⟨ψs,Θ |Pa|ψs,Θ⟩ is the expectation value
of a projector Pa. It must hold Pa =

∑
|v⟩∈Va

|v⟩ ⟨v|, with
Va ⊆ V , where V = {|v0⟩ , |v1⟩ , · · · , |v2n−1⟩} is the set of
eigenstates of an observable

O =

2n−1∑
i=0

i · |vi⟩ ⟨vi| . (3)

It must hold
⋃

a∈A Va = V , and Vi ∩ Vj = ∅ for all i ̸= j.
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To be concise, the given reformulation is slightly more re-
strictive than the original one, due to the explicit designation
of the eigenvalues in Equation (3). This ensures, that by
measuring eigenvalue i, we can directly conclude the post-
measurement state to be |vi⟩. However, Definition 3.1 is
completely equivalent in terms of all considerations and
experiments carried out in Jerbi et al..

4. Analysis of Action Decoding
We now focus on the action decoding scheme of the RAW-
VQC policy. Definition 3.1 is instantiated such that the
observable in Equation (3) can be efficiently replaced with
only 1-qubit Pauli operators. We start by measuring a 1-
qubit Pauli observable σn−1 on the uppermost qubit. The ob-
served result is one of the eigenvalues µ0 = +1 or µ1 = −1,
which is interpreted as the bit value bn−1 = 1−µ

2 . The mea-
sured qubit is in the corresponding post-measurement state,
while the other qubits have not been touched thus far. Now,
we measure the Pauli observable σn−2 on the next to upper-
most qubit, and proceed this way until we have measured
all the qubits. As all the 1-qubit Pauli observables on dif-
ferent qubits commute, the successive projections can be
collected into one overall projection onto the respective ba-
sis state. The combined measurement result is the bitstring
bn−1bn−2 · · · b0, which is the binary expansion of i in Equa-
tion (3). We follow the convention that the most significant
bit corresponds to the uppermost wire of Figure 2.

4.1. Partitioning of Computational Basis States

Since measurements can typically only be done in the en-
ergy eigenbasis of a qubit, we select the Pauli operators σi
to be all Pauli-Z observables. This boils down to a measure-
ment in the computational basis, which for an n-qubit sys-
tem is given by V = {|0 · · · 00⟩ , |0 · · · 01⟩ , · · · , |1 · · · 11⟩}.
However, our techniques can also be applied to more gen-
eral combinations of Pauli operators, as all share eigen-
values +1 and −1. Following Definition 3.1 this set has
to be partitioned, i.e., Va = {|a0⟩ , |a1⟩ , · · · } ⊆ V for
action a. Let the prepared state be represented in the
computational basis (using decimal notation) as |ψs,Θ⟩ =
c0 |0⟩ + c1 |1⟩ + · · · + cN−1 |N − 1⟩, with N = 2n. This
allows the reformulation of Equation (2) in terms of the
absolute squared amplitudes of the prepared quantum state:

πΘ (a | s) =
〈
ψs,Θ

∣∣∣∣∣∣
∑

|v⟩∈Va

|v⟩ ⟨v|

∣∣∣∣∣∣ψs,Θ

〉
(4)

=
∑

|v⟩∈Va

|cv|2. (5)

Consequently, (as only Pauli observables are considered) it
is sufficient to sum up the absolute squared amplitudes asso-

ciated with the respective basis states to determine the policy.
On quantum hardware it is possible to estimate the absolute
squared value by executing the experiment multiple times. It
corresponds to the probability of observing the eigenvalues
associated with the respective basis states. With Pauli-Z
observables, measuring an eigenvalue of i (which happens
with probability |ci|2) indicates the post-measurement state
to be |i⟩. In practice the measurement result is the binary
expansion of i, i.e., the bitstring bn−1bn−2 · · · b0.

For interacting with the environment, the RL agent selects
an action according to the current policy πΘ(a|s). Starting
from Equation (5), it holds

∑
a∈A

∑
|v⟩∈Va

|cv|2 = 1. As
all individual summands are non-negative, this defines a
probability density function. Hence, it is sufficient to only
measure the quantum state once. The agent decides for an
action, based on which partition Va the post-measurement
state is contained within. For the parameter update, we
must obtain ∇Θ lnπΘ(a|s) = ∇Θ ⟨Pa⟩s,Θ / ⟨Pa⟩s,Θ, for
a trajectory of concrete instances of s and a. To estimate
⟨Pa⟩s,Θ (and also ∇Θ ⟨Pa⟩s,Θ), we need to determine for
each post-measurement state |i⟩, if it is an element of Va.

There is a caveat with the explicit representation of ba-
sis state partitionings (Jerbi et al., 2021). For larger sys-
tems, storing all Va is infeasible, as the number of elements
scales exponentially in n, independently of quantum or
classical hardware (for n = 64 qubits, there are 264 pos-
sible bit strings, which would require 264 · log2(64) bit ≈
147.6 exabyte of storage space). A solution would be to use
a classically computable post-processing function based on
the measurement outputs. One expects that the RL perfor-
mance strongly depends on the choice of post-processing
function. In the sequel we introduce a measure of globality
for post-processing functions and provide strong evidence
that it correlates with RL performance.

4.2. Action Decoding with Classical Post-Processing
Function

We denote the set of all bitstrings as b = bn−1bn−2 · · · b1b0
by C, and partition it into disjoint, action-associated sets
Ca. We define a classical post-processing function fC :
{0, 1}n → {0, 1, · · · , |A|−1}, such that fC(b) = a, iff b ∈
Ca for an partitioning of C. We can reformulate Equation (5):

πΘ(a | s) =
fC(b)=a∑
b∈{0,1}n

⟨ψs,Θ | b⟩ ⟨b | ψs,Θ⟩ (6)

≈ 1

K
·
K−1∑
k=0

δfC(b(k))=a (7)

where K ≫ 1 is the number of shots for estimating the
expectation value (Equation (7) becomes exact forK →∞),
b(k) is the bitstring observed in the k-th shot, and δ is an
indicator function.
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4.2.1. EXTRACTED INFORMATION DEFINES GLOBALITY
MEASURE

In order to derive a quality measure for a specific post-
processing function fC , we first define the notion of ex-
tracted information for an observed bitstring b:

Definition 4.1 (extracted information). Let fC be a classical
post-processing function, with a partitioning of the set of
n-bit strings C = ⋃a Ca, for which Ci∩Cj = ∅ for all i ̸= j.
Furthermore, b = bn−1bn−2 · · · b1b0 denotes an arbitrary
bitstring. The extracted information EIfC (b) ∈ N is the
minimum number of bits bi necessary, to compute fC(b),
i.e. assign b unambiguously to a set Ca.

An example of a valid partitioning associated with a 4-qubit
system and |A| = 4 is

Ca=0 = {0000, 0010, 0100, 0110} , (8)
Ca=1 = {0001, 0011, 0101, 0111} , (9)
Ca=2 = {1000, 1010, 1101, 1111} , (10)
Ca=3 = {1001, 1011, 1100, 1110} . (11)

For assigning the bitstring 0111 unambiguously to the cor-
rect set, i.e. Ca=1, it is enough to consider only the first
and the last bit. It is straightforward to see that it cannot
work with less information. As all partitions contain the
same number of elements, and we need to choose between
4 actions, it requires at least log2(4) = 2 bits of infor-
mation. Therefore, the extracted information is given by
EIfC (0111) = 2.

To grant more expressivity to the defined measure, we aver-
age the extracted information over all possible bitstrings to
get the globality measure

GfC :=
1

2n

∑
b∈{0,1}n

EIfC (b). (12)

The value of this measure describes the average amount
of information (in bits) necessary to have an unambiguous
distinction between the different actions. The concept is
inspired by the reformulation of special policies using local
and global observables in Appendix B.

A lower bound to GfC is intuitively given by GfC ≥
log2 (|A|). The measure is trivially upper bounded by
GfC ≤ n, which is in line with Holevo’s theorem (Holevo,
1973; Nielsen & Chuang, 2010), in that no more than n
bits of classical information can be extracted from a n-qubit
system in a single measurement. Evaluating Equation (12)
for the example above gives GfC = 2.5, i.e., on average 2.5
bits of information are necessary (see Appendix C for the
exact computation).

Evaluating Equation (12) explicitly is infeasible for large
n, as it requires averaging over 2n elements. Furthermore,

we are not aware of an efficient routine that determines the
extracted information for an arbitrary bitstring. Nonethe-
less, one can define a post-processing function, which has
maximal globality according to Equation (12). We discuss
this construction in the next section.

4.2.2. CONSTRUCTING AN OPTIMAL POST-PROCESSING
FUNCTION

As we demonstrate in Section 5, the value of the introduced
globality measure is strongly correlated with the RL per-
formance. It is not feasible to construct a post-processing
function with optimal globality measure using a brute-force
approach, as we argue in Appendix D.1. To circumvent this
caveat, we construct an implicit partitioning C, that gives
rise to a post-processing function with provably optimal
globality GfC = n. The set of bitstrings b = bn−1 · · · b0
associated with action a is recursively defined as

C(m)
[a]2

=

{
b |

n−1⊕
i=m

bi = a0 ∧ b ∈ C(m−1)
am···a2(a1⊕a0)

}
(13)

where m = log2(M) − 1 (with M := |A|) and [a]2 =
am · · · a0 is the binary expansion of a. The base cases use a
binary parity function on all bits:

C(0)[0]2
=

{
b |

n−1⊕
i=0

bi = 0 ∧ b ∈ {0, 1}n
}

(14)

C(0)[1]2
=

{
b |

n−1⊕
i=0

bi = 1 ∧ b ∈ {0, 1}n
}

(15)

The construction in Equation (13) thus recursively splits
Equations (14) and (15) by computing parity values of sub-
strings, until the required number of groups is formed.

Lemma 4.2. Let an arbitrary VQC act on an n-qubit state.
The RAW-VQC policy needs to distinguish between M :=
|A| actions, where M is a power of 2, i.e., m = log2(M)−
1 ∈ N0. Using Equations (13) to (15) we define

πglob
Θ (a | s) =

∑
v∈C(m)

[a]2

⟨ψs,Θ | v⟩ ⟨v | ψs,Θ⟩ (16)

≈ 1

K

K−1∑
k=0

δfC(m) (b(k))=a (17)

where K is the number of shots for estimating the expec-
tation value, b(k) is the bitstring observed in the k-th shot,
and δ is an indicator function. The post-processing function
is guaranteed to have the globality value GfC = n.

The proof is deferred to Appendix D. This post-processing
function defines the proposed QPG algorithm in Figure 1.
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Figure 3. RL training performance of RAW-VQC policies with different post-processing functions on the CartPole-v0 environment,
averaged over 10 independent runs and 20 preceding timesteps (dark curves). A higher globality value correlates with a faster convergence
to the optimal collected reward of 200. For comparison, the performance of a SOFTMAX-VQC is included as πsm.

By construction of the recursive definition the action associ-
ated with a specific bitstring fC(b) is given as

fC(b) =

[
b0 · · · bm−1

(
n−1⊕
i=m

bi

)]
10

(18)

where [·]10 denotes the decimal representation of the respec-
tive bitstring. This representation does not require storing
the partitioning C explicitly, which renders our approach
feasible for large system sizes and action spaces.

5. Experiments
Our framework realizes different post-processing
functions, associated with various globality mea-
sure values. The implementation is based upon
the qiskit and qiskit machine learning li-
braries. If not stated differently, all experiments use
the StatevectorSimulator, which assumes the
absence of noise, and also eliminates sampling errors.
The computations were executed on a CPU-cluster with
64 nodes, each equipped with 4 cores and 32 GB of
working memory. The experiments in Sections 5.1 and 5.2
focus on the CartPole environment, while Section 5.3
and Appendix F also consider ContextualBandits
and FrozenLake, respectively. We establish conventions
regarding the experimental setup and reproducibility in
Appendix F.

5.1. RL Performance vs. Globality Measure

The main experiment is conducted on the CartPole-v0
environment (Brockman et al., 2016) with a horizon of 200
time-steps. The state space has a dimensionality of 4, with
all values scaled to be within [−1, 1). The agent can take
two actions, i.e., |A| = 2.

All experiments in Figure 3 (apart from the SOFTMAX-VQC
policy πsm, which uses a tensored Pauli-Z measurement
on all qubits (Jerbi et al., 2021)) use the same architec-
ture, only the post-processing function is modified. The
two extreme cases are GfC = 4.0, constructed following
Lemma 4.2, and GfC = 1.0, which extracts the lowest
amount of information that is sufficient. We also experi-
ment with GfC = 2.0 and GfC = 3.0, both of which can
be expressed as a parity measurement on 2 or 3 qubits,
respectively. A special case is GfC = 3.5, where the ex-
plicit partitioning C3.5

a=0 = {1, 3, 5, 6, 9, 10, 12, 15} and
C3.5
a=1 = {0, 2, 4, 7, 8, 11, 13, 14} is used.

Throughout all considerations, the RL performance clearly
benefits from a higher globality value of the underlying
post-processing function. The convergence speed is im-
proved, for example, the strategy learned by an agent with
an underlying global post-processing function reaches op-
timal behavior after just 100 episodes. This is clearly de-
layed for all other configurations. In fact, the policy with
GfC = 1.0 is not able to learn optimal behavior, even after
5, 000 episodes. This can be partially addressed with deeper
circuits (see Appendix F.1). However, as circuit depth is
very critical for NISQ devices, using optimal classical post-
processing functions is crucial.

Figure 3 also depicts the performance of a SOFTMAX-VQC
policy (Jerbi et al., 2021). Interestingly, it performs better
than RAW-VQC with a globality value ≤ 3, but is clearly
inferior to the two fastest converging setups.

It is important to mention, that this overall behavior can-
not only be observed in this concrete setup and environ-
ment. We obtained comparable results on CartPole-v1,
which extends the horizon to 500 steps. Results
on further environments, namely FrozenLake and
ContextualBandits, are provided in Appendix F.2.

6



Quantum Policy Gradient Algorithm with Optimized Action Decoding

100K 500K 1M

0.2

0.4

0.6

data size

no
rm

al
iz

ed
ef

fe
ct

iv
e

di
m

en
si

on π
GfC
=4 π

GfC
=3.5 π

GfC
=3 π

GfC
=2 π

GfC
=1

(a) Normalized effective dimension

[0,0.5) [0.5,1) [1,1.5) [1.5,2) [2,2.5) [2.5,3) [3,∞)

0.2

0.4

0.6

0.8

eigenvalue size

no
rm

al
iz

ed
co

un
t

π
GfC
=4 π

GfC
=3 π

GfC
=1

(b) Fisher information spectrum

Figure 4. Quantities related to expressibility and trainability of
a VQC-based model. We estimate the FIM with 100 random
parameter sets for each of the 100 random states s. We draw the
elements of each state from N (0, 0.5), which mimics the prior
state distribution of the CartPole environment.

5.2. Analysis of Effective Dimension and Fisher
Information Spectrum

For every machine learning task, two crucial factors are
the expressibility and trainability of the used model. Tools
for quantitative analysis, based on the Fisher information
matrix (FIM), have recently been proposed by Abbas et al.,
and a comparative study of various quantum neural network
architectures has been conducted in Wilkinson & Hartmann.
An adaption of those concepts to the RL setup is deferred to
Appendix E.

The expressibility of a model can be quantified using the
effective dimension (Abbas et al., 2021), which describes the
variety of functions that can be approximated. A normalized
version of the effective dimension for different RAW-VQC
policy setups is compared in Figure 4(a). The expressive
power of the respective model is proportional to the globality
of the underlying post-processing function and also the RL
performance from Figure 3. The policies with GfC = 4 and
GfC = 3.5 pose an exception, as the respective effective

dimensions coincide. We considered this statistical variance,
as also the RL performance varies only slightly. While
a more expressive circuit provides no guarantee of better
performance, a complex problem needs a model that is
expressive enough, promoting the usage of post-processing
functions with high globality.

Insights into the trainability of a model are possible by con-
sidering the spectrum of the FIM (Abbas et al., 2021), which
captures the geometry of the parameter space. Trainability
profits from a uniform spectrum, while distorted spectra
are suboptimal. Figure 4(b) depicts the Fisher information
spectrum for post-processing functions with GfC = 4.0,
GfC = 3.0, and GfC = 1.0. There is no clear difference
between the Fisher information spectra associated with the
ones with higher globality. The difference to the least-global
configuration is more significant, where most of the eigen-
values are close to 0. This implies that the parameter space
is flat in most dimensions, making optimization difficult.
Additionally, there are a few large eigenvalues, indicating a
distorted optimization space. In absolute terms, the spectra
for π

GfC
=4 and π

GfC
=3 are not uniform. However, in compar-

ison to π
GfC
=1 , the eigenvalues are much more uniformly

distributed, and also fewer outliers exist. This property
becomes more significant when considering larger system
sizes and circuit depths, see Appendix G. Hence, the glob-
ality value associated with a model correlates at least to
some extent with the uniformity of the Fisher information
spectrum, which is beneficial for trainability.

5.3. Training on Quantum Hardware

To emphasize the practical relevance of our method, we
conducted a experiment on actual quantum hardware. There
is work on VQC-based RL that performs the training on
classical hardware and then uploads the learned parameters
to quantum hardware for testing (Chen et al., 2020; Hsiao
et al., 2022), where the trained models model can replicate
the learned behavior on the hardware to some extent. We
take a more involved approach and perform both training
and testing on quantum hardware. To the best of our knowl-
edge, this is the first investigation of VQC-based RL on
quantum hardware that also includes the training routine.

We select an 8-state ContextualBandits environ-
ment (Sutton & Barto, 2018) for the experiment, which
can be implemented with a 3-qubit system. The employed
hardware backend is the 5-qubit device ibmq manila
v1.1.4 (IBM Quantum, 2023). We slightly adapted the
VQC architecture and typical RL feedback loop to make
hardware usage feasible. First, we replaced the CZ gates
from Figure 2 with CX gates, due to the former one not
being hardware-native (which would lead to decomposition
and additional circuit complexity). Second, to reduce the
number of hardware uploads, we used a batch size of 50
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Figure 5. Training performance of a RAW-VQC policy with
maximum globality value on an 8-state and 2-action
ContextualBandits environment. Two training runs
are executed on quantum hardware (wo/ and w/ error mitigation).

Table 1. Test results on the ibmq manila hardware device
with error mitigation (orange curve in Figure 5). As for
ContextualBandits the states are sampled uniformly at
random, the optimal action is selected in approx. 92% of all cases.

s = 0 s = 1 s = 2 s = 3

optimal action a = 0 a = 0 a = 1 a = 1
π(a = 0 | s) 0.93 0.91 0.09 0.06
π(a = 1 | s) 0.07 0.09 0.91 0.94

s = 4 s = 5 s = 6 s = 7

optimal action a = 0 a = 0 a = 1 a = 1
π(a = 0 | s) 0.94 0.91 0.09 0.07
π(a = 1 | s) 0.06 0.09 0.91 0.93

trajectories. Consequently the gradients, and therefore also
the parameter updates, are only computed for each 50th
time-step. Still, for a horizon of 1, 500 episodes, this adds
up to overall 14, 640 expectation values that need to be es-
timated. With 1, 024 shots to estimate each one, close to
15M circuits had to be evaluated per training run.

The training performance for different setups is displayed
in Figure 5. We compare results on the hardware with and
without matrix-free measurement error mitigation (Qiskit
contributers, 2023; Nation et al., 2021). This is com-
pared to results obtained from noise-free simulation on
classical hardware. We also experimented with qiskit
noise model instantiated with parameters sampled from the
ibmq manila device – the results were almost identical
to the actual hardware. The noise-free simulation clearly
produces the best results and is able to learn an basically
optimal policy. While this is not the case for the experi-
ments on hardware, there is still a clear improvement over

the initial random policy. Hereby, as expected, the mit-
igated experiment (execution time approx. 360 minutes
over two Qiskit Sessions) improves upon the non-
mitigated one (execution time approx. 150 minutes in a sin-
gle Qiskit Session). Interestingly, the performance of
all three agents seems to saturate after about 1000 episodes.

The testing results in Table 1 clearly show that the (error-
mitigated) hardware-trained agent is able to identify the opti-
mal action for all 8 states. The problem seems to be that the
policy does not get “peaky“ enough. We assume this is due
to noise mainly induced by entangling gates εCX . While
the original circuit uses only 15 CX gates, the transpiled
versions average to about 27, due to the sparse connectivity
structure of the hardware device. It has to be noted that the
overall length of the transpiled circuits stays approximately
constant throughout all episodes. The re-calibration of the
system after episode 750 of the error-mitigated experiment
(reducing εCX from 0.70% to 0.64%) did not cause a clear
change in performance. We assume, that the convergence of
the hardware agents towards a non-optimal expected reward
is mainly caused by decoherence noise. To improve upon
this, one can potentially use an architecture more adapted to
the basis gate set and connectivity structure. Apart from that,
more advanced error mitigation strategies (Giurgica-Tiron
et al., 2020; Mari et al., 2021) could be a suitable option.

6. Conclusion
This paper analyzed the action decoding procedure of the
quantum policy gradient (QPG) algorithm originally pro-
posed by Jerbi et al.. We proposed a hybrid routine combin-
ing measurements in the computational basis and a classical
post-processing function. A newly developed globality mea-
sure for those functions showed a strong correlation with
the reinforcement learning (RL) performance and model
complexity measures. We provided a routine to implement
a post-processing function that is optimal with respect to
this measure – which is also feasible for large action spaces.
Compared to the original RAW-variational quantum circuit
(VQC), as well as the SOFTMAX-VQC policy (Jerbi et al.,
2021), we achieve significant RL performance improve-
ments, with only negligible classical overhead. With this
enhanced QPG algorithm, we are able to execute the entire
RL training and testing routine on actual quantum hardware.

Our work focused on RL routines, but in principle our find-
ings can be extended to the realm of supervised and unsuper-
vised learning. More concretely, the post-processing func-
tion for action selection can be reformulated to return the
labels of a classification problem – with reliable statements
on transferability certainly requiring additional experiments.
While we did not explicitly claim quantum advantage, the
idea of constructing an environment based on the discrete
logarithm from Jerbi et al. also holds for our approach.
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A. Caveats of the SOFTMAX-VQC Policy
In Section 3.2 we have stated, that using the SOFTMAX-VQC policy is problematic w.r.t. circuit sampling complexity. This
was not explicitly addressed in Jerbi et al., where experimental results suggest that the SOFTMAX-VQC policy formulation
exhibits clearly superior performance in some simple benchmark environments, compared to the RAW-VQC policy. This is
partially explained by the argument, that this formulation has better abilities in dealing with the balancing of exploration and
exploitation. More concretely, this trade-off can be influenced by the inverse temperature parameter β in the SOFTMAX-VQC
policy equation

πλ,θ(a | s) =
eβ⟨Oa⟩s,λ,θ∑

a′∈A e
β⟨Oa′ ⟩s,λ,θ

, (19)

where ⟨Oa⟩s,λ,θ := ⟨ψs,λ,θ |Oa|ψs,λ,θ⟩, and Oa is some action-dependent observable.

There are two parts of the QPG pipeline, in which this formulation has an undesirable circuit sampling complexity. This is
especially troublesome for the currently existing nisq devices, as every execution of a quantum circuit exhibits considerable
costs. First of all, the action selection following Equation (19) requires the estimation of |A| different expectation values
(unlike for the RAW-VQC, where a single measurement in the computational basis is sufficient). Secondly, also the
approximation of the log-policy gradients scales linearly with the number of actions |A|, as a different observable Oa is
selected for each action a (unlike for the RAW-VQC, where the estimation of only one expectation value is sufficient). In
order to avoid this dependence of the scaling on the size of the action space, most experiments in Jerbi et al. (Jerbi et al.,
2021) use a fixed observable O for all actions, which gets multiplied with some action-dependent classical weight wa. We
formalize this approach in the following:

Definition A.1 (RESTRICTED-SOFTMAX-VQC). Given a VQC acting on n qubits, taking as input a state s ∈ Rn, rotation
angles θ ∈ [−π, π]|θ|, and scaling parameters λ ∈ R|λ|, such that it produces the quantum state |ψs,θ,λ⟩ = Us,θ,λ |0⟩⊗n,
we define its associated RESTRICTED-SOFTMAX-VQC policy as:

πΘ(a | s) =
eβwa⟨O⟩s,λ,θ∑
a′ e

βwa′ ⟨O⟩s,λ,θ

(20)

where ⟨O⟩s,λ,θ = ⟨ψs,λ,θ | O | Ψs,λ,θ⟩ is the expectation value of the observable O, wa is a weight parameter associated
with action a, and β ∈ R is an inverse-temperature parameter. Θ = (θ,λ,w) constitute all the trainable parameters of this
policy.

For completeness, we demonstrate in Appendix A.1, that the circuit sampling complexity of this simplified version is only
constant in the number of actions. A serious restriction of the RL performance caused by this simplification us derived in
Appendix A.2. In Appendix A.3, we extract some implications for the original SOFTMAX-VQC policy from the findings.

A.1. Circuit Sampling Complexity of RESTRICTED-SOFTMAX-VQC Policy

It follows directly from Equation (20), that the action selection procedure requires the estimation of only a single expectation
value, namely ⟨O⟩s,λ,θ . It is not directly obvious, if this reduction also translates to the gradient estimation, more concretely
to the log-policy gradient required for Equation (1). Following Definition A.1, the gradients w.r.t. θ of a RESTRICTED-
SOFTMAX-VQC simplify to

∇θ lnπΘ (a | s) (21)

= β ·
(
∇θwa ⟨O⟩s,θ,λ −

∑
a′

πΘ(a
′ | s) · ∇θwa′ ⟨O⟩s,θ,λ

)
(22)

= β · ∇θ ⟨O⟩s,θ,λ

(
wa −

∑
a′

πΘ(a
′ | s) · wa′

)
. (23)
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A similar derivation holds for∇λ lnπΘ (a | s). The gradient w.r.t. the weight associated with action x is given as

∇wx lnπΘ (a | s) (24)

= β ·
(
∇wx

wa ⟨O⟩s,θ,λ −
∑
a′

πΘ(a
′ | s) · ∇wx

wa′ ⟨O⟩s,θ,λ

)
(25)

= β · ⟨O⟩s,θ,λ (δa=x − πΘ(x | s)) , (26)

with δa=x = 1, iff a = x, and δa,x = 0 otherwise. Consequently, for both, action selection and gradient computation, only
one observable has to be considered. This removes the dependence of the circuit sampling complexity on the number of
actions, which must be avoided for environments with big action spaces.

A.2. Structural Restriction of RL Performance for RESTRICTED-SOFTMAX-VQC

While the previous considerations are quite promising when talking about circuit sampling complexity, there is also a serious
drawback of the RESTRICTED-SOFTMAX-VQC approach. More concretely, it is not suitable for problems with big action
spaces, as most information is only contained in the classical weight parameters. This statement is concertized and proven in
the following. First of all, we restrict our initial considerations to a specific type of RL environment.

Definition A.2 (uniform environment). An environment EA is considered uniform, iff it is solved by a deterministic policy,
which is expected to select each distinct action the same amount of times. More explicitly, let Si denote a set of states from
S, with

⋃
A Si = S and Si ∩ Sj = ∅ for all i ̸= j. Following the optimal policy π∗, each of the state sets must be equally

likely to observe. With the notion of expected fraction of time spend in state s as µ(s) from Sutton & Barto, this is stated as∑
s∈Si

µ(s) = 1
|A| . Let now Si (with i ∈ {0, 1, ..., |A| − 1}) be an arbitrary state set and s an arbitrary state from this set.

It must hold, that π∗ (ai | s) = 1, and consequently π∗ (aj | s) = 0 for all i ̸= j. Hereby, the accuracy ACCπ(EA) denotes
the share of selected optimal actions in this environment, following policy π.

A simple instance of such an environment can be constructed from a ContextualBandits scenario. Assume 8 states
and 4 actions, where action 0 is optimal for states from S0 = {0, 1}, action 1 for states from S2 = {2, 3}, action 2 for states
from S2 = {4, 5}, and action 3 for states from S3 = {6, 7}. As the states in the ContextualBandits environment are
selected uniformly at random in every step, every state set is expectedly visited 1

4 of the time. Additionally, the optimal
action is different for all state sets, satisfying the conditions from Definition A.2.

Lemma A.3. Let π be any RESTRICTED-SOFTMAX-VQC policy, with w.l.o.g. ⟨O⟩s ∈ [−1, 1], for all s ∈ S. Given a
uniform environment EA, the performance of the model is upper bounded by

ACCπ (EA) ≤
2

|A|

|A|/2∑
k=1

1

k
. (27)

Proof. Assume for now, that ⟨O⟩s ∈ (0, 1] for all s ∈ S . Let n = |A| denote the number of actions and the corresponding
weights are w.l.o.g. ordered by

w0 ≥ w1 ≥ · · · ≥ wn−2 ≥ wn−1. (28)

The statement π (ak | Sk) ≤ 1
k can be reformulated as

∑
s∈Sk

psπ (ak | s) ≤
∑

s∈Sk
ps

1
k , where ps denotes the probability

of observing state s out of set Sk. For the inequality to hold, it is sufficient that π (ak | s) ≤ 1
k for all s ∈ Sk, which is

proven by contradiction:

ewk⟨O⟩s∑
a′ ewa′ ⟨O⟩s

>
1

k
(29)

⇔ (k − 1) · ewk⟨O⟩s >
∑
a′ ̸=k

ewa′ ⟨O⟩s (30)

⇔ k − 1 >
ew0⟨O⟩s

ewk⟨O⟩s︸ ︷︷ ︸
≥1

+ · · ·+ ewn−1⟨O⟩s

ewk⟨O⟩s︸ ︷︷ ︸
≥1

≥ k − 1  (31)
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Figure 6. Experiments on a ContextualBandits environment (which is uniform following Definition A.2) demonstrate the implica-
tions of Lemma A.3. The reward structure is defined in a way, such that the expected reward is equivalent to the introduced notion of
accuracy ACCπ(EA). A RESTRICTED-SOFTMAX-VQC πr−sm (with circuit depth d = 2 and d = 4) does not perform even close to
the theoretical limit of 0.75, indicated by the red horizontal line, while the RAW-VQC πraw and SOFTMAX-VQC πsm surpass this value.
The RAW-VQC outperforms the SOFTMAX-VQC, even with a shallower circuit. To achieve this, we used the considerations on global
policy construction from Section 4. All results are averaged over 50 independent experiments.

The last step uses Equation (28) combined with the monotonicity of the exponential function. As EA is an uniform
environment, for the described policy it holds ACCπ (EA) ≤ 1

|A|
∑|A|

k=1
1
k . An improvement of this bound can be

achieved by allowing ⟨O⟩s ∈ [−1, 1]. Multiplying with a negative value inverts the inequality chain from Equation (28)
to −w0 ≤ −w1 ≤ · · · ≤ −wn−2 ≤ −wn−1, which introduces the missing factor of 0.5 into Equation (27). Hereby it is
implicitly assumed that environment contains an even amount of actions, but it is straightforward to adapt the bound for the
odd case. The case ⟨O⟩s = 0 does not lead to any improvement, as all actions will be selected with equal probability.

This upper bound on performance makes the RESTRICTED-SOFTMAX-VQC unsuited for uniform environments with
large action spaces. In fact, for |A| → ∞ the accuracy converges to 0. Already for 4 actions, the accuracy is bounded by
2
4

(
1
1 + 1

2

)
= 3

4 , experimental results on the ContextualBandits environment described above are depicted in Figure 6.
We expect this result to hold in a weakened form for more general environments.

A.3. Implications for SOFTMAX-VQC Policy

Directly following from Lemma A.3, one can make also a statement about the non-restricted SOFTMAX-VQC policy:

Corollary A.4. Let π be any SOFTMAX-VQC policy and EA a uniform environment. In order to not impose any constraints
following Lemma A.3, at most two actions can be associated with one unique observable. This results in a total requirement
of ⌈|A|/2⌉ different observables.

Following Corollary A.4, the number of measured observables needs to increase linearly with the size of the action space, to
avoid a bound on RL performance. Of course, this is only a necessary and not sufficient condition for optimal performance
of the model. We assume, that these results at least partially extend to more general environments.

Corollary A.5. In order to not put any performance constraints on the SOFTMAX-VQC policy by construction, it has to
incorporate O (|A|) different observables Oa, i.e. the number has to scale linearly in the number of actions.

Unfortunately, a naive interpretation of Corollary A.5 makes it impossible to circumvent the discussed bad scaling w.r.t.
circuit sampling. Strategies to avoid the aforementioned scaling by a suitable choice of observables combined with classical
post-processing might exist, but will not be considered in this paper. We are confident that the stated arguments and the
performance advantage of the RAW-VQC demonstrated in Section 5 provide adequate justification for the focus on this
formulation.
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|0⟩⊗n

· · ·

Us,θ

· · ·

Z

(a) Measures only a 1-qubit Pauli-Z ob-
servable on the first qubit (associated
with the local policy in Equation (41)).

|0⟩⊗n

· · ·
Us,θ

· · ·

Z⊗n

· · ·
7→ |0⟩⊗n

|0⟩

· · ·
Us,θ

· · · · · ·

· · ·
Z

(b) Measures a tensored Pauli-Z observable on all qubits (associated with the global
policy in Equation (42)). The depicted construction of CX gates and a 1-qubit
Pauli-Z measurement on an ancilla qubit defines a equivalent policy.

Figure 7. Two types of observables, that give rise to different policy formulations.

B. Action Decoding with Local and Global Observables
Continuing with the considerations from Section 4.1, for an environment with 2 actions, we have to define Va=0 and Va=1.
Following Jerbi et al. for a 3-qubit system yields:

V loc
a=0 = {|000⟩ , |001⟩ , |010⟩ , |011⟩} (32)
V loc
a=1 = {|100⟩ , |101⟩ , |110⟩ , |111⟩} (33)

Looking at the above partitioning, all relevant information seems to be contained in the first qubit. For a measurement in
the computational basis of the quantum state prepared by the VQC, that returns the bitstring b2b1b0, the action is given as
a = b2. In the more general case of n qubits and 2 actions, this consequently generalizes to aloc ← bn−1, which can also be
expressed as

V loc
a = {|bn−1bn−2 · · · b1b0⟩ | a = bn−1} . (34)

At the other extreme, in the case of 2 actions, we can select the action as aglob ←⊕n−1
i=0 bi, i.e., apply a parity function. For

the sake of completeness, the corresponding eigenstate sets for 3 qubits is

Vglob
a=0 = {|000⟩ , |011⟩ , |101⟩ , |110⟩} (35)

Vglob
a=1 = {|001⟩ , |010⟩ , |100⟩ , |111⟩} , (36)

and more generally for n qubits:

Vglob
a =

{
|bn−1bn−2 · · · b1b0⟩ | a =

n−1⊕
i=0

bi

}
. (37)

So far, we interpreted the policy computation routine as the assignment of the post-measurement state to the containing
partition. For the above 2-action special cases in Equations (34) and (37), it is possible to instead model the policy in terms
of expectation values of observables:

πΘ (a|s) =
∑
v∈Va

⟨ψs,Θ | v⟩ ⟨v | ψs,Θ⟩ (38)

=

∑
v∈Va

⟨ψs,Θ | v⟩ ⟨v | ψs,Θ⟩ −
(
1−∑v∈Va

⟨ψs,Θ | v⟩ ⟨v | ψs,Θ⟩
)
+ 1

2
(39)

=

∑
v∈Va

⟨ψs,Θ | v⟩ ⟨v | ψs,Θ⟩ −
∑

v∈Vã
⟨ψs,Θ | v⟩ ⟨v | ψs,Θ⟩+ 1

2
, (40)

where ã denotes the complement action of a.

It is easy to check, that measuring the observable Z ⊗ I⊗n−1 returns the value +1, iff the post-measurement state lives in
the space spanned by the elements of V loc

a=0, as defined in Equation (34). Vice versa, in all other cases, the measurement
outputs a value of −1. This simplifies the above equation to

πloc
Θ (a|s) = (−1)a ·

〈
ψs,Θ | Z ⊗ I⊗n−1 | ψs,Θ

〉
+ 1

2
. (41)

15



Quantum Policy Gradient Algorithm with Optimized Action Decoding

Returning to the projector formalism from Definition 3.1, this can alternatively also be expressed as πloc
Θ (a|s) =〈

ψs,Θ

∣∣∣∑b∈{0,1}n−1 |a⟩ |b⟩ ⟨a| ⟨b|
∣∣∣ψs,Θ

〉
, i.e., projections onto the two respective sub-spaces for a = 0 and a = 1.

A similar argument can be made for Vglob
a , with the difference that the observable has to be Z⊗n, which gives

πglob
Θ (a | s) = (−1)a · ⟨ψs,Θ | Z⊗n | ψs,Θ⟩+ 1

2
. (42)

As above, this could also be stated as projections onto the respective subspaces by reformulating πglob
Θ (a | s) =〈

ψs,Θ

∣∣∣∑⊕b=a
b∈{0,1}n |b⟩ ⟨b|

∣∣∣ψs,Θ

〉
. Note, in general the post-measurement states for both formulations are different.

As also visualized in Figure 7, these approaches correspond to using a local and global observable, respectively. More
precisely, for the left diagram, one should refer to a 1-local measurement, as only a 1-qubit observable is measured. For
a q-local measurement, a q-qubit observable is measured on some subset containing q out of the n qubits. When q = n,
we arrive at a global observable, as shown in the right part of the diagram. It seems plausible, that as q approaches n, the
measurement can be thought of as becoming more and more global. The two setups displayed in Figure 7 are only the
edge cases. Let us assume a post-processing function that decides on an action based on the parity of the first q bits of the
reconstructed bitstring. This can be expressed as

πq-loc
Θ (a | s) = (−1)a · ⟨ψs,Θ | Z⊗q ⊗ I⊗n−q | ψs,Θ⟩+ 1

2
, (43)

where πn-loc
Θ is equivalent to πglob

Θ . Note that in all case only one bit of information is necessary to select one of the two actions
as log2(2) = 1. Still, experiments in Section 5 suggest, that the RL performance benefits from more global measurements.

This type of formulation removes the need to explicitly store partitionings and hence avoids the caveats described above.
Unfortunately, this analysis only works for some special cases, i.e., when all the information is compressed into a subset of
the qubits. Also, it does not generalize to larger action spaces, as the derivation of Equations (41) to (43) had to assume
|A| = 2. Apart from that, the distinction between local and global observables in the considerations above is slightly
incorrect. Instead of performing a global measurement to evaluate Equation (42), we could get the same result by measuring
a 1-qubit Pauli-Z observable on an ancilla qubit, as visualized in the right part of Figure 7. This ancilla qubit is initialized to
|0⟩, and after the evolution of the system with Us,Θ, it interacts via a CX-gate with each of the n original qubits.

C. Extended Example on Extracted Information and Globality Measure
This appendix deals with a closer analysis of the extracted information and globality measure of the partitioning example
introduced in Section 4.2.1:

Ca=0 = {0000, 0010, 0100, 0110} (44)
Ca=1 = {0001, 0011, 0101, 0111} (45)
Ca=2 = {1000, 1010, 1101, 1111} (46)
Ca=3 = {1001, 1011, 1100, 1110} (47)

As the system is really small, it is straightforward to determine the extracted information following Definition 4.1 for all
24 = 16 bitstrings, by just considering all bit combinations. However, as already discussed previously, this is not feasible in
the general case.

With this work done, it is straightforward to compute the associated globality measure following Equation (12) as

GfC =
1

24

∑
b∈{0,1}4

EIfC (b) (48)

=
8 · 2 + 8 · 3

16
= 2.5. (49)

The result reads itself as that on average 2.5 bit of information is necessary to make an unambiguous action assignment.
This is obviously above the minimum value of Gmin

fn=4
= log2(4) = 2, but well below the optimum of Gmax

fn=4
= n = 4. In

Appendix D.3 we demonstrated how a post-processing function with optimal globality measure can be constructed for this
setup.
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Table 2. Extracted information of the post-processing function fC for the partitioning C given in Equations (44) to (47) for all 16 bitstrings.
The marked bits are used to get an unambiguous assignment to the respective partitions. It is easy to check that one can not go with less
information, consequently, the count corresponds to the extracted information.

bitstring b EIfC (b) containing partition bitstring b EIfC (b) containing partition

0 0 0 0 2 Ca=0 1 0 0 0 3 Ca=2

0 0 0 1 2 Ca=1 1 0 0 1 3 Ca=3

0 0 1 0 2 Ca=0 1 0 1 0 3 Ca=2

0 0 1 1 2 Ca=1 1 0 1 1 3 Ca=3

0 1 0 0 2 Ca=0 1 1 0 0 3 Ca=3

0 1 0 1 2 Ca=1 1 1 0 1 3 Ca=2

0 1 1 0 2 Ca=0 1 1 1 0 3 Ca=3

0 1 1 1 2 Ca=1 1 1 1 1 3 Ca=2
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(a) Histogram for n = 4 and |A| = 2. Of all 6435 possible
partitionings only one instance exhibits the optimal globality
value GfC = 4.
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(b) Histogram for n = 6 and |A| = 4. It is basically im-
possible to guess an partitioning with optimal globality value
GfC = 6 from all 2.8 · 1034 possibilities.

Figure 8. Histogram of globality values over all possible partitionings.

D. Supplementary Material on Construction of an Optimal Partitioning
As discussed throughout Section 4.2, it is not trivial to come up with a bitstring partitioning, whose associated post-processing
function is optimal w.r.t. the globality measure in Equation (12). However, this property is highly desirable, as it strongly
correlates with RL performance, as demonstrated in Section 5.1.

D.1. Direct Search for an Optimal Post-Processing Function is Infeasible

Unfortunately, the number of possible partitionings is too large to perform any form of unstructured search. In fact, the
number increases super-exponentially with the number of qubits n. To give some proportion, for M actions and N = 2n

bitstrings, there are N !/
[
M !
(
N
M !
)M]

possibilities, where it is assumed that M is a power of 2, and C is split into sets of

equal size. As some point of reference, this evaluates to approximately 2.8 · 1034 potential partitionings for N = 26 = 64
(i.e., a VQC with 6 qubits) and M = 4, which corresponds to a small quantum system, even for noisy intermediate-scale
quantum (NISQ) standards. Lastly, a post-processing function with an underlying random partitioning is very unlikely to
have a high globality value close to GfC = n, as shown in Figure 8.

D.2. Proof of Optimality for Proposed Construction

In the main section, we proposed an approach to recursively construct a partitioning, for which the post-processing function
is provably optimal w.r.t. the globality measure. For convenience, we restate Lemma 4.2 below:

Lemma D.1. Let an arbitrary VQC act on an n-qubit system. The RAW-VQC policy needs to distinguish between M := |A|
actions, where M is a power of 2, i.e., m = log2(M)− 1 ∈ N0. Using the recursive definition from Equations (13) to (15),
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one can define

πglob
Θ (a | s) =

∑
v∈C(m)

[a]2

⟨ψs,Θ | v⟩ ⟨v | ψs,Θ⟩

≈ 1

K

K−1∑
k=0

δfC(m) (b(k))=a,

where K is the number of shots, b(k) is the bitstring observed in the k-th experiment, and δ is an indicator function. The
post-processing function associated with this policy is guaranteed to have the highest possible globality measure value
GfC = n.

Proof. The proof uses induction over m. The base case for m = 0 for Equations (14) and (15) is trivial, as it corresponds to
the previous considerations from Equations (37) and (42). The induction step m→ m+ 1 needs to consider the two sets,
into which C(m)

[a]2
gets decomposed by inversely applying Equation (13):

C(m+1)
am···a10a0

=

b = bn−1bn−2 · · · b1b0 |
n−1⊕

i=m+1

bi = a0 ∧ b ∈ C(m)

am · · · a1 (0⊕ a0)︸ ︷︷ ︸
[a]2

 (50)

C(m+1)
am···a11ã0

=

b = bn−1bn−2 · · · b1b0 |
n−1⊕

i=m+1

bi = ã0 ∧ b ∈ C(m)

am · · · a1 (1⊕ ã0)︸ ︷︷ ︸
[a]2

 , (51)

where ã0 indicates a bitflip. The property of maximum globality of those two sets w.r.t. to any partition C(m+1) is directly
transferred by the induction requirement, as the information of all m least-significant bits is required for that distinction.
The marked parts in the above equations highlight, that also the remaining n −m most-significant bits are required for
deciding between action [am · · · a10a0]10 and [am · · · a11ã0]10. Consequently, it is necessary to always consider the entire
bitstring, which implies a globality measure value of GfC = n.

D.3. Example of Optimal Partitioning

To get some intuition for the construction arising from Lemma 4.2, we construct a global partitioning for a setup with
n = 4 qubits and M = 4 actions. Consequently, the partitions for the respective actions can be derived recursively with
m = log2(4)− 1 = 1.

C(1)[0]2=00 =
{
b | b3 ⊕ b2 ⊕ b1 = 0 ∧ b ∈ C(0)0⊕0=[0]2

}
=
{

000 0 , 011 0 , 101 0 , 110 0
}

(52)

C(1)[3]2=11 =
{
b | b3 ⊕ b2 ⊕ b1 = 1 ∧ b ∈ C(0)1⊕1=[0]2

}
=
{

001 1 , 010 1 , 100 1 , 111 1
}

(53)

In both cases, after one step of recursion, the base case is reached.

C(0)[0]2
= {b | b3 ⊕ b2 ⊕ b1 ⊕ b0 = 0} (54)

The construction for the remaining two partitions works totally equivalent:

C(1)[1]2=01 =
{
b | b3 ⊕ b2 ⊕ b1 = 1 ∧ b ∈ C(0)0⊕1=[1]2

}
=
{

001 0 , 010 0 , 100 0 , 111 0
}

(55)

C(1)[2]2=10 =
{
b | b3 ⊕ b2 ⊕ b1 = 0 ∧ b ∈ C(0)1⊕0=[1]2

}
=
{

000 1 , 011 1 , 101 1 , 110 1
}

(56)

Also here the recursion only has depth one and makes use of the other base case.

C(0)[1]2
= {b | b3 ⊕ b2 ⊕ b1 ⊕ b0 = 1} (57)
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We are guaranteed by Lemma 4.2 thatGfC = 4, which is also easy to check for this example. It is straightforward to continue
from here, i.e. repeatedly split the partitions to account for 8 or 16 actions. For example, the partition for action a = 5

for |A| = 8 actions is constructed as C(2)[5]2=101 =
{
b | b3 ⊕ b2 = 1 ∧ b ∈ C(1)1(0⊕1)=[3]2

}
= {0101, 1001}. Equation (18)

allows to determine the class-association of an arbitrary bitstring without explicitly constructing the partitioned sets. For an
setup with 8 actions, i.e. m = log2 8− 1 = 2 we get

fC(b) = [10 (1⊕ 0)]10 = 5, (58)

which correctly identifies 1001 to be an element of partition C(2)[5]2
.

E. Analysis of Fisher Information for Reinforcement Learning Setup
Different metrics for analyzing the expressibility and trainability for an quantum machine learning (QML) model have
recently proposed by Abbas et al.. This work interprets the VQC as a statistical model with the joint distribution pΘ(x, y) =
pΘ(y | x)p(x) for data pairs (x, y). The prior p(x) describes the distribution of input states, while pΘ(y | x) gives
the relationship between input and output of the model. We need to adapt this notion for the RL setup, which results
in pπΘ

(s, a) = πΘ(a | s)pπΘ
(s), where the prior state distribution pπΘ

: S → [0, 1] depends on the policy in most
environments. However, for practical reasons, we drop this explicit dependence, while still trying to imitate the distribution
of states one would get by following the policy. Due to the loss of statistical independence of data samples (which is one of
the most distinguishing features between supervised machine learning (ML) and RL), it is presently unclear to which extent
the effective dimension can still be used as a well-defined capacity measure for the function approximation architecture
we employ in our work. However, classification and action selection present related tasks. Therefore we assume, that the
effective dimension of the VQC circuit architecture (interpreted as a classifier for a supervised ML task) at least serves as a
rough indicator of its capacity for policy approximation in the RL context. For the ContextualBandits environment,
where the consecutive states are sampled independently at random (i.e. independent of the policy), the notion is exact.

The key component of the proposed measures (Abbas et al., 2021) is the Fisher information matrix (FIM) F (Θ) ∈ R|Θ|×|Θ|.
Briefly going into theoretical details, it is a Riemannian metric, given rise to by the Riemannian space formed by Φ. From
the full parameter space Φ each individual parameter set Θ is draw. For VQCs consisting mainly of parameterized rotations
Φ ⊂ [−π, π)|Θ| is a reasonable choice. In practice, it is necessary to approximate the FIM by the empirical FIM. With
samples drawn independently and identically distributed from the ground truth (si, ai)

k
i=1 ∼ pπΘ

(s, a), it is given as

F̃k(Θ) =
1

k

k∑
i=1

[
∇Θ ln pπΘ

(si, ai)∇Θ ln pπΘ
(si, ai)

t
]
. (59)

An alternate formulation from Sequeira et al. drops the dependence on the prior state distribution. More concretely, this
reduces Equation (59) to F̃k(Θ) = 1

k

∑k
i=1

[
∇Θ lnπΘ (ai | si)∇Θ lnπΘ (ai | si)t

]
. However, we assume that keeping the

potentially inaccurate prior state information still should be beneficial.

E.1. Expressive Power of the VQC-Model

The FIM F (Θ), and for sufficiently high k also F̃k(Θ), captures the geometry of the parameter space, which allows us
to define a measure for the expressibility of a given model. More explicitly, the effective dimension (Abbas et al., 2021)
quantifies the variety of functions that can be approximated with a given model. For the parameter space Φ ⊂ R|Θ|, the
effective dimension of the statistical modelMΘ associated with the VQC setup can be defined as

edn(MΦ) := 2

ln

(
1
VΦ

∫
Φ

√
det
(
I|Θ| +

n
2π lnn F̂ (Θ)

)
dΘ

)
ln
(

n
2π lnn

) . (60)

The FIM F̂ (Θ) is normalized, such that 1
VΦ

∫
Φ
tr
(
F̂ (Θ)

)
dΘ = |Θ| holds, where VΦ :=

∫
Φ
dΘ denotes the volume of the

parameter space. In practice, the (normalized) FIM is replaced with the respective empirical formulation. The parameter n
determines the effective resolution of the parameter space. Although the effective dimension is not guaranteed to increase
monotonically with this data size, it is usually the case for ML tasks.
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Figure 9. RL training performance and associated effective dimension on the CartPole-v0 environment. The same setup and policy
formulations as in Figure 3 are used, only the depth of the underlying VQCs is increased to d = 2.

E.2. Trainability of the VQC-Model

The spectrum of the FIM, i.e. its eigenvalue distribution, provides insights into the trainability of a model (Abbas et al.,
2021). In general, trainability profits from an uniform spectrum, while a distorted one is suboptimal. As noted previously, in
practice the FIM is replaced with its empirical approximation in Equation (59).

F. Supplementary Experiments and Conventions
We now establish some conventions regarding experimental setup and reproducibility. Initially, we experimented with
a variety of different hyperparameter settings. Overall, the qualitative observations were quite stable throughout. For
the results reported in this paper we fixed most hyperparameters, in order to make results more comparable. However,
sometimes slight deviations are necessary to improve performance, which is typical for RL and also quantum reinforcement
learning (QRL) (Franz et al., 2022). To start with, all experiments on the CartPole-v0 environment use a learning rate
of αθ = 0.01 for the variational and αλ = 0.1 for the state scaling parameters. In all other environments, a value of α = 0.1
is used for all parameter sets. A similar distinction is made w.r.t. parameter initialization, where CartPole-v0 setups
select θ ∼ N (0, 0.1), while the base option is always to draw the variational parameters uniformly at random from (−π, π].
The state scaling parameters are all initialized to the constant value 1.0. The parameter update is performed using the Adam
optimizer (Kingma & Ba, 2015), modified with the AMSGrad adjustment (Reddi et al., 2018). A discount factor of γ = 0.99
is used in all cases. No baseline function is used in any of the environments, as performance was found to be sophisticated
even without. If not stated differently, the architecture from Figure 2 with a depth of d = 1 is used, where the number of
qubits is adjusted to match the state dimensionality. In order to make RL training curves a bit more stable, the results are
usually averaged over ten independent runs. Additionally, the performance is averaged over the last 20 episodes (displayed
in darker colors). Some plots also denote the performance of a random agent with a black dashed line and the optimal
expected reward with a solid black one.

To support the results from Section 5, we also conducted experiments for other setups and environments. Basically, the
qualitative observations were always consistent with the claims we made, although the peculiarity was sometimes weaker or
stronger.

F.1. Increased Quantum Circuit Depth

Instead of using circuits with depth d = 1, we use data re-uploading with depth d = 2 on the CartPole-v0 environment.
Due to this, and as the resulting circuits contain 40 instead of 24 parameters, the RL performance intuitively should improve.
In fact, that is what can be observed in Figure 9. Compared to the results in Figure 3, the convergence speed of the policies
π
GfC
=3 and π

GfC
=1 has improved quite a bit. Also, the least-global policy is finally able to learn a close to optimal policy after

1000 additional episodes, which was not the case previously. Initially, it actually outperforms the policy with the higher
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(a) FrozenLake environment with 16 discrete states and 4
actions.
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(b) ContextualBandits environment with 32 discrete states
and 8 actions.

Figure 10. RL training performance for different environments. The underlying global post-processing functions are determined as
described in Section 4.2.2. These results are averaged over 100 independent experiments;

policy but caught up with after approx. 600 episodes. We consider this behavior to be caused by statistical fluctuation,
which is common for RL training. As the global policy π

GfC
=4 showed already a good performance for d = 1, there was not

much room for improvement. Again we back up the results by the respective effective dimensions in Figure 9. Here also the
predicted pattern holds, with a slight overall improvement over the smaller models.

Overall we conclude, that the increasing model complexity benefits the RL performance and general expressibility of the
model for all policy formulations. Still, there is a strong correlation between globality and RL performance, although it
is slightly less pronounced than in the original setting. As it is highly desirable for NISQ hardware to keep the circuit
complexity as low as possible, using a sophisticated post-processing function should be preferred over increasing the circuit
depth.

F.2. Extension to Other Environments

To really make use of the construction of global post-processing functions for larger action spaces proposed by Lemma 4.2,
we now take a look at two additional environments. The first one is the gridworld environment FrozenLake (Brockman
et al., 2016), which has to decide between 4 possible actions in every step. Consequently, the lowest possible globality value
of a suitable policy is GfC = log2(4) = 2, while an optimal formulation satisfies GfC = n = 4. The training results for
those two policies and different circuit depth is depicted at the top of Figure 10. We can basically observe the same pattern
as throughout this paper, where a more global post-processing function improves the convergence speed. Also increasing the
overall model complexity benefits the performance, wherefore the gap in performance for the different policy formulation
decreases.

The second choice is a ContextualBandits environment with 32 states and 8 actions. As we encode the states via
1-qubit rotations in a binary fashion, the VQC has log2(32) = 5 qubits. This implies an upper bound of GfC ≤ 5 and a
lower bound of GfC ≥ 3. The performance of the two models is depicted in the lower part of Figure 10. Also here the
predicted correlation can be observed, although the difference is not that significant. This might be partly down to the reason,
that both models struggle to come close to the optimal expected reward of 1.0. By using more sophisticated encoding
schemes, or bigger models, one should be able to change this.

We also computed the associated effective dimensions and Fisher spectra, which again followed the predicted scheme.
Overall it can be concluded, that the proportionality of the globality measure associated with a post-processing function and
its RL performance translates to a variety of environments.
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Table 3. Percentage of eigenvalues of FIM for two actions and models of increasing complexity that are close to zero (< 10−7). The
empirical FIM is estimated with 100 random parameter sets for each of the 100 random states s. Unlike in Figure 4, the states elements
are sampled uniformly at random from [−π, π) to allow for statements abstracted from a concrete RL environment.

depth d = 1 depth d = 2 depth d = 3 depth d = 4

πGfC=4 0%

4 qubits πGfC=3 17%

(|Θ| = 24,−,−,−) πGfC=1 50%

πGfC=6 0% 0%

6 qubits πGfC=3 26% 20%

(|Θ| = 36, 60,−,−) πGfC=1 48% 33%

πGfC=8 0% 0% 0%

8 qubits πGfC=3 30% 21% 18%

(|Θ| = 48, 80, 112,−) πGfC=1 38% 26% 25%

πGfC=10 1% 0% 0% 0%

10 qubits πGfC=3 28% 27% 19% 16%

(|Θ| = 60, 100, 140, 180) πGfC=1 30% 28% 23% 20%

G. Abstracted Analysis of Fisher Spectrum
As the analysis of the Fisher information spectrum is a powerful tool to assess trainability, we apply it to a range of different
setups. We keep things as general as possible by sampling state values uniformly at random from (−π, π]|s|. Due to the
periodicity of the rotation gates used for encoding, this should cover a wide range of potential scenarios. The most critical
property of the Fisher information spectrum is the concentration of eigenvalues close to 0. A high proportion of small
eigenvalues indicates a flat parameter space, which makes optimization with any gradient-based technique difficult.

The results for systems ranging from 4 to 10 qubits and depths d = 1 to d = 4 are summarized in Table 3. All experiments
assumed an action space of size 2. Most interestingly, the percentage of small eigenvalues for a global post-processing
function is almost negligible in all cases. On the contrary, the spectra for policies based on post-processing functions with
GC = 1 are quite degenerated. As one would expect, the post-processing functions with GC = 3 start out quite well, yet the
farther they deviate from the optimal globality value, the more degeneration occurs. These results solidify the statement, that
models with global post-processing functions benefit a wide range of applications.

The convergence of eigenvalues towards 0 does not seem to be proportional to the system size. This has some potential
implications w.r.t. the barren plateau problem, which is closely related to the trainability of a model. The term describes the
observation, that the expectation value and also the variance of the gradients w.r.t. the parameters decrease exponentially with
the number of qubits (McClean et al., 2018). Abbas et al. relates this to the Fisher information spectrum, i.e. the model is
vulnerable to barren plateaus, iff tr (EΘ [F (Θ)]) decreases exponentially with increasing system size (McClean et al., 2018).
Following Table 3, no setup shows a progressive convergence of eigenvalues to 0, although there are some quantitative
differences. The considered model sizes are probably still too small for barren plateaus to occur, so for concluding statements
additional investigation is necessary. However, following the above statement, barren plateaus are at least unlikely to occur,
especially for small-scale models with global post-processing functions. Similar observations have been made in other fields
of QML (Abbas et al., 2021; Kashif & Al-Kuwari, 2023). However, the interpretation of the global post-processing function
as global measurement potentially makes barren plateaus inevitable for increasing system size as shown in Cerezo et al.
– although the validity for large action spaces is not immediate. For a larger qubit count and circuit depth the proposed
post-processing technique also allows adjusting the globality. This can be used to find a good balance between the empirical
performance improvement demonstrated in this paper and reduced globality to prevent barren plateaus.

Last but not least, it has to be stated, that a problem related to barren plateaus is also known in the classical case. More
concretely, big deep neural networks often suffer from vanishing gradients (Hochreiter, 1998). If the results presented in this
section can be extended to larger quantum systems, the improvement in terms of trainability compared to classical models
might point towards a possible quantum advantage.
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