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Abstract

Reconstructing real-world images from fMRI

recordings is a challenging task of great impor-

tance in neuroscience. The current architectures

are bottlenecked because they fail to effectively

capture the hierarchical processing of visual stim-

uli that takes place in the human brain. Moti-

vated by that fact, we introduce a novel neural

network architecture for the problem of neural de-

coding. Our architecture uses Hierarchical Varia-

tional Autoencoders (HVAEs) to learn meaningful

representations of real-world images and lever-

ages their latent space hierarchy to learn voxel-to-

image mappings. By mapping the early stages

of the visual pathway to the first set of latent

variables and the higher visual cortex areas to

the deeper layers in the latent hierarchy, we are

able to construct a latent variable neural decoding

model that replicates the hierarchical visual in-

formation processing. Our model achieves better

reconstructions compared to the state of the art

and our ablation study indicates that the hierarchi-

cal structure of the latent space is responsible for

that performance.

1. Introduction

Decoding visual imagery from brain recordings is a key

problem in neuroscience. This problem aims to reconstruct

the visual stimuli from fMRI recordings taken while the

subject is viewing the stimuli. Even though some of the

excitement is fuelled by science fiction and the difficulty

of the problem (Shen et al., 2019b), the scientific consen-

sus is that neural decoding has real-world, important im-

plications. It is important for understanding how neural
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activity relates to external stimuli (Glaser et al., 2020), for

engineering application such as brain-computer interfaces

(Brandman et al., 2017), for decoding imagery during sleep

(Horikawa et al., 2013), and even for reconstructing video

frames from brain activity (Le et al., 2022). Given its impor-

tance, neuroscience and machine learning researchers have

jointly led the development of sophisticated deep learning

architectures that allows us to design pipelines that map

voxel-based recordings to the corresponding visual stimuli.

Based on the target learning task, visual decoding can be

categorized into stimuli classification, stimuli identification,

and stimuli reconstruction. The former two tasks aim to

predict the object category of the presented stimulus or iden-

tify the stimulus from an ensemble of possible stimuli. The

reconstruction task, which is the most challenging one and

the main focus of this paper, aims to construct a replica of

the presented stimulus image from the fMRI recordings.

Related Work. The proposed methods for the problem of

neural decoding can be broadly classified in three categories:

non-deep learning methods, non-generative deep learning

methods and generative deep learning methods. The non-

deep learning class consists of methods that are based on

primitive linear models and aim in reconstructing low-level

image features (Kay et al., 2008). Such approaches first

extract handcrafted features from real-world images, such

as multi-scale image bases (Miyawaki et al., 2008) or Ga-

bor filters (Yoshida & Ohki, 2020), and then learn a linear

mapping from the fMRI voxel space to the extracted fea-

tures. Due to their simplicity, linear models are not able

to reconstruct complex real-world images and thus their

applicability is restricted to simple images containing only

low-level features.

Methods that use convolutional neural networks as well as

encoder-decoder architectures belong to the non-generative

deep learning class. Horikawa et al. (Horikawa & Kami-

tani, 2017) demonstrated a homology between human and

machine vision by designing an architecture with which

the features extracted from convolutional neural networks

can be predicted from fMRI signals. Based upon those

findings, Shen et al. (Shen et al., 2019b) used a pretrained

VGG-19 model to extract hierarchical features from stim-

uli images and learned a mapping from the fMRI voxels

in the low/high area to the corresponding low/high VGG-

19 features. Beliy et al. (Beliy et al., 2019) designed a
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CNN-based Encoder-Decoder architecture, where the en-

coder learns a mapping from the stimulus images to the

fMRI voxels and the decoder learns the reverse mapping.

By stacking the components back-to-back, the authors train

their network using self-supervision, thereby addressing the

inherent scarcity of fMRI-image pairs. Following up on that

work, Gaziv et al. (Gaziv et al., 2020) improved the recon-

struction quality by training on a perceptual similarity loss

function, which is calculated by first extracting multi-layer

features from both the original and reconstructed images

and comparing the extracted features layer-wise. Such a

perceptual loss is known to be highly effective in assessing

the image similarity and accounts for many nuances in the

human vision (Zhang et al., 2018).

In the generative deep learning class, we have model archi-

tectures, such as generative adversarial networks (GANs)

and variational autoencoders (VAEs). Shen et al. (Shen

et al., 2019b) extended their original method to make the

reconstructions look more natural by conditioning the recon-

structed images to be in the subspace of the images gener-

ated by a GAN. A similar GAN-prior was used by Yves et al.

in (St-Yves & Naselaris, 2018), where the authors also in-

troduced unsupervised training on real-world images. Fang

et al. (Fang et al., 2020) leverage the hierarchical structure

of the information processing in the visual cortex to propose

two decoders, which extract information from the low and

high visual cortex areas, respectively. The output of those

decoders is used as a conditioning variable in a GAN-based

architecture. Shen et al. (Shen et al., 2019a) trained a GAN

using a modified loss function that includes an image-space

and perceptual loss in addition to the standard adversarial

loss. Güçlütürk et al. (Güçlütürk et al., 2017) propose a

method to reconstruct perceived faces using a cascade of a

linear transformation combined with maximum a posteriori

estimation and non-linear transformation combined with ad-

versarial training. A line of work by Seeliger et al. (Seeliger

et al., 2018), Mozafari et al. (Mozafari et al., 2020) and

Qiao et al. (Qiao et al., 2020) assumes that there exists a

linear relationship between the brain activity and the GAN

latent space. These methods use the GAN as a real-world

image prior to ensure that the reconstructed image has some

"naturalness" properties. The work by VanRullen et al. (Van-

Rullen & Reddy, 2019) and Ren et al. (Ren et al., 2021)

utilize VAE-GANs (Larsen et al., 2015), a hybrid model in

which the VAE decoder and GAN generator are combined.

The GAN latent space is used to produce hyperrealistic re-

constructions from fMRI activations. The work by Lin et

al. (Lin et al., 2022) leverages multi-modality and encodes

the fMRI signals into a visual-language latent space and

a contrastive loss function to incorporate low-level visual

features to the schematic pipeline.

Contributions. In this paper, we purpose a novel architec-

ture for the problem of decoding visual imagery from fMRI

recordings. Motivated by the fact that the visual pathway in

the human brain processes stimuli in a hierarchical manner,

we postulate that such a hierarchy can be captured by the

latent space of a deep generative model. More specifically,

we use Hierarchical Variational Autoencoders (HVAE) (Vah-

dat & Kautz, 2020) to learn meaningful representations of

stimuli images and we train a deep neural network to learn

mappings from the voxel space to the HVAE latent spaces.

Voxels originating from the early stages of the visual path-

way (V1, V2, V3) are mapped to the earlier layers of latent

variables, whereas the higher visual cortex areas (LOC, PPA,

FFA) are mapped to the later stages of the latent hierarchy.

Our architecture replicates the natural hierarchy of visual

information processing in the latent space of a variational

model. Our experimental analysis suggests that hierarchi-

cal latent models provide better priors for decoding fMRI

signals and, to the best of our knowledge, this is the first

approach that uses HVAEs in the context of neural decoding.

2. Visual Information Processing

In this section, we give a brief overview of the visual in-

formation processing in the human brain and describe the

two streams hypothesis, which we use in our experimental

architecture. Visual information received from the retina

of the eye is interpreted and processed in the visual cor-

tex. The visual cortex is located in the posterior part of the

brain, at the occipital lobe, and it is divided into five distinct

areas (V1 to V5) depending on the function and structure

of the area. Visual stimuli received from the retina travel

to the lateral geniculate nucleus (LGN), located near the

thalamus. LGN is a multi-layered structure that receives

input directly from both retinas and sends axons to the pri-

mary visual cortex (V1). V1 is the first and main area

of the visual cortex where visual information is received,

segmented, and integrated into other regions of the visual

cortex. Based on the two streams hypothesis (Goodale &

Milner, 1992), following V1, visual stimuli can take the

dorsal pathway or ventral pathway. The dorsal pathway

consists of the secondary visual cortex (V2), the third visual

cortex (V3), and the fifth visual cortex (V5). The dorsal

stream, informally known as the "where" stream, is respon-

sible for visually-guided behaviors and localizing objects in

space. The ventral stream, also known as the "what" stream,

consists of V2 and fourth visual cortex (V4) areas and is

responsible for processing information for visual recogni-

tion and perception. Visual processing occurs hierarchically

at three distinct levels (Groen et al., 2017). The low-level

includes the retina, lateral geniculate nuclei (LGN), and the

primary visual cortex (V1). Low-level processing is the

initial step when interpreting an image and it is the place

where orientation, edges, and lines are perceived. Sequen-

tially, the mid-level processing consists of the secondary

(V2), third (V3) and fourth (V4) which extract shapes, ob-
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Figure 1. Two stream hypothesis of visual information processing

in the human brain.

jects and colors. Finally, the high-level processing consists

of category-selective areas such as the fusiform face area

(FFA), lateral occipital (LOC), parahippocampal area (PPA)

and medial temporal area (MT/V5). These areas show selec-

tive response to faces, objects/animals, places and motion,

respectively. Despite the evident hierarchical structure of

visual information processing, most current methods for

neural decoding fail to fully exploit that fact. Current meth-

ods take into account the hierarchy of visual information

processing either by mapping the fMRI voxel to hierarchi-

cal CNN-extracted image features via regression models

(Shen et al., 2019b; Wen et al., 2018) or by training an end-

to-end DNN model on a feature loss function (St-Yves &

Naselaris, 2018; Shen et al., 2019a). The major issue with

such approaches is that the hierarchy is taken into account

in the feature space of a CNN model, which is, in general,

complex, high-dimensional space. In this work, we propose

to take into account the aforementioned hierarchy in the

latent space of a deep model. Latent spaces are known to

produce compact, low-dimensional embeddings of the data

and have recently shown impressive performance on image

reconstruction and generation tasks (Vahdat & Kautz, 2020).

Additionally, the early work of Güçlü et al. in (Güçlü & van

Gerven, 2015) and (Güçlü & van Gerven, 2017) reveals a

connection between the cortical hierarchy and the hierarchi-

cal structure of convolutional neural networks. Given these

facts, we postulate that a hierarchical latent space provides

better priors for decoding fMRI signals. The intuition is

that each brain area, being "responsible" for a certain set of

features, better be mapped on a compact, low-dimensional

representation of those features. For example, given that V1

is broadly responsible for encoding low-level features (e.g.,

edges, orientations), it is sensible to map the fMRI voxels

from the V1 region onto a representation of the underly-

ing images features; and this mapping is much easier to be

learned on the latent space, rather than the feature space.

3. Method

Leveraging the aforementioned intuition, we introduce a

neural decoding method that mimics the hierarchical vi-

sual information processing in the latent space. Our archi-

tecture has two main components: a Hierarchical Varia-

tional Autoencoder (HVAE) and a Neural Decoder. The

HVAE is used for learning compact, hierarchical latent rep-

resentations of real-world images and is trained using self-

supervision. The Neural Decoder is used for mapping the

brain signals to the HVAE hierarchical latent space and is

trained via supervision on {fMRI,Image} pairs. In this sec-

tion, we describe each of the components in more detail.

Our architecture is visualized in Fig 2 for the special case

of 2 latent hierarchical layers.

3.1. Hierarchical Variational Autoencoders

To capture the inherent hierarchical structure of visual in-

formation processing, we propose to model images via

a family of probabilistic models known as Hierarchi-

cal Variational Autoencoders (HVAEs). HVAEs extend

the basic Variational Autoencoder (VAEs) by introduc-

ing a hierarchy of latent variables. Formally, let x be

an image and z = {z1, z2, . . . , zL} be a set of L la-

tent variables. The generative distribution or decoder

is defined as pθ(x|z) = pθ(x|z1)
∏L−1

i=1 pθ(zi+1|zi) and

is parametrized by θ. The prior distribution is defined

as p(z) = p(z1)
∏L−1

i=1 p(zi+1|zi). The posterior p(z|x)
is approximated by the variational distribution or en-

coder qφ(z|x) = qφ(z1|x)
∏L

i=1 qφ(zi+1|zi), which is

parametrized by φ. Both the prior and the approximate

posterior are represented by factorial Normal distributions.

The variational principle provides a tractable lower bound,

known as Evidence Lower Bound (ELBO), on the log-

likelihood, as follows

log pθ(x) ≥ Eqφ(z|x)

[

log
pθ(x, z)

qφ(z|x)

]

= L(θ, φ;x)

= −KL(qφ(z)|x||pθ(z)) + Eqφ(z|x)[log pθ(x|z)], (1)

where KL is the Kullback-Leibler divergence. The encoder

and decoder are implemented by deep neural networks and

their parameters are jointly optimized using gradient descent

on the ELBO criterion. Similarly to standard VAEs, the

reparametrization trick (Kingma & Welling, 2014; Rezende

et al., 2014) is used to allow us to back-propagate the gradi-

ent thought the stochastic sampling involved in the compu-

tation of Eq. 1.

3.2. Neural Decoder

We now leverage the latent space of the HVAE to learn a

set of maps from the fMRI voxel space to the hierarchical

latent variables. In more detail, each region of interest (ROI)

is mapped via a dense neural network to a specific subset

of the latent space. Brain regions in the earlier states of the

visual pathway are mapped to the earlier layers of the la-

tent hierarchy, whereas voxels from the higher visual cortex
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Figure 2. Outline of our method: a) We pretrain a Hierarchical Variational Autoencoder on a large set of images. Two layers of latent

variables z1, z2 are inserted after each encoder (EB) and decoder (DB) block. b) We train the Neural Decoder by discarding the encoder

from the previous step and learning a map from the fMRI voxels to the hierarchical latent space. The lower visual cortex (V1, V2, V3) is

mapped to z1 and the higher visual cortex (FFA, PPA, LOC) to z2.

areas are mapped to the deep layers in the latent hierarchy.

We assume that the HVAE has L groups of latent variables

z1, z2, . . . zL and that the fMRI voxels are partitioned intoL
non-overlapping brain regions of choice, i.e., y1,y2, . . .yL.

Formally, the Neural Decoder is a set of maps from the i-th
brain region to the i-th group of latent variables. Each of

these maps is represented by a deep neural network with

parameters wi, i.e., zi = ψwi
(yi), i = 1, 2, . . . L. The

reconstruction x̂ is then obtained by passing the latent vari-

ables z = {ψw1
(y1), ψw2

(y2), . . . ψwL
(yL)} through the

decoder model p(x|z) defined in Sec. 3.1.

The loss function used for training the Neural Decoder is an

important design choice. Classic per-pixel measures, such

as Euclidean distance, commonly used for regression prob-

lems, or the related Peak Signal-to-Noise Ratio (PSNR), are

insufficient for images, as they assume pixel-wise indepen-

dence. Therefore, to encourage the Neural Decoder to learn

reconstructions guided by human visual perception, we use

a perceptual loss. Perceptual loss is a class of loss functions

that relies on the fact that CNNs extract hierarchical fea-

tures. More specifically, deep features trained on supervised,

self-supervised and unsupervised objectives are an effective

model of human visual perceptual similarity (Zhang et al.,

2018). For a given image x and its reconstruction x̂, their

perceptual loss is:

l(x, x̂) =
∑

m

1

HmWm

∑

h,w

||bm ⊙ (f l
x,hw − f l ˆx,hw

)||22,

(2)

where f l
x
, f l

x̂
are the layer-wise activations of a given, pre-

trained CNN model, bl ∈ R
Cl is a channel-wise scaling

vector. Intuitively, the perceptual loss in Eq. 2 extracts fea-

tures for both the target and reconstructed image and then

compares the features layer-wise using the Euclidean norm.

To ensure that no bias is introduced during learning, it is

important that the CNN used for evaluating Eq. 2 is different

than the one used for the encoder. In our implementation

we use a pretrained AlexNet as well as the code by Zhang

et al. (Zhang et al., 2018) to compute the perceptual loss.

3.3. Model Training

For the encoder part of our HVAE, we use a pretrained

VGG-19 model (Simonyan & Zisserman, 2015). This is

a deep convolutional neural network of 19 convolutional

layers and 3 fully connected layers. We use the weights

from the model pretrained on ImageNet and discard the

fully connected layers. We introduce latent variables by

taking the output of a given convolutional layer, flattening

it, passing it through a fully connected layer and, finally,

through a variational layer which outputs the latent variable.

This latent variable is re-sampled to avoid any dimension

mismatch, and rerouted back to the main block, where it

is aggregated with the output of the convolutional layer.

Depending on how many latent layers we would like to

insert, their exact position may vary. As an empirical design

choice we choose to insert the latent layers equally spaced

and after a convolutional block. A latent layer is always

inserted at the output of the penultimate convolutional block.

The decoder part of our HVAE transforms the hierarchical

latent variables to output images and consists of 4 trans-

posed convolutional layers. The number of decoder filters

are [128, 64, 32, 16, 3] and all kernel sizes are set to 5. Each

transposed convolutional layer is followed by a 2d batch

normalization and a ReLU non-linearity. The output of each

transposed convolutional layer is interleaved with the latent

variables. More specifically, each latent variable is initially

passed thought a fully connected layer, re-sampled to avoid

4



Generative Decoding of Visual Stimuli

dimension mismatch and then aggregated with the output

of the corresponding transposed convolution. Similarly to

the encoder, we insert the latent variable such that we en-

sure symmetry and we always insert the penultimate latent

variable before the first transposed convolution.

We start the training process by first deciding the number

and position of the latent layers. The choice is guided by the

type of fMRI data that we have as well as the level of latent

space coarse-graining that we can achieve. For instance,

if our fMRI data contains only the primary (V1) and the

secondary (V2) visual cortex then we have two choices: a)

we can either consolidate all voxels into a single vector and

have a single latent layer in our HVAE or b) we can have two

vectors containing the voxels from each brain area and train

the HVAE such that it has two latent layers z1, z2 (example

shown in Fig. 2). Naturally, if our fMRI data are more fine

grain, we can add additional latent layers.

Following this design choice, the training proceeds in two

phases: In the first phase, we pretrain the HVAE via self-

supervision using the ELBO loss function Eq. 1 on a large

ensemble of 50,000 real-world images from the ImageNet

database. These images come from the same categories

as the images shown to the subjects but no test images

are included. This phase gives us meaningful latent rep-

resentations and allows the HVAE decoder to adapt to the

statistics of a large set of real-world images. In the second

phase, the HVAE encoder is discarded, the HVAE decoder

is kept fixed and the Neural Decoder is trained on super-

vised {fMRI, Image} pairs using the perceptual loss func-

tion Eq. 2. In this phase, we essentially learn a map from the

voxels of each brain area to the corresponding latent layer

and then use that latent vector to reconstruct the image.

4. Experimental Results

To evaluate the utility of our method in practice, we carry

out a series of experimental simulations. To measure the

performance of our method, we use both qualitative compar-

isons of the reconstructions as well as quantitative metrics.

In what follows, we give the details of the dataset used, the

metrics implemented and baseline comparisons.

Dataset: We applied our pipeline on a commonly used,

publicly available dataset known as Generic Object

Decoding (GOD). The dataset consists of high-resolution

(500 × 500) stimuli images and their corresponding

fMRI recordings. There exist 1250 (1200 train, 50 test)

stimuli images selected from 200 object categories from

the ImageNet database and the fMRI recording were

obtained while 5 healthy subjects were viewing the stimuli

(presentation experiment). The train- and test-fMRI data

consist of 1 and 35 (repeated recordings) per presented

stimulus image, respectively. We use the post-processed

fMRI data provided by Horikawa et al. (Horikawa &

Kamitani, 2017), which contain voxels from 7 brain areas

(V1,V2,V3,V4,FFA,PPA,LOC). The temporal component

of the fMRI signal is averaged-out and the input to the

model is a high-dimensional voxel vector. Even though

there may be more comprehensive datasets, such as the

BOLD 5000 (Chang et al., 2019) and the NSD (Allen et al.,

2022) datasets (which in fact contain a higher number of

more diverse images), we choose to focus on GOD for two

primary reasons: 1) the dataset provides post-processed

fMRI data, and 2) it has been used in numerous past studies

(Beliy et al., 2019; Shen et al., 2019b; Fang et al., 2020).

Both of these facts facilitate the easy and fair comparison

between different methods.

Ablation Study: We perform an ablation study, with the

number of hierarchical layers and, consecutively, the num-

ber of brain regions, being the ablated parameter. Motivated

by the two stream hypothesis (Sec. 2), we consider the fol-

lowing variants:

1. Naive Baseline (NB): We consider only one latent

layer zNB and all fMRI voxels are mapped to zNB .

There are approximately 5000 voxels in this variant.

2. Primary-Secondary (PS): We consider 2 latent layers

zV 1, zV 2 and the voxels from V 1, V 2 are mapped to

the corresponding latent layer. There are approximately

1500 voxels.

3. Dorsal Pathway (DP): We consider the 3 latent lay-

ers zV 1, zV 2, zV 3 and voxels from V 1, V 2, V 3 are

mapped to the corresponding latent. There are ap-

proximately 2500 voxels.

4. Ventral Pathway (VP): We consider 4 latent

layers zV 1, zV 2, zV 4, zPF and the voxels from

V 1, V 2, V 4, {FFA,PPA} are mapped to the corre-

sponding latent layer. The voxels from FFA and

PPA are merged to a single area. There are approxi-

mately 3300 voxels.

We note that by using different ROIs and/or by combining

them to form different latent architectures, it is possible to

obtain different ablated variants. We empirically noticed

that by including the LOC, either concatenated as part of the

latest latent layer of the VP or by creating a new LOC-only

latent layer, there was no further performance improvements,

only losses in terms of computational cost. Therefore, we

restrict our exposition to the aforementioned 4 variants.

Metrics: The reconstruction quality is assessed both sub-

jectively, i.e., by visual inspection of the output test images

and comparison with the ground truth, as well as objectively.

Our quantitative evaluation relies on metrics that encode the

5



Generative Decoding of Visual Stimuli

Figure 3. Qualitative comparison of reconstruction quality.

spatial dependence such as the Pearson Correlation Coef-

ficient (PCC) and the Structural Similarity Index Measure

(SSIM).

Pearson Correlation Coefficient (PCC): This metric is

extensively used in statistics to measure the linear depen-

dence between variables. In the context of image similarity,

PCC is computed on the flattened representations of the

two images. The limitation of PCC is its sensitivity to edge

intensity or misalignment, which makes the metric assign

larger value to blurry images (Beliy et al., 2019).

Structural Similarity Index Measure (SSIM): Wang et

al. proposed SSIM in (Wang et al., 2004) as a metric that

quantifies the characteristics of human vision. Given a pair

of images p, q, SSIM is computed as a weighted combina-

tion of luminance, contrast and structure. Assuming equal

contribution of each measure, SSIM is first computed lo-

cally in a common window of size N × N , and then the

global SSIM is computed by averaging the SSIM over all

non-overlapping windows.

These image similarity metrics defined are used for comput-

ing the correct identification rate in an n-way classification

task. Let M ∈ {PCC, SSIM} be a metric of choice, p̂i be

a reconstructed image and Pi be a set containing the ground

truth pi and a set of n− 1 randomly selected target images.

The Correct Identification Rate (CIR) is defined as follows:

CIRn
M =

1

N

N
∑

i=1

1
(

i = argmax
pj∈Pi

M(p̂i, pj)
)

, (3)

where N is the total number of images and the indicator

function 1(·) has the value of 1 if the argument is true and 0

otherwise. The CIRn
M metric is essentially the frequency

at which a reconstructed image can correctly identify the

ground truth among n − 1 randomly selected additional

images. The chance level is 1/n.

Main Results: We compare the performance of our method

against several state of the art methods (SOTA) for the prob-

lem of neural decoding. The competitor methods are: the

encoder-decoder based self-supervised method by Belyi et

al. (Beliy et al., 2019), the end-to-end, GAN-based pipeline

by Shen et al. (Shen et al., 2019a), the GAN-conditioned

method by Shen et al. (Shen et al., 2019b) and the shape-

schematic GAN by Fang et al. Figure 3 shows qualitative

results and compares our method against the aforementioned

competitors. All displayed images were reconstructed from

the test-fMRI dataset. To improve the signal-to-noise ra-

tio, the test fMRI test samples are averaged across trials.

The results shown were obtained using the Ventral Pathway

variant, which gave the best performance. We directly use

the reconstructions reported in the respective papers by the

authors. Our method tends to consistently produce more

faithful reconstructions. Note that, even though the GAN-

based decoders tend to produce more natural images, the

reconstructions may deviate significantly from the stimu-

lus image. This is because the GAN is introduced as an

imaged prior, as noted by Belyi et al. (Beliy et al., 2019).

On the contrary, our method reconstructs the stimuli more

faithfully, albeit the reconstructions appearing as a noisier

version of the ground truth. (Fang et al., 2020).

Figure 4. Correct identification ratio.

The qualitative comparison highlights a trade-off between

the naturalness of the reconstructed stimuli and the pixel-

wise noise introduced in the reconstructions. To resolve

the ambiguity, we perform an additional quantitative com-

parison using the CIRn metric. For this part we compare

against the method by Belyi et al. (Beliy et al., 2019) as

well as the two variants of the method by Shen et al. (Shen

et al., 2019b). We directly compare against the results as

reported by the authors of (Beliy et al., 2019). The results

are shown in Fig. 4. For our method, we report the cor-

rect identification rate obtained using the Ventral Pathway

variant and we average across the metrics (CIRn
PCC and

CIRn
SSIM ). We observe that our method consistently out-

performs the competitors and, particularly in the 5-way and

10-way case, by a substantial margin. Additionally, we ob-

serve our method shows a small performance drop as we
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Figure 5. Qualitative comparison for different pathways.

increase n, i.e, from 90% in the 2-way case to 79% in the

10-way case, whereas the performance loss for the com-

petitor method is substantially higher. This performance is

due to the following fact: Even though our method gives

noisier reconstructions than the competitors, the high-level

features such as color, texture and shapes are retained and,

therefore, the task of identifying the correct ground truth

from the reconstruction is easier. In contrast, please observe

in Fig. 3 that the competitor methods may substantially alter

the color or texture of the image, therefore leading to more

frequent ground truth misidentification.

In the next experiment, we evaluate the decoding perfor-

mance of different visual pathways. The results are shown

on Fig. 5. Qualitatively, the ventral stream seems to be

producing the best reconstructions, which is expected from

a neuroscience perspective, given that this pathway’s pur-

pose is for visual perception and contains high level areas

(FFA-PPA) for object recognition. Interestingly enough,

even though the Naive Baseline contains all the available

brain areas, the reconstruction quality is inferior, especially

in the 2nd and 3rd images, which are far more complex.

The V1-V2, Dorsal and Ventral variants essentially partition

the brain areas into (progressively finer) segments and map

the voxels from each area onto the hierarchical latent space

of the HVAE decoder. Even though the increased perfor-

mance among these variants may be partially explained by

the fact that the number of voxels increases, the main point

of comparison should be against the Naive Baseline. The

three models, PS, DP, and VP, are hierarchical, whereas

the naive baseline includes all data but has no hierarchy.

Simply the fMRI responses from two regions, V1 and V2

and discarding all other voxels we are able to achieve better

performance than simply mapping all voxels in a big latent

vector. This suggests that the hierarchy is far more impor-

tant than the amount of data that we fed to the model. This

is in line with previous studies which concluded that models

trained on the whole visual cortex perform slightly worse

than those trained on separate areas (Fang et al., 2020).

Additionally, since the Naive Baseline essentially learns a

map from all voxels to a single latent layer, it is natural to

assume that is fails due to massively overfitting. However,

if overfitting is indeed the only reason for that failure, we

would expect the reconstruction performance to decrease

as we add more voxels to the model input. However, the

figure shows the exact opposite: the performance increases

as we add more voxels. This suggests that overfitting is

not the only reason for the Naive model’s failure and that

the the hierarchical structure of the visual information pro-

cessing needs to be explicitly taken into account. However,

one may hypothesize that the performance increase in the

Ventral Pathway model may come from the partitioning of

the ROIs and that the hierarchical structure has little impact.

To test this, it is prudent to include a variant in which the

VP ROIs are randomly shuffled to assess whether the hierar-

chical structure or the partitioning of the voxels drives the

performance. We call this variant VP Permutations and it

supplements the previous 4 variants.

Following that, we present quantitative results on Table 1.

On this table we give the the n-way correct identification

rate CIRn for n = 2, 5, 10, for all ablated variants and the

VP Permutations for both metrics (PCC and SSIM). The

results on this table validate the aforementioned qualitative

observations. The identification accuracy is progressively in-

creasing as we partition the brain into more fine areas and as

we add hierarchical layers in the HVAE onto which the brain

areas are mapped. Additionally, we observe that the newly

introduced VP Permutations variant leads to performance

degradation, which suggests that the hierarchy and not the

partitioning drives the performance result. However, we do

note that we have a slight performance increase compared to

the Naive Baseline, which indicates that merely partitioning

the brain regions is beneficial, albeit not as beneficial as

accounting for the hierarchy.

Figure 6. Learning curves for CIRn

M , n = 2, 5, 10 and M ∈
{PCC, SSIM} across all subjects. The horizontal axis is the

number of epochs. Subject 3 is marginally outperforming the other

subjects and Subject 1 gives the worst performance (figure best

viewed in color).

To verify that our method can be successfully applied to

all subjects and study potential inter-subject variation of
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CIR2
PCC CIR2

SSIM CIR5
PCC CIR5

SSIM CIR10
PCC CIR10

SSIM

Naive Baseline 0.77 0.78 0.64 0.66 0.57 0.58
Primary-Secondary 0.80 0.82 0.72 0.73 0.65 0.67
Dorsal Pathway 0.88 0.90 0.81 0.80 0.75 0.75
Ventral Pathway 0.91 0.92 0.84 0.85 0.79 0.79

VP Permutations 0.79 0.80 0.65 0.66 0.60 0.58

Table 1. The n-way correct identification rate (n = 2, 5, 10) for all ablated variants using the Pearson Correlation Coefficient (PCC)

and the Structural Similarity Index Measure (SSIM) as a selection criterion. We report the mean across subjects. The results for VP

Permutations are averaged across 4 permutations. The inter-subject deviation was in the range of 0.02 − 0.05. The chance levels are

0.5, 0.25, 0.10, respectively.

the results, we show in Fig. 6 the learning curves for all

5 subjects and for all metrics CIRn
M , n = 2, 5, 10 and

M ∈ {PCC, SSIM}. The metrics were calculated us-

ing the test samples and the ventral pathway variant. Even

though the metrics appear similar across subject, after care-

ful examination of the curves some subtle discrepancies and

trends can be observed. Subject 1 is consistently performing

approximately 5% worse across all metrics whereas Sub-

ject 3 is marginally outperforming the other subjects by 2%.

The fact that the Subject 3 gives the best reconstructions has

been verified in previous studies (Gaziv et al., 2020) and is

attributed to differences in the signal-to-noise ratio across

subjects. Finally, Fig. 6 allows us to study how training pro-

gresses and validate that no overfitting occurs. We observe

that, in all cases, the metrics saturate at about 800 epochs,

which gives us an empirical estimate of how many iterations

our model needs to achieve good performance.

5. Conclusion

We addressed the problem of neural decoding from fMRI

recordings and proposed a novel architecture inspired by

neuroscience. More specifically, motivated by the fact that

the human brain processes visual stimuli in a hierarchical

fashion, we postulated that this structure can be captured

by latent space of a hierarchical variational autoencoder

(HVAE). Our HVAE serves as a proxy to learning mean-

ingful latent representations of stimuli images and can be

pretrained on a large dataset of high-resolution images. Fol-

lowing that, we train our Neural Decoder to learn a map

from the fMRI voxel space to the HVAE latent space. Our

architecture replicates the visual information processing in

the human brain in the sense that earlier visual cortex areas

(e.g., primary-secondary visual cortex) are mapped to the

earlier latent layers, whereas voxels from the higher visual

cortex (e.g., PPA, FFA areas) are mapped to the later latent

layers. We validated our approach using fMRI recordings

from a visual presentation experiment involving 5 subjects

and compared against other methods. Our work paves the

way to constructing better models to replicate human per-

ception and understanding the nuances of human visual

reconstruction, both of which could utilized to better un-

derstand the brain, assist people with visual disabilities and

perhaps in decoding imagery during sleep.
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