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Abstract
In nonstationary bandit learning problems, the
decision-maker must continually gather informa-
tion and adapt their action selection as the latent
state of the environment evolves. In each time
period, some latent optimal action maximizes ex-
pected reward under the environment state. We
view the optimal action sequence as a stochas-
tic process, and take an information-theoretic ap-
proach to analyze attainable performance. We
bound per-period regret in terms of the entropy
rate of the optimal action process. The bound
applies to a wide array of problems studied in the
literature and reflects the problem’s information
structure through its information-ratio.

1. Introduction
We study the problem of learning in interactive decision-
making. Across a sequence of time periods, a decision-
maker selects actions, observes outcomes, and associates
these with rewards. They hope to earn high rewards, but this
may require investing in gathering information.

Most of the literature studies stationary environments —
where the likelihood of outcomes under an action is fixed
across time.1 Efficient algorithms limit costs required to
converge on optimal behavior. We study the design and
analysis of algorithms in nonstationary environments, where
converging on optimal behavior is impossible.

In our model, the latent state of the environment in each time
period is encoded in a parameter vector. These parameters
are unobservable, but evolve according to a known stochas-
tic process. The decision-maker hopes to earn high rewards
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1An alternative style of result lets the environment change, but
tries only to compete with the best fixed action in hindsight.

by adapting their action selection as the environment evolves.
This requires continual learning from interaction and strik-
ing a judicious balance between exploration and exploita-
tion. Uncertainty about the environment’s state cannot be
fully resolved before the state changes and this necessarily
manifests in suboptimal decisions. Strong performance is
impossible under adversarial forms of nonstationarity but
is possible in more benign environments. Why are A/B
testing, or recommender systems, widespread and effective
even though nonstationarity is a ubiquitous concern? Quan-
tifying the impact different forms of nonstationarity have on
decision-quality is, unfortunately, quite subtle.

Our contributions. We provide a novel information-
theoretic analysis that bounds the inherent degradation of
decision-quality in changing environments. Note that the
latent state evolution of the environment induces a latent
optimal action process — where the optimal action at any
time step is that one that maximizes expected reward con-
ditioned on the current environment parameter. We bound
per-period regret in terms of the entropy-rate of the optimal
action process. The entropy rate of a stochastic process
is a fundamental concept in the theory of communications.
We use the entropy rate to measure the extent to which the
evolving state of the environment manifests in surprising
and erratic evolution of the optimal action process. Sub-
section 1.1 gives an example of nonstationarity, inspired
by A/B testing, in which the entropy rate of the parameter
process is large but the entropy rate of the action process is
small. We believe this distinction is essential.

We enrich this result in two ways. First, we provide a match-
ing lower bound. This exhibits a sequence of problems
with varying entropy rate under which no algorithm could
meaningfully outperform our upper bounds. Second, we
provide stylized upper bounds on the entropy rate, expressed
in terms of the number of changes in the optimal action or
the ‘effective time horizon’, a new notion introduced in this
paper. Combined with our general result, they give rise to
regret bounds that are rather interpretable and consistent
with the previous results in the literature.

In addition to the problem’s entropy rate, our general bounds
depend on the algorithm’s information ratio. First intro-
duced by Russo & Van Roy (2016), the information ratio
measures the per-period price an algorithm pays to acquire
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new information. It has been shown to properly capture the
complexity of learning in a range of widely studied prob-
lems, and recent works link it to generic limits on when
efficient learning is possible (Lattimore, 2022; Foster et al.,
2022).

Because the information-ratio framework covers many of
the most important sequential learning problems, our frame-
work applies to nonstationary variants of many of the most
important sequential learning problems. A secondary contri-
bution of our work is extending information-ratio analysis
to cover contextual bandits, resolving an open question high-
lighted by Neu et al. (2022). See Section 4.5.

This work emphasizes understanding of the limits of attain-
able performance. Thankfully, most results apply to Thomp-
son sampling (TS), one of the most widely used learning
algorithms in practice. In some problems, TS is far from
optimal, and better bounds are attained with Information-
Directed Sampling (Russo & Van Roy, 2018).

1.1. An illustrative Bayesian model of nonstationarity

Consider a multi-armed bandit environment where two types
of nonstationarity coexist – a common variation that affects
the performance of all arms, and idiosyncratic variations
that affect the performance of individual arms separately.
More explicitly, let us assume that the mean reward of arm
a at time t is given by

µt,a = θcm
t + θid

t,a,

where (θcm
t )t∈N and (θid

t,a)t∈N’s are latent stochastic pro-
cesses describing common and idiosyncratic disturbances.
While deferring the detailed description to Appendix B, we
introduce two hyperparameters τ cm and τ id in our genera-
tive model to control the time scale of these two types of
variations.2

Inspired by real-world A/B tests (Wu et al., 2022), we imag-
ine a two-armed bandit instance involving a common varia-
tion that is much more erratic than idiosyncratic variations.
Common variations reflect exogenous shocks to user behav-
ior which impacts the reward under all treatment arms. Fig-
ure 1 visualizes such an example, a sample path generated
with the choice of τ cm = 10 and τ id = 50. Observe that
the optimal action A∗t has changed only five times through-
out 1,000 periods. Although that the environment itself is
highly nonstationary and unpredictable due to the common
variation term, the optimal action sequence (A∗t )t∈N is rel-
atively stable and predictable since it depends only on the
idiosyncratic variations.

2We assume that (θcm
t )t∈N is a zero-mean Gaussian process

satisfying Cov[θcm
s , θcm

t ] = exp
(
− 1

2

(
t−s
τcm

)2) so that τ cm de-
termines the volatility of the process. Similarly, the volatility of
(θid
t,a)t∈N is determined by τ id.
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Figure 1. A two-arm bandit environment with two types of non-
stationarity – a common variation (θcm

t )t∈N generated with a
time-scaling factor τ cm = 10, and idiosyncratic variations
(θid
t,a)t∈N,a∈A generated with a time-scaling factor τ id = 50.

While absolute performance of two arms are extremely volatile
(left), their idiosyncratic performances are relatively stable (right).

Now we ask — How difficult is this learning task? Which
type of nonstationarity determines the difficulty? A quick
numerical investigation shows that the problem’s difficulty
is mainly determined by the frequency of optimal action
switches, rather than volatility of common variation.
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Figure 2. Performance of algorithms in two-armed bandit envi-
ronments, with difference choices of time-scaling factors τ cm

(common variation) and τ id (idiosyncratic variations). Each data
point reports per-period regret averaged over 1,000 time periods
and 1,000 runs of simulation.

See Figure 2, where we report the effect of τ cm and τ id

on the performance of several bandit algorithms (namely,
Thompson sampling with exact posterior sampling,3 and
Sliding-Window TS that only uses recent L ∈ {10, 50, 100}
observations; see Appendix B for the details). Remarkably,
their performances appear to be sensitive only to τ id but not
to τ cm, highlighting that nonstationarity driven by common
variation is benign to the learner.

We remark that our information-theoretic analyses predict
this result. Theorem 4.8 shows that the complexity of a
nonstationary environment can be sufficiently characterized

3In order to perform exact posterior sampling, it exploits the
specified nonstationary structure as well as the values of τ cm and
τ id.
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by the entropy rate of the optimal action sequence, which
should depend only on τ id but not on τ cm in this example.
Theorem 4.4 further expresses the entropy rate in terms of
effective horizon, which corresponds to τ id in this example.

1.2. Comments on the use of prior knowledge

A substantive discussion of Bayesian, frequentist, and ad-
versarial perspectives on decision-making uncertainty is
beyond the scope of this short paper. We make two quick
observations. First, where does a prior like the one in Fig-
ure 1 come from? One answer is that company may run
many thousands of A/B tests, and an informed prior may
let them transfer experience across tests (Azevedo et al.,
2019). In particular, experience with past tests may let them
calibrate τ id, or form hierarchical prior where τ id is also
random. Second, Thompson sampling with a stationary
prior is perhaps the most widely used bandit algorithm. One
might view the model in Section 1.1 as a more conservative
way of applying TS that guards against a certain magnitude
of nonstationarity.

1.3. Literature review

Most existing theoretical studies on nonstationary bandit
experiments adopt adversarial or frequentist viewpoints in
the modeling of nonstationarity, typically falling into two
categories – “switching environments” and “drifting envi-
ronments”.

Switching environments consider a situation where underly-
ing reward distributions change at unknown times (often re-
ferred to as changepoints or breakpoints). Denoting the total
number of changes over T periods by N , it was shown that
the cumulative regret Õ(

√
NT ) is achievable: e.g., Exp3.S

(Auer et al., 2002; Auer, 2002), Discounted-UCB (Kocsis
& Szepesvári, 2006), Sliding-Window UCB (Garivier &
Moulines, 2008), and more complicated algorithms that ac-
tively detect the changepoints (Auer et al., 2019; Chen et al.,
2019). More recent studies improve upon this result by
showing that Õ(

√
ST ) is achievable where S only counts

the number of best arm switches (Abbasi-Yadkori et al.,
2022; Suk & Kpotufe, 2022). Our results reveal that Thomp-
son sampling also achieves the regret bound Õ(

√
ST ) (see

Theorem 4.8 with Theorem 4.3) in a wide range of problems
beyond k-armed bandits (see Section 4.4).

Another stream of work considers drifting environments.
Denoting the total variation in the underlying reward dis-
tribution by V (often referred to as variation budget, e.g.,
V :=

∑T
t=2 ‖θt − θt−1‖∞), it was shown that the cumula-

tive regret Õ(V 1/3T 2/3) is achievable (Besbes et al., 2014;
2015; Cheung et al., 2019). Building a tight connection
between these results and ours is an important direction for
future work. We comment on this in the conclusion.

We adopt Bayesian viewpoints to describe nonstationary
environments: changes in the underlying reward distribu-
tions (more generally, changes in outcome distributions) are
driven by a stochastic process. Such a viewpoint dates back
to the earliest work of Whittle (1988) which introduces the
term ‘restless bandits’ and has motivated subsequent work
(Slivkins & Upfal, 2008; Chakrabarti et al., 2008; Jung &
Tewari, 2019). On the other hand, since Thompson sam-
pling (TS) has gained its popularity as a Bayesian bandit
algorithm, its variants have been proposed for nonstationary
settings accordingly: e.g., Dynamic TS (Gupta et al., 2011),
Discounted TS (Raj & Kalyani, 2017), Sliding-Window TS
(Trovo et al., 2020), TS with Bayesian changepoint detec-
tion (Mellor & Shapiro, 2013; Ghatak, 2020), and Predictive
Sampling (Liu et al., 2023). Although the Bayesian frame-
work can flexibly model various types of nonstationarity,
this literature rarely presents performance guarantees that
apply to a broad class of models.

Our analysis adopts an information-theoretic approach in-
troduced by Russo & Van Roy (2016), which has been
motivating design and analysis of TS-like algorithms for
complicated online optimization problems (Russo & Van
Roy, 2018; Liu et al., 2018; Dong et al., 2019; Hao et al.,
2021; Lattimore & Gyorgy, 2021; Russo & Van Roy, 2022;
Neu et al., 2022; Liu et al., 2023). Our work can be seen
as a natural extension of Russo & Van Roy (2016) to non-
stationary bandit problems, systematically inheriting the
wealth of the previous results established for stationary ban-
dit problems (see Section 4.4). Notably, a recent work of
Liu et al. (2023) also adopts the information-theoretic ap-
proach for nonstationary settings. We leave a discussion in
the conclusion.

2. Problem Setup
A decision-maker interacts with a changing environment
across rounds t ∈ N := {1, 2, 3, . . .}. In period t, the
decision-maker selects some action At from a finite set A,
observes an outcome Ot, and associates this with reward
Rt = R(Ot, At) that depends on the outcome and action
through a known utility function R(·).

There is a function g, an i.i.d sequence of disturbances
W = (Wt)t∈N, and a sequence of latent environment states
θ = (θt)t∈N taking values in Θ, such that outcomes are
determined as

Ot = g(At, θt,Wt). (1)

Write potential outcomes as Ot,a = g(a, θt,Wt) and poten-
tial rewards as Rt,a = R(Ot,a, a). Equation (1) is equiv-
alent to specifying a known probability distribution over
outcomes for each choice of action and environment state.

The decision-maker wants to earn high rewards even as
the environment evolves, but cannot directly observe the
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environment state or influence its evolution. Specifi-
cally, the decision-maker’s actions are determined by some
choice of policy π = (π1, π2, . . .). At time t, an action
At = πt(Ft−1, W̃t) is a function of the observation history
Ft−1 = (A1, O1, . . . , At−1, Ot−1) and an internal random
seed W̃t that allows for randomness in action selection. Re-
flecting that the seed is exogenously determined, assume
W̃ = (W̃t)t∈N is jointly independent of the outcome dis-
turbance process W and state process θ = (θt)t∈N. That
actions do not influence the environment’s evolution can
be written formally through the conditional independence
relation (θs)s≥t+1 ⊥ Ft | (θ`)`≤t.

The decision-maker wants to select a policy π that accu-
mulates high rewards as this interaction continues. They
know all probability distributions and functions listed above,
but are uncertain about how environment states will evolve
across time. To perform ‘well’, they need to continually
gather information about the latent environment states and
carefully balance exploration and exploitation.

Rather than measure the reward a policy generates, it is
helpful to measure its regret. We define the T -period per-
period regret of a policy π to be

∆̄T (π) :=
Eπ
[∑T

t=1

(
Rt,A∗t −Rt,At

)]
T

,

where the latent optimal action A∗t is a function of the latent
state θt satisfying A∗t ∈ arg maxa∈A E[Rt,a | θt]. We
further define the regret rate of policy π as its limit value,

∆̄∞(π) := lim sup
T→∞

∆̄T (π).

It measures the (long-run) per-period degradation in perfor-
mance due to uncertainty about the environment state.
Remark 2.1. The use of a limit supremum and Cesàro aver-
ages is likely unnecessary under some technical restrictions.
For instance, under Thompson sampling applied to Exam-
ples 2.4–2.7, if the latent state process (θt)t∈N is ergodic, we
conjecture that ∆̄∞(π) = limt→∞ Eπ

[
Rt,A∗t −Rt,At

]
.

Our analysis proceeds under the following assumption,
which is standard in the literature.
Assumption 2.2. There exists σ such that, conditioned on
Ft−1, Rt,a is sub-Gaussian with variance proxy σ2.

2.1. ‘Stationary processes’ in ‘nonstationary bandits’

The way the term ‘nonstationarity’ is used in the bandit
learning literature could cause confusion as it conflicts with
the meaning of ‘stationarity’ in the theory of stochastic
process, which we use elsewhere in this paper.
Definition 2.3. A stochastic process X = (Xt)t∈N is
(strictly) stationary if for each integer t, the random vec-
tor (X1+m, . . . , Xt+m) has the same distribution for each
choice of m.

‘Nonstationarity’, as used in the bandit learning literature,
means that realizations of the latent state θt may differ at
different time steps. The decision-maker can gather infor-
mation about the current state of the environment, but it
may later change. Nonstationarity of the stochastic process
(θt)t∈N, in the language of probability theory, arises when
apriori there are predictable differences between environ-
ment states at different timesteps – e.g., if time period t is
nighttime then rewards tend to be lower than daytime. It
is often clearer to model predictable differences like that
through contexts, as in Example 2.7.

2.2. Examples

Many interactive decision-making problems can be natu-
rally written as special cases of our general protocol, where
actions generate outcomes that are associated with rewards.

Our first example describes a bandit problem with indepen-
dent arms, where outcomes generate information only about
the selected action.

Example 2.4 (k-armed bandit). Consider a website who
can display one among k ads at a time and gains one dollar
per click. For each ad a ∈ [k] := {1, . . . , k}, the potential
outcome/rewardOt,a = Rt,a ∼ Bernoulli(θt,a) is a random
variable representing whether the ad a is clicked by the tth

visitor if displayed, where θt,a ∈ [0, 1] represents its click-
through-rate. The platform only observes the reward of the
displayed ad, so Ot = Rt,At

.

Full information online optimization problems fall at the
other extreme. There the potential observationOt,a does not
depend on the chosen action a, so purposeful information
gathering is unnecessary. The next example was introduced
by Cover (1991) and motivates such scenarios.

Example 2.5 (Log-optimal online portfolios). Consider a
small trader who has no market impact. In period t they
have wealth Wt which they divide among k possible in-
vestments. The action At is chosen from a feasible set of
probability vectors, with At,i denoting the proportion of
wealth invested in stock i. The observation is Ot ∈ Rk+
where Ot,i is the end-of-day value of $1 invested in stock i
at the start of the day and the distribution of Ot is parame-
terized by θt. Because the observation consists of publicly
available data, and the trader has no market impact, Ot does
not depend on the investor’s decision. Define the reward
function Rt = log

(
O>t At

)
. Since wealth evolves accord-

ing to the equation Wt+1 =
(
O>t At

)
Wt,

T−1∑
t=1

Rt = log(WT /W1).

Many problems lie in between these extremes. We give two
examples. The first is a matching problem. Many pairs
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of individuals are matched together and, in addition to the
cumulative reward, the decision-maker observes feedback
on the quality of outcome from each individual match. This
kind of observation structure is sometimes called “semi-
bandit” feedback (Audibert et al., 2014).

Example 2.6 (Matching). Consider an online dating plat-
form with two disjoint sets of individualsM andW . On
each day t, the platform suggests a matching of size k,
At ⊂ {(m,w) : m ∈ M, w ∈ W} with |At| ≤ k. For
each pair (m,w), their match quality is given by θt,(m,w).
The platform observes the quality of individual matches,
Ot =

(
θt,(m,w) : (m,w) ∈ At

)
, and earns their average,

Rt = 1
k

∑
(m,w)∈At

θt,(m,w).

Our final example is a contextual bandit problem. Here an
action is itself more like a policy — it is a rule for assigning
treatments on the basis of an observed context. Observations
are richer than in the k-armed bandit. The decision-maker
sees not only the reward a policy generated but also the
context in which it was applied.

Example 2.7 (Contextual bandit). Suppose that the website
described in Example 2.4 can now access additional infor-
mation about each visitor, denoted by Xt ∈ X . The website
observes the contextual information Xt, chooses an ad to
display, and then observes whether the user clicks. To repre-
sent this task using our general protocol, we let the decision
space A be the set of mappings from the context space X to
the set of ads {1, . . . , k}, the decision At ∈ A be a person-
alized advertising rule, and the observation Ot = (Xt, Rt)
contains the observed visitor information and the reward
from applying the adAt(Xt). Rewards are drawn according
to Rt | Xt, At, θt ∼ Bernoulli(φθt(Xt, At(Xt))), where
φθ : X × [k] → [0, 1] is a parametric click-through-rate
model. Assume Xt+1 ⊥ (At, θ) | Xt,Ft−1. This assump-
tion means that advertising decisions cannot influence the
future contexts and that parameters of the click-through
rate model θ = (θt)t∈N cannot be inferred passively by
observing contexts.

3. Information Theoretic Preliminaries
The entropy of a discrete random variable X , defined by
H(X) = −

∑
x P(X = x) log(P(X = x)), measures the

uncertainty in its realization. The entropy rate of a stochastic
process (X1, X2, . . .) is the rate at which entropy of the
partial realization (X1, . . . , Xt) accumulates as t grows.

Definition 3.1. The T -period entropy rate of a stochastic
process X = (Xt)t∈N, taking values in a discrete set, is

H̄T (X) :=
H ([X1, . . . XT ])

T

=
1

T

T∑
t=1

H(Xt|Xt−1, . . . , X1).

The entropy rate is defined as its limit value:

H̄∞(X) := lim sup
T→∞

H̄T (X).

If X is a stationary stochastic process, then

H̄∞(X) = lim
t→∞

H(Xt|Xt−1, . . . , X1). (2)

The form (2) is especially elegant. The entropy rate of
a stationary stochastic process is the residual uncertainty
in the draw of Xt which cannot be removed by knowing
the draw of Xt−1, . . . , X1. Processes that evolve quickly
and erratically have high entropy rate. Those that tend to
change infrequently (i.e., Xt = Xt−1 for most t) or change
predictably will have low entropy rate.

4. Information-Theoretic Analysis of Dynamic
Regret

We apply the information theoretic analysis of Russo & Van
Roy (2016) and establish upper bounds on the per-period
regret, expressed in terms of (1) the algorithm’s information
ratio, and (2) the entropy rate of the optimal action process.

4.1. Preview: special cases of our result

We begin by giving a special case of our result. It bounds
the regret of Thompson sampling in terms of the reward vari-
ance proxy σ2, the number of actions |A|, and the entropy
rate of the optimal action process H̄T (A∗1:T ). Thompson
sampling is denoted by πTS and is defined by the probability
matching property:

P(At = a | Ft−1) = P(A∗t = a | Ft−1), (3)

which holds for all t ∈ N, a ∈ A. Actions are chosen
by sampling from the posterior distribution of the optimal
action.

Corollary 4.1. Under any problem in the scope of our
problem formulation,

∆̄T (πTS) ≤ σ
√

2 · |A| · H̄T (A∗),

and ∆̄∞(πTS) ≤ σ
√

2 · |A| · H̄∞(A∗).

This result naturally covers a wide range of bandit learn-
ing tasks while highlighting that the entropy rate of opti-
mal action process captures the level of degradation due
to nonstationarity. Note that it includes as a special case
the well-known regret upper bound established for a sta-
tionary k-armed bandit: when A∗1 = . . . = A∗T , we have
H([A∗1, . . . , A

∗
T ]) = H(A∗1) ≤ log k, and thus ∆̄T (πTS) ≤

Õ(σ
√
k/T ).
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According to (2), the entropy rate is small when the con-
ditional entropy H(A∗t | A∗1, . . . , A∗t−1) is small. That is,
the entropy rate is small if most uncertainty in the optimal
actionA∗t is removed through knowledge of the past optimal
actions. Of course, Thompson sampling does not observe
the environment states or the corresponding optimal actions,
so its dependence on this quantity is somewhat remarkable.

The dependence of regret on the number of actions, |A|,
is unavoidable in a problem like the k-armed bandit of
Example 2.4. But in other cases, it is undesirable. Our
general results depend on the problem’s information struc-
ture in a more refined manner. To preview this, we give
another corollary of our main result, which holds for prob-
lems with full-information feedback (see Example 2.5 for
motivation). In this case, the dependence on the num-
ber of actions completely disappears and the bound de-
pends on the variance proxy and the entropy rate. The
bound applies to TS and the policy πGreedy, which chooses
At ∈ arg maxa∈A E[Rt,a | Ft−1] in each period t.

Corollary 4.2. For full information problems, whereOt,a =
Ot,a′ for each a, a′ ∈ A, we have

∆̄T (πGreedy) ≤ ∆̄T (πTS) ≤ σ
√

2 · H̄T (A∗),

and ∆̄∞(πGreedy) ≤ ∆̄∞(πTS) ≤ σ
√

2 · H̄∞(A∗).

4.2. Bounds on the entropy rate

Our results highlight that the difficulty arising due to the
nonstationarity of the environment is sufficiently charac-
terized by the entropy rate of the optimal action process,
denoted by H̄T (A∗) or H̄∞(A∗). We provide some stylized
upper bounds on these quantities to aid in their interpre-
tation and to characterize the resulting regret bounds in a
comparison with the existing results in the literature.

Bound with the number of switches. The next theo-
rem states that the T -period entropy rate H̄T (A∗) can be
bounded by Õ(ST /T ) if the optimal action switches at most
ST times up to time T almost surely.

Theorem 4.3. Suppose there exists ST ∈ N that almost
surely bounds the number of switches in the optimal action
sequence occurring up to time T :

T∑
t=1

I{A∗t 6= A∗t−1} ≤ ST almost surely,

where we assume that I{A∗1 6= A∗0} = 1. Then,

H̄T (A∗) ≤ ST
T
·
(

1 + log

(
1 +

T

ST

)
+ log |A|

)
.

Combining this result with Corollary 4.1 gives the bound

∆̄T (πTS) ≤ Õ

(
σ

√
|A| · ST

T

)
,

which precisely recovers the recent results4 established
for switching bandits in the frequentist’s setting (Suk &
Kpotufe, 2022; Abbasi-Yadkori et al., 2022). Although
other features of the environment may change erratically,
a low regret is achievable if the optimal action switches
infrequently.

Bound with the effective time horizon. We further refine
the above result for the cases where the optimal action pro-
cess (A∗t )t∈N is stationary. With τeff := 1/P(A∗t 6= A∗t−1),
the optimal action switches only once every τeff time periods
in average.

We interpret τeff as the problem’s “effective time horizon”,
which captures the average length of time before the identity
of the optimal action changes. The effective time horizon τeff
is long when the optimal action changes infrequently, so that,
intuitively, a decision-maker could continue to exploit the
optimal action for a long time if it were identified, achieving
a low regret. The next theorem shows that the entropy rate
H̄T (A∗) is bounded by the inverse of τeff, regardless of T :

Theorem 4.4. When the process (A∗t )t∈N is stationary,

H̄T (A∗) ≤ H(A∗1)

T
+

1 + log(τeff) +H(A∗t |A∗t 6= A∗t−1)

τeff
,

(4)
for every T ∈ N, where

τeff :=
1

P(A∗t 6= A∗t−1)
. (5)

Combining this result with Corollary 4.1, and the fact that
H(A∗1)
T → 0 as T →∞, we obtain

∆̄∞(πTS) ≤ Õ

σ√ |A|
τeff

 ,

which closely mirrors familiar O(
√
k/T ) regret bounds on

the average per-period regret in bandit problems with k
arms, T periods, and i.i.d rewards (Bubeck & Cesa-Bianchi,
2012), except that the effective time horizon replaces the
problem’s raw time horizon.

Theorem 4.4 can be seen as a refined version of Theorem 4.3,
specialized to the problems with stationary switching pro-
cesses. Below we give an example where the upper bound

4In the earlier literature, the per-period regret bounds appear
to have a form of Õ(

√
|A| ·NT /T ) where NT represents the

number of any distributional changes in the environment. Typically,
ST � NT .
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in Theorem 4.4 is nearly exact while Theorem 4.3 yields a
vacuous result.
Example 4.5 (Piecewise stationary environment). Suppose
(A∗t )t∈N follows a switching process. With probability 1−δ
there is no change in the optimal action, whereas with prob-
ability δ there is a change-event and At is drawn uniformly
from among the other k − 1 ≡ |A| − 1 arms. Precisely,
(A∗t )t∈N follows a Markov process with transition dynamics:

P(A∗t+1 = a | A∗t = a′) =

{
1− δ if a = a′

δ/(k − 1) if a 6= a′

for a, a′ ∈ A. Then

H̄∞(A∗) = (1− δ) log

(
1

1− δ

)
+ δ log

(
k − 1

δ

)
= (1− δ) log

(
1 +

δ

1− δ

)
+ δ log

(
k − 1

δ

)
≈ δ + δ log((k − 1)/δ),

where we used the approximation log(1+x) ≈ x. Plugging
in τeff = 1/δ andH(A∗t | A∗t 6= A∗t−1) = log(k−1) yields,

H̄∞(A∗) ≈
1 + log(τeff) +H(A∗t | A∗t 6= A∗t−1)

τeff
,

which matches the upper bound (4).

In terms of the maximal number of switches, we have ST =
T since the optimal action can switch in every single period,
although it is very unlikely. Invoking Theorem 4.3 with
ST = T yields H̄T (A∗1:T ) . log k which is significantly
looser than the bound (4).

Bound with the entropy rate of latent state process. Al-
though it can be illuminating to consider the number of
switches or the effective horizon, the entropy rate is a deeper
quantity that better captures a problem’s intrinsic difficulty.
A simple but useful fact is that the entropy rate of the opti-
mal action process cannot exceed that of the environment’s
state process:
Remark 4.6. Since the optimal action At is completely de-
termined by the latent state θt, by data processing inequality,

H̄T (A∗) ≤ HT (θ), H̄∞(A∗) ≤ H̄∞(θ).

These bounds can be useful when the environment’s non-
stationarity has some temporal structure. The next example
illustrates such a situation, in which the entropy rate of the
latent state process can be directly quantified.
Example 4.7 (System with seasonality). Consider a system
that exhibits a strong intraday seasonality. Specifically, sup-
pose that the system’s hourly state (e.g., arrival rate) at time
t can be modeled as

θt = ξday(t) · µtime-of-the-day(t) + εt,

where (ξd)d∈N is a sequence of i.i.d random variables de-
scribing the daily random fluctuation, (µh)h∈{0,...,23} is a
known deterministic sequence describing the intraday pat-
tern, and (εt)t∈N is a sequence of i.i.d random variables
describing the hourly random fluctuation. Then we have

H̄∞(A∗) ≤ H̄∞(θ) =
1

24
H(ξ) +H(ε),

regardless of the state-action relationship. Imagine that the
variation within the intraday pattern µ is large so that the
optimal action changes almost every hour (i.e., ST ≈ T
and τeff ≈ 1). In this case, the bound like above can be
easier to compute and more meaningful than the bounds in
Theorems 4.3 and 4.4.

4.3. Main result

The corollaries presented earlier are special cases of a gen-
eral result that we present now. Define the (maximal) infor-
mation ratio of an algorithm π by,

Γ(π) := sup
t∈N

(
E
[
Rt,A∗t −Rt,At

])2
I (A∗t ; (At, Ot,At

) | Ft−1)︸ ︷︷ ︸
=:Γt(π)

,

The per-period information ratio Γt(π) was defined by
Russo & Van Roy (2016) and presented in this form by
Russo & Van Roy (2022). It is the ratio between the square
of expected regret and the conditional mutual information
between the optimal action and the algorithm’s observation.
It measures the cost, in terms of the square of expected
regret, that the algorithm pays to acquire each bit of infor-
mation about the optimum.

The next theorem shows that any algorithm’s per-period
regret is bounded by the square root of the product of its
information ratio and the entropy rate of the optimal action
sequence. The result has profound consequences, but fol-
lows easily by applying elegant properties of information
measures.

Theorem 4.8. Under any algorithm π,

∆̄T (π) ≤
√

Γ(π) · H̄T (A∗),

and ∆̄∞(π) ≤
√

Γ(π) · H̄∞(A∗).

Proof. Use the shorthand notation ∆t := E[Rt,A∗t −Rt,At ]
for regret, Gt := I(A∗t ; (At, Ot,At

)|Ft−1) for information
gain, and Γt = ∆2

t/Gt for the information ratio at period t.
Then,

T∑
t=1

∆t =

T∑
t=1

√
Γt
√
Gt ≤

√√√√ T∑
t=1

Γt

√√√√ T∑
t=1

Gt,

7
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by Cauchy-Schwarz, and√√√√ T∑
t=1

Γt

√√√√ T∑
t=1

Gt ≤

√√√√Γ(π) · T ·
T∑
t=1

Gt.

by definition of Γ(π). We can further bound the information
gain. This uses the chain rule, the data processing inequality,
and the fact that entropy bounds mutual information:

T∑
t=1

Gt =

T∑
t=1

I(A∗t ; (At, Ot,At)|Ft−1)

≤
T∑
t=1

I([A∗1, . . . , A
∗
T ]; (At, Ot,At

)|Ft−1)

= I([A∗1, . . . , A
∗
T ];FT )

≤ H([A∗1, . . . , A
∗
T ]).

Combining these results, we obtain

∆̄T (π) ≤
√

Γ(π) · T ·H([A∗1, . . . ,H
∗
T ])

T

=
√

Γ(π) · H̄T (A∗).

Taking limit yields the bound on regret rate ∆̄∞(π).

Remark 4.9. A careful reading of the proof reveals that it is
possible to replace the entropy rate H̄T (A∗) with the mutual
information rate T−1I([A∗1, . . . , A

∗
T ];FT ).

Remark 4.10. Following Lattimore & Gyorgy (2021), one
can generalize the definition of information ratio,

Γλ(π) := sup
t∈N

(
E
[
Rt,A∗t −Rt,At

])λ
I (A∗t ; (At, Ot,At

) | Ft−1)
,

which immediately yields an inequality, ∆̄T (π) ≤(
Γλ(π)H̄T (A∗)

)1/λ
for any λ ≥ 1.

4.4. Some known bounds on the information ratio

We list some known results about the information ratio.
These were originally established for stationary bandit prob-
lems but immediately extend to nonstationary settings con-
sidered in this paper. Most results apply to Thompson
sampling, and essentially all bounds apply to Information-
directed sampling, which is designed to minimize the infor-
mation ratio (Russo & Van Roy, 2018). The first four results
were shown by Russo & Van Roy (2016) under Assump-
tion 2.2.

Classical bandits. Γ(πTS) ≤ 2σ2|A|, for bandit tasks
with finite action set (e.g., Example 2.4).

Full information. Γ(πTS) ≤ 2σ2, for problems with full-
information feedback (e.g., Example 2.5).

Linear bandits. Γ(πTS) ≤ 2σ2d, for linear bandits of di-
mension d (i.e., A ⊆ Rd, Θ ⊆ Rd, and R[Rt,a|θt] =
a>θt).

Combinatorial bandits. Γ(πTS) ≤ 2σ2 d
k2 , for combina-

torial optimization tasks of selecting k items out of d
items with semi-bandit feedback (e.g., Example 2.6).

Contextual bandits. See the below for a new result.

Logistic bandits. Dong et al. (2019) consider problems
where mean-rewards follow a generalized linear model
with logistic link function, and bound the information
ratio by the dimension of the parameter vector and a
new notion they call the ‘fragility dimension.’

Graph based feedback. With graph based feedback, the
decision-maker observes not only the reward of se-
lected arm but also the reward of its neighbors in feed-
back graph. One can bound the information ratio by
the feedback graph’s clique cover number (Liu et al.,
2018) or its independence number (Hao et al., 2022).

Sparse linear models. Hao et al. (2021) consider sparse
linear bandits and show conditions under which the
information ratio of Information-Directed Sampling
in Remark 4.10 is bounded by the number of nonzero
elements in the parameter vector.

Convex cost functions. Bubeck & Eldan (2016) and Lat-
timore (2020) study bandit learning problems where
the reward function is known to be concave and bound
the information ratio by a polynomial function of the
dimension of the action space.

4.5. A new bound on the information ratio of contextual
bandits

Contextual bandit problems are a special case of our formu-
lation that satisfy the following abstract assumption. Re-
read Example 2.7 to get intuition.

Assumption 4.11. There is a set X and integer k such that
A is the set of functions mapping X to [k]. The observation
at time t is the tuple Ot = (Xt, Rt) ∈ X × R. Define
it := At(Xt) ∈ [k]. Assume that for each t, Xt+1 ⊥
(At, Rt) | Xt,Ft−1. and Rt ⊥ At | (Xt, it, θt).

Under this assumption, we provide an information ratio
bound that depends on the number of arms k. It is a massive
improvement over Corollary 4.1, which depends on the
number of decision-rules.

Lemma 4.12. Under Assumption 4.11, Γ(πTS) ≤ 2 · σ2 · k.

Theorem 4.8 therefore bounds regret in terms of the en-
tropy rate of the optimal decision rule process (A∗t )t∈N, the
number of arms k, and the reward variance proxy σ2.
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Neu et al. (2022) recently highlighted that information-ratio
analysis seems not to deal adequately with context, and
proposed a substantial modification which considers infor-
mation gain about model parameters rather than optimal
decision-rules. Lemma 4.12 appears to resolve this open
question without changing the information ratio itself. Our
bounds scale with the entropy of the optimal decision-rule,
instead of the entropy of the true model parameter, as in
Neu et al. (2022). By the data processing inequality, the
former is always smaller. Our proof bounds the per-period
information ratio, so it can be used to provide finite time
regret bounds for stationary contextual bandit problems.
Hao et al. (2022) provide an interesting study of variants of
Information-directed sampling in contextual bandits with
complex information structure. It is not immediately clear
how that work relates to Lemma 4.12 and the information
ratio of Thompson sampling.

The next corollary combines the information ratio bound
above with the earlier bound of Theorem 4.4. The bound
depends on the number of arms, the dimension of the pa-
rameter space, and the effective time horizon. No further
structural assumptions (e.g., linearity) are needed. An unfor-
tunate feature of the result is that it applies only to parameter
vectors that are quantized at scale ε. The logarithmic depen-
dence on ε is omitted in the Õ(·) notation, but displayed in
the proof. When outcome distributions are smooth in θt, we
believe this could be removed with careful analysis.

Corollary 4.13. Under Assumption 4.11, if θt ∈ {−1,−1 +
ε, . . . , 1− ε, 1}p is a discretized p-dimensional vector, and
the optimal policy process (A∗t )t∈N is stationary, then

∆̄∞(πTS) ≤ Õ

(
σ

√
p · k
τeff

)
.

5. Lower Bound
We provide an impossibility result through the next theorem,
showing that no algorithm can perform significantly better
than the upper bounds provided in the previous section.
Our proof is built by modifying well known lower bound
examples for stationary bandits.

Theorem 5.1. Let k > 1 and τ ≥ k. There exists a nonsta-
tionary bandit problem instance |A| = k and τeff = τ , such
that

inf
π

∆̄∞(π) ≥ C · σ

√
|A|
τeff

,

where C is a universal constant.

Remark 5.2. For the problem instance constructed in
the proof, the entropy rate of optimal action process is
H̄(A∗) ≈ log(|A|)/τeff . This implies that the upper bound
established in Corollary 4.1 is tight up to logarithmic factors,
and so is the one established in Theorem 4.8.

6. Conclusion and Open Questions
We have provided a new information-theoretic analysis of
interactive learning in changing environments. The results
offer an intriguing measure of the difficulty of learning: the
entropy rate of the optimal action process. A strength of
the approach is that it applies to nonstationary variants of
many of the most important learning problems. Instead of
designing algorithms to make the proofs work, most results
apply to Thompson sampling (TS), one of the most widely
used bandit algorithms.

TS can explore too aggressively in nonstationary learning
problems with short effective horizon. Namely, we conjec-
ture that TS fails to achieve the regret bound Õ(V 1/3T 2/3)
in the worst-case “drifting environments” (Besbes et al.,
2014), and accordingly, our regret bounds could be too loose
to characterize the best achievable performance. To resolve
this, one should consider variants of TS that satisfice. We
believe that one can still attain near-optimal performance by
tracking an (‘satisficing’) action sequence which changes
less frequently, and a synthesis of our analysis with the
information-ratio analysis of satisficing in Russo & Van
Roy (2022) could tighten our bounds.

Predictive Sampling (PS), recently proposed by Liu et al.
(2023), would be a notable example aligned with this di-
rection: PS improves upon TS by “deprioritizing acquiring
information that quickly loses usefulness”. The authors use
an information-ratio analysis to bound an algorithm’s ‘fore-
sight regret’ in terms of ‘predictive information.’ Although
it is nontrivial to precisely compare their bounds with ours
or others in the literature, one can see that (1) their notion of
regret is always no larger than the conventional regret we an-
alyze, so our results can bound their foresight regret but not
vice versa, and (2) when specialized to stationary k-armed
bandits, our bound has a tighter dependency on the number
of arms.5 We believe that our results are complementary
and it is an interesting research direction to synthesize their
innovations with our analysis.
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5When specialized to stationary k-armed bandits, their result
roughly depends on the entropy of the model parameter (p.14)
whereas ours depends on the entropy of the optimal action. The
former scales as O(k) whereas the later scales as O(log(k)).

More generally, they comment that cumulative predictive infor-
mation represents “the total new uncertainty that has been injected
into the environment thus far” (p.12), which roughly corresponds
to the cumulative entropy of environment’s state process. The ex-
ample in Section 1.1 suggests that information or entropy regarding
the optimal action process may be more suitable.
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A. Proofs
Proof of Theorem 4.3. We count the number of possible optimal action sequence configurations, when there can be at
most ST switches up to time T :∣∣∣∣∣
{

(a∗1, . . . , a
∗
T ) ∈ AT

∣∣∣∣∣
T∑
t=1

I{a∗t 6= a∗t−1} ≤ ST

}∣∣∣∣∣ ≤
(

(T − 1) + (ST − 1)

ST − 1

)
× |A|ST ≤

(
T + ST − 1

ST

)
× |A|ST ,

where the first inequality is obtained by bounding the possible number of switching time configurations6, and the second
inequality uses the fact that

(
n
k

)
≤
(
n+1
k+1

)
. Note that for any k ≤ n ∈ N,(

n

k

)
=
n× (n− 1)× . . .× (n− k + 1)

k!
≤ nk

k!
≤ nk√

2πk(k/e)k
≤ nk

(k/e)k
=
(en
k

)k
,

where the second inequality uses Stirling. Therefore,

H(A∗1:T ) ≤ log

((
e(T + ST − 1)

ST

)ST

× |A|ST

)
= ST ×

(
1 + log

(
1 +

T − 1

ST

)
+ log |A|

)
.

By observing log
(

1 + T−1
ST

)
≤ log

(
1 + T

ST

)
, we obtain the desired result.

Proof of Theorem 4.4. Let Zt := I{A∗t 6= A∗t−1}, an indicator of a “switch”. Then, τ−1
eff = P(Zt = 1) and

H̄T (A∗) =
1

T

[
H(A∗1) +H(A∗2|A∗1) + . . .+H(A∗T |A1:(T−1)∗)

]
.

For t ≥ 1, we bound each term in this sum as

H(A∗t |A∗1:t−1) = H(A∗t |A∗1:t−1) +H(Zt|A∗1:t−1, A
∗
t )︸ ︷︷ ︸

=0

= H((Zt, A
∗
t )|A∗1:t−1)

= H(Zt|A∗1:t−1) +H(A∗t |Zt, A∗1:t−1)

≤ H(Zt) +H(A∗t |Zt, A∗1:t−1)

= H(Zt) + P(Zt = 1)H(A∗t |Zt = 1, A∗1:t−1)

+ P(Zt = 0)H(A∗t |Zt = 0, A∗1:t−1)︸ ︷︷ ︸
=0

≤ H(Zt) + P(Zt = 1)H(A∗t |Zt = 1).

With δ := τ−1
eff ,

H(Zt) + P[Zt = 1]H(A∗t |Zt = 1)

= δ log(1/δ) + (1− δ) log(1/(1− δ)) + δH(A∗t |Zt = 1)

= δ log(1/δ) + (1− δ) log(1 + δ/(1− δ)) + δH(A∗t |Zt = 1)

≤ δ log(1/δ) + δ + δH(A∗t |Zt = 1)

=
1

τeff
[log(τeff) + 1 +H(A∗t |Zt = 1)] .

6One can imagine a two-dimensional grid of size T × ST , represented with coordinates ((t, s))t∈{1,...,T},s∈{1,...,ST }
. A feasible

switching time configuration corresponds to a path from (1, 1) to (T, ST ) that consists of T − 1 rightward moves and ST − 1 upward
moves (whenever a path makes an upward move, from (t, s) to (t, s+ 1), we can mark that a switch occurs at time t). The number of
such paths is given by

(
(T−1)+(ST−1)

ST−1

)
.

12
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Proof of Remark 4.10. Let ∆t := E[Rt,A∗t − Rt,At
], Gt := I(A∗t ; (At, Ot,At

)|Ft−1), and Γλ,t := ∆λ
t /Gt. Then,

Γλ(π) = supt∈N Γλ,t, and we have

∆̄T (π) = T−1
T∑
t=1

∆t

= T−1
T∑
t=1

Γ
1/λ
λ,t G

1/λ
t

≤ Γλ(π)1/λ ·

(
T−1

T∑
t=1

G
1/λ
t

)
(a)

≤ Γλ(π)1/λ ·

T−1

(
T∑
t=1

Gt

)1/λ

·

(
T∑
t=1

1

)1−1/λ


= Γλ(π)1/λ ·

(
T−1

T∑
t=1

Gt

)1/λ

(b)

≤ Γλ(π)1/λ · H̄T (A∗)1/λ,

where step (a) uses Hölder’s inequality, and step (b) uses T−1
∑T
t=1Gt ≤ H̄T (A∗).

Proof of Lemma 4.12. Recall the definition, Γ(π) := supt∈N Γt(π) where

Γt(π) =

(
E
[
Rt,A∗t −Rt,At

])2
I (A∗t ; (At, Ot,At

) | Ft−1)
.

Our goal is to bound the numerator of Γt(π
TS) in terms of the denominator.

Let Et [·] := E [ · | Xt,Ft−1] denote the conditional expectation operator which conditions on observations prior to time t
AND the context at time t. Similarly, define the probability operation Pt (·) = P (· | Xt,Ft−1) accordingly. Define It(·; ·)
to be the function that evaluates mutual information when the base measure is Pt.

The law of iterated expectations states that for any real valued random variable Z, E[Et[Z]] = E[Z]. The definition of
conditional mutual information states that for any random variables Z1, Z2,

E [It(Z1;Z2)] = I(Z1;Z2 | Xt,Ft−1). (6)

Under Assumption 4.11, there exists a function µ : Θ× [k]×X → R such that

µ(θ′, i, x) = E [Rt,At
| θt = θ′, it = i, At] . (7)

This specifies expected rewards as a function of the parameter and chosen arm, regardless of the specific decision-rule used.

The definition of Thompson sampling is the probability matching property on decision-rules, P (A∗t = a | Ft−1) =
P (A∗t = a | Ft−1), for each A ∈ A. It implies the following probability matching property on arms: with i∗t := A∗t (Xt) ∈
[k].

Pt (i∗t = i) = P (A∗t (Xt) = i | Ft−1, Xt) = P (At(Xt) = i | Ft−1, Xt) = Pt (it = i) ,

which holds for each i ∈ [k].

With this setup, repeating the analysis in Proposition 3, or Corollary 1, of Russo & Van Roy (2016) implies, immediately,
that

(Et [µ(θt, Xt, i
∗
t )− µ(θt, Xt, it)])

2 ≤ 2 · σ2 · k · It (i∗t ; (it, Rt)) . (8)

13
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(Conditioned on context, one can repeat the same proof to relate regret to information gain about the optimal arm.) Now, we
complete the proof:(

E
[
Rt,A∗t −Rt,At

])2 (a)
= (E [µ(θt, Xt, i

∗
t )− µ(θt, Xt, it)])

2

(b)

≤ E
[
(Et [µ(θt, Xt, i

∗
t )− µ(θt, Xt, it)])

2
]

(c)

≤ 2 · σ2 · k · E [It (i∗t ; (it, Rt))]

(d)
= 2 · σ2 · k · I (i∗t ; (it, Rt) | Xt,Ft−1)

(e)

≤ 2 · σ2 · k · I (A∗t ; (it, Rt) | Xt,Ft−1)

(f)

≤ 2 · σ2 · k · I (A∗t ; (At, Rt) | Xt,Ft−1)

(g)
= 2 · σ2 · k · [I (A∗t ; (At, Xt, Rt) | Ft−1)− I (A∗t ;Xt | Ft−1)]

(h)

≤ 2 · σ2 · k · I (A∗t ; (At, Xt, Rt) | Ft−1)

(i)
= 2 · σ2 · k · I (A∗t ; (At, Ot) | Ft−1) ,

where step (a) uses (7), step (b) is Jensen’s inequality, step (c) applies (8), step (d) is (6), steps (e) and (f) apply the
data processing inequality, step (g) uses the chain-rule of mutual information, step (h) uses that mutual information is
non-negative, and step (i) simply recalls that Ot = (Xt, Rt).

Proof of Corollary 4.13. If θt ∈ {−1,−1 + ε, . . . , 1− ε, 1}p is a discretized p dimensional vector, and the optimal policy
process (A∗t )t∈N is stationary, then, by Theorem 4.4,

H̄T (A∗) ≤
1 + log(τeff) +H(A∗t |A∗t 6= A∗t−1)

τeff

≤ 1 + log(τeff) +H(θt)

τeff

≤ 1 + log(τeff) + p log(2/ε)

τeff
.

Combining this with Theorem 4.8 and the information ratio bound in Lemma 4.12 gives

∆̄T (πTS) ≤ Õ

(
σ

√
p · d
τeff

)
.

Proof of Theorem 5.1. We start with a proof sketch. Our proof is built upon a well-known result established for stationary
bandits: there exists a stationary (Bayesian) bandit instance such that any algorithm’s (Bayesian) cumulative regret is lower
bounded by Ω(

√
nk) where n is the length of time horizon.

More specifically, we set n = Θ(τeff) ∈ N and construct a nonstationary environment by concatenating independent
stationary Gaussian bandit instance blocks of length n, i.e., the mean rewards changes periodically every n time steps.
In each block (of length n), the best arm has mean reward ε > 0 and the other arms has zero mean reward, where the
best arm is drawn from k arms uniformly and independently per block. When ε = Θ(

√
k/n), no algorithm can identify

this best arm within n samples, and hence the cumulative regret should increase by Ω(nε) per block. Consequently, the
per-period regret ∆̄∞(π) should be Ω(ε) = Ω(

√
k/n) = Ω(

√
k/τeff). In our detailed proof, we additionally employ

some randomization trick in determination of changepoints in order to ensure that the optimal action sequence (A∗t )t∈N is
stationary and P(A∗t 6= A∗t−1) = τ−1

eff exactly. Now, we give the formal proof.

Proof. We will consider Gaussian bandit instances throughout the proof. Without loss of generality, we assume σ = 1 and
the noise variances are always one.

14
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We begin by stating a well-known result for the stationary bandits, adopted from Lattimore & Szepesvári (2020, Exercise
15.2): With ε = (1− 1/k)

√
k/n, for each i ∈ {1, . . . , k}, let mean reward vector µ(i) ∈ Rk satisfy µ(i)

a = εI{i = a}. It is
shown that, when k > 1 and n ≥ k, under any algorithm π

1

k

k∑
i=1

Eπµ(i)

[
n∑
t=1

(Rt,i −Rt,At
)

]
≥ 1

8

√
nk, (9)

where Eπ
µ(i) [

∑n
t=1(Rt,i −Rt,At)] is the (frequentist’s) cumulative regret of π in a k-armed Gaussian bandit instance

specified by the time horizon length n and mean reward vector µ(i) (i.e., the reward distribution of arm a is N (µ
(i)
a , 12)).

Considering a uniform distribution over {µ(1), · · · , µ(k)} as a prior, we can construct a Bayesian K-armed bandit instance
of length n such that E[

∑n
t=1(Rt,A∗ −Rt,At

)] ≥
√
nk/8 under any algorithm.

Given τeff ≥ 2, set τ̃ = k−1
k τeff , n = bτ̃c, and p = τ̃ − bτ̃c. Let N be the random variable such that equals n with

probability p and equals n + 1 with probability 1 − p, so that E[N ] = τ̃ . We construct a stationary renewal process
(T1, T2, . . .) whose inter-renewal time distribution is given by the distribution of N . That is, Tj+1 − Tj

d
= N for all j ∈ N,

and T1 is drawn from the equilibrium distribution of its excess life time, i.e.,

P(T1 = x) =

 1/τ̃ if x ≤ n,
p/τ̃ if x = n+ 1,
0 if x > n+ 1,

∀x ∈ N.

Since the process (T1, T2, . . .) is a stationary renewal process,

P (renewal occurs at t) = P (∃j, Tj = t) =
1

E[N ]
=

1

τ̃
, ∀t ∈ N.

We now consider a nonstationary Gaussian bandit instance where the mean reward vector is (re-)drawn from {µ(1), · · · , µ(k)}
uniformly and independently at times T1, T2, . . .. As desired, the effective horizon of this bandit instance matches the target
τeff :

P
(
A∗t 6= A∗t−1

)
= P (∃j, Tj = t)× P

(
A∗t 6= A∗t−1|∃j, Tj = t

)
=

1

τ̃
×
(

1− 1

k

)
=

1

τeff
.

Since Tj+1 − Tj ≥ n,

E

Tj+1−1∑
t=Tj

(Rt,A∗t −Rt,At
)

 ≥ E

Tj+n−1∑
t=Tj

(Rt,A∗t −Rt,At
)

 =
1

k

k∑
i=1

E

Tj+n−1∑
t=Tj

(Rt,A∗t −Rt,At
)

∣∣∣∣∣∣A∗Tj
= i

 ≥ 1

8

√
nk,

where the last inequality follows from Equation (9). Since there are at least bT/(n + 1)c renewals until time T ,
E
[∑T

t=1(Rt,A∗t −Rt,At)
]
≥ bT/(n+ 1)c

√
nk/8, and therefore,

∆̄∞(π) = lim sup
T→∞

E

[
1

T

T∑
t=1

(Rt,A∗t −Rt,At
)

]
≥
√
nk

8(n+ 1)
.

Since n+ 1 ≤ 2n and n = bk−1
k τeffc ≤ τeff , we have ∆̄∞(π) ≥ 1

16

√
k
τeff

.

B. Numerical Experiment in Detail
We here illustrate the detailed procedure of the numerical experiment conducted in Section 1.1.

Generative model. We say a stochastic process (Xt)t∈N ∼ GP(σ2
X , τX) if (X1, . . . , Xt) follows a multivariate normal

distribution satisfying

E[Xi] = 0, Cov(Xi, Xj) = σ2
X exp

(
−1

2

(
i− j
τX

)2
)
,
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for any i, j ∈ [t] and any t ∈ N. Note that this process is stationary, and given horizon T a sample path (X1, . . . , XT ) can
be generated by randomly drawing a multivariate normal variable from the distribution specified by σ2

X and τX .

As described in Section 1.1, we consider a nonstionary two-arm Gaussian bandit with unit noise variance:

Rt,a = θcm
t + θid

t,a︸ ︷︷ ︸
=:µt,a

+εt,a, ∀a ∈ {1, 2}, t ∈ N,

where εt,a’s are i.i.d. noises ∼ N (0, 12),
(
θcm
t

)
t∈N is the common variation process ∼ GP(12, τ cm), and

(
θid
t,a

)
t∈N is arm

a’s idiosyncratic variation process ∼ GP(12, τ id).

Note that the optimal action process is completely determined by θid:

A∗t =

{
1 if θid

t,1 ≥ θid
t,2

2 if θid
t,1 < θid

t,2
,

and the optimal action switches more frequently when τ id is small (compare Figure 3 with Figure 1).
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t, 2
Common disturbance cm

t

Arm 1 is optimal

0 200 400 600 800 1000
Time t
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Arm 1 id

t, 1

Arm 2 id
t, 2

Arm 1 is optimal

Figure 3. A sample path generated with τ cm = τ id = 10 (cf., Figure 1 was generated with τ cm = 10 and τ id = 50).

Consequently, the problem’s effective horizon τeff := 1/P(A∗t 6= A∗t−1), defined in (5), depends only on τ id. To visualize
this relationship, we estimate τeff using the sample average of the number of switches occurred over T = 1000 periods
(averaged across 100 sample paths), while varying τ id from 1 to 100. See Figure 4. As expected, τeff is linear in τ id (more
specifically, τeff ≈ 3.0× τ id).
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Figure 4. The effective time horizon τeff as a function of τ id ∈ {1, 5, 10, . . . , 100}, estimated from 100 sample paths randomly generated.

Tested bandit algorithms. Given the generative model described above, we evaluate four algorithms – Thompson
sampling (TS), Sliding-Window TS (SW-TS; Trovo et al. (2020)), Sliding-Window Upper-Confidence-Bound (SW-UCB;
Garivier & Moulines (2008)), and Uniform.
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Thompson sampling (TS) is assumed to know the dynamics of latent state processes as well as the exact values of τ cm and
τ id (i.e., no model/prior misspecification). More specifically, in each period t, πTS draws a random sample (θ̃id

t,1, θ̃
id
t,2) of

the latent state (θid
t,1, θ

id
t,2) from its posterior distribution, and then selects the arm At ← arg maxa∈{1,2} θ̃

id
t,a. Here, the

posterior distribution of (θid
t,1, θ

id
t,2) given the history Ft−1 = (A1, R1, . . . , At−1, Rt−1) is a multivariate normal distribution

that can be computed as follows. Given the past action sequence (A1, . . . , At−1) ∈ At−1, the (conditional) distribution of
(R1, . . . , Rt−1, θ

id
t,1, θ

id
t,2) is given by

R1

...
Rt−1

θid
t,1

θid
t,2



∣∣∣∣∣∣∣∣∣∣∣
(A1, . . . , At−1) ∼ N

(
0 ∈ R(t−1)+2,

[
Σt,RR ∈ R(t−1)×(t−1) Σ>t,θR ∈ R(t−1)×2

Σt,θR ∈ R2×(t−1) Σt,θθ ∈ R2×2

])
,

where the pairwise covariances are given by (Σt,RR)ij := Cov(Ri, Rj |Ai, Aj) = I{i = j} · Var(εi,a) + Cov(θcm
i , θcm

j ) +

I{Ai = Aj} · Cov(θid
i,a, θ

id
j,a) for i, j ∈ [t − 1], (Σt,θR)ai := Cov(Ri, θ

id
t,a|Ai) = I{Ai = a} · Cov(θid

i,a, θ
id
t,a) for a ∈ [2]

and i ∈ [t− 1], and Σt,θθ is the identity matrix. Additionally given the reward realizations,

[
θid
t,1

θid
t,2

]∣∣∣∣Ft−1 ∼ N (µ̂t ∈ R2, Σ̂t ∈ R2×2), where µ̂t := Σt,θRΣ−1
t,RR

 R1

...
Rt−1

 , Σ̂t := Σt,θθ−Σt,θRΣ−1
t,RRΣ>t,θR.

Sliding-Window TS is a simple modification of stationary Thompson sampling such that behaves as if the environment is
stationary but discards all observations revealed before L periods ago. More specifically, in each period t, πSW−TS with
window length L draws a random sample of mean rewards µ̃t,a from N (µ̂t,a, σ̂

2
t,a) where

µ̂t,a :=

∑t−1
s=max{1,t−L}RsI{As = a}

1 +Nt,a
, σ̂2

t,a :=
1

1 +Nt,a
, Nt,a :=

t−1∑
s=max{1,t−L}

I{As = a},

and then selects the arm At ← arg maxa∈A µ̃t,a. Here, L is a control parameter determining the degree of adaptivity.

Similarly, Sliding-Window UCB implements a simple modification of UCB such that computes UCB indices defined as

Ut,a := µ̂t,a + β
1√
Nt,a

, µ̂t,a :=

∑t−1
s=max{1,t−L}RsI{As = a}

Nt,a
, Nt,a :=

t−1∑
s=max{1,t−L}

I{As = a},

and then selects the arm At ← arg maxa∈A Ut,a. Here, L is a control parameter determining the degree of adaptivity, and β
is a control parameter determining the degree of exploration.

Uniform is a naı̈ve benchmark policy that always selects one of two arms uniformly at random. One can easily show that
∆̄T (πUniform) ≈ 0.57 in our setup, regardless of the choice of τ cm and τ id.

Simulation results. Given a sample path specified by θ, we measure the (pathwise) Cesàro average regret of an action
sequence A as

∆̄T (A; θ) :=
1

T

T∑
t=1

(µt,A∗t − µt,At
), where µt,a := θcm

t + θid
t,a.

Given an environment specified by (τ cm, τ id), we estimate the per-period regret of an algorithm π using S sample paths:

∆̂T (π; τ cm, τ id) :=
1

S

S∑
s=1

∆̄T (Aπ,(s); θ(s)),

where θ(s) is the sth sample path (that is shared by all algorithms) and Aπ,(s) is the action sequence taken by π along this
sample path. In all experiments, we use T = 1000 and S = 1000.
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We first report convergence of the instantaneous regret in Figure 5: we observe that E[µt,A∗t − µt,At
] quickly converges to a

constant after some initial transient periods, numerically verifying the conjecture made in Remark 2.1. While not reported
here, we also observe that the Cesàro average ∆̄T (A; θ) converges to the same limit value as T →∞ in every sample path,
suggesting the ergodicity of the entire system.
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Figure 5. Convergence of instantaneous regret E[µt,A∗t − µt,At ] in the case of τ cm = τ id = 50. The solid lines report the instantaneous
regret of the algorithms, averaged across S = 1000 sample paths, and the dashed horizontal lines represent the estimated per-period
regret.

We next examine the effect of τ id and τ cm on the performance of algorithms, and provide the detailed simulation results
that complement Figure 2 of Section 1.1. While varying τ id and τ cm, we measure the per-period regret ∆̂T (π; τ cm, τ id) of
algorithms according to the procedure described above. We observe from Figure 6 that for every algorithm its performance
is mainly determined by τ id, independent of τ cm, numerically confirming our main claim – the difficulty of problem can
be sufficiently characterized by the entropy rate of optimal action sequence, H̄∞(A∗), which depends only on τ id. We
additionally visualize the upper bound on TS’s regret that our analysis predicts7, assuming that the effective horizon is given
by τeff = 3.0× τ id (the value 3.0 is obtained from Figure 4). This upper bound seems fairly tight. We also observe that TS
performs best across all settings, perhaps because TS exploits the prior knowledge about nonstationarity of the environment,
whereas SW-TS or SW-UCB performs well when the window length roughly matches τ id.

7Corollary 4.1 and Theorem 4.4 state that ∆̄∞(πTS) ≤ σ
√

2 · |A| · H̄∞(A∗) ≤ σ
√

2 · |A| · 1+log(τeff)+H(A∗t |A
∗
t 6=A

∗
t−1)

τeff
, where we

have σ = 1, A = 2, H(A∗t |A∗t 6= A∗t−1) = 0 in this setting.
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Figure 6. The effect of τ id (left) and τ cm (right) on the performance of algorithms. The dashed line in the left plot represents the upper
bound on ∆̄∞(πTS), implied by Corollary 4.1 and Theorem 4.4, with estimate τ̂eff := 3.0× τ id.
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