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Abstract
Diffusion-based methods, represented as stochas-
tic differential equations on a continuous-time
domain, have recently proven successful as non-
adversarial generative models. Training such
models relies on denoising score matching, which
can be seen as multi-scale denoising autoencoders.
Here, we augment the denoising score match-
ing framework to enable representation learning
without any supervised signal. GANs and VAEs
learn representations by directly transforming la-
tent codes to data samples. In contrast, the in-
troduced diffusion-based representation learning
relies on a new formulation of the denoising score
matching objective and thus encodes the infor-
mation needed for denoising. We illustrate how
this difference allows for manual control of the
level of details encoded in the representation. Us-
ing the same approach, we propose to learn an
infinite-dimensional latent code that achieves im-
provements on state-of-the-art models on semi-
supervised image classification. We also compare
the quality of learned representations of diffusion
score matching with other methods like autoen-
coder and contrastively trained systems through
their performances on downstream tasks. Finally,
we also ablate with a different SDE formulation
for diffusion models and show that the benefits
on downstream tasks are still present on changing
the underlying differential equation.

1. Introduction
Diffusion-based models have recently proven successful
for generating images (Sohl-Dickstein et al., 2015; Song &
Ermon, 2020; Song et al., 2020), graphs (Niu et al., 2020),
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Montréal 3ETH Zürich 4Helmholtz AI 5Technical University of
Munich 6Max Planck Institute for Intelligent Systems. Correspon-
dence to: Sarthak Mittal <sarthmit@gmail.com>, Arash Mehrjou
<arash@distantvantagepoint.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

shapes (Cai et al., 2020), and audio (Chen et al., 2020b;
Kong et al., 2021). Two promising approaches apply step-
wise perturbations to samples of the data distribution until
the perturbed distribution matches a known prior (Song &
Ermon, 2019; Ho et al., 2020). A model is then trained to es-
timate the reverse process, which transforms samples of the
prior to samples of the data distribution (Saremi et al., 2018).
Diffusion models were further refined (Nichol & Dhariwal,
2021; Luhman & Luhman, 2021) and even achieved bet-
ter image sample quality than GANs (Dhariwal & Nichol,
2021; Ho et al., 2021; Mehrjou et al., 2017). Further, Song
et al. showed that these frameworks are discrete versions of
continuous-time perturbations modeled by stochastic differ-
ential equations and proposed a diffusion-based generative
modeling framework on continuous time. Unlike generative
models such as GANs and various forms of autoencoders,
the original form of diffusion models does not come with a
fixed architectural module that captures the representations
of the data samples.

Learning desirable representations has been an integral com-
ponent of generative models such as GANs and VAEs (Ben-
gio et al., 2013; Radford et al., 2016; Chen et al., 2016;
van den Oord et al., 2017; Donahue & Simonyan, 2019;
Chen et al., 2020a; Schölkopf et al., 2021). Recent works
on visual representation learning achieve impressive perfor-
mance on the downstream task of classification by applying
contrastive learning (Chen et al., 2020d; Grill et al., 2020;
Chen & He, 2020; Caron et al., 2021; Chen et al., 2020c).
However, contrastive learning requires additional supervi-
sion of augmentations that preserve the content of the data,
and hence these approaches are not directly comparable to
representations learned through generative systems like Vari-
ational Autoencoders (Kingma & Welling, 2013; Rezende
et al., 2014) and the current work which are considered
fully unsupervised. Moreover, training the encoder to output
similar representation for different views of the same image
removes information about the applied augmentations, thus
the performance benefits are limited to downstream tasks
that do not depend on the augmentation, which has to be
known beforehand. Hence our proposed algorithm does
not restrict the learned representations to specific down-
stream tasks and solves a more general problem instead. We
provide a summary of contrastive learning approaches in
Appendix A. Similar to our approach, Denoising Autoen-
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Denoising score matching Conditional score matching
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Figure 1. Conditional score matching with a parametrized latent
code is representation learning. Denoising score matching esti-
mates the score at each xt; we add a latent representation z of the
clean data x0 as additional input to the score estimator.

coders (DAE) (Vincent et al., 2008) can be used to encode
representations that can be manually controlled by adjusting
the noise scale (Geras & Sutton, 2015; Chandra & Sharma,
2014; Zhang & Zhang, 2018). Note that, unlike DAEs, the
encoder in our approach does not receive noisy data as input,
but instead extracts features based on the clean images. For
example, this key difference allows DRL to be used to limit
the encoding to fine-grained features when focusing on low
noise levels, which is not possible with DAEs.

Recently, there have been some works that rely on addi-
tional encoders in the model architecture of diffusion based
models (Preechakul et al., 2022; Mittal et al., 2021a; Sinha
et al., 2021). Sinha et al. (2021) considers an autoencoder
based setup with the diffusion model defining the prior
whereas Pandey et al. (2022) considers the opposite where
a diffusion model is used to further improve the decoded
samples from a VAE. Preechakul et al. (2022) is a concur-
rent work that is closest to our setup, however, instead of
relying on time-conditioned encoder, they rely only on an
unconditional encoder. Further, they concentrate more on
generation-based tasks while our approach focuses more on
evaluating the representations learned for downstream tasks.

The main contributions of this work are

• We present an alternative formulation of the denoising
score matching objective, showing that the objective
cannot be reduced to zero. We leverage this property
to learn representations for downstream tasks.

• We introduce Diffusion-based Representation Learning
(DRL), a novel framework for representation learning
in diffusion-based generative models. We show how
this framework allows for manual control of the level
of details encoded in the representation through an
infinite-dimensional code. We evaluate the proposed
approach on downstream tasks using the learned repre-
sentations directly as well as using it as a pre-training
step for semi-supervised image classification, thereby
improving state-of-the-art approaches for the latter.

• We evaluate the effect of the initial noise scale and
achieve significant improvements in sampling speed,

which is a bottleneck in diffusion-based generative
models compared with GANs and VAEs, without sac-
rificing image quality.

1.1. Diffusion-based generative modeling

We first give a brief overview of the technical background
for the framework of the diffusion-based generative model
as described in (Song et al., 2021b). The forward diffusion
process of the data is modeled as an SDE on a continuous-
time domain t ∈ [0, T ]. Let x0 ∈ Rd denote a sample
from the data distribution x0 ∼ p0, where d is the data
dimension. The trajectory (xt)t∈[0,T ] of data samples is a
function of time determined by the diffusion process. The
SDE is chosen such that the distribution p0T (xT |x0) for
any sample x0 ∼ p0 can be approximated by a known prior
distribution. Notice that the subscript 0T of p0T refers to the
conditional distribution of the diffused data at time T given
the data at time 0. For simplicity we limit the remainder of
this paper to the so-called Variance Exploding SDE (Song
et al., 2021b), that is,

dx = f(x, t) dt+ g(t) dw :=

√
d[σ2(t)]

dt
dw, (1)

where w is the standard Wiener process. The perturbation
kernel of this diffusion process has a closed-form solution
being p0t(xt|x0) = N (xt;x0, [σ

2(t) − σ2(0)]I). It was
shown by Anderson (1982) that the reverse diffusion process
is the solution to the following SDE:

dx = [f(x, t)− g2(t)∇x log pt(x)] dt+ g(t) dw, (2)

where w is the standard Wiener process when the time
moves backwards. Thus, given the score function
∇x log pt(x) for all t ∈ [0, T ], we can generate samples
from the data distribution p0(x). In order to learn the score
function, the simplest objective is Explicit Score Matching
(ESM) (Hyvärinen & Dayan, 2005), that is,

Ext

[
∥sθ(xt, t)−∇xt

log pt(xt)∥22
]
. (3)

Since the ground-truth score function ∇xt log pt(xt) is gen-
erally not known, one can apply denoising score matching
(DSM) (Vincent, 2011), which is defined as the following:

JDSMt (θ) =Ex0
{Ext|x0

[∥sθ(xt, t)
−∇xt

log p0t(xt|x0)∥22 ]}.
(4)

The training objective over all t is augmented by Song et al.
(2021b) with a time-dependent positive weighting function
λ(t), that is, JDSM (θ) = Et

[
λ(t)JDSMt (θ)

]
. One can

also achieve class-conditional generation in diffusion-based
models by training an additional time-dependent classifier
pt(y|xt) (Song et al., 2021b)). In particular, the condi-
tional score for a fixed y can be expressed as the sum of
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Figure 2. Results of proposed DRL models trained on MNIST and CIFAR-10 with point clouds visualizing the latent representation of
test samples, colored according to the digit class. The models are trained with Left: uniform sampling of t and Right: a focus on high
noise levels. Samples are generated from a grid of latent values ranging from -1 to 1.

the unconditional score and the score of the classifier, that
is, ∇xt

log pt(xt|y) = ∇xt
log pt(xt) + ∇xt

log pt(y|xt).
We take motivation from an alternative way to allow for
controllable generation, which, given supervised samples
(x, y(x)), uses the following training objective for each time
t

JCSMt (θ) = Ex0{Ext|x0
[∥sθ(xt, t, y(x0))

−∇xt
log p0t(xt|x0)∥22 ]}.

(5)

The objective in Equation 5 is minimized if and only
if the model equals the conditional score function
∇xt log pt(xt|y(x0) = ŷ) for all labels ŷ.

2. Diffusion-based Representation Learning
We begin this section by presenting an alternative formu-
lation of the Denoising Score Matching (DSM) objective,
which shows that this objective cannot be made arbitrarily
small. Formally, the formula of the DSM objective can be
rearranged as

JDSMt (θ) = Ex0
{Ext|x0

[
∥sθ(xt, t)−∇xt

log pt(xt)∥22
+ ∥∇xt

log p0t(xt|x0)−∇xt
log pt(xt)∥22

]
}.
(6)

The above formulation holds, because the DSM objec-
tive in Equation 4 is minimized when ∀xt : sθ(xt, t) =
∇xt

log pt(xt), and differs from ESM in Equation 3 only
by a constant (Vincent, 2011). Hence, the constant is equal
to the minimum achievable value of the DSM objective. A
detailed proof is included in the Appendix B.

It is noteworthy that the second term in the right-hand side
of the Equation 6 does not depend on the learned score func-
tion of xt for every t ∈ [0, T ]. Rather, it is influenced by the
diffusion process that generates xt from x0. This observa-
tion has not been emphasized previously, probably because
it has no direct effect on the learning of the score func-
tion, which is handled by the second term in the Equation
6. However, the additional constant has major implications
for finding other hyperparameters such as the function λ(t)
and the choice of σ(t) in the forward SDE. As (Kingma
et al., 2021) shows, changing the integration variable from
time to signal-to-noise ratio (SNR) simplifies the diffusion
loss such that it only depends on the end values of SNR.

Hence, the loss is invariant to the intermediate values of
the noise schedule. However, the weight functions λ(·) is
still an important hyper-parameter whose choice might be
affected by the non-vanishing constant in Equation 6.

To the best of our knowledge, there is no known theoretical
justification for the values of σ(t). While these hyperpa-
rameters could be optimized in ESM using gradient-based
learning, this ability is severely limited by the non-vanishing
constant in Equation 6.

Even though the non-vanishing constant in the denoising
score matching objective presents a burden in multiple ways
such as hyperparameter search and model evaluation, it
provides an opportunity for latent representation learning,
which will be described in the following sections. We note
that this is different from Sinha et al. (2021); Mittal et al.
(2021b) as they consider a Variational Autoencoder model
followed by diffusion in the latent space, where their repre-
sentation learning objective is still guided by reconstruction.
Contrary to this, our representation learning approach does
not utilize a variational autoencoder model and is guided by
denoising instead. Our approach is similar to Preechakul
et al. (2022) but we also condition the encoder system on the
time-step, thereby improving representation capacity and
leading to parameterized curve-based representations.

2.1. Learning latent representations

Since supervised data is limited and rarely available, we
propose to learn a labeling function y(x0) at the same time
as optimizing the conditional score matching objective in
Equation 5. In particular, we represent the labeling func-
tion as a trainable encoder Eϕ : Rd → Rc, where Eϕ(x0)
maps the data sample x0 to its corresponding code in the
c-dimensional latent space. The code is then used as ad-
ditional input to the score model. Formally, the proposed
learning objective for Diffusion-based Representation Learn-
ing (DRL) is the following:

JDRL(θ, ϕ) = Et,x0,xt
[λ(t)∥sθ(xt, t, Eϕ(x0))

−∇xt log p0t(xt|x0)∥22 + γ∥Eϕ(x0)∥1]
(7)

where we add a small amount of L1 regularization, con-
trolled by γ, on the output of the trainable encoder.

To get a better idea of the above objective, we provide an

3



Diffusion Based Representation Learning

Figure 3. Results of proposed VDRL models trained on MNIST and CIFAR-10 with point clouds visualizing the latent representation of
test samples, colored according to the digit class. The models are trained with Left: uniform sampling of t and Right: a focus on high
noise levels. Samples are generated from a grid of latent values ranging from -2 to 2.

intuition for the role of Eϕ(x0) in the input of the model.
The model sθ(·, ·, ·) : Rd × R × Rc → Rd is a vector-
valued function whose output points to different directions
based on the value of its third argument. In fact, Eϕ(x0)
selects the direction that best recovers x0 from xt. Hence,
when optimizing over ϕ, the encoder learns to extract the
information from x0 in a reduced-dimensional space that
helps recover x0 by denoising xt.

We show in the following that Equation 7 is a valid repre-
sentation learning objective. The score of the perturbation
kernel ∇xt

log p0t(xt|x0) is a function of only t, xt and x0.
Thus, the objective can be reduced to zero if all information
about x0 is contained in the latent representation Eϕ(x0).
When Eϕ(x0) has no mutual information with x0, the ob-
jective can only be reduced up to the constant in Equation
6. Hence, our proposed formulation takes advantage of the
non-zero lower-bound of Equation 6, which can only vanish
when the encoder Eϕ(·) properly distills information from
the unperturbed data into a latent code, which is an addi-
tional input to the score model. These properties show that
Equation 7 is a valid objective for representation learning.

Our proposed representation learning objective enjoys the
continuous nature of SDEs, a property that is not available
in many previous representation learning methods (Radford
et al., 2016; Chen et al., 2016; Locatello et al., 2019). In
DRL, the encoder is trained to represent the information
needed to denoise x0 for different levels of noise σ(t). We
hypothesize that by adjusting the weighting function λ(t),
we can manually control the granularity of the features en-
coded in the representation and provide empirical evidence
as support. Note that t → T is associated with higher levels
of noise and the mutual information of xt and x0 starts to
vanish. In this case, denoising requires all information about
x0 to be contained in the code. In contrast, t → 0 corre-
sponds to low noise levels and hence xt contains coarse-
grained features of x0 and only fine-grained properties may
have been washed out. Hence, the encoded representation
learns to keep the information needed to recover these fine-
grained details. We provide empirical evidence to support
this hypothesis in Section 3.

It is noteworthy that Eϕ does not need to be a determinis-
tic function and can be a probabilistic map similar to the
encoder of VAEs. In principle, it can be viewed as an in-

formation channel that controls the amount of information
that the diffusion model receives from the initial point of the
diffusion process. With this perspective, any deterministic
or stochastic function that can manipulate I(xt, x0), the
mutual information between x0 and xt, can be used. This
opens up the room for stochastic encoders similar to VAEs
which we call Variational Diffusion-based Representation
Learning (VDRL). The formal objective of VDRL is

JV DRL(θ, ϕ) = Et,x0,xt [Ez∼Eϕ(Z|x0)[λ(t)∥sθ(xt, t, z)
−∇xt

log p0t(xt|x0)∥22 ] (8)
+DKL(Eϕ(Z|x0)||N (Z; 0, I)]

2.2. Infinite-dimensional representation of data

We now present an alternative version of DRL where the
representation is a function of time. Instead of emphasizing
on different noise levels by weighting the training objective,
as done in the previous section, we can provide the time t
as input to the encoder. Formally, the new objective is

Et,x0,xt
[λ(t)∥sθ(xt, t, Eϕ(x0, t))

−∇xt
log p0t(xt|x0)∥22 + γ∥Eϕ(x0, t)∥1] (9)

where Eϕ(x0) in Equation 7 is replaced by Eϕ(x0, t). In-
tuitively, it allows the encoder to extract the necessary in-
formation of x0 required to denoise xt for any noise level.
This leads to richer representation learning since normally
in autoencoders or other static representation learning meth-
ods, the input data x0 ∈ Rd is mapped to a single point
z ∈ Rc in the latent space. In contrast, we propose a richer
representation where the input x0 is mapped to a curve in
Rc instead of a single point. Hence, the learned latent code
is produced by the map x0 → (Eϕ(x0, t))t∈[0,T ] where the
infinite-dimensional object (Eϕ(x0, t))t∈[0,T ] is the encod-
ing for x0.

Proposition 2.1. For any downstream task, the infinite-
dimensional code (Eϕ(x0, t))t∈[0,T ] learned using the ob-
jective in Equation 9 is at least as good as finite-dimensional
static codes learned by the reconstruction of x0.

Proof sketch. Let LD(z, y) be the per-sample loss for a
supervised learning task calculated for the pair (z, y) where
z = z(x, t) is the representation learned for the input x at
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Figure 4. Comparing the performance of the proposed diffusion-based representations (DRL and VDRL) with the baselines that include
autoencoder (AE), variational autoencoder (VAE), simple contrastive learning (simCLR) and its restricted variant (simCLR-Gauss) which
exclude domain-specific data augmentation from the original simCLR algorithm.

time t and y is the label. The representation function is also
a function of the scalar t that takes values from a closed
subset U of R. For any value s ∈ U , it is obvious that

mint∈ULD(z(x, t), y) < LD(z(x, s), y). (10)

Taking into account the extra argument t, the representa-
tion function z(x, t) can be seen as an infinite dimensional
representation. The argument t actually controls which rep-
resentation of x has to be passed to the downstream task.
The conventional representation learning algorithms corre-
spond to choosing the t argument apriori and keep it fixed
independent of x. Here, by minimizing over t, the passed
representation cannot be worse than the results of conven-
tional representation learning methods. Note that LD(·, ·)
here can be any metric that we require, however gradient-
based learning and optimization issues can still affect the
actual performance achieved .

The score matching objective can be seen as a reconstruction
objective of x0 conditioned on xt. The terminal time T
is chosen large enough so that xT is independent of x0,
hence the objective for t = T is equal to a reconstruction
objective without conditioning. Therefore, there exists a
t ∈ [0, T ] where the learned representation Eϕ(x0, t) is the
same representation learned by the reconstruction objective
of a vanilla autoencoder. The full proof for Proposition 2.1
can be found in the Appendix C

A downstream task can leverage this rich encoding in var-
ious ways, including the use of either the static code for a
fixed t, or the use of the whole trajectory (Eϕ(x0, t))t∈[0,T ]

as input. We posit the conjecture that the proposed rich
representation is helpful for downstream tasks when used
for pretraining, where the value of t could either be a model
selection parameter or be jointly optimized with other pa-
rameters during training. We leave investigations along
these directions as important future work. We show the
performance of the proposed model on downstream tasks in
Section 3.1 and also evaluate it on semi-supervised image

classification in Section 3.2.

3. Results
For all experiments, we use the same function σ(t), t ∈
[0, 1] as in Song et al. (2021b), which is σ(t) =
σmin (σmax/σmin)

t, where σmin = 0.01 and σmax = 50.
Further, we use a 2d latent space for all qualitative experi-
ments (Section 3.3) and 128 dimensional latent space for the
downstream tasks (Section 3.1) and semi-supervised image
classification (Section 3.2). We also set λ(t) = σ2(t), which
has been shown to yield the KL-Divergence objective (Song
et al., 2021a). Our goal is not to produce state-of-the-art
image quality, rather showcase the representation learning
method. Because of that and also limited computational
resources, we did not carry out an extensive hyperparameter
sweep (check Appendix D for details). Note that all experi-
ments were conducted on a single RTX8000 GPU, taking
up to 30 hours of wall-clock time, which only amounts to
15% of the iterations proposed in (Song et al., 2021b).

3.1. Downstream Classification

We directly evaluate the representations learned by different
algorithms on downstream classification tasks for CIFAR10,
CIFAR100, and Mini-ImageNet datasets. The represen-
tation is first learned using the proposed diffusion-based
method. Then, the encoder (either deterministic or proba-
bilistic) is frozen and a single-layered neural network is
trained on top of it for the downstream prediction task.
For the baselines, we consider an Autoencoder (AE), a
Variational Autoencoder (VAE), two versions of Denois-
ing Autoencoders (DAE and CDAE) and two verisons of
Contrastive Learning (SimCLR(Chen et al., 2020c) and
SimCLR-Gauss explained below) setup to compare with the
proposed methods (DRL and VDRL). Figure 4 shows that
DRL and VDRL outperforms autoencoder-styled baselines
as well as the restricted contrastive learning baseline.
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Figure 5. Comparing the performance of the proposed diffusion-based representations (DRL and VDRL) with the baselines that include
autoencoder (AE), variational autoencoder (VAE), simple contrastive learning (simCLR) and its restricted variant (simCLR-Gauss) which
exclude domain-specific data augmentation from the original simCLR algorithm.

Standard Autoencoders— Standard autoencoders (AE and
VAE) rely on learning of representations of the input data
using an encoder in such a way that it can be reconstructed
back, using a decoder, solely based on the representation
learned. Such systems can be trained without any regulariza-
tion on the representation space (AE), or in a probabilistic
fashion which relies on variational inference and ultimately
leads to a KL-Divergence based regularization on the repre-
sentation space (VAE). Figure 4 shows that the time-axis is
not meaningful for such training, as expected.

Denoising Autoencoders— While the problem of reconstruc-
tion is easily solved given a big enough network (i.e. capable
of learning the identity mapping), this problem can be made
harder by considering a noisy version of the data as input
with the task of predicting its denoised version, as opposed
to vanilla reconstruction in standard autoencoders. Such
approaches are referred to as Denoising Autoencoders, and
we consider its two variants. In the first variant, DAE, a
noisy version of the image is given as input xt (higher t
implying more noise) and the task of the model is to predict
the denoised version x0. Since larger t implies learning of
representations from more noise, we can see a sharp decline
in performance of DAE systems with increasing t in Fig-
ure 4. The second variant, CDAE, considers xt as the noisy
input again, but predicts the denoised version based on a rep-
resentation of xt combined with a learned time-conditioned
representation of the true input Eϕ(x0, t), similar to the
DRL setups. This approach is arguably similar to DRL with
the sole difference being that Eϕ(·, ·) in DRL had the incen-
tive of predicting the right score function, whereas in CDAE
the incentive is to denoise in a single step. As highlighted
in Figure 4, the performance increases with increasing t
because the encoder Eϕ(·, ·) is useless in low-noise settings
(as all the data is already there in the input) but becomes
increasingly meaningful as noise increases.

Restricted SimCLR— While we compare against the stan-
dard SimCLR model, to obtain a fair comparison, we re-

stricted the transformations used by the simCLR method
to the additive pixel-wise Gaussian noise (SimCLR-Gauss)
as this was the only domain-agnostic transformation in the
SimCLR pipeline. The original SimCLR expectedly out-
performs the other methods because it uses the privileged
information injected by the employed data augmentation
methods. For example, random cropping is an inductive bias
that reflects the spatial regularity of the images. Even though
it is possible to strengthen our method and autoencoder-
based baselines such as VAEs with such augmentation-based
strategies, it still doesn’t provide the additional inductive
bias of preservation of high-level information in the pres-
ence of these augmentations, which SimCLR directly uses.
Thus, we restricted all baselines to the generic setting with-
out this inductive bias and leave the domain-specific im-
provements for future work.

It is seen that the DRL and VDRL methods significantly
outperform the baselines on all the datasets at a number
of different time-steps t. We further evaluate the infinite-
dimensional representation on few-shot image classification
using the representation at different timescales as input.
The detailed results are shown in Appendix E. In summary,
the representations of DRL and VDRL achieve significant
improvements as compared to an autoencoder or VAE for
several values of t .

Overall the results align with the theoretical argument of
Proposition 2.1 that the rich representation of DRL is at
least as good as the static code learned using a recon-
struction objective. It further shows that in practice, the
infinite-dimensional code is superior to the static (finite-
dimensional) representation for downstream applications
such as image classification by a significant margin.

As a further analysis, we consider the same experiments
when the DRL models are trained on the Variance Preserv-
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LaplaceNet Ours
Pretraining None DRL VDRL
Mixup No Yes No Yes No

Dataset #labels

CIFAR-10 100 73.68 75.29 74.31 64.67 81.63
500 91.31 92.53 92.70 92.31 92.79

1000 92.59 93.13 93.24 93.42 93.60
2000 94.00 93.96 94.18 93.91 93.96
4000 94.73 94.97 94.75 95.22 95.00

CIFAR-100 1000 55.58 55.24 55.85 55.74 56.47
4000 67.07 67.25 67.22 67.47 67.54

10000 73.19 72.84 73.31 73.66 73.50
20000 75.80 76.07 76.46 76.88 76.64

Mini ImageNet 4000 58.40 58.84 58.95 59.29 59.14
10000 66.65 66.80 67.31 66.63 67.46

Table 1. Comparison of classifier accuracy in % for different pretraining settings. Scores better than the SOTA model (LaplaceNet) are in
bold. “DRL” pretraining is our proposed representation learning, and “VDRL” the respective version which uses a probabilistic encoder.

ing SDE formulation (Song et al., 2021b).

dx = −1

2
β(t)xdt+

√
β(t) dw, (11)

Figure 5 shows that even in this formualtion, DRL and
VDRL models outperform their autoencoder and denoising
autoencoder competitors and perform better than restricted
constrastive learning, showing that this approach can be
easily adapted to various different diffusion models.

3.2. Semi-Supervised Image Classification

The current state-of-the-art model for many semi-supervised
image classification benchmarks is LaplaceNet (Sellars
et al., 2021). It alternates between assigning pseudo-labels
to samples and supervised training of a classifier. The key
idea is to assign pseudo-labels by minimizing the graphical
Laplacian of the prediction matrix, where similarities of
data samples are calculated on a hidden layer representation
in the classifier. Note that LaplaceNet applies mixup (Zhang
et al., 2017) that changes the input distribution of the clas-
sifier. We evaluate our method with and without mixup on
CIFAR-10 (Krizhevsky et al., a), CIFAR-100 (Krizhevsky
et al., b) and MiniImageNet (Vinyals et al., 2016).

In the following, we evaluate the infinite-dimensional repre-
sentation (Eϕ(x0, t))t∈[0,T ] on semi-supervised image clas-
sification, where we use DRL and VDRL as pretraining
for the LaplaceNet classifier. Table 1 depicts the classifier
accuracy on test data for different pretraining settings. De-
tails for architecture and hyperparameters are described in
Appendix G.

Our proposed pretraining using DRL significantly improves
the baseline and often surpasses the state-of-the-art perfor-
mance of LaplaceNet. Most notable are the results of DRL
and VDRL without mixup, which achieve high accuracies
without being specifically tailored to the downstream task

of classification. Note that pretraining the classifier as part
of an autoencoder did not yield any improvements (Table
4 in the Appendix). Combining DRL with mixup yields
inconsistent improvements, results are reported in Table 5
of the Appendix. In addition, DRL pretraining achieves
much better performances when only limited computational
resources are available (Tables 2, 3 in the Appendix).

3.3. Qualitative Results

We first train a DRL model with L1-regularization on the
latent code on MNIST (LeCun & Cortes, 2010) and CIFAR-
10. Figure 2 (left) shows samples from a grid over the latent
space and a point cloud visualization of the latent values
z = Eϕ(x0). For MNIST, we can see that the value of
z1 controls the stroke width, while z2 weakly indicates the
class. The latent code of CIFAR-10 samples mostly encodes
information about the background color, which is weakly
correlated to the class. The use of a probabilistic encoder
(VDRL) leads to similar representations, as seen in Fig.
3 (left). We further want to point out that the generative
process using the reverse SDE involves randomness and thus
generates different samples for a single latent representation.
The diversity of samples however steadily decreases with
the dimensionality of the latent space, shown in Figure 7 of
the Appendix.

Next, we analyze the behavior of the representation when
adjusting the weighting function λ(t) to focus on higher
noise levels, which can be done by changing the sam-
pling distribution of t. To this end, we sample t ∈ [0, 1]
such that σ(t) is uniformly sampled from the interval
[σmin, σmax] = [0.01, 50]. Figure 2 (right) shows the re-
sulting representation of DRL and Figure 3 (right) for the
VDRL results. As expected, the latent representation for
MNIST encodes information about classes rather than fine-
grained features such as stroke width. This validates our
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hypothesis of Section 2.1 that we can control the granu-
larity of features encoded in the latent space. For CIFAR-
10, the model again only encodes information about the
background, which contains the most information about the
image class. A detailed analysis of class separation in the
extreme case of training on single timescales is included in
Appendix H.

Overall, the difference in the latent codes for varying λ(t)
shows that we can control the granularity encoded in the
representation of DRL. This ability provides a significant
advantage when there exists some prior information about
the level of detail that we intend to encode in the target
representation. We further illustrate how the representa-
tion encodes information for the task of denoising in the
Appendix (Fig. 6).

We also provide further analysis into the impact of noise
scales on generation in Appendix I.

4. Conclusion
We presented Diffusion-based Representation Learning
(DRL), a new objective for representation learning based
on conditional denoising score matching. In doing so, we
turned the original non-vanishing objective function into one
that can be reduced arbitrarily close to zero by the learned
representation. We showed that the proposed method learns
interpretable features in the latent space. In contrast to some
of the previous approaches that required specialized architec-
tural changes or data manipulations, denoising score match-
ing comes with a natural ability to control the granularity
of features encoded in the representation. We demonstrated
that the encoder can learn to separate classes when focusing
on higher noise levels and encodes fine-grained features
such as stroke-width when mainly trained on smaller noise
variance. In addition, we proposed an infinite-dimensional
representation and demonstrated its effectiveness for down-
stream tasks such as few-shot classification. Using the rep-
resentation learning as pretraining for a classifier, we were
able to improve the results of LaplaceNet, a state-of-the-art
model on semi-supervised image classification.

Starting from a different origin but conceptually close, con-
trastive learning as a self-supervised approach could be com-
pared with our representation learning method. We should
emphasize that there are fundamental differences both at
theoretical and algorithmic levels between contrastive learn-
ing and our diffusion-based method. The generation of
positive and negative examples in contrastive learning re-
quires the domain knowledge of the applicable invariances.
This knowledge might be hard to obtain in scientific do-
mains such as genomics where the knowledge of invariance
amounts to the knowledge of the underlying biology which
in many cases is not known. However, our diffusion-based

representation uses the natural diffusion process that is em-
ployed in score-based models as a continuous obfuscation
of the information content. Moreover, unlike the loss func-
tion of the contrastive-based methods that are specifically
designed to learn the invariances of manually augmented
data, our method uses the same loss function that is used to
learn the score function for generative models. The repre-
sentation is learned based on a generic information-theoretic
concept which is an encoder (information channel) that con-
trols how much information of the input has to be passed
to the score function at each step of the diffusion process.
We also provided theoretical motivation for this information
channel. The algorithm cannot ignore this source of infor-
mation because it is the only way to reduce a non-negative
loss arbitrarily close to zero.

Our experiments on diffusion-based representation learn-
ing methods highlight its benefits when compared to fully
unsupervised models like autoencoders, variational or de-
noising. The proposed methodology does not rely on ad-
ditional supervision regarding augmentations, and can be
easily adapted to any representation learning paradigm that
previously relied on reconstruction-based autoencoder meth-
ods.
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A. Related work on contrastive learning
The core idea of contrastive learning is to learn representations that are similar for different views of the same image and
distant for different images. In order to prevent the collapse of representations to a constant, various approaches have been
introduced. SimCLRv2 directly includes a loss term repulsing negative image pairs in addition to the attraction of different
views of positive pairs (Chen et al., 2020d)). In contrast, BYOL relies solely on positive pairs, preventing collapse by
enforcing similarity between the encoded representation of an image and the output of a momentum encoder applied to a
different view of the same image (Grill et al., 2020). An additional approach relies on online clustering and was proposed in
SwAV (Caron et al., 2021). Training in SwAV is based on enforcing consistency between cluster assignments produced for
different views of an image. Each of these methods relies on the foundation of Siamese networks (Bromley et al., 1993),
which were shown to be competitive for unsupervised pretraining for classification networks on its own when including a
stop-gradient operation on one of the branches (Chen & He, 2020).

B. Denoising Score Matching
The following is the proof for the new formulation of the denoising score matching objective in Equation 6.

Proof. It was shown by (Vincent, 2011) that Equation 4 is equal to explicit score matching up to a constant which is
independent of θ, that is,

Ex0{Ext|x0
[∥sθ(xt, t)−∇xt log p0t(xt|x0)∥22 ]} (12)

=Ext

[
∥sθ(xt, t)−∇xt

log pt(xt)∥22
]
+ c. (13)

As a consequence, the objective is minimized when the model equals the ground-truth score function sθ(xt, t) =
∇x log pt(x). Hence we have:

Ex0{Ext|x0
[∥∇xt log pt(xt)−∇xt log p0t(xt|x0)∥22 ]} (14)

=Ext

[
∥∇xt

log pt(xt)−∇xt
log pt(xt)∥22

]
+ c (15)

= c. (16)

Combining these results leads to the claimed exact formulation of the Denoising Score Matching objective:

JDSMt (θ) =Ex0{Ext|x0
[∥sθ(xt, t)−∇xt

log p0t(xt|x0)∥22 ]} (17)

=Ext

[
∥sθ(xt, t)−∇xt

log pt(xt)∥22
]
+ c (18)

=Ext

[
∥sθ(xt, t)−∇xt log pt(xt)∥22

]
+Ex0

{Ext|x0
[∥∇xt

log pt(xt)−∇xt
log p0t(xt|x0)∥22 ]}

(19)

=Ex0{Ext|x0
[∥∇xt log p0t(xt|x0)−∇xt log pt(xt)∥22
+ ∥sθ(xt, t)−∇xt

log pt(xt)∥22]}.
(20)

C. Representation learning
Here we present the proof for Proposition 2.1, stating that the infinite-dimensional code learned using DRL is at least as
good as a static code learned using a reconstruction objective.

Proof. We assume that the distribution of the diffused samples at time t = T matches a known prior pT (xT ). That is,∫
p(x0)p0T (xT |x0) dx0 = pT (xT ). In practice T is chosen such that this assumption approximately holds.

Now consider the training objective in Equation 9 at time T , which can be transformed to a reconstruction objective in the
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following way:

λ(T )Ex0,xT

[
∥sθ(xT , T, Eϕ(x0, T ))−∇xT

log p0T (xT |x0)∥22
]

(21)

=λ(T )Ex0
ExT∼pT (xT )

[∥∥∥∥sθ(xT , T, Eϕ(x0, T ))−
x0 − xT
σ2(T )

∥∥∥∥2
2

]
(22)

=λ(T )σ−4(T )Ex0
ExT∼pT (xT )

[
∥Dθ(Eϕ(x0, T ))− x0∥22

]
(23)

=λ(T )σ−4(T )Ex0

[
∥Dθ(Eϕ(x0, T ))− x0∥22

]
, (24)

where we replaced the score model with a Decoder model sθ(xT , T, Eϕ(x0, T )) =
Dθ(Eϕ(x0,T ))−xT

σ2(T ) and replaced the
score function of the perturbation kernel ∇xT

log p0T (xT |x0) with its known closed-form solution x0−xT

σ2(T ) determined by
the Forward SDE in Equation 1. Hence the learned code at time t = T is equal to a code learned using a reconstruction
objective.

We model a downstream task as a minimization problem of a distance d : Ω × Ω → R in the feature space Ω between
the true feature extractor g : Rd → Ω which maps data samples x0 to a features space Ω and a model feature extractor
hψ : Rc → Ω doing the same given the code as input. The following shows that the infinite-dimensional representation is at
least as good as the static code:

inf
t
min
ψ

Ex0
[d(hψ(Eϕ(x0, t)), g(x0))] ≤ min

ψ
Ex0

[d(hψ(Eϕ(x0, T )), g(x0))] (25)

Figure 6. Samples generated starting from xt (left column) using the diffusion model with the latent code of another x0 (top row) as input.
It shows that samples are denoised correctly only when conditioning on the latent code of the corresponding original image x0.

D. Architecture and Hyperparameters
The model architecture we use for all experiments is based on “DDPM++ cont. (deep)” used for CIFAR-10 in (Song et al.,
2021b). It is composed of a downsampling and an upsampling block with residual blocks at multiple resolutions. We did
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(a) 2-dimensional (b) 4-dimensional

(c) 8-dimensional (d) 16-dimensional

Figure 7. Samples generated using the same latent code for each generation, showing that the randomness of the code-conditional
generation of DRL reduces in higher dimensional latent spaces.

not change any of the hyperparameters of the optimizer. Depending on the dataset, we adjusted the number of resolutions,
number of channels per resolution, and the number of residual blocks per resolution in order to reduce training time.

For representation learning, we use an encoder with the same architecture as the downsampling block of the model, followed
by another three dense layers mapping to a low dimensional latent space. Another four dense layers map the latent code
back to a higher-dimensional representation. It is then given as input to the model in the same way as the time embedding.
That is, each channel is provided with a conditional bias determined by the representation and time embedding at multiple
stages of the downsampling and upsampling block.

Regularization of the latent space For both datasets, we use a regularization weight of 10−5 when applying L1-
regularization, and a weight of 10−7 when using a probabilistic encoder regularized with KL-Divergence.

MNIST hyperparameters Due to the simplicity of MNIST, we only use two resolutions of size 28 × 28 × 32 and
14× 14× 64, respectively. The number of residual blocks at each resolution is set to two. In each experiment, the model is
trained for 80k iterations. For a uniform sampling of σ we trained the models for an additional 80k iterations with a frozen
encoder and uniform sampling of t.
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Figure 8. Classifier accuracies for few shot learning on given 8-dimensional representations learned using DRL (SM), VDRL (VSM),
Autoencoder (AE) and Variational Autoencoder (VAE).

CIFAR-10 hyperparameters For the silhouette score analysis, we use three resolutions of size 32×32×32, 16×16×32,
and 8× 8× 32, again with only two residual blocks at each resolution. Each model is trained for 90k iterations.

CIFAR-10 (deep) hyperparameters While representation learning works for small models already, sample quality on
CIFAR-10 is poor for models of the size described above. Thus for models used to generate samples, we use eight residual
blocks per resolution and the following resolutions: 32× 32× 32, 16× 16× 64, 8× 8× 64, and 4× 4× 64. Each model
is trained for 300k iterations. Note that this number of iterations is not sufficient for convergence, however capable of
illustrating the representation learning with limited computational resources.

E. Evaluation of the infinite-dimensional representation
In order to evaluate our infinite-dimensional representation, we conduct an ablation study where we compare our proposed
method with Autoencoders (AE) and Variational Autoencoders (VAE) on CIFAR-10 images. We measure the accuracy of
an SVM provided by sklearn (Pedregosa et al., 2011) with default hyperparameters trained on the representation of 100
(resp. 1000) training samples and their class labels. For our time-dependent representation, this is done for fixed values of t
between 0.0 and 1.0 in steps of 0.1. This is done for both DRL and VDRL, where we use a probabilistic encoder regularized
by including an additional KL-Divergence term in the training objective. DRL and AE were regularized using L1-norm, and
the regularization weight was optimized for each model independently.

Results for few-shot learning with fixed representations are shown in Figure 8. As expected, the accuracies when training on
the score matching representations highly depend on the value of t. Overall our representation achieves much better scores
when using the best t, and performs comparable to AE and VAE for t = 1.0. This aligns with Proposition 2.1 claiming that
our representation learning method for t = 1.0 is similar to a static code learned using reconstruction objective. Note that
the shape of the time-dependent classifier accuracies resembles the one of the silhouette scores of CIFAR-10 in 12. This is
not surprising, since both training on single values of t and learning a time-dependent representation are both trained to find
the optimal representation for a given value of t. We further want to point out that representation learning through score
matching enjoys the training stability of diffusion-based generative models, which is often not the case in GANs and VAEs.

F. Downstream Image Classification
Architecture and Hyperparameters In all our experiments, we consider the small WideResNet model WRN-28-2 of
(Sellars et al., 2021) as the encoder module for all of the different settings: diffusion representation learning, autoencoder
and contrastive learning. We sample the time-steps at intervals of 0.1 from the range 0.0 − 1.0. Corresponding to each
time-step, we train a single layered non-linear MLP network for 50 epochs.
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Figure 9. Comparing the low-data regime (1000 labels) downstream performance of the proposed diffusion-based representations (DRL
and VDRL) with the baselines that include autoencoder (AE), variational autoencoder (VAE), simple contrastive learning (simCLR) and
its restricted variant (simCLR-Gauss) which exclude domain-specific data augmentation from the original simCLR algorithm.
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Figure 10. Comparing the low-data regime (5000 labels) downstream performance of the proposed diffusion-based representations (DRL
and VDRL) with the baselines that include autoencoder (AE), variational autoencoder (VAE), simple contrastive learning (simCLR) and
its restricted variant (simCLR-Gauss) which exclude domain-specific data augmentation from the original simCLR algorithm.
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Figure 11. Comparing the low-data regime (10000 labels) downstream performance of the proposed diffusion-based representations (DRL
and VDRL) with the baselines that include autoencoder (AE), variational autoencoder (VAE), simple contrastive learning (simCLR) and
its restricted variant (simCLR-Gauss) which exclude domain-specific data augmentation from the original simCLR algorithm.
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Dataset #labels No pretraining
Pretraining using

DRL Improvement

CIFAR-10 100 64.12 69.79 +5.67
500 86.24 88.28 +2.04

1000 87.48 88.56 +1.08
2000 89.99 89.52 -0.47
4000 90.15 91.13 +0.98

CIFAR-100 1000 45.14 48.04 +2.90
4000 59.86 60.34 +0.48

10000 64.83 65.80 +0.97
20000 65.77 66.39 +0.62

MiniImageNet 4000 47.18 50.75 +3.57
10000 58.66 58.62 -0.04

Table 2. Classifier accuracy in % with and without DRL as pretraining of the classifier when training for 100 epochs only.

Results with Limited Data We perform additional experiments where the encoder system is as before and kept frozen,
but the MLP can only access a fraction of the training set for the downstream supervised classification task. We ablate over
three different number of labels provided to the MLP: 1000, 5000 and 10000. The results for the different datasets can be
seen in Figures 9-11 which shows that the trends are consistent even in low data regime.

G. Semi-supervised image classification
Architecture and Hyperparameters In all experiments, our encoder has the same architecture as the classifier, where
the hidden layer used to measure similarities for assigning pseudo-labels in LaplaceNet is used as the latent code in
representation learning. For all experiments, the input t to the encoder is included as a trainable parameter of the model and
initialized with t = 0.5. As done in the original paper, we train the model for 260 iterations, where each iteration consists of
assigning pseudo-labels and one epoch of supervised training on the assigned pseudo-labels. The training is preceded by
100 supervised epochs on the labeled data. We use the small WideResNet model WRN-28-2 of (Sellars et al., 2021) and the
same hyperparameters as the authors.

Evaluation with limited computation time In the following we include more detailed analysis of the scenario of a few
supervised labels and limited computational resources. Besides LaplaceNet and its version without mixup, we include an
ablation study of encoder pretraining as part of an autoencoder using binary cross-entropy as a reconstruction objective. In
addition, we propose to improve the search for the optimal value of t by the model selection, since the gradient for t is usually
noisy and small. Thus we include additional experiments where we chose the initial t based on the minimum training loss
after 100 epochs of supervised training. The optimal t is approximated by calculating the training loss for 11 equally spaced
values of t in the interval [0.001, 1]. The results are shown in Table 3. While mixup achieves no significant improvement
in the few-label case trained using 100 epochs, we can see that a simple autoencoder pretraining consistently improves
classifier accuracy. More notably, however, our proposed pretraining based on score matching achieves significantly better
results than both random initialization and autoencoder pretraining. In the t-search, we observed that for all datasets, our
proposed method selects t = 0.9, however it moves towards the interval [0.4, 0.6] during training. While this shows that
the approach of selecting t based on supervised training loss is not working, it demonstrates that the parameter t can very
well be learned in the training process, making the downstream task performance robust to the initial value of t. In our
experiments the final value of t was always in the range [0.4, 0.6], independent of the initial value of t.

H. Training on single timescales
To understand the effect of training DRL on different timescales more clearly, we limit the support of the weighting function
λ(t) to a single value of t. We analyze the resulting quality of the latent representation for different values of t using the
silhouette score with euclidean distance based on the dataset classes (Rousseeuw, 1987). It compares the average distance
between a point to all other points in its cluster with the average distance to points in the nearest different cluster. Thus
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Pretraining Options
CIFAR-10
100 labels

CIFAR-100
1000 labels

MiniImageNet
4000 labels

None 64.12 45.14 47.18
None mixup 54.06 46.28 47.64
DRL 69.79 48.04 50.75
DRL t-search 67.07 47.08 50.31
Autoencoder 64.99 46.88 48.52

Table 3. Comparison of classifier accuracy in % for different pretraining methods in the case of few supervised labels when training for
100 epochs only.

Pretraining
CIFAR-10
100 labels

CIFAR-100
1000 labels

MiniImageNet
4000 labels

None 73.68 55.58 58.40
DRL 74.31 55.85 58.95
Autoencoder 58.84 55.41 57.93

Table 4. Classifier accuracy in % for autoencoder pretraining compared with the baseline and score matching as pretraining. No mixup is
applied for this ablation study.

Ours Ours Ours Ours Ours
Pretraining Basic Basic Mixup-DRL VDRL VDRL
Mixup in sup. training No Yes Yes No Yes

Dataset #labels

CIFAR-10 100 74.31 64.67 70.40 81.63 77.51
500 92.70 92.31 92.55 92.79 91.46

1000 93.24 93.42 93.14 93.60 93.33
2000 94.18 93.91 93.80 93.96 94.27
4000 94.75 95.22 94.75 95.00 94.87

CIFAR-100 1000 55.85 55.74 55.15 56.47 55.65
4000 67.22 67.47 67.09 67.54 67.52

10000 73.31 73.66 74.36 73.50 73.20
20000 76.46 76.88 77.04 76.64 76.68

MiniImageNet 4000 58.95 59.29 59.46 59.14 59.36
10000 67.31 66.63 67.31 67.46 66.79

Table 5. Evaluation of classifier accuracy in %, including the setting of using mixup during pretraining (right column). DRL pretraining is
our proposed representation learning, and ”Mixup-DRL” the respective version which additionally applies mixup during pretraining.
”VDRL” instead uses a probabilistic encoder.
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Figure 12. Mean and standard deviation of silhouette scores when training a DRL model on MNIST (left) and CIFAR-10 (right) using a
single t over three runs.

tinit σ(tinit)
Gaussian

FID ↓
Uniform + Gaussian

FID ↓
0.5 0.71 218.95 25.02
0.6 1.66 75.11 5.15
0.7 3.88 12.57 2.98
0.8 9.10 3.05 2.99
0.9 21.33 2.97 2.94
1.0 50.00 3.01 2.99

Table 6. FID for different initial noise scales evaluated on 20k generated samples.

we measure how well the latent representation encodes classes, ignoring any other features. Note that after learning the
representation with a different distribution of t it is necessary to perform additional training with a uniform sampling of t
and a frozen encoder to achieve good sample quality.

Figure 12 shows the silhouette scores of latent codes of MNIST and CIFAR-10 samples for different values of t. In alignment
with our hypothesis of Section 2.1, training DRL on a small t and thus low noise levels leads to almost no encoded class
information in the latent representation, while the opposite is the case for a range of t which differs between the two
datasets. The decline in encoded class information for high values of t can be explained by the vanishing difference between
distributions of perturbed samples when t gets large. This shows that the distinction among the code classes represented by
the silhouette score is controlled by λ(t).

I. The choice of the initial noise scale
In the following, we evaluate image quality and diversity for different initial noise scales for CIFAR-10 dataset. Note that
we do not change σ(T ), but instead evaluate generated images for different initial times tinit, which implicitly define the
initial noise scale σ(tinit). This reduces the number of sampling steps per image, which is 1000× tinit and thus directly
proportional to tinit. Table 6 shows the FID of generated images for various values of tinit. As we can see, the first 200
sampling steps can safely be replaced by approximating the prior directly either with the Gaussian or the additional uniform
distribution. Interestingly, using the sum of the uniform and Gaussian random variables as a prior leads to improved image
quality. This approximation for p0.7(x) allows us to reduce the number of sampling steps by 30% without sacrificing
image quality, which is further supported by the visual quality of generated samples shown in Figure 13. Further, note that
FID is occasionally lower for values of tinit < 1.0 than for tinit = 1. This suggests that up to these timescales, our prior
approximates the distribution better than the diffusion model when starting at tinit = 1.0.
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(a) tinit = 0.5 (b) tinit = 0.6 (c) tinit = 0.7 (d) tinit = 0.8 (e) tinit = 0.9 (f) tinit = 1.0

(g) tinit = 0.5 (h) tinit = 0.6 (i) tinit = 0.7 (j) tinit = 0.8 (k) tinit = 0.9 (l) tinit = 1.0

Figure 13. Generated image samples for different values of tinit. Top row ((a)-(f)) uses the Gaussian prior, bottom row ((g)-(l)) uses the
version with an additional uniform random variable in the prior.
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