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Abstract
Unsupervised multiplex graph representation
learning (UMGRL) has received increasing in-
terest, but few works simultaneously focused on
the common and private information extraction.
In this paper, we argue that it is essential for con-
ducting effective and robust UMGRL to extract
complete and clean common information, as well
as more-complementarity and less-noise private
information. To achieve this, we first investigate
disentangled representation learning for the mul-
tiplex graph to capture complete and clean com-
mon information, as well as design a contrastive
constraint to preserve the complementarity and
remove the noise in the private information. More-
over, we theoretically analyze that the common
and private representations learned by our method
are provably disentangled and contain more task-
relevant and less task-irrelevant information to
benefit downstream tasks. Extensive experiments
verify the superiority of the proposed method in
terms of different downstream tasks.

1. Introduction
Recently, multiplex graph representation learning (MGRL)
has emerged as a powerful tool to model complex relation-
ships among nodes (Chu et al., 2019; Zhang & Kou, 2022).
In particular, unsupervised multiplex graph representation
learning (UMGRL) methods have attracted increasing atten-
tion due to the label availability for the training process and
have shown great potential in a wide range of applications,
such as anomaly detection and recommendation systems
(Chen et al., 2022; Xie et al., 2022).
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Existing UMGRL methods can be roughly divided into two
categories, i.e., traditional unsupervised methods and self-
supervised methods. Traditional UMGRL methods aim
to extract hidden information without the help of labels
by random walk strategies (Dong et al., 2017) or proxim-
ity preservation (Shi et al., 2018a). However, they often
overemphasize proximity information and ignore node fea-
tures. Inspired by the prosperity of self-supervised learning
(He et al., 2020; Chen & He, 2021), self-supervised MGRL
methods (including intra-graph and inter-graph contrastive
learning methods) have been developed and achieved great
success in recent years. The intra-graph contrastive learn-
ing methods aim to capture the global properties, but they
ignore intrinsic associations among different graphs (Park
et al., 2020) and may lead to suboptimal representations.
To solve this issue, inter-graph contrastive learning meth-
ods are proposed as an alternative by modelling common
information among different graphs (Zhou et al., 2022). The
common information contains the consistency among all
graphs and has been verified to be the key component of
sample identification (Zhu et al., 2022).

Although existing UMGRL especially inter-graph con-
trastive learning methods have achieved promising perfor-
mance in many tasks, there are still some limitations to be
addressed. On the one hand, previous UMGRL methods are
designed to implicitly capture the common information, but
such a process is performed in a black box (Zhu et al., 2022;
Li et al., 2022). As a result, previous UMGRL methods
cannot verify if all common information has been obtained
(i.e., complete) and if it contained other confusing contents
(i.e., clean). On the other hand, apart from the common
information, the rest of the content specific to each graph
can be referred to as private information. Some private infor-
mation is noise, but the other parts contain complementary
information, which is different from that in other graphs
and has been demonstrated to facilitate downstream tasks
in many fields (Xie et al., 2020; Wang et al., 2022a). How-
ever, previous UMGRL methods do not consider private
information and thus ignoring its complementarity (Zhu
et al., 2022). Moreover, they generally fuse all representa-
tions from different graphs and thus including noise into the
fusion process (Jing et al., 2021a).

Based on the above observations, it is a possible solution to
improve the effectiveness and robustness of UMGRL by ex-
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Figure 1. The flowchart of the proposed DMG. Specifically, given the node feature matrix and graph structures, DMG first employs the
graph convolutional layer and Multi-Layer Perceptron (MLP) to generate common and private representations (i.e., C(r) and P(r)) for
every graph. After that, DMG investigates the matching loss Lmat and the correlation loss L(r)

cor , respectively, to obtain the complete and
the clean common information, as well as investigate the reconstruction loss L(r)

rec to promote the invertibility of encoders for exploring
the issue of the trivial solution. Meanwhile, DMG investigates the contrastive loss L(r)

con to preserve the complementarity and remove
the noise in the private information. Finally, private representations of different graphs are first fused by the average pooling and then
concatenated with the common variable S to obtain the final representations Z.

plicitly capturing complete and clean common information,
as well as preserving complementarity and removing noise
in the private information. To achieve this, there are two
crucial challenges to be solved, i.e., (i) it is difficult to de-
couple the common information from private information as
they are generally mixed together, and (ii) it is necessary to
distinguish and further preserve the complementarity from
noise in the private information.

In this paper, to address the above issues, different from pre-
vious traditional UMGRL and self-supervised MGRL, we in-
vestigate a new unsupervised framework, i.e., Disentangled
Multiplex Graph representation learning (DMG for brevity),
to conduct effective and robust UMGRL, as shown in Figure
1. To do this, we first decouple the common and private
representations by designing a new disentangled represen-
tation learning for the multiplex graph to extract complete
and clean common information, and thus tackling Challenge
(i). Moreover, we further preserve the complementarity and
remove the noise in the private information by designing a
contrastive constraint on private representations, to tackle
Challenge (ii). As a result, the common and private represen-
tations learned by our method can be provably disentangled
and contain more task-relevant and less task-irrelevant in-
formation to benefit downstream tasks.

Compared to previous UMGRL methods, the main contri-
butions of our method can be summarized as follows:

• To the best of our knowledge, we make the first attempt
to disentangle the common and private representations
for the multiplex graph to extract complete and clean

common information. We further propose a contrastive
constraint to preserve the complementarity and remove
the noise in the private information.

• We theoretically prove that the representations learned
by our method can extract complete and clean common
information. We further prove that the common and
private representations learned by our method contain
more task-relevant information and less task-irrelevant
information.

• We experimentally demonstrate the effectiveness and
robustness of the proposed method in terms of node
classification and node clustering tasks on multiplex
graph datasets and single-view graph datasets, com-
pared to numerous comparison methods.

2. Related Work
This section briefly reviews the topics related to this work,
including unsupervised multiplex graph representation learn-
ing and disentangled representation learning.

2.1. Unsupervised Multiplex Graph Representation
Learning

Unsupervised multiplex graph representation learning (UM-
GRL) has emerged as a popular method and has drawn
considerable attention in recent years as it eliminates the
reliance on label information, and the capability to model
the complex relationships between nodes (Chu et al., 2019).
Existing UMGRL methods can be classified into two cat-
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egories, i.e., traditional unsupervised methods and self-
supervised methods. Traditional unsupervised methods tend
to generate representations by random walk strategies (Dong
et al., 2017) or proximity preservation (Shi et al., 2018a)
based on the proximity among nodes. For example, MNE
(Zhang et al., 2018) performs meta-path based random walks
to extract information of multi-type relations into a unified
representations space. Similarly, HERec (Shi et al., 2019)
first designs a type constraint strategy to filter the node
sequence and then learns representations by random walk
based strategies. As for proximity preservation, AspEm (Shi
et al., 2018a) alleviates the incompatibility among different
graphs by preserving a set of representative proximity in-
formation in the multiplex graph. HEER (Shi et al., 2018b)
further improves the effectiveness by coupling the edge
representations with inferred type-specific metrics.

Limited by the overemphasis on proximity information and
node feature ignorance of traditional unsupervised methods,
self-supervised MGRL methods have shown remarkable
performance. Existing self-supervised MGRL methods can
be divided into two subgroups, i.e., intra-graph contrastive
learning methods and inter-graph contrastive learning meth-
ods. For example, DMGI (Park et al., 2020) and HDMI
(Jing et al., 2021a) conduct contrastive learning by maximiz-
ing the mutual information between node representations
and the graph summary within each graph, but overlook
the intrinsic correlation among different graphs. Differ-
ent to the intra-graph contrastive learning, STENCIL (Zhu
et al., 2022) conducts inter-graph contrastive learning by
contrasting node representations from each graph and an ag-
gregation graph. CKD (Zhou et al., 2022) adopts contrastive
learning between node representations and high-level repre-
sentations of different graphs under the collaborative knowl-
edge distillation framework. Despite their success, existing
methods fail to obtain complete and clean common informa-
tion, as well as more-complementarity and less-noise private
information, which is significant for downstream tasks.

2.2. Disentangled Representation Learning

Disentangled representation learning aims to learn represen-
tations that identify and disentangle the underlying explana-
tory factors hidden in the given data. Existing disentangled
representation learning has already made promising devel-
opments with great potential based on the generative models
(Higgins et al., 2016; Xu et al., 2021a; Xiao et al., 2022).
For example, Beta-VAE (Higgins et al., 2016) introduces an
adjustable parameter to balance latent channel capacity and
independence constraints with reconstruction accuracy and
thus improving the variational auto-encoder (VAE) frame-
work. DDPAE (Jiang et al., 2020) proposes a decomposi-
tional disentangled predictive auto-encoder framework to
learn both the latent decomposition and disentanglement
without explicit supervision. PSGAN (Jiang et al., 2020)

proposes to disentangle the content information and style
information of images to generate the style transferred im-
ages based on the generative adversarial network. S3VAE
(Zhu et al., 2020a) proposes a self-supervised sequential
VAE model which disentangles the time-varying variables
and time-invariant variables of video and audio sequences.

Inspired by the prosperity in other fields, disentangled rep-
resentation learning has recently raised a surge of inter-
est in graph-structured data (Ma et al., 2019; Yang et al.,
2020; Mercatali et al., 2022). For example, GraphVAE (Si-
monovsky & Komodakis, 2018) transfers the generative
models for images and text to the domain of graphs and
is available to output a probabilistic fully-connected graph
directly based on VAE framework. GraphLoG (Xu et al.,
2021b) proposes to conduct self-supervised graph-level rep-
resentation learning by disentangling the local similarities
and global semantic clusters. DGCL (Li et al., 2021) pro-
poses to learn disentangled graph-level representations with
self-supervision by forcing the factorized representations
to independently reflect the expressive information from
different latent factors. DSSL (Xiao et al., 2022) decouples
different underlying semantics between different neighbor-
hoods into the self-supervised learning process based on the
generative model. Although the above methods achieve ex-
cellent results on different tasks, they are all designed for the
single-view graph and thus fail to take into account the com-
plex relationships between nodes. Moreover, these methods
do not consider the complementarity and noise within each
graph structure leading to suboptimal performance.

3. Method
Notations. Let G = {G(1),G(2), . . . ,G(R)} to denote
the multiplex graph, where G(r) = {V, E(r)} is the r-th
graph in the multiplex graph, R is the number of graphs.
V = {v1, v2, · · ·, vN} and E(r) represent the node set of
all graphs and the edge set of the r-th graph, respectively.
We denote node features of each graph as X(r) = T (X) ∈
RN×F , where T denotes the random dropout operation, X
denotes original node features, N and F denote the number
of nodes and the dimension of node features, respectively.
A(r) ∈ RN×N denotes the graph structure of the r-th graph,
where A

(r)
ij = 1 iff e(r)ij = (vi, vj) ∈ E(r). The proposed

DMG first learns the disentangled common representations
C(r) ∈ RN×D and private representations P(r) ∈ RN×d

through a common variable S ∈ RN×D, and then obtain
the fused representations Z ∈ RN×(R×D+d), where D and
d are the dimensions of the representation space.

3.1. Motivation

Previous UMGRL methods aim to implicitly extract com-
mon information among different graphs, which is effective
and robust in revealing the identity of samples (Zhou et al.,
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2022; Zhu et al., 2022). However, they generally ignore the
complementarity in the private information of each graph,
and may lose significant properties among nodes. For exam-
ple, in a multiplex graph, where papers are nodes and edges
represent either co-subjects or co-authors in two different
graphs. If a private edge (e.g., the co-subject relation) exists
only within a certain graph and interconnects two papers
from the same class, it benefits to reduce the intra-class
gap by providing complementary information to identify
papers. Therefore, it is necessary to consider both the com-
mon information and the private information for achieving
an effective and robust UMGRL.

Based on the common information that helps to identify
the samples, it is intuitive to capture all the common infor-
mation among different graphs (i.e., complete). Moreover,
such complete common information should contain com-
mon information only (i.e., clean). In contrast, if common
information contains other confusing contents, the quality
of the common information can be compromised. Therefore,
the first question comes: How to obtain complete and clean
common information? On the other hand, private informa-
tion is a mix of complementarity and noise. Considering
the same example of citation networks, if a private edge
interconnects two papers from different classes, it can inter-
fere the message passing and should be removed as noise.
Therefore, the second question comes: How to preserve
complementarity and remove noise in private information?

However, few previous UMGRL methods explored the
above questions. Recently, disentangled representation
learning methods have been developed to obtain common
and private representations (Ma et al., 2019; Li et al., 2021;
Lyu et al., 2022; Wang et al., 2022c;b; Xiao et al., 2022),
but it is challenging to apply them to solve the above issues
in UMGRL due to the complex relationships among nodes
in the multiplex graph, as well as the complementarity and
noise in the graph structure. To do this, we propose a new
disentangled multiplex graph representation learning frame-
work, to answer the above two questions, i.e., Section 3.2 for
the first question, and Section 3.3 for the second question.

3.2. Common Information Extraction

Previous UMGRL methods (e.g., inter-graph contrastive
learning methods) generally implicitly capture the common
patterns among different graphs by maximizing the mutual
information between two graphs. For instance, to extract
the common information, STENCIL (Zhu et al., 2022) max-
imizes the mutual information between each graph and the
aggregation graph, while CKD (Zhou et al., 2022) maxi-
mizes the mutual information between regional representa-
tions and global representations in different graphs. How-
ever, these efforts cannot capture complete and clean com-
mon information provably as they fail to decouple the com-

mon information from private information. To solve this is-
sue, in this paper, we investigate disentangled representation
learning to obtain complete and clean common information.

Specifically, we first employ the graph convolutional layer
g(r) to generate node representations H(r) based on the
node features and the graph structure of each graph, i.e.,

H(r) = σ(D̂
− 1

2
r Â(r)D̂

− 1
2

r X(r)Θ(r)), (1)

where Â(r) = A(r) + wIN , and w indicates the weight
of self-connections. D̂r is the degree matrix of Â(r), σ
is the activation function, and Θ(r) is the weight matrix
of g(r). To facilitate the decoupling of the common and
private information within each graph, we then employ MLP
with unshared parameters (i.e., f (r)c and f (r)p ) to map node
representations H(r) of each graph into common and private
representations (i.e., C(r) and P(r)).

Given C(1), ...,C(R), the simplest way for aligning com-
mon representations from different graphs is to directly set
C(1) = ... = C(R). However, this may affect the quality
of common representations by directly aligning suboptimal
common representations in the initial training process (Ben-
ton et al., 2019; Lyu & Fu, 2020; Lyu et al., 2022). In this
paper, we introduce a common variable S with the orthogo-
nality and zero mean via the singular value decomposition
operation on common representations. After that, we con-
duct the matching loss between the common representations
C(r) and the common variable S, aiming to gradually align
common representations from different graphs for capturing
complete common information among them. The matching
loss is formulated as:

Lmat =
1

N

R∑
r=1

N∑
n=1

(c(r)n − sn)
2,

s.t.
1

N

N∑
n=1

sns
⊤
n = I,

1

N

N∑
n=1

sn = 0.

(2)

Intuitively, S in Eq. (2) communicates the common repre-
sentations from different graphs and converges them to the
consistency, i.e., C(1) = . . . = S = . . . = C(R). There-
fore, the consistency among common representations of
all graphs guarantees that the common information among
different graphs can be obtained completely.

After that, to decouple the common and private represen-
tations, we have to enforce the statistical independence be-
tween them. It is noteworthy that if common and private
representations are statistically independent, then we have
E[ϕ(r)(C(r))ψ(r)(P(r))] = E[ϕ(r)(C(r))]E[ψ(r)(P(r))],
and vice versa, where ϕ(r) and ψ(r) are measurable func-
tions (Gretton et al., 2005). Obviously, the minimization
of the correlation between ϕ(r)(C(r)) and ψ(r)(P(r)) could
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be used to achieve the independence between common and
private representations. In particular, the correlation loss is
obtained by calculating the Pearson’s correlation coefficient
between ϕ(r)(C(r)) and ψ(r)(P(r)), i.e.,

Lcor =

R∑
r=1

|Cov(ϕ(r)(C(r)), ψ(r)(P(r)))|√
Var(ϕ(r)(C(r))

√
Var(ψ(r)(P(r))

, (3)

where Cov(·, ·) and Var(·) indicate covariance and variance
operations, respectively. In Eq. (3), the correlation coeffi-
cient between ϕ(r)(C(r)) and ψ(r)(P(r)) is encouraged to
converge to 0. Actually, as the correlation loss converges,
the common representations C(r) and the private represen-
tations P(r)) are statistically independent.

Based on Eq. (3), the common representations C(r) are
expected to obtain clean common information. Therefore,
we almost answer the first question by the matching loss
(i.e., achieving complete common information) and the cor-
relation loss (i.e., achieving clean common information).
However, the learned common and private representations
may be trivial solutions under the unsupervised framework
(Jing et al., 2021b; Xu et al., 2022a;b). Popular solutions
include contrastive learning methods and auto-encoder meth-
ods. Contrastive learning methods introduce a large number
of negative samples to avoid trivial solutions, but they may
induce large memory overheads (Zhang et al., 2021; Liu
et al., 2023b;a). Auto-encoder methods employ the auto-
encoder framework with the reconstruction loss to promote
the invertibility of encoders for preventing the trivial solu-
tions (Kipf & Welling, 2016; Liu et al., 2022). However,
existing graph auto-encoders are designed to reconstruct the
direct edges and ignore the topological structure as well as
be with expensive computation cost (Donnat et al., 2018;
Mrabah et al., 2022). To address the above issues, we investi-
gate a new reconstruction loss to simultaneously reconstruct
the node features and the topological structure.

Specifically, we first concatenate the common and private
representations and then obtain the reconstructed node rep-
resentations X̃(r) with the reconstruction network p(r). We
further conduct the feature reconstruction and topology re-
construction loss to reconstruct the node features and local
topological structure, respectively. As a result, the recon-
struction loss is formulated as:

Lrec =
1

N

R∑
r=1

N∑
n=1

((x̃(r)
n − x(r)

n )2 + (x̃(r)
n − x

(r)
n,nei)

2),

(4)
where x

(r)
n,nei =

1
m

∑m
j=1{x

(r)
j |vj ∈ N (r)

i }, m is the num-

ber of sampled neighbors, and N (r)
i represents the 1-hop

neighborhood set of node vi. In Eq. (4), the first term
encourages X̃(r) to reconstruct the original node features,
and the second term encourages X̃(r) to reconstruct the
topological structure. As a result, Eq. (4) enforces that the

reconstructed representations and the original input (i.e., the
node features and the graph topology) can be recovered
from each other, thus promoting the invertibility of encoders
to avoid trivial solutions.

Denoting the optimal common representations as C∗, which
contains complete and clean common information, we have
Theorem 3.1 on the common information extraction. Proofs
of all Theorems are shown in Appendix B.
Theorem 3.1. Assume the solution that satisfies the con-
straints in Eq. (2), Eq. (3), and Eq. (4) has been found,
then we have C(r) = f

(r)
c ◦ g(r)(X(r),A(r)) = φ(C∗) for

∀r ∈ [1,R], where φ is an invertible function.

Theorem 3.1 indicates that if the solution satisfies the con-
straints in Eq. (2), Eq. (3), and Eq. (4), the common
representations learned by our method and the optimal com-
mon representations can be transformed from each other
due to the invertibility of the function φ. Therefore, the
common representations learned by our method (i.e., C(r))
have all the information of the optimal common represen-
tations (i.e., C∗) and thus extracting complete and clean
common information provably. As a result, based on Eq.
(2), Eq. (3), and Eq. (4), we disentangle the common and
private representations to obtain complete and clean com-
mon information and thus answering the first question in
Section 3.1.

3.3. Private Information Constraint

Based on Section 3.1, the private information is a mix of
complementarity and noise. Therefore, given the learned pri-
vate representations, we hope to further answer the second
question in Section 3.1, i.e., to preserve the complementarity
and remove the noise in the private information. Moreover,
the private information of the multiplex graph mainly lies
in the graph structure of each graph since node features
of different graphs are generated from the shared feature
matrix X. Therefore, we investigate preserving the comple-
mentary edges and removing the noisy edges in each graph
structure. To do this, we first give the following definition
for complementarity and noise in graph structures:
Definition 3.2. For any private edge in the r-th graph G(r),
i.e., e(r)ij ∈ E(r), and e

(r)
ij /∈

⋃
r′∈[1,R],r′ ̸=r E(r′), if the

node pair (vi, vj) belongs to the same class, then e(r)ij is a

complementary edge in the graph G(r). Otherwise, e(r)ij is a
noisy edge in the graph G(r).

Definition 3.2 divides the private information in each graph
into two parts, i.e., complementary edges and noisy edges,
according to the classes of node pairs. However, the node
labels are unavailable in an unsupervised manner. To solve
this issue, in this work, we approximate the label informa-
tion of the node pair (vi, vj) as the cosine similarity ϵ(r)ij
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between the common variables si and sj , i.e.,

ϵ
(r)
ij =

si · sj
∥si∥∥sj∥

. (5)

Given the cosine similarity of all node pairs in the edge set
E(r), we further assume that node pairs with top similarity
belong to the same class and node pairs with low similarity
belong to different classes. As a result, the edges with high
similarity for connected nodes are complementary edges,
denoted as E(r)

c , while the edges with low similarity for con-
nected nodes are noisy edges, denoted as E(r)

n . Intuitively,
the complementary edges should be preserved while the
noisy edges should be removed.

To achieve the above intuition, we design a simple con-
trastive module and conduct the contrastive loss between
private representations of node pairs in E(r)

c and E(r)
n , i.e.,

Lcon = −
R∑

r=1

log

∑
e
θ
(
p
(r)
i ,p

(r)
j

)
/τ

∑
e
θ
(
p
(r)
i ,p

(r)
j

)
/τ

+
∑

e
θ
(
p
(r)
k

,p
(r)
l

)
/τ

.

(6)
p
(r)
i , p(r)

j , p(r)
k , and p

(r)
l indicate the private representations

of node vi, vj , vk, and vl, respectively, where (vi, vj) =

e
(r)
ij ∈ E(r)

c and (vk, vl) = e
(r)
kl ∈ E(r)

n . Moreover, θ is the
cosine similarity operation and τ is a temperature parameter.
Eq. (6) increases the cosine similarity of nodes connected
by the complementary edges, meanwhile, it decreases the
cosine similarity of nodes connected by the noisy edges.
Thus Eq. (6) preserves the complementarity and removes
noise in private information to answer the second question
in Section 3.1. Different from the widely-used contrastive
objective function, i.e., the InfoNCE loss (Oord et al., 2018)
regarding two augmented views of the same samples as
positive pairs while our proposed contrastive loss treats two
nodes connected by complementary edges as positive pairs.

Besides preserving the complementarity and removing
noise, the private information constrained by Eq. (6) benefits
the downstream tasks as well. Denote Ĥ(r) as representa-
tions concatenated by the common and private representa-
tions learned by our method, and denote H̃(r) as the node
representations learned by previous inter-graph contrastive
learning methods, which maximize the mutual information
among different graphs, we have:

Theorem 3.3. For any downstream task T , the node repre-
sentations Ĥ(r) contain more task-relevant information and
less task-irrelevant information than H̃(r), i.e.,

I(Ĥ(r), T ) ≥ I(H̃(r), T ),

H(Ĥ(r)|T ) ≤ H(H̃(r)|T ),
(7)

where I(Ĥ(r), T ) indicates the mutual information between

Ĥ(r) and T , and H(Ĥ(r)|T ) indicates the entropy of Ĥ(r)

conditioned on T .

Based on Theorem 3.3, the common and private represen-
tations learned by our method are demonstrated to contain
more task-relevant information and less task-irrelevant in-
formation than the node representations learned by previous
contrastive learning methods. Note that we do not con-
strain the downstream task T as classification, regression,
or clustering. As a result, the concatenated common and
private representations learned by our method are expected
to perform better on different downstream tasks.

3.4. Objective Function

Integrating the matching loss in Eq. (2), the correlation
loss in Eq. (3), the reconstruction loss in Eq. (4), with the
contrastive loss in Eq. (6), the objective function of the
proposed DMG is formulated as:

J = Lmat + αLcor + βLrec + λLcon, (8)

where α, β and λ are non-negative parameters.

After optimization, the proposed DMG is expected to ob-
tain complete and clean common representations, as well
as more-complementarity and less-noise private representa-
tions, to achieve effective and robust UMGRL (verified in
Section 4). We then conduct the average pooling (LeCun
et al., 1989) to fuse private representations of all graphs to
obtain the overall private representations P, i.e.,

P =
1

R

R∑
r=1

P(r). (9)

Finally, we concatenate the overall private representations P
with the common variable S to obtain final representations
Z. We list the pseudo-code of the proposed method in
Appendix A.

4. Experiments
In this section, we conduct experiments on six public
datasets to evaluate the proposed method in terms of differ-
ent tasks. Details of experiments are shown in Appendix C,
and additional results are shown in Appendix D.

4.1. Experimental Setup

4.1.1. DATASETS

The used datasets include four multiplex graph datasets and
two single-view graph datasets. Multiplex graph datasets
include two citation datasets (i.e., ACM (Wang et al.,
2019) and DBLP (Wang et al., 2019)), two movie datasets
(i.e., IMDB (Wang et al., 2019) and Freebase (Wang et al.,
2021)). Single-view graph datasets include two amazon sale
datasets, i.e., Photo and Computers (Shchur et al., 2018).
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Table 1. Classification performance (i.e., Macro-F1 and Micro-F1) of all methods on all multiplex graph datasets.

Method ACM IMDB DBLP Freebase

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

Deep Walk 73.9 ± 0.3 74.1 ± 0.1 42.5 ± 0.2 43.3 ± 0.4 88.1 ± 0.2 89.5 ± 0.3 49.3 ± 0.3 52.1 ± 0.5
GCN 86.9 ± 0.2 87.0 ± 0.3 45.7 ± 0.4 49.8 ± 0.2 90.2 ± 0.2 90.9 ± 0.5 50.5 ± 0.2 53.3 ± 0.2
GAT 85.0 ± 0.4 84.9 ± 0.3 49.4 ± 0.2 53.6 ± 0.4 91.0 ± 0.4 92.1 ± 0.2 55.1 ± 0.3 59.7 ± 0.4
DGI 89.1 ± 0.4 88.2 ± 0.4 45.1 ± 0.2 46.7 ± 0.2 90.3 ± 0.1 91.1 ± 0.4 54.9 ± 0.1 58.2 ± 0.4

MNE 79.2 ± 0.4 79.7 ± 0.3 44.7 ± 0.5 45.6 ± 0.3 89.3 ± 0.2 90.6 ± 0.4 52.1 ± 0.3 54.3 ± 0.2
HAN 89.4 ± 0.2 89.2 ± 0.2 49.8 ± 0.5 54.2 ± 0.3 91.2 ± 0.4 92.0 ± 0.5 53.2 ± 0.1 57.2 ± 0.4
DMGI 89.8 ± 0.1 89.8 ± 0.1 52.2 ± 0.2 53.7 ± 0.3 92.1 ± 0.2 92.9 ± 0.3 54.9 ± 0.1 57.6 ± 0.3
DMGIattn 88.7 ± 0.3 88.7 ± 0.5 52.6 ± 0.2 53.6 ± 0.4 90.9 ± 0.2 91.8 ± 0.3 55.8 ± 0.4 58.3 ± 0.5
HDMI 90.1 ± 0.3 90.1 ± 0.3 55.6 ± 0.3 57.3 ± 0.3 91.3 ± 0.2 92.2 ± 0.5 56.1 ± 0.2 59.2 ± 0.2
HeCo 88.3 ± 0.3 88.2 ± 0.2 50.8 ± 0.3 51.7 ± 0.3 91.0 ± 0.3 91.6 ± 0.2 59.2 ± 0.3 61.7 ± 0.4
MCGC 90.2 ± 0.4 90.0 ± 0.3 56.3 ± 0.5 57.5 ± 0.6 91.9 ± 0.3 92.1 ± 0.4 56.6 ± 0.1 59.4 ± 0.3
CKD 90.4 ± 0.3 90.5 ± 0.2 54.8 ± 0.2 57.7 ± 0.3 92.0 ± 0.2 92.3 ± 0.5 60.4 ± 0.4 62.9 ± 0.5
DMG 91.0 ± 0.3 90.9 ± 0.4 57.6 ± 0.2 58.9 ± 0.4 93.3 ± 0.2 94.0 ± 0.3 62.4 ± 0.7 65.9 ± 0.8

4.1.2. COMPARISON METHODS

The comparison methods include twelve single-view graph
methods and eight multiplex graph methods. Single-view
graph methods include two semi-supervised methods (GCN
(Kipf & Welling, 2017) and GAT (Velickovic et al., 2018)),
two traditional unsupervised methods (i.e., DeepWalk (Per-
ozzi et al., 2014) and VGAE (Kipf & Welling, 2016)),
and eight self-supervised methods, (i.e., DGI (Velickovic
et al., 2019), GMI (Peng et al., 2020), MVGRL (Hassani &
Khasahmadi, 2020), GRACE (Zhu et al., 2020b), GCA (Zhu
et al., 2021)), GIC (Mavromatis & Karypis, 2021), COSTA
(Zhang et al., 2022), and DSSL (Xiao et al., 2022)). Mul-
tiplex graph methods include one semi-supervised method
(i.e., HAN (Wang et al., 2019)), one traditional unsuper-
vised method (i.e., MNE (Zhang et al., 2018)), and six
self-supervised methods, i.e., DMGI (Park et al., 2020),
DMGIattn (Park et al., 2020), HDMI (Jing et al., 2021a),
HeCo (Wang et al., 2021), MCGC (Pan & Kang, 2021), and
CKD (Zhou et al., 2022)).

For a fair comparison, we use single-view graph methods
on multiplex graph datasets by separately learning the rep-
resentations of each graph and further concatenating them
for downstream tasks. Moreover, we apply random augmen-
tations on every single-view graph dataset to generate two
graph views for multiplex graph methods.

4.1.3. EVALUATION PROTOCOL

We follow previous works (Jing et al., 2021a; Zhou et al.,
2022) to conduct node classification and node clustering
as semi-supervised and unsupervised downstream tasks, re-
spectively. Moreover, we employ Macro-F1 and Micro-F1
to evaluate the performance of node classification, and Ac-
curacy and Normalized Mutual Information (NMI) to eval-
uate the performance of node clustering. Furthermore, we
use noisy edges (i.e., random edges) to randomly replace a

certain ratio of edges in each graph, for evaluating the ro-
bustness of our method and comparison methods. The code
is released at https://github.com/YujieMo/DMG.

4.2. Effectiveness Analysis

4.2.1. EFFECTIVENESS ON THE MULTIPLEX GRAPH

We first evaluate the effectiveness of the proposed method
on the multiplex graph datasets by reporting the results
of node classification (i.e., Macro-F1 and Micro-F1) and
node clustering (i.e., Accuracy and NMI) in Tables 1 and 2.
Obviously, our method achieves the best effectiveness on
both node classification task and node clustering task.

First, compared with single-view graph methods (i.e., Deep
Walk, GCN, GAT, and DGI), the proposed DMG always
outperforms them by large margins. For example, the pro-
posed DMG on average improves by 20.4%, compared to
the best single-view graph method (i.e., DGI), in terms of
classification and clustering tasks, on all multiplex graph
datasets. This demonstrates the superiority of the multiplex
graph methods, which may explore correlations among dif-
ferent graphs and thus better mine the hidden information
to learn discriminative node representations.

Second, compared to multiplex graph methods, the proposed
DMG achieves the best results, followed by MCGC, CKD,
HDMI, DMGI, HeCo, DMGIattn, HAN, and MNE. For ex-
ample, our method on average improves by 1.6%, compared
to the best comparison method MCGC, in terms of classifi-
cation and clustering tasks, on all multiplex graph datasets.
This can be attributed to the fact that the proposed DMG can
explicitly capture complete and clean common information,
as well as more-complementarity and less-noise private in-
formation. As a result, this introduces more task-relevant
information and less task-irrelevant in learned representa-
tions, leading to better downstream task performance.
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Table 2. Clustering performance (i.e., Accuracy and NMI) of all methods on all multiplex graph datasets.

Method ACM IMDB DBLP Freebase

Accuracy NMI Accuracy NMI Accuracy NMI Accuracy NMI

Deep Walk 64.5 ± 0.7 41.6 ± 0.5 42.1 ± 0.4 1.5 ± 0.1 89.5 ± 0.4 69.0 ± 0.2 44.5 ± 0.6 12.8 ± 0.4
DGI 81.1 ± 0.6 64.0 ± 0.4 48.9 ± 0.2 8.3 ± 0.3 85.4 ± 0.3 65.6 ± 0.4 52.9 ± 0.2 17.8 ± 0.2

MNE 69.1 ± 0.2 54.5 ± 0.3 46.5 ± 0.3 4.6 ± 0.2 86.3 ± 0.3 68.4 ± 0.2 45.1 ± 0.5 13.3 ± 0.7
DMGI 88.4 ± 0.3 68.7 ± 0.5 52.5 ± 0.7 13.1 ± 0.3 91.8 ± 0.5 76.4 ± 0.6 53.1 ± 0.4 17.3 ± 0.4
DMGIattn 90.9 ± 0.4 70.2 ± 0.3 52.6 ± 0.3 9.2 ± 0.2 91.3 ± 0.4 75.2 ± 0.4 52.3 ± 0.5 17.1 ± 0.3
HDMI 90.8 ± 0.4 69.5 ± 0.5 57.6 ± 0.4 14.5 ± 0.4 90.1 ± 0.4 73.1 ± 0.3 58.3 ± 0.3 20.3 ± 0.4
HeCo 88.4 ± 0.6 67.8 ± 0.8 50.9 ± 0.5 10.1 ± 0.6 89.2 ± 0.3 71.0 ± 0.7 58.4 ± 0.6 20.4 ± 0.5
MCGC 90.4 ± 0.5 69.0 ± 0.5 56.5 ± 0.3 14.9 ± 0.4 91.9 ± 0.2 76.5 ± 0.4 58.1 ± 0.4 47.2 ± 0.3
CKD 90.6 ± 0.4 69.3 ± 0.3 53.9 ± 0.3 13.8 ± 0.4 91.4 ± 0.4 75.9 ± 0.4 58.5 ± 0.6 20.6 ± 0.4
DMG 92.9 ± 0.3 74.5 ± 0.4 60.3 ± 0.5 17.0 ± 0.3 94.1 ± 0.4 80.0 ± 0.2 63.6 ± 0.6 21.8 ± 0.4

Table 3. Classification and clustering performance (i.e., Macro-F1, Micro-F1, Accuracy and NMI) on all single-view graph datasets.

Method Photo Computers

Macro-F1 Micro-F1 Accuracy NMI Macro-F1 Micro-F1 Accuracy NMI

Deep Walk 87.4 ± 0.5 89.7 ± 0.3 46.2 ± 0.2 35.4 ± 0.3 84.0 ± 0.3 85.6 ± 0.4 32.5 ± 0.3 29.8 ± 0.2
VGAE 89.9 ± 0.2 91.6 ± 0.4 54.8 ± 0.5 37.4 ± 0.3 82.6 ± 0.3 85.3 ± 0.4 37.2 ± 0.3 32.4 ± 0.5
GCN 90.5 ± 0.3 92.5 ± 0.2 N/A N/A 84.0 ± 0.4 86.4 ± 0.3 N/A N/A
GAT 90.2 ± 0.5 91.8 ± 0.4 N/A N/A 83.2 ± 0.2 85.7 ± 0.4 N/A N/A

DGI 89.3 ± 0.2 91.6 ± 0.3 59.1 ± 0.4 43.2 ± 0.3 79.3 ± 0.3 83.9 ± 0.5 40.7 ± 0.3 33.4 ± 0.2
GMI 89.3 ± 0.4 90.6 ± 0.2 64.6 ± 0.2 47.2 ± 0.3 80.1 ± 0.4 82.2 ± 0.4 41.5 ± 0.2 34.5 ± 0.3
MVGRL 90.1 ± 0.3 91.7 ± 0.4 48.3 ± 0.5 34.4 ± 0.4 84.6 ± 0.6 86.9 ± 0.5 47.8 ± 0.5 47.1 ± 0.3
GRACE 90.3 ± 0.5 91.9 ± 0.3 74.1 ± 0.4 63.4 ± 0.2 84.2 ± 0.3 86.8 ± 0.5 49.6 ± 0.2 47.9 ± 0.4
GCA 91.1 ± 0.4 92.4 ± 0.4 73.6 ± 0.3 61.4 ± 0.2 85.9 ± 0.5 87.7 ± 0.3 51.3 ± 0.5 42.6 ± 0.4
GIC 90.0 ± 0.3 91.6 ± 0.2 69.5 ± 0.2 61.5 ± 0.1 82.6 ± 0.4 84.9 ± 0.3 52.5 ± 0.2 46.4 ± 0.2
COSTA 91.3 ± 0.4 92.5 ± 0.3 73.1 ± 0.3 62.1 ± 0.5 86.4 ± 0.3 88.3 ± 0.4 53.2 ± 0.2 48.1 ± 0.3
DSSL 90.6 ± 0.2 92.1 ± 0.3 74.5 ± 0.4 63.9 ± 0.5 85.6 ± 0.3 87.3 ± 0.4 53.5 ± 0.2 48.3 ± 0.4
DMG 91.8 ± 0.2 92.9 ± 0.3 77.6 ± 0.3 66.5 ± 0.4 86.6 ± 0.3 88.3 ± 0.2 55.6 ± 0.4 49.3 ± 0.5

“N/A” indicates that we did not evaluate semi-supervised methods (i.e., GCN and GAT) on unsupervised tasks (i.e., clustering).

4.2.2. EFFECTIVENESS ON THE SINGLE-VIEW GRAPH

To further verify the effectiveness of the proposed method
on single-view graph datasets after random data augmenta-
tion, we report the results of node classification and node
clustering on single-view graph datasets in Table 3. We
can observe that our method achieves competitive results on
both the node classification task and node clustering task.

First, compared to the semi-supervised baselines (i.e., GCN
and GAT), the proposed DMG obtains promising improve-
ments. For example, the proposed DMG on average im-
proves by 1.8%, compared to the best semi-supervised
method (i.e., GCN), in terms of the classification task, on
all single-view graph datasets. Second, compared to all self-
supervised methods (i.e., DGI, GMI, MVGRL, GRACE,
GCA, GIC, COSTA, and DSSL), the proposed DMG also
achieves superior performance. For example, the pro-
posed DMG on average outperforms the best self-supervised
method (i.e., DSSL) by 2.3%, in terms of classification and
clustering tasks, on all single-view graph datasets. This indi-
cates that on single-view graph datasets, the proposed DMG

is still able to extract invariant common information between
two augmented views, as well as preserve complementarity
and remove noise in augmented graph structures. Therefore,
the effectiveness of the proposed method is further validated
on single-view graph datasets.

4.3. Robustness Analysis

We further evaluate the robustness of the proposed method
on the multiplex dataset by reporting results of node classifi-
cation and node clustering under different noisy edge ratios
η in Figure 2.

From Figure 2, we have the observations as follows. First,
compared to all self-supervised MGRL methods, the pro-
posed DMG consistently achieves the best performance
under different noise ratios on the DBLP dataset, demon-
strating the superiority of the proposed method again. Sec-
ond, with the increase of the noise ratios, the performance
degradation of all self-supervised methods is much more
drastically than the proposed method. For example, DMG
and CKD achieve the Macro-F1 of 93.3 and 92.0 under
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Table 4. Classification performance (i.e., Macro-F1 and Micro-F1) of each component in the proposed method on all datasets.

Lmat Lcor Lrec Lcon
ACM IMDB DBLP Freebase

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

✓ − − ✓ 76.1 ± 0.5 75.8 ± 0.3 43.8 ± 0.4 45.5 ± 0.2 92.2 ± 0.4 93.0 ± 0.3 47.1 ± 0.6 47.5 ± 0.8
✓ − ✓ − 86.0 ± 0.3 86.0 ± 0.5 51.6 ± 0.5 54.0 ± 0.4 92.0 ± 0.2 92.9 ± 0.3 36.3 ± 0.6 40.2 ± 0.5
✓ ✓ − − 86.5 ± 0.4 86.1 ± 0.4 53.0 ± 0.3 54.7 ± 0.5 92.7 ± 0.3 93.5 ± 0.4 53.1 ± 0.8 55.1 ± 0.9
✓ − ✓ ✓ 74.3 ± 0.4 73.7 ± 0.6 46.0 ± 0.4 49.2 ± 0.5 91.7 ± 0.5 92.7 ± 0.3 35.7 ± 0.4 38.8 ± 0.7
✓ ✓ − ✓ 87.9 ± 0.6 88.0 ± 0.4 53.4 ± 0.3 56.1 ± 0.1 92.3 ± 0.4 93.0 ± 0.6 50.3 ± 0.7 52.9 ± 0.6
✓ ✓ ✓ − 87.8 ± 0.5 87.6 ± 0.3 54.7 ± 0.3 56.2 ± 0.5 92.5 ± 0.4 93.3 ± 0.6 55.1 ± 0.5 58.2 ± 0.7
✓ ✓ ✓ ✓ 91.0 ± 0.3 90.9 ± 0.4 57.6 ± 0.2 58.9 ± 0.4 93.3 ± 0.2 94.0 ± 0.3 62.4 ± 0.7 65.9 ± 0.8
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Figure 2. Classification and clustering performance of our method
and all self-supervised MGRL methods under different noisy edges
ratios η on the DBLP dataset.

η = 0, respectively, while with the increase of the noise rate,
DMG is remarkably superior to CKD.

The reasons can be summarized as follows. On the one
hand, our method extracts complete and clean common in-
formation through disentangled representation learning. As
a result, the complete and clean common information is
supposed to be free of noise. On the other hand, the con-
trastive constraint further preserves the complementarity
and removes the noise in the private information. There-
fore, the common and private representations learned by our
method are expected to be robust to the noise in each graph.

4.4. Ablation Study

The proposed DMG investigates the matching loss, the cor-
relation loss, and the reconstruction loss (i.e., Lmat, Lcor,
and Lrec) to obtain disentangled common and private rep-
resentations. Moreover, DMG further investigates the con-
trastive loss (i.e., Lcon) to preserve the complementarity and
remove the noise in private representations. To verify the
effectiveness of each component of the objective function
in the proposed method, we investigate the performance of
all variants (except Lmat as we cannot obtain final repre-
sentations without Lmat) on the node classification task by
reporting the results in Table 4.

According to Figure 4, we can draw the following con-

clusions. First, our method with the complete objective
function achieves the best performance. For example, our
method on average improves by 5.7%, compared to the best
variant (i.e., without Lcon), indicating that all the losses
are necessary for our method. This is consistent with our
above argument. That is, it is essential for UMGRL to con-
sider complete and clean common information, as well as
more-complementarity and less-noise private information.
Second, the variant without Lcor performs significantly in-
ferior to the other two variants (without Lrec and without
Lcon, respectively). This makes sense as the correlation loss
is needed to guarantee the independence between common
and private representations, which is generally essential for
disentangled representation learning.

5. Conclusion
In this paper, we proposed a disentangled representation
learning framework for the multiplex graph. To do this, we
first disentangled the common and private representations
to capture complete and clean common information. We
further designed a contrastive constraint to preserve the com-
plementarity and remove the noise in the private information.
Theoretical analysis indicates that the common and private
representations learned by our method can be provably dis-
entangled and contain more task-relevant information and
less task-irrelevant information to benefit downstream tasks.
Comprehensive experimental results demonstrate that the
proposed method consistently outperforms state-of-the-art
methods in terms of both effectiveness and robustness on
different downstream tasks. We discuss potential limitations
and future directions in Appendix E.
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P., and Bengio, Y. Graph attention networks. In ICLR,
pp. 1–12, 2018.

Velickovic, P., Fedus, W., Hamilton, W. L., Liò, P., Bengio,
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A. Algorithm
This section provides the pseudo-code of the proposed method.

Algorithm 1 The pseudo-code of the proposed DMG.

Input: Node features X(r) and graph structure A(r) of graph G(r) for ∀r ∈ [1,R], non-negative parameters α, β and λ,
maximum training steps E;

Output: Encoders f (r)c ◦ g(r), f (r)p ◦ g(r), decoder p(r), and measurable functions ϕ(r) and ψ(r);
1: Initialize parameters;
2: while not reaching E do
3: Obtain common variable S with orthogonality and zero mean via singular value decomposition;
4: while not reaching E do
5: Obtain common and private representations (i.e., C(r) and P(r)) with encoders f (r)c ◦ g(r), f (r)p ◦ g(r);
6: Conduct the matching loss between C(r) and S by Eq. (2);
7: Conduct the correlation loss between C(r) and P(r) under measurable functions ϕ(r) and ψ(r) by Eq. (3);
8: Conduct the reconstruction loss between reconstructed node representations and original input by Eq. (4);
9: Calculate the cosine similarity ϵ(r)ij between si and sj of the node pair (vi, vj) ∈ E(r) by Eq. (5);

10: Conduct the contrastive loss on P(r) based on complementary and noisy edges set E(r)
c and E(r)

p by Eq. (6);
11: Compute the objective function J by Eq. (8);
12: Back-propagate J to update model weights;
13: end while
14: end while

B. Proofs in Section 3
This section provides detailed proofs of Theorems in Section 3.

B.1. Proof of Theorem 3.1

Proof. Consider the matching loss in Eq. (2) achieves its minimization, which indicates that the common representations
C(r) from different graphs are perfectly aligned, i.e., C(r) = C(r′) (r ̸= r′). Assuming that the solution f (r)c satisfying the
constraint in Eq. (2) has been found, then we have:

f (r)c ◦ g(r)(X(r),A(r)) = f (r
′)

c ◦ g(r
′)(X(r′),A(r′)). (10)

As the solution satisfies the correlation loss in Eq. (3) and the reconstruction loss in Eq. (4), the common and private
representations (i.e., C(r) and P(r)) are expected to be statistical independent, and f (r)c ◦ g(r) are expected to be invertible.

We simply use q(r)c to denote the inverted function g(r)
(−1) ◦f (r)

(−1)

c . Denote the optimal common and private representations
as C∗ and P

(r)
∗ , which contain complete and clean common and private information, respectively. Note that the optimal

common and private representations are also statistically independent. According to the invertibility of q(r)c and the
independence between C∗ and P

(r)
∗ , we can transform Eq. (10) to:

q(r)c

([
C∗

P
(r)
∗

])
= q(r

′)
c

([
C∗

P
(r′)
∗

])
. (11)

where q(r)c (ϑ(r)) = g(r)
(−1) ◦ f (r)

(−1)

c (ϑ(r)), and ϑ(r) = [C⊤
∗ , (P

(r)
∗ )⊤]⊤. Therefore, to demonstrate the functions f (r)c can

extract complete and clean common information, we only have to demonstrate that q(r)c is the function of only C∗ but not
the function of P(r)

∗ . To do this, we then calculate the Jacobian of q(r) to analyze the first-order partial derivatives of q(r)c

and q(r)p w.r.t. C∗ and P
(r)
∗ . The Jacobian of q(r) can be formulated as:

J (r) =

[
J

(r)
11 J

(r)
12

J
(r)
21 J

(r)
22

]
, (12)
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where J
(r)
11 ∈ RD×D,J

(r)
12 ∈ RD×d,J

(r)
21 ∈ Rd×D and J

(r)
22 ∈ Rd×d are Jacobian matrices, and elements of them can be

formulated as: [
J

(r)
11

]
i,j

=
∂
[
q
(r)
c (ϑ(r))

]
i

∂c
(r)
∗j

,
[
J

(r)
12

]
i,k

=
∂
[
q
(r)
c (ϑ(r))

]
i

∂p
(r)
∗k

,

[
J

(r)
21

]
k,i

=
∂
[
q
(r)
p (ϑ(r))

]
k

∂c
(r)
∗i

,
[
J

(r)
22

]
k,l

=
∂
[
q
(r)
p (ϑ(r))

]
k

∂p
(r)
∗l

,

(13)

where i, j ∈ [1, D], k, l ∈ [1, d]. Then we only have to demonstrate that J (r)
12 is an all-zero matrix while the determinant of

J
(r)
11 is non-zero to show that the matrix consisting of all the partial derivatives of q(r)c w.r.t. C∗ is full rank while any partial

derivatives of q(r)c w.r.t. P(r)
∗ is zero.

Note that Eq. (11) holds over the whole latent space. Therefore, with any fixed C̄∗ and P̄
(r′)
∗ , for all P(r)

∗ , we have:

q(r)c

([
C̄∗

P
(r)
∗

])
= q(r

′)
c

([
C̄∗

P̄
(r′)
∗

])
. (14)

Then we take the partial derivatives of Eq. (14) w.r.t. p
(r)
j for j ∈ [1, d], and we have: J

(r)
12 |C̄,P(r) = J

(r′)
12 |C̄,P̄(r′) .

According to the chain rules and taking derivatives of constants, we further have:

J
(r′)
12 |C̄,P̄(r′) =

(
J
q
(r′)
c

∣∣∣
C̄,P̄(r′)

)[
0D×d

0D×d

]
= 0D×d, (15)

where J
q
(r′)
c

∈ RD×(D+d) is the Jacobian of q(r
′)

c . Note that the equation above holds for any fixed C̄∗ and P̄
(r)
∗ , and thus

the same derivation holds for all C∗ and P
(r)
∗ . Therefore, J (r)

12 is an all-zero matrix and the learned q(r)c (ϑ(r)) is not a
function of P(r)

∗ .

Based on the above proof, we can rewrite Eq. (12) as:

J (r) =

[
J

(r)
11 0D×d

J
(r)
21 J

(r)
22

]
. (16)

According to the property of determinant of block matrix and the invertibility of q(r)c , we have:

det(J (r)) = det(J
(r)
11 ) det(J

(r)
22 ) ̸= 0. (17)

This indicates that det(J (r)
11 ) ̸= 0 and det(J

(r)
22 ) ̸= 0. Therefore, J (r)

11 is an non-zero matrix and q(r)c is the function of
only C∗ but not the function of P(r)

∗ , i.e., for ∀r ∈ [1,R], we have C(r) = φ(C∗), where φ is an invertible function as
det(J

(r)
11 ) ̸= 0. Therefore we complete the proof.

B.2. Proof of Theorem 3.3

In the following proofs, for random variables A, B, C, we use I(A,B) to represent the mutual information between A and
B, and we use I(A,B|C) to represent conditional mutual information of A and B on a given C, use H(A) for the entropy,
and H(A|B) for the conditional entropy. We first list some properties of mutual information and entropy that will be used in
the proofs.

• Property 1. Relationship between the mutual information and entropy:

I(A,B) = H(A)−H(A | B). (18)

• Property 2. Relationship between the conditional mutual information and entropy:

I(A,B | C) = H(A | C)−H(A | B,C). (19)
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• Property 3. Chain rule of the mutual information:

I(A,B | C) = I(A | B)− I(A,B,C). (20)

• Property 4. Relationship between the conditional entropy and entropy:

H(A | B) = H(A,B)−H(B). (21)

To aid in the proof of Theorem 3.3, we first have the following Lemma:

Lemma B.1. Given a downstream task T , the node representations Ĥ(r) learned by our method, and the node representations
H̃(r) learned by previous contrastive learning methods, which maximize the mutual information among different graphs
(i.e., I(H̃(r), H̃(r′))), we have

I(Ĥ(r),G(r′), T ) = I(H̃(r),G(r′), T ) = I(G(r),G(r′), T ), (22)

H(Ĥ(r))−H(H̃(r)) = H(Ĥ(r)|G(r′))−H(H̃(r)|G(r′)). (23)

Proof. According to the proof in Theorem 3.1, our method is available to obtain the complete and clean common information
among different graphs, then we have

I(Ĥ(r),G(r′)) = I(G(r),G(r′)). (24)

Assume previous contrastive learning methods also obtain complete information among different graphs via mutual
information maximization, then we have

I(H̃(r),G(r′)) = I(G(r),G(r′)). (25)

We then introduce an assumption, which is widely used in previous works (Federici et al., 2020; Wang et al., 2022a),
i.e., if the random variable C is observed, then random variable A is conditionally independent from any other variable B,
i.e., I(A,B|C) = 0,∀B. Based on Eq. (24), Eq. (25), Properties 2-3, and the assumption above, we have

I(G(r),G(r′), T )− I(Ĥ(r),G(r′), T )

= [I(G(r),G(r′))− I(G(r),G(r′) | T )]− [I(Ĥ(r),G(r′))− I(Ĥ(r),G(r′) | T )]

= I(Ĥ(r),G(r′) | T )− I(G(r),G(r′) | T )

= [H(G(r′) | T )−H(G(r′) | Ĥ(r), T )]− [H(G(r′) | T )−H(G(r′)|G(r), T )]

= H(G(r′) | G(r), T )−H(G(r′) | Ĥ(r), T )

= [I(Ĥ(r),G(r′) | G(r), T ) +H(G(r′) | G(r), Ĥ(r), T )]

− [I(G(r),G(r′) | Ĥ(r), T ) +H(G(r′) | G(r), Ĥ(r), T )]

= I(Ĥ(r),G(r′) | G(r), T )− I(G(r),G(r′) | Ĥ(r), T )

= I(Ĥ(r),G(r′) | G(r), T )

= 0.

(26)

Similarly, we can obtain I(G(r),G(r′), T ) − I(H̃(r),G(r′), T ) = 0. Therefore, we have I(Ĥ(r),G(r′), T ) =

I(G(r),G(r′), T ) = I(H̃(r),G(r′), T ).

15



Disentangled Multiplex Graph Representation Learning

In addition, based on Eq. (24), Eq. (25), Properties 1 and 4, we further have

H(Ĥ(r))−H(H̃(r))−H(Ĥ(r)|G(r′)) +H(H̃(r)|G(r′))

= H(Ĥ(r))−H(H̃(r))−H(Ĥ(r),G(r′)) +H(G(r′)) +H(H̃(r),G(r′))−H(G(r′))

= H(Ĥ(r))−H(H̃(r))−H(Ĥ(r),G(r′)) +H(H̃(r),G(r′))

= H(Ĥ(r))−H(H̃(r))−H(Ĥ(r)) +H(Ĥ(r)|G(r′)) + H̃(r) −H(H̃(r)|G(r′))

= H(Ĥ(r)|G(r′))−H(H̃(r)|G(r′))

= H(Ĥ(r))− I(Ĥ(r),G(r′))−H(Ĥ(r)) + I(H̃(r),G(r′))

= 0.

(27)

Therefore, we have H(Ĥ(r))−H(H̃(r)) = H(Ĥ(r)|G(r′))−H(H̃(r)|G(r′)) and we complete the proof.

Now we can prove the Theorem 3.3.

Proof of Theorem 3.3. We divide the proof into two parts, i.e., 1) I(Ĥ(r), T ) ≥ I(H̃(r), T ) and 2)H(Ĥ(r)|T ) ≤ H(H̃(r)|T ).
We first prove that I(Ĥ(r), T ) ≥ I(H̃(r), T ) holds. Denote the complementary information of the representations learned
by our method and previous contrastive learning method as I(Ĥ(r), T |G(r′)) and I(H̃(r), T |G(r′)), respectively. With
the contrastive loss in Eq. (6) achieving its minimum and thus preserving the complementarity in each graph, we have
I(Ĥ(r), T |G(r′)) ≥ I(H̃(r), T |G(r′)). Note that with Property 3, we have

I(Ĥ(r), T ) = I(Ĥ(r), T,G(r′)) + I(Ĥ(r), T |G(r′)). (28)

According to Eq. (22) in Lemma B.1, i.e., I(Ĥ(r),G(r′), T ) = I(H̃(r),G(r′), T ) = I(G(r),G(r′), T ), then we have

I(Ĥ(r), T ) = I(H̃(r), T,G(r′)) + I(Ĥ(r), T |G(r′))

= I(H̃(r), T )− I(H̃(r), T |G(r′)) + I(Ĥ(r), T |G(r′)).
(29)

Based on I(Ĥ(r), T |G(r′)) ≥ I(H̃(r), T |G(r′)), we have I(Ĥ(r), T ) ≥ I(H̃(r), T ).

Similar to the above, we denote the noisy information of the representations learned by our method and previous contrastive
learning method as H(Ĥ(r)|G(r′), T ) and H(H̃(r)|G(r′), T ) , respectively. With the contrastive loss in Eq. (6) achieving
its minimum and thus removing the noise in each graph, we have H(Ĥ(r)|G(r′), T ) ≤ H(H̃(r)|G(r′), T ). According to
Properties 1-3, and Eq. (23) in Lemma B.1, i.e., H(Ĥ(r))−H(H̃(r)) = H(Ĥ(r)|G(r′))−H(H̃(r)|G(r′)), then we have

H(Ĥ(r)|T ) = H(Ĥ(r))− I(Ĥ(r), T )

= H(Ĥ(r))− [I(Ĥ(r), T,G(r′)) + I(Ĥ(r), T |G(r′))]

= H(Ĥ(r))− I(H̃(r), T,G(r′))− I(Ĥ(r), T |G(r′))

= H(Ĥ(r))− I(H̃(r), T ) + I(H̃(r), T |G(r′))− I(Ĥ(r), T |G(r′))

= H(Ĥ(r))− [H(H̃(r))−H(H̃(r)|T )] + I(H̃(r), T |G(r′))− I(Ĥ(r), T |G(r′))

= H(H̃(r)|T ) +H(Ĥ(r))−H(H̃(r)) + I(H̃(r), T |G(r′))− I(Ĥ(r), T |G(r′))

= H(H̃(r)|T ) +H(Ĥ(r))−H(H̃(r)) +H(H̃(r)|G(r′))

−H(H̃(r)|G(r′), T )−H(Ĥ(r)|G(r′)) +H(Ĥ(r)|G(r′), T )

= H(H̃(r)|T )−H(H̃(r)|G(r′), T ) +H(Ĥ(r)|G(r′), T )

(30)

Based on H(Ĥ(r)|G(r′), T ) ≤ H(H̃(r)|G(r′), T ), we have H(Ĥ(r)|T ) ≤ H(H̃(r)|T ). Therefore, we complete the
proof.
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C. Experimental Settings
This section provides detailed experimental settings in Section 4, including the description of all datasets in Section C.1,
summarization of all comparison methods in Section C.2, model architectures and settings in Section C.3, and the evaluation
protocol in Section C.4.

Table 5. Statistics of all datasets.
Datasets Nodes Meta-paths Edges Features Labeled Nodes Classes

ACM 3,025 Paper-Subject-Paper (PSP) 2,210,761 1,830 600 3Paper-Author-Paper (PAP) 29,281 (Paper Abstract)

IMDB 4,780 Movie-Actor-Movie (MAM) 98,010 1,232 300 3Movie-Director-Movie (MDM) 21,018 (Movie Plot)

DBLP 4,057
Author-Paper-Author (APA) 11,113 334 800 4Author-Paper-Conference-Paper-Author (APCPA) 5,000,495 (Paper Abstract)Author-Paper-Term-Paper-Author (APTPA) 6,776,335

Freebase 3,492
Movie-Actor-Movie (MAM) 254,702 3,492 60 3Movie-Director-Movie (MDM) 8,404 (One-hot Encoding)Movie-Writer-Movie (MWM) 10,706

Photo 7,487 Product-Customer-Product (PCP) 287,326 745 765 8(Product Reviews)

Computers 13,752 Product-Customer-Product (PCP) 574,418 767 1375 10(Product Reviews)

C.1. Datasets

We use four public multiplex graph datasets and two single-view graph datasets from various domains. Multiplex graph
datasets include two citation multiplex graph datasets (i.e., ACM (Wang et al., 2019) and DBLP (Wang et al., 2019)), two
movie multiplex graph datasets (i.e., IMDB (Wang et al., 2019) and Freebase (Wang et al., 2021)). Single-view graph
datasets include two amazon sale datasets (i.e., Photo and Computers (Shchur et al., 2018)). Table 5 summarizes the data
statistics. We list the details of the datasets as follows.

• ACM1 contains 3,025 papers with graphs generated by two meta-paths (i.e., paper-author-paper and paper-subject-
paper). The feature of each paper is a 1,830-dimensional bag-of-words representation of the abstract. Papers are
categorized into three classes, i.e., database, wireless communication, and data mining.

• IMDB2 contains 4,780 movies with graphs generated by two meta-paths (i.e., movie-actor-movie and movie-director-
movie). The feature of each movie is a 1,232-dimensional bag-of-words representation of its plots. Movies are
categorized into three classes, i.e., action, comedy, and drama.

• DBLP3 contains 4,057 papers with graphs generated by three meta-paths (i.e., author-paper-author, author-paper-
conference-paper-author, and author-paper-term-paper-author). The feature of each paper is a 334-dimensional
bag-of-words representation of its abstracts. Papers are categorized into four classes, i.e., database, data mining,
machine learning, and information retrieval.

• Freebase4 contains 3,492 movies with graphs generated by three meta-paths (i.e., movie-actor-movie, movie-director-
movie and movie-writer-movie). We assign one-hot encoding to this dataset as no features are provided. Movies are
categorized into four classes, ie action, comedy and drama.

• Photo and Computers5 contain 7,487 and 13,752 products, respectively. Edges in each dataset indicate that two
products are frequently bought together. The feature of each product is bag-of-words encoded product reviews. Products
are categorized into several classes by the product category.

1https://www.acm.org/
2https://www.imdb.org/
3https://aminer.org/AMinerNetwork/
4http://www.freebase.com/
5https://docs.dgl.ai/en/0.6.x/api/python/dgl.data.html
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Table 6. The characteristics of all comparison methods.
Methods Multiplex Single-view Semi-sup Tra-unsup Self-sup Features Com-info Pri-info Comp-noise
GCN ✓ ✓ ✓
GAT ✓ ✓ ✓
DeepWalk ✓ ✓
VGAE ✓ ✓ ✓
DGI ✓ ✓ ✓
GMI ✓ ✓ ✓
MVGRL ✓ ✓ ✓ ✓
GRACE ✓ ✓ ✓ ✓
GCA ✓ ✓ ✓ ✓
GIC ✓ ✓ ✓
COSTA ✓ ✓ ✓ ✓
DSSL ✓ ✓ ✓ ✓ ✓
MNE ✓ ✓
HAN ✓ ✓ ✓
DMGI ✓ ✓ ✓
DMGIattn ✓ ✓ ✓
HDMI ✓ ✓ ✓
HeCo ✓ ✓ ✓ ✓
MCGC ✓ ✓ ✓ ✓
CKD ✓ ✓ ✓ ✓
DMG (ours) ✓ ✓ ✓ ✓ ✓

C.2. Comparison Methods

The comparison methods include twelve methods designed for the single-view graph and eight for the multiplex graph,
i.e., GCN (Kipf & Welling, 2017), GAT (Velickovic et al., 2018), DeepWalk (Perozzi et al., 2014), VGAE (Kipf & Welling,
2016), DGI (Velickovic et al., 2019), GMI (Peng et al., 2020), MVGRL (Hassani & Khasahmadi, 2020), GRACE (Zhu
et al., 2020b), GCA (Zhu et al., 2021), GIC (Mavromatis & Karypis, 2021), COSTA (Zhang et al., 2022), DSSL (Xiao
et al., 2022), HAN (Wang et al., 2019), MNE (Zhang et al., 2018), DMGI (Park et al., 2020), DMGIattn (Park et al., 2020),
HDMI (Jing et al., 2021a), HeCo (Wang et al., 2021), MCGC (Pan & Kang, 2021), and CKD (Zhou et al., 2022). The
characteristics of all methods are listed in Table 6, where “Multiplex” and “Single-view” indicate the methods designed
for the multiplex graph and single-view graph, respectively. “Semi-sup”, “Tra-unsup”, and “Self-sup” indicate that the
method conducts semi-supervised learning, traditional unsupervised learning, and self-supervised learning, respectively.
Note that our DMG is a new unsupervised framework that cannot be simply classified as traditional unsupervised learning or
self-supervised learning. “Features” indicates that the method takes the node features into account. “Com-info”, “Pri-info”,
and “Comp-noise” indicate that the method takes the common information, private information, complementarity and noise
into account, respectively.

C.3. Model Architectures and Settings

As described in Section 3, the proposed DMG employs the one-layer GCN and MLP as the encoders (i.e., g(r) and f (r)) to
obtain common representations C(r) ∈ RN×D, and private representations P(r) ∈ RN×d. Note that we assign different
weights ω to the self-connection of multiplex graph datasets and single-view graph datasets during the graph convolution.
Then the proposed DMG investigates the correlation loss to enforce the independence between common and private
representations with the measurable functions (i.e., ϕ(r) and ψ(r)). In the proposed DMG, the measurable functions ϕ(r) and
ψ(r) are implemented by the two-layer MLP. After that, the proposed DMG investigates the reconstruction loss to promote
the invertibility of encoders with the reconstruction network p(r), which is also implemented as an MLP. In the proposed
DMG, all parameters were optimized by the Adam optimizer (Kingma & Ba, 2015) with initial learning rate and weight
decay (1e-3 and 1e-4, respectively). We apply the ReLU function (Nair & Hinton, 2010) as a nonlinear activation function.
In all experiments, we repeat the experiments five times for all methods and report the average results. Table 7 describes the
detailed settings and architecture for most of our experimental setups with DMG.
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Table 7. Settings for the proposed DMG.

Settings ACM IMDB DBLP Freebase Photo Computers

D 8 8 8 8 16 40
d 2 2 2 2 2 4
ω 3 3 3 3 1 1
Hidden units of g(r) 256 512 256 256 256 512
Hidden units of ϕ(r) 256 256 256 256 256 256
Hidden units of ψ(r) 256 256 256 256 256 256
Layers of p(r) 3 2 2 2 2 2
Learning rate 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
Weight decay 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
Dropout 0.1 0.1 0.1 0.1 0.1 0.1

C.4. Evaluation Protocol

We follow the evaluation in previous works (Jing et al., 2021a; Pan & Kang, 2021; Zhou et al., 2022), where the model is
trained in an unsupervised manner. Then, the learned representations are evaluated by several downstream tasks (i.e., node
classification and node clustering). For the node classification task, we evaluate the effectiveness of all methods with
Micro-F1 and Macro-F1 scores. For the node clustering task, we evaluate the effectiveness of all methods with Accuracy
score and Normalized Mutual Information (NMI) score, and NMI = 2I(Ŷ ;Y )/[H(Ŷ ) +H(Y )], where Ŷ and Y refer to
the predicted cluster indexes and class labels.

D. Additional Experiments
This section provides some additional experimental results to further support the proposed method, including parameter
analysis in Section D.1, additional ablation study in Section D.2, visualization of disentangled representation learning in
Section D.3, comparison experiments with hard matching loss and InfoNCE loss in Section D.4, and additional results of the
robustness on other multiplex datasets in Figures 6 and 7.
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Figure 3. Classification results of our method at different parameter settings (i.e., α, β, and λ) on all datasets.

D.1. Parameter Analysis

In the proposed method DMG, we employ the non-negative parameters (i.e., α, β, and λ) to achieve a trade-off between each
term of the objective function. To investigate the impact of α, β, and λ in Eq. (8) with different settings, we conduct the node
classification on all multiplex graph datasets by varying the value of parameters in the range of [10−3,103] and reporting
the results in Figure 3. As shown in Figure 3, the proposed method DMG consistently achieves significant performance
while the values of parameters are set appropriately (e.g., [10−2,100]). Moreover, if the values of parameters are too large
(e.g., > 101) or too small (e.g., < 10−2), the proposed DMG obtains inferior performance due to the failure to obtain the
disentangled common and private representations or the failure to preserve the complementarity and remove noise in the
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private representations. This again validates that it is necessary to disentangle common and private representations, as well
as to preserve complementarity and remove noise in private representations and validates the effectiveness of our method.

(a) w/o Lcor (SIL=0.145) (b) w/o Lrec (SIL=0.381) (c) w/o Lcon (SIL=0.406) (d) with J (SIL=0.452)

Figure 4. Visualization plotted by t-SNE (and the corresponding silhouette scores (SIL) of node representations) for our method on the
ACM dataset, where different colors represent different classes of the nodes. (a) DMG without Lcor; (b) DMG without Lrec; (c) DMG
without Lcon; and (d) DMG with complete objective function.

D.2. Additional Ablation Study

D.2.1. EFFECTIVENESS OF EACH COMPONENT

In the main paper above, we investigate the effectiveness of each component of the objective function on the semi-supervised
task (i.e., node classification). To further verify and visualize the effectiveness of each component on unsupervised task,
we investigate the performance of t-SNE visualization (Van der Maaten & Hinton, 2008) on different components of the
objective function by reporting the results in Figure 4. Similar to the ablation study on the classification task, we have the
observations as follows. First, our method with the complete objective function outperforms the variant without any loss,
indicating that each component of the objective function is necessary for our method. Second, the variant without Lcor

obtains the worst results, compared to the other two variants (without Lrec and without Lcon, respectively), indicating that
the correlation loss may play an important role in our framework. The results on the t-SNE visualization are consistent
with the ablation study of each component on the node classification in the main paper. Thus, the effectiveness of each
component is further verified.

Table 8. Classification and clustering performance under different combinations of private representations of graphs.

Datasets Graphs Node classification Clustering

Macro-F1 Micro-F1 Accuracy NMI

PSP 90.3 ± 0.2 90.3 ± 0.4 92.1 ± 0.3 73.5 ± 0.4
ACM PAP 90.7 ± 0.4 90.6 ± 0.5 92.6 ± 0.3 74.1 ± 0.2

PSP+PAP 91.0 ± 0.3 90.9 ± 0.4 92.9 ± 0.3 74.5 ± 0.4
MAM 55.6 ± 0.4 57.5 ± 0.5 59.9 ± 0.3 16.3 ± 0.2

IMDB MDM 57.1 ± 0.3 58.3 ± 0.3 60.2 ± 0.4 16.9 ± 0.2
MAM+MDM 57.6 ± 0.2 58.9 ± 0.4 60.3 ± 0.5 17.0 ± 0.3

D.2.2. EFFECTIVENESS OF PRIVATE REPRESENTATIONS IN EACH GRAPH

With the complementarity and noise constraint in our framework, the private representations learned by our method are
expected to contain the complementary contents of each graph. Therefore, we investigate the classification and clustering
performance with private representations belonging to different graphs, and report the results in Table 8. From Table 8, we
have observations as follows. First, private representations belonging to different graphs tend to have different importance.
For example, our method only using the private representations of MDM graph outperforms our method only using the
MAM graph on the ACM dataset on all downstream tasks. This makes sense as the complementary contents in a certain
graph may be more than others. Second, our method with two graphs outperforms our method with only one graph on all
downstream tasks. This verifies again that our method is available to preserve the complementarity in different graphs to
benefit downstream tasks.
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Table 9. Classification performance (i.e., Macro-F1 and Micro-F1) on all multiplex graph datasets.

Method ACM IMDB DBLP Freebase

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

DMG-HR 76.6 ± 0.5 76.7 ± 0.4 43.1 ± 0.3 44.6 ± 0.4 88.8 ± 0.4 90.2 ± 0.5 48.1 ± 0.4 49.5 ± 0.5
DMG-NCE 88.2 ± 0.3 88.1 ± 0.4 55.2 ± 0.5 56.9 ± 0.3 92.7 ± 0.3 93.6 ± 0.2 59.4 ± 0.4 64.0 ± 0.3
DMG 91.0 ± 0.3 90.9 ± 0.4 57.6 ± 0.2 58.9 ± 0.4 93.3 ± 0.2 94.0 ± 0.3 62.4 ± 0.7 65.9 ± 0.8
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Figure 5. The correlation map of common and private representations learned by the proposed DMG on the ACM dataset.

D.3. Visualization of Disentangled Representation Learning

To verify the effectiveness of disentangled representation learning, i.e., the common representations are clean to private
representations, we follow the literature (Ma et al., 2019; Li et al., 2021) to calculate the correlation between the common
representations and the private representations. Specifically, the smaller the correlation between the common representation
and the private representation, the cleaner the common information learned by the representation learning method. To do
this, we implement our method on the ACM dataset, and visualized the correlation of learned representations (concatenated
by common and private representations, dimensions of them are both set as 8) in Figure 5. More specifically, the correlation
map includes four blocks, where both the upper right block and the lower left block indicate the correlation between the
common representations and the private representations. Based on Figure 1, their correlations are small, so the common
information learned by our method is clean, and the effectiveness of disentangled representation learning is verified.

D.4. Comparison with Hard Matching Loss and InfoNCE Loss

In the proposed DMG, we investigate the matching loss to align the common representations from different graphs with a
common variable S. Actually, the matching loss in our framework can be regarded as a soft regularization to the common
representations from different graphs, through a bridge (i.e., common variable S). Therefore, we consider replacing the soft
matching with hard regularization (Chen et al., 2020) by removing the common variable, formulated as

LHR =
1

N

R∑
r=1

N∑
n=1

(c(r)n − c(r
′)

n )2,

s.t.
1

N

N∑
n=1

cnc
⊤
n = I,

(31)

where r ̸= r′. Moreover, in the proposed DMG, we investigate the contrastive loss to preserve the complementarity and
remove noise in the private representations. Then we consider replacing it with another widely-used contrastive loss,
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i.e., InfoNCE loss (Oord et al., 2018), formulated as

LNCE =
1

R
1

N

R∑
r=1

N∑
i=1

log
e
θ
(
u

(r)
i ,v

(r)
i

)
1
N

∑N
j=1 e

θ
(
u

(r)
i ,v

(r)
j

) , (32)

where (u
(r)
i ,v

(r)
i ) and (u

(r)
i ,v

(r)
j ) indicate positive and negative pairs, respectively. In our implementation, we replace the

positive pair and negative pair with the node pairs in E(r)
c and E(r)

n . Then we denote the modified models as DMG-HR and
DMG-NCE, respectively, and report the classification performance of the modified models under identical settings with the
original model DMG in Table 9.

From Table 9, we have the following observations. First, compared to the variant model DMG-HR, our method on average
improves by 21.9%, on all multiplex graph datasets. The reason for this may be that using a hard regularization will align the
common representations directly at the initial stage of training, but the common representations may not be optimal at this
point. In addition, it is easier to enforce the orthogonality and zero-mean constraints on common variable than on common
representations. Second, compared to the variant model DMG-NCE, our method also achieves superior performance on all
multiplex graph datasets. The results empirically demonstrate that, although InfoNCE is a strict estimator of the mutual
information, the contrastive loss in our framework is more effective and shows better downstream performance.
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Figure 6. Classification performance of our method and all self-supervised MGRL methods under different noisy edges ratio η on ACM,
IMDB, and Freebase dataset.
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Figure 7. Clustering performance of our method and all self-supervised MGRL methods under different noisy edges ratio η on ACM,
IMDB, and Freebase dataset.
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E. Discussion on Potential Limitations and Future Directions
This section discusses the limitations of the proposed method and related future directions.

E.1. Features Multiplicity

Currently, our method mainly considers the private information in different graph structures since node features of different
graphs are generated from a shared feature matrix. However, if node features in different graphs are also multiplexed, i.e., the
node features in each graph reveal different self-properties of the nodes, although our method can still extract complete and
clean common information of different graphs, it cannot further explicitly preserve the complementarity and remove the
noise in node features of different graphs. Therefore, future research may consider the multiplicity of node features so as
to capture the private information in node features and to further preserve the complementarity and remove noise in node
features of different graphs.

E.2. Unattributed Graphs

Currently, our method mainly considers graph datasets with node features. We should note that there exist cases where
the nodes are unattributed and all information is contained in the graph topology, especially for some graph-level datasets.
In fact, in our experimental section, we have chosen the unattributed graph dataset (i.e., Freebase) to further verify the
effectiveness and robustness of our method by simply assigning one-hot vectors as node features. Obviously, we can observe
that our method obtains more significant improvements on the Freebase dataset than other multiplex graph datasets with
node features. This may indicate that removing noise and preserving complementarity in graph structures is more important
to unattributed graph datasets. Therefore, future research may consider designing methods specifically for unattributed
graph datasets to further improve their effectiveness and robustness.
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