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Abstract
Neural pruning, which involves identifying the
optimal sparse subnetwork, is a key technique for
reducing the complexity and improving the effi-
ciency of deep neural networks. To address the
challenge of solving neural pruning at a specific
sparsity level directly, we investigate the evolu-
tion of optimal subnetworks with continuously
increasing sparsity, which can provide insight into
how to transform an unpruned dense model into
an optimal subnetwork with any desired level of
sparsity. In this paper, we proposed a novel prun-
ing framework, coined Sparsity-indexed ODE
(SpODE) that provides explicit guidance on how
to best preserve model performance while ensur-
ing an infinitesimal increase in model sparsity.
On top of this, we develop a pruning algorithm,
termed Pruning via Sparsity-indexed ODE (PSO),
that enables effective pruning via traveling along
the SpODE path. Empirical experiments show
that PSO achieves either better or comparable per-
formance compared to state-of-the-art baselines
across various pruning settings. Our implementa-
tions are now available on GitHub1.

1. Introduction
In recent years, there has been an unprecedented surge in the
widespread use of overparameterized neural networks in var-
ious complex real-world applications, due to the astounding
success of big models in areas such as vision (Radosavovic
et al., 2020; Dosovitskiy et al., 2021), language generation
(Brown et al., 2020; Devlin et al., 2018), speech recognition
(Babu et al., 2021), recommendation (Chen et al., 2019),
among others (Janner et al., 2021; Jumper et al., 2021). In
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the era of big models, model compression methods are es-
sential for the pursuit of acceleration and the deployment of
large models on edge devices.

As a highly promising compression paradigm, neural prun-
ing has garnered increasing attention from both academia
and industry (Hoefler et al., 2021; Liang et al., 2021). A
neural pruner aims to eliminate the majority of the parame-
ters in a dense reference model while maximizing retention
of model performance until a specific parameter budget is
reached. This pruning procedure is typically followed by
a retraining procedure to regain model performance (Han
et al., 2016).

Pruned models often suffer from a significant drop in per-
formance. This is due to the fact that identifying the opti-
mal sparse subnetwork is a high-dimensional zero-one pro-
gramming problem, which is NP-hard and challenging to
solve (Papadimitriou & Steiglitz, 1998). Numerous pruning
methods (a.k.a pruners) have been developed to address
this intractable problem, including score-based pruners,
regularization-based pruners, sparse-training pruners, etc.
Score-based pruners (Han et al., 2015; Lee et al., 2019;
Wang et al., 2020; Rachwan et al., 2022) first evaluate the
importance scores of each weight and then wipe out the
unimportant parameters with the lowest scores. The impor-
tance score function is designed to reflect the performance
drop when a typical parameter is pruned. However, these im-
portance scores fail to provide strong guarantees in highly
sparse regimes, since they are only valid within the cur-
rent model’s vicinity, and merely represent an upper bound
on the potential pruning error. When the target sparsity is
extremely high, the importance scores are inclined to pro-
vide misleading pruning guidance. An alternative approach
is to perform regularization-based pruning (Louizos et al.,
2018; Chen et al., 2021; Zhang et al., 2018), which tries
to address the hard pruning problem by relaxing the hard
sparsity constraints to softer ones. Specifically, the pruner
optimizes over the parameter mask variables to minimize
a penalized objective, which is essentially a linear combi-
nation of the training loss and soft sparsity regularization.
However, the performance of regularization-based pruners
is limited in practice because the soft sparsity penalty is
numerically unstable. To alleviate this problem, sparse-
training approaches are proposed in (Zhu & Gupta, 2018;
Frankle & Carbin, 2019) to identify a sparse subnetwork
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with comparable performance to the dense model via iter-
ative score-based pruning and retraining. However, such
prune-and-retrain iterations introduce significant computa-
tional overhead and can be difficult to converge, making it
infeasible for large-scale models and datasets.

The limitations of conventional pruners can be attributed
to the inherent sparsity and irregularity of the hard neural
pruning problem. Given the difficulty of directly solving the
hard pruning problem at high sparsity levels, it’s natural to
wonder whether neural pruning would be easier to solve if
an optimal subnetwork with slightly lower sparsity was pro-
vided beforehand. Intuitively, one can make small changes
to a few parameters while not harming an overparameterized
model’s optimality (Srinivas & Babu, 2015; Hu et al., 2016).
Thus, it is possible to obtain the desired solution by slightly
altering the optimal subnetwork of lower sparsity. This moti-
vates us to investigate the evolution of optimal subnetworks
as their sparsity increases. If we understand the evolution
from an optimal subnetwork of lower sparsity to one with
higher sparsity, we are then able to move from the unpruned
full model to the desired solution via a path of optimal sub-
networks with increasing sparsity. By following the path
of optimal subnetworks, we circumvent the intractability of
directly solving high-sparsity neural pruning.

Contributions. To address the challenge of neural pruning,
we propose a novel Sparsity-indexed Ordinary Differential
Equation (SpODE) pruning framework that utilizes the evo-
lution of optimal subnetworks with continuously increasing
sparsity. At each sparsity level, the SpODE provides explicit
guidance on how to best preserve model performance while
ensuring an infinitesimal increase in model sparsity. The
contributions of this paper are three-fold.

• A Polarized Soft Neural Pruning model is proposed
(Section 4.1). It is a more tractable proxy of hard neural
pruning that allows for continuous sparsity levels while
still maintaining the innate sparsity of neural pruning.

• A novel Sparsity-indexed ODE (SpODE) pruning
framework is proposed (Section 4.3). The framework
is based on a closed-form sparsity-indexed ODE sys-
tem, which provides a mathematically tractable way to
approximate the evolution of the subnetworks over the
continuously increasing sparsity.

• A pruning algorithm, termed Pruning via Sparsity-
indexed ODE (PSO), is implemented (Section 4.4),
which enables us to travel from an unpruned reference
model to an optimal subnetwork of any desired sparsity
level by leveraging the SpODE. Empirical experiments
demonstrate that PSO achieves either better or parallel
performance compared to both structured and unstruc-
tured baseline pruning methods across various models
and scales of datasets.

2. Related Works
Score-based pruners. A score-based pruner determines
which weights to prune by ranking all the parameters in
terms of their importance scores. These scores are designed
to reflect the risk of performance degradation when indi-
vidual weights are removed from the neural network. To
this end, many score functions are proposed based on vari-
ous metrics such as, weight magnitude (Han et al., 2015),
connection sensitivity (Lee et al., 2019), synaptic saliency
(Tanaka et al., 2020), second order information (Wang et al.,
2020; Lubana & Dick, 2021), Neural Tangent Kernel signals
(Jacot et al., 2018; Rachwan et al., 2022), etc. Essentially,
our PSO can be considered a score-based pruner, where the
importance scores are determined by the destination of the
SpODE process. On the contrary, conventional scores are
primarily based on either standard Taylor expansion argu-
ments or artificial heuristics, which may offer misleading
pruning guidance in high sparsity regimes.

Regularization-based pruners. Regularization-based
pruners tackle the hard neural pruning problem by adding
regularization terms to the loss function to encourage spar-
sity in the model. For example, (Louizos et al., 2018) uti-
lizes a soften ℓ0 norm regularizer, (Chen et al., 2021) adopts
a mixed ℓ2/ℓ1 norm penalty, (Zhang et al., 2018) uses an
indicator-like penlaty, (Zhuang et al., 2020) uses a neuron
polarization regularizer, etc. However, the optimization
process of the regularized problem suffers from numerical
instability, and it may not always result in models with the
precise level of sparsity that is desired. In contrast, PSO is
able to transform the unpruned full mask to an estimated
optimal mask for any given level of sparsity via SpODE. It
is important to note that our PSO cannot be regarded as a
regularization-based pruner, since the dynamic of SpODE
cannot be depicted by the gradient flow of any regularized
objective function (Proposition 2).

Sparse-training pruners. Sparse-training pruners refer to
pruning algorithms that perform pruning and training simul-
taneously (Zhu & Gupta, 2018; Frankle & Carbin, 2019;
Mostafa & Wang, 2019; Lin et al., 2020; Xiao et al., 2019).
One of the most well-known sparse-training pruners is it-
erative magnitude pruning (Zhu & Gupta, 2018), which
has been widely used as a strong baseline (Zimmer et al.,
2022) for various pruning tasks. The Lottery Ticket Hy-
pothesis (LTH) proposed in (Frankle & Carbin, 2019) also
shows that a sparse subnetwork with comparable perfor-
mance to the dense model can be found via a combination
of IMP and weight resetting (Frankle & Carbin, 2019; Mor-
cos et al., 2019). Unfortunately, both IMP and LTH pruners
are computationally expensive due to their iterative nature
and require many training iterations to converge. In practice,
our PSO is able to converge at a much lower computational
overhead. PSO proves to be a more efficient alternative to
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IMP and other iterative pruning methods, as it achieves com-
parable or better performance in a one-shot manner while
reducing computational overhead.

3. Preliminary
Suppose a deep neural network of interest is parameterized
by θ ∈ Θ ⊂ Rd, where Θ is the parameter space and d
is the number of prunable model parameters. v[i] denotes
the i-th entry of vector v ∈ Rd. The zero norm ∥ · ∥0 of
v is defined as the number of nonzero entries, and the ℓp
norm is ∥v∥p ≜ (

∑
i |v[i]|p)1/p. The standard Hadamard

(element-wise) product of v and w is denoted as v⊙w. I{·}
denotes the entry-wise indicator function. topk(v)[i] ≜
I{|v[i]| is among the top-k in magnitude}. Without addi-
tional specification, we define 1 ∈ Rd as the vector with all
entries equaling 1.

3.1. Neurwal Pruning

The goal of neural pruning is to determine the optimal sparse
neural network among Θ with at most d′ non-zero parame-
ters, where d′ (usually, d′ ≪ d) is called the target budget,
and 1− d′/d is the so-called target sparsity. To achieve this,
pruning algorithms focus on compressing a dense reference
model θ∗ ∈ Θ by wiping out less important parameters,
while trying to maximally retain model performance. The
resultant pruned model is then retrained for a further per-
formance boost (Han et al., 2016). In general, neural prun-
ing can be interpreted as the following constrained energy
preservation problem.
Definition 1 (Neural Pruning). Given a reference model
θ∗ ∈ Rd, target parameter budget d′ ⩽ d and an enery
function E(·) : Rd 7→ R+, the neural pruning problem is
defined as

min
m∈{0,1}d

E(m⊙ θ∗), s.t. ∥m∥0 = d′, (1)

where m is the zero-one hard parameter mask m[i] ≜
I{θ∗[i] is preserved}.

Intuitively, neural pruning can severely impair the regularity
of the reference model and leads to an explosion of some sort
of model energy, such as evaluation loss, classification error,
and model capacity penalties. Thus, neural pruning aims to
cancel a given amount of parameters with minimal energy
explosion. As shown in Table 7, by specifying different
energy functions E(·), neural pruning methods with various
objectives can be regarded as instantiations of (1).

3.2. A Tour via Optimal Masks of Increasing Sparsity

Due to the intrinsic sparsity and irregularity of optimal
masks, solving (1) of a given target sparsity from scratch is
challenging. A question naturally arises is that: would it be

much easier to find the optimal mask of sparsity 1− d′/d,
if the optimal mask of sparsity 1 − (d′ + 1)/d is known
in advance? For simplicity, we denote by mt a solution to
neural pruning of sparsity t. In practice, one can alter a few
parameters of an overparameterized neural network without
significantly changing its functionality. Thus, if the minimal
energy is attained at m1−(d′+1)/d among all 1− (d′+1)/d-
sparsity masks, we should be able to increase its sparsity
to 1 − d′/d by carefully altering a few parameters, while
retaining its optimality in energy preservation. In this case,
the denser solution m1−(d′+1)/d provides a strong inductive
bias that, we should be able to find m1−d′/d in the vicinity
of m1−(d′+1)/d.

This Gedanken experiment motivates us to study how the
optimal mask mt evolves as the sparsity t continuously
increases from 0 to 1 − d′/d. Once the evolution of
(mt)t∈[0,1−d′/d] is known, we are able to travel from the
unpruned mask 1 to m1−d′/d by way of optimal masks of
each sparsity level, without solving the original neural prun-
ing problem brutally. Suppose the displacement from mt to
mt+∆t is a function of mt, e.g.

mt+∆t −mt = F (mt)∆t, (2)

by taking an unrigorous limitation ∆t→ 0, one can show
that the evolution of mt follows a sparsity-indexed ODE

dmt = F (mt)dt, t ∈ [0, 1− d′/d].

Ideally, the sparsity-indexed ODE starting from the un-
pruned mask m0 ≜ 1 eventually arrives a desirable solution
m1−d′/d as the sparsity t varies from 0 to 1− d′/d.

Before we can formally establish such a sparsity-indexed
ODE framework and develop the associated pruning algo-
rithm, two technical issues remain to be fixed. Firstly, due
to the discreteness of the zero norm, the change of sparsity
∆t is at least 1/d and it prevents us from simply taking the
limitation ∆t → 0. Secondly, for any sparsity level t, the
minimal energy can be attained at multiple optimal masks
mt. Thus, we should avoid ambiguity when determining
mt+∆t, i.e. the successive destination of mt.

4. Pruning via Sparsity-indexed ODE
In this section, we propose a novel pruning framework,
coined Sparsity-indexed ODE (SpODE). We first introduce
Polarized Soft Neural Pruning (Definition 2), a soft relax-
ation of the original neural pruning that is more amenable.
For the polarized soft neural pruning, we show that SpODE
(Proposition 3) depicts how the optimal masks of sparsity
t evolve as t increases continuously from 0 to target spar-
sity 1 − d′/d. On top of that, we propose the Pruning
via Sparsity-indexed ODE (PSO) algorithm (Algorithm 1),
which performs neural pruning by traveling from the un-
pruned mask toward an optimal mask via the SpODE.
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4.1. Polarized Soft Neural Pruning

As illustrated in Section 3.2, in order to study the dynamic
of optimal masks with respect to continuously increasing
sparsity, we need to relax the hard sparsity constraint to a
softer one, thereby we can extend the definition of sparsity
to the whole [0, 1] interval. Meanwhile, we must avoid us-
ing a dense mask when evaluating energy function, which
may distort the inherent sparsity of the hard neural pruning
problem. This requires us to polarize the dense mask vari-
ables to be nearly binary during the energy evaluation. To
this end, we propose the following Polarized Soft Neural
Pruning model.

Definition 2 (Polarized Soft Neural Pruning). Given a ref-
erence model θ∗ ∈ Θ, a target sparsity t ∈ [0, 1], a smooth
energy function E(·) : Rd 7→ R+ and a smooth soft spar-
sity function G(·) : Rd 7→ [0, 1] satisfying G(·)|{0,1}d =
1 − ∥ · ∥0/d (e.g., 1 − ∥ · ∥pp/d), for any ε > 0, we define
Iε ≜ ([0, ε]∪ [1− ε, 1])d, Γt ≜ {m : G(m) = t}, then the
Polarized Soft Neural Pruning model is defined as

min
m∈Rd

Eε(m) ≜ E(Pε(m)⊙ θ∗), s.t.G(m) = t, (3)

where Pε(·) : Rd 7→ Iε ∩ Γt is the Mask Polarizer, which
is defined as the projection2 to Iε ∩ Γt (w.r.t norm ∥ · ∥), i.e.

Pε(m) ≜ arg min
m′∈Iε∩Γt

∥m′ −m∥. (4)

The soften sparsity metric G(·) is a generalization of the
conventional zero-norm sparsity, and has the same values as
∥ · ∥0 on the {0, 1}d lattice. The term ‘sparsity of m’ in the
rest of the paper refers to G(m) without further specifica-
tion. Before the energy function is evaluated, the soft mask
m is projected to be a nearly binary mask in Iε. For a suffi-
ciently small ε, each entry of polarized mask Pε(m) resides
tightly around either 0 or 1. When ε → 0, Iε degenerates
to {0, 1}d, and the hard neural pruning is recovered by the
polarized soft pruning model. In this way, (3) provides a
desirable soft approximation of (1) without losing the innate
sparsity of zero-one masks. From now on, we only focus
on the evolution of optimal masks of (3) and use mt to
represent an optimal mask with sparsity t.

4.2. Greedy Path of Optimal Masks

Recall that our ultimate goal is to study how the optimal
masks change under an infinitesimal increase in sparsity.

2Since Iε is non-convex, to avoid ambiguity, we should slightly
revise the definition of the polarizer to ensure Pε(·) to return ex-
actly one polarized mask. To achieve this, we can define a total
order ’⪯’ over where the minimum of ∥ · −m∥ is attained, such
that Pε(·) can return the ⪯-minimum element as the desirable
projection. For notation simplicity, we postpone the detailed defi-
nition of Pε to Appendix B, and we can feel free to treat Pε as a
common projection.

To achieve this, we should first understand the one-step
evolution from a known mt to mt+∆t for a small ∆t. As
mentioned in Section 3.2, since the minimal energy is usu-
ally attained at more than one t-sparsity mask, there are
multiple choices of the next station of mt. However, these
candidate optimal masks are not equally reachable for mt:
a candidate that is distant from mt may have a drastically
different sparse pattern, and thus cannot be derived from mt

via a slight alteration; on the contrary, a candidate nearby
tends to share a similar sparse pattern with mt. Thus, it
is more preferable to greedily select the nearest 3 mt+∆t

(w.r.t to ∥ · ∥) to be the successive state of mt. The follow-
ing proposition demonstrates that such a greedy selection
scheme yields a greedy path of optimal masks.

Proposition 1 (Greedy Path of Optimal Masks (informal
version of Proposition 5)). Suppose the aforementioned
greedy selection scheme induces a series of optimal masks
with gradually increase sparsity {mk∆t}0⩽k⩽[1/∆t]. Under
some regularity conditions, when the resolution ∆t → 0,
the series tends to a densely indexed process (m∗

t )t∈[0,1],
termed the Greedy Path of Optimal Masks.

The greedy path t 7→m∗
t is indeed a function that maps any

t to an optimal mask of that sparsity level t. Besides, the
construction of (m∗

t )t∈[0,1] indicates that the greedy path
guides us to travel from m∗

t to m∗
t+dt with minimal mask

alteration.

4.3. Sparsity-indexed ODE

In order to design neural pruning algorithms by leverag-
ing (m∗

t )t∈[0,1], we still need to figure out the displacement
from sparsity t to t + ∆t, i.e. the term F (mt)∆t in (2).
This motivates us to establish an estimation of mt+∆t based
on mt via a localization trick: instead of solving (3) di-
rectly, we turn to a localized neural pruning problem with
linearized objective and constraint

Êε(m) ≜Eε(mt) +∇Eε(mt)
⊤(m−mt), (5)

Ĝ(m) ≜G(mt) +∇G(mt)
⊤(m−mt). (6)

Hence, we are able to solve the optimal one-step displace-
ment mt+∆t−mt from this localized optimization problem.
Definition 3 (Localized One-step Evolution). Following
the notations in Definition 2, suppose Eε and G are differen-
tiable at mt, the Localized One-step Evolution problem is
defined as

min
δ∈Rd

∇Eε(mt)
⊤δ, (7)

s.t.∇G(mt)
⊤δ = ∆t, ∥δ∥ ⩽ rt∆t,

where rt > 0 is a localized radius hyparameter and needs
to satisfy rt > 1/∥∇G(mt)∥ to ensure the feasibility of (7).

3If there exist multiple ‘nearest’ candidates, we can solve such
a candidate collision issue by selecting the minimum element w.r.t
a total order.
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We define δt, the solution to (7), as the Optimal Localized
One-step Displacement.

Remark 1. As illustrated in Figure 1, δt is the best displace-
ment that ensures a ∆t increase in sparsity with minimal
energy explosion. The localized one-step evolution provides
us a local estimation of mt+∆t based on mt, which allows
us to travel from a known optimal mask to a ∆t-sparser one.

Figure 1. A geometric illustration of the optimal localized one-step
displacement. The green ball represents the localization region.

For a sufficiently small ∆t, the linearized objective and
constraint serve as good proxies of the original ones. Hence,
we are able to estimate the oracle one-step evolution by
solving the more amenable (7).

Proposition 2 (Optimal Localized One-step Displacement).
Following the conditions in Definition 3, the solution to (7)
admits a closed-form solution δt = F (mt)∆t, with

F (m) ≜

{
g/∥g∥2, if ∥g∥∥e∥ = |g⊤e|2,
xe+ yg, else,

(8)

x ≜
√

((r2 − 1)/((∥g∥∥e∥)2 − (g⊤e)2)),

y ≜(1− g⊤ex)/∥g∥2,

where e ≜ −∇Eε(m), g ≜ ∇G(m) and r ≜ rt∥g∥ > 1.

Remark 2. When the descending direction of energy and the
ascending direction of sparsity reach a consensus, the δt fol-
lows the greedy sparsity descent direction. Otherwise, δt be-
comes a weighted sum of −∇Eε(mt) and∇G(mt), which
attains the minimal energy within the local regime while en-
suring a ∆t-sparsity ascent. We also need to emphasize that,
δt is not a linear combination in terms of −∇Eε(mt) and
∇G(mt). Thus, such δt can not be obtained by minimiz-
ing a regularized objective Eε + λR(G, d′) with a standard
gradient descent step.

So far, we have established an explicit expression of the
optimal local one-step displacement, which fills the blank
in the aforementioned argument (2). By carefully taking
∆t→ 0, we are now able to establish the Sparsity-indexed
ODE, which sheds light on the dynamic of (m∗

t )t∈[0,1].

Proposition 3 (Sparsity-indexed ODE (informal version of
Proposition 6)). Following the notations of Proposition 2,

under some regularity conditions on Eε, by carefully taking
∆t → 0, the series {m̃k∆t} constructed by m̃0 ≜ 1 and
m̃t+∆t ≜ m̃t + δt converges to a Sparsity-indexed ODE
(SpODE), which is given by

dm̃t = F (m̃t)dt, t ∈ [0, 1], and m̃0 = 1, (9)

where F (·) is defined in (8).

The SpODE permits a piecewise smooth transition from m̃t

to m̃t+dt with minimal energy explosion. By running the
SpODE from t = 0 to t = 1 − d′/d, we are able to travel
from the unpruned dense mask m̃0 to m̃1−d′/d, which is a
desirable approximation of the oracle m∗

1−d′/d.
Proposition 4 (SpODE Travels via Optimal Masks (in-
formal version of Proposition 7)). Let (m∗

t )t∈[0,1] be the
greedy path defined in Proposition 1, and (m̃t)t∈[0,1−d′/d]

follows the SpODE with a well-designed localization
scheme. Then it holds that m̃t = m∗

t , ∀ t ∈ [0, 1− d′/d].

4.4. Pruning via Sparsity-indexed ODE

Inspired by the SpODE framework, we propose a novel prun-
ing algorithm, called Pruning via Sparsity-indexed ODE
(PSO). For a given target parameter budget d′ < d, we run
the discretized SpODE from t = 1 to t = 1−d′/d to obtain
m̃1−d′/d. Then, we polarize m̃1−d′/d to a nearly sparse
mask Pε(m̃1−d′/d), and cancel out d− d′ parameters with
the smallest mask values.

Algorithm 1 Pruning via Sparsity-indexed ODE (PSO)
Input: reference model θ∗, target parameter budget d′,
empirical mask polarizer P̂ε,α(·), localization shceme rt,
SpODE discretization steps number N .
Output: a hard mask pruned by SpODE m̂ ∈ {0, 1}d.
Initialization t← 0, m̃t ← 1, ∆t← (1− d′/d)/N
for i = 1 to N do
m̃t+∆t ← m̃t + F (m̃t)∆t {SpODE discretization}
t← t+∆t

end for
m̂← topd′(P̂ε,α(m̃d′/d)) {Mask Polarization}
return m̂

As one shall see, PSO merely depends on the parameteri-
zation of energy and soft sparsity functions. Thus, it can
be applied to either structured or unstructured pruning for
any model structures, by setting the mask variable m to be
either the node masks, channel masks, or weight masks. A
more detailed version of PSO is provided in Algorithm 2.

Besides the parameterization of m, the implementation of
the polarizer Pε is also crucial to pruning performance and
numerical stability of PSO. For any soft mask m, the polar-
izer Pε(·) aims to find a nearly binary proxy in Iε with the
same sparsity as m. To circumvent the difficulty of com-
puting the projection to Iε ∩ Γt, we employ an empirical
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Figure 2. Visualization of the implementations of 3 empirical polar-
izers: one-hot polarizer, quantile polarizer, and Gaussian polarizer.

polarizer as a more amenable proxy of Pε. Specifically, an
empirical polarizer P̂ε,α(·) is expected to satisfy: 1) at least
1 − α of the entries of P̂ε,α(m) falls in [0, ε] ∪ [1 − ε, 1].
2) P̂ε,α(·) preserves the soft sparsity within a small error,
i.e. |G(P̂ε,α(m))−G(m)| ⩽ 1/d. As shown in Figure 2,
we implement three types of P̂ε,α that empirically works
well with neural pruning. Roughly speaking, such P̂ε,α

transforms each entry of m to either [0, ε] or [1 − ε, 1] by
matching the distribution of |m| to a sigmoid distribution
or using hard threshold, without changing the order of |m|.
The definitions of P̂ε,α are detailed in the Appendix A.3.

5. Experiments
In this section, we conduct extensive experiments to demon-
strate the effectiveness of the proposed PSO (Algorithm 1)
algorithm for both unstructured and structured pruning, as
well as in both one-shot and iterative pruning scenarios. In
general, the evaluation process for each setting is as follows:
1) Compress a pretrained teacher model θ∗ to the target
sparsity level using either PSO or other baseline methods; 2)
Retrain the pruned sparse model for some epochs to achieve
convergence; 3) Evaluate the average top-1 classification
accuracy of the associated pruned model in the last several
fine-tuning epochs. For fair comparisons, different pruning
settings vary only in step (1). More implementation details
are elaborated on in the Appendix A.

5.1. CIFAR-10 / 100 Experiments

We compare the performance of our PSO wtih several bench-
mark pruners, including magnitude pruning (Han et al.,
2015), SNIP (Lee et al., 2019), Synflow (Tanaka et al.,
2020), GraSP (Wang et al., 2020) and ℓ0 norm regular-
izer (Louizos et al., 2018) on the CIFAR-10/100 bench-
marks (Krizhevsky, 2009) using different model architec-
tures (ResNet-20 (He et al., 2016), VGG16-bn (Simonyan &

Zisserman, 2015) and WRN-20 (Zagoruyko & Komodakis,
2016)) at different target sparsity levels.

As illustrated in Figure 3, PSO achieves the best one-shot
pruning performance across various models and sparsity
levels. Though the SpODE mask is evaluated globally, PSO
excels even at high sparsity levels, indicating it can han-
dle extreme compression and avoid layer-collapse issues
(Tanaka et al., 2020) faced by conventional global pruners.

Notably, as shown in Table 1, the one-shot PSO outper-
forms or matches the performance of the Iterative Magnitude
Pruner (IMP), a strong benchmark (Zimmer et al., 2022),
with a much smaller overhead. Additionally, incorporating
an iterative pruning scheme can further improve PSO’s per-
formance to achieve SOTA results (rightest column of Table
1). Detailed results are shown in Figure 4.

Sparsity Mag IMP PSO (ours) Itr-PSO (ours)

ResNet-20
(70.38)

90% 62.52 63.41 63.38 64.95
93% 58.41 60.23 60.09 62.08
95% 53.64 55.57 56.11 59.24

96.5% 47.10 50.44 51.67 54.83
98% 29.52 35.95 40.92 45.29

VGG16-bn
(75.68)

90% 74.53 74.61 74.53 74.70
93% 73.76 74.02 74.24 74.30
95% 71.86 73.99 73.98 73.85

96.5% 70.02 73.14 72.92 73.29
98% 64.62 71.53 71.07 71.64

WRN-20
(75.22)

90% 70.62 70.86 71.00 71.26
93% 69.11 70.05 69.74 70.09
95% 66.47 68.31 67.88 68.93

96.5% 63.19 65.19 65.40 67.79
98% 54.96 59.21 59.92 63.17

Table 1. Comparison results of unstructured Pruning on CIFAR-
100. One-shot PSO is able to outperform IMP. The underline
represents results better or comparable (in 0.1%) than IMP. Itr-
PSO stands for PSO with iterative pruning scheme.

5.2. Tiny-ImageNet and ImageNet Experiments

In one-shot pruning scenarios, our PSO achieves SOTA
results for both unstructured and structured pruning on Tiny-
ImageNet (Le & Yang, 2015) with ResNet-50, VGG19-
bn, and WRN-34, and ImageNet (Deng et al., 2009) with
VGG16-bn and ResNet-50 as shown in Table 2 and Table
3. In addition, PSO narrows the performance difference be-
tween unstructured and structured pruning, where the latter
is traditionally considered more challenging and can lead
to significant model acceleration. Table 3 shows that both
the one-shot PSO can be scaled up to large-scale datasets,
e.g., ImageNet, and is able to maintain high performance
even in high sparsity regimes. Furthermore, we performed a
comparison between the performance of PSO on ImageNet
with batch sizes of 64 and 128 in Table 4. The results indi-
cate that our PSO exhibits further improvement when the
batch size of SpODE is increased. We hypothesize that this
enhancement in performance can be attributed to a more
precise estimation of the energy gradient, resulting in a more
accurate discretization of SpODE.
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Figure 3. Results of one-shot pruning on CIFAR-10/100 dataset. The x-axis is the sparsity and the y-axis is the top-1 accuracy of the
tuned sparse model. The horizontal dash line represents the performance of the unpruned model θ∗.

 90.0%  93.0%  95.0%  96.5%  98.0%
sparsity

60

70

80

90

CI
FA

R-
10

ResNet-20

 90.0%  93.0%  95.0%  96.5%  98.0%
sparsity

75

80

85

90

95

Ac
c

VGG16-bn

 90.0%  93.0%  95.0%  96.5%  98.0%
sparsity

80.0

82.5

85.0

87.5

90.0

92.5

95.0

Ac
c

WRN-20

 90.0%  93.0%  95.0%  96.5%  98.0%
sparsity

20

30

40

50

60

70

CI
FA

R-
10

0

 90.0%  93.0%  95.0%  96.5%  98.0%
sparsity

40

45

50

55

60

65

70

75

Ac
c

 90.0%  93.0%  95.0%  96.5%  98.0%
sparsity

50

55

60

65

70

75

Ac
c

Iterative Unstructured Pruning
Mag_global
SNIP_global

SynFlow_global
Mag_local

SNIP_local
SynFlow_local

PSO(ours)

 72.0%  80.0%  86.0%  90.0%  93.0%
sparsity

86

88

90

92
CI

FA
R-

10

ResNet-20

 72.0%  80.0%  86.0%  90.0%  93.0%
sparsity

90

91

92

93

94

Ac
c

VGG16-bn

 72.0%  80.0%  86.0%  90.0%  93.0%
sparsity

89

90

91

92

93

94

Ac
c

WRN-20

 72.0%  80.0%  86.0%  90.0%  93.0%
sparsity

50

55

60

65

70

CI
FA

R-
10

0

 72.0%  80.0%  86.0%  90.0%  93.0%
sparsity

64

66

68

70

72

74

76

Ac
c

 72.0%  80.0%  86.0%  90.0%  93.0%
sparsity

62

64

66

68

70

72

74

Ac
c

Iterative Structured Pruning
Mag SNIP SynFlow PSO(ours)

Figure 4. Results of iterative pruning on CIFAR-10/100 dataset. The x-axis is the sparsity and the y-axis is the top-1 accuracy of the tuned
sparse model. The horizontal dash line is the accuracy of the unpruned model.

To validate the effectiveness of our PSO method and com-
pare it fairly with several iterative pruning algorithms, in-
cluding Powerpropagation (Schwarz et al., 2021), STR
(Kusupati et al., 2020), Woodfisher (Singh & Alistarh, 2020),
and ProbMask (Zhou et al., 2021), we conducted iterative
pruning experiments on ImageNet using the same ResNet-
50 checkpoint and experimental setup as (Kusupati et al.,
2020). Specifically, we ran the PSO method for prune-
finetune iterations, with each iteration involving a SpODE
with a batch size of 256 and N = 1000, followed by
5 epochs of model retraining. Finally, we finetuned the
pruned ResNet-50 for 50 epochs to further enhance its per-
formance. Therefore, our PSO method was run for a total
of 100 = 5 × 10 + 50 epochs, just like the other iterative
pruning baselines.

As shown in the Table 5, when evaluated under the same iter-
ative pruning setting, our PSO method shows either superior
or comparable pruning performance compared to these base-
line algorithms. It’s worth noting that running the SpODE

with a batch size of 256 for 1000× 10 steps incurs only a
small computational overhead, which is equivalent to that
of finetuning the model for just ONE additional epoch on
ImageNet.

Sparsity Mag SNIP SynFlow GraSP PSO (ours)

ResNet-50
(67.06)

90% / 72% 60.51 / 63.40 57.62 / 64.26 56.09 / 63.78 52.78 / 59.14 63.47 / 63.60
93% / 80% 57.18 / 62.84 53.91 / 63.03 54.79 / 63.07 49.16 / 57.21 59.37 / 63.37
95% / 86% 56.64 / 61.36 54.33 / 61.77 53.85 / 61.37 43.95 / 57.00 61.20 / 62.73

96.5% / 90% 53.42 / 58.98 53.87 / 56.16 50.33 / 58.45 32.42 / 54.76 57.61 / 61.63
98% / 93% 51.90 / 56.81 52.94 / 58.07 41.00 / 57.23 10.56 / 53.99 53.82 / 59.62

VGG19-bn
(63.47)

90% / 72% 62.32 / 59.58 61.66 / 59.27 0.50 / 0.50 43.73 / 56.84 62.67 / 60.37
93% / 80% 61.65 / 58.33 60.22 / 58.01 0.50 / 0.50 43.52 / 55.51 62.05 / 59.08
95% / 86% 61.74 / 57.34 56.08 / 55.75 0.50 / 0.50 42.86 / 50.90 61.54 / 57.08

96.5% / 90% 60.46 / 54.99 46.54 / 52.38 0.50 / 0.50 42.37 / 46.16 60.60 / 55.22
98% / 93% 53.26 / 49.82 23.33 / 46.75 0.50 / 0.50 39.42 / 41.06 57.63 / 50.65

WRN-34
(64.74)

90% / 72% 61.59 / 60.23 61.43 / 60.32 57.87 / 60.44 53.37 / 59.85 62.36 / 61.11
93% / 80% 61.11 / 59.35 60.16 / 59.28 57.57 / 59.61 52.75 / 57.13 61.17 / 59.91
95% / 86% 59.97 / 58.30 51.31 / 58.14 50.11 / 58.20 49.67 / 55.30 60.14 / 58.38

96.5% / 90% 58.98 / 57.25 56.45 / 55.65 54.32 / 56.23 49.67 / 53.11 58.75 / 57.28
98% / 93% 56.39 / 55.40 54.60 / 54.12 50.42 / 52.03 47.17 / 51.62 57.54 / 57.03

Table 2. Comparison results of one-shot Unstructured / Structured
Pruning on Tiny-ImageNet. The numbers in the parentheses are
the performance of the unpruned model.
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VGG16-bn (73.36) ResNet-50 (76.128)

Sparsity 90% 95% 90% 95%

Mag 73.15 70.89 73.07 68.88
PSO (ours) 73.25 71.11 73.19 68.94

Table 3. One-shot unstructured pruning on ImageNet. The num-
bers in the parentheses are the performance of the unpruned model.

ResNet-50 Unpruned Acc. Sparisty SpODE Batchsize Finetune Epochs Final Acc.

Mag 76.13% 90.00% 64 45 73.07%
PSO (ours) 76.13% 90.00% 64 45 73.19%
PSO (ours) 77.01% 90.00% 64 100 73.54%
PSO (ours) 77.01% 90.00% 128 100 74.20%

Table 4. The performance of one-shot PSO can be further improved
with a larger batchsize in the discretization of SpODE.

ResNet-50 Unpruned Acc. Sparisty Final Acc.

STR (Kusupati et al., 2020) 77.01% 87.70% 74.73%
WoodFisher (Singh & Alistarh, 2020) 77.01% 90.00% 75.21%
Powerprop (Schwarz et al., 2021) 76.80% 90.00% 74.40%
ProbMask (Zhou et al., 2021) 77.01% 90.00% 74.68%
PSO (ours) 77.01% 90.00% 75.10%

Table 5. Iterative PSO achieves either better or comparable per-
formance than the state-of-the-art baselines on ImageNet. The
experiment follows the same settings of (Kusupati et al., 2020).

5.3. Ablation Studies

To evaluate the effectiveness of PSO, we perform detailed
ablation experiments and present the results and analysis in
this section.

Ablation on empirical polarizers. Recall that in Section
4.4, the choice of the empirical polarizer P̂ε,α(·) is crucial
to pruning performance. A smaller ε value implies a less ir-
regular relaxed pruning problem but a larger approximation
error of the hard pruning problem, while a smaller α value
results in a closer approximation of Pε and stronger polar-
ization effect. To empirically determine the effects of ε, α,
we evaluate the one-shot unstructured pruning performance
of the three empirical polarizers proposed in Figure 2 with
varying (ε, α). The ablation results in Figure 5 show that
for all settings, except (ε = 0.4, α = 0.3), PSO achieves
better or comparable performance to the baseline pruner.
This implies that PSO’s performance is robust to the choice
of different polarizers. In practice, it is more preferable to
set ε < 0.3 and α < 0.1.

Ablation on SpODE discretization schemes. As the PSO
pruning score is obtained by solving the SpODE, the per-
formance of PSO highly relies on the SpODE discretization
scheme used in Algorithm 1. The SpODE discretization
scheme is determined by the number of discretization steps
N , the localization parameter rt and the schedule of spar-
sity increase ∆t. For simplicity, rt is set as a constant with
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Figure 5. Ablation study on polarizers, where ‘Quant’ and ‘Gau’
refers to the quantile polarizer and Gaussian polarizer respectively.

value r. We then implement PSO with various (N, r) and
∆t schedules. Empirically, PSO is robust to the choice of
(N, r), as shown in Figure 6. For CIFAR-100 / VGG16-
bn, PSO with only 20 discretization steps can compress the
model to 95% sparsity with a 2.5% performance drop.
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Figure 6. Ablation study on choices of (N, r).

In Figure 7 we visualize three types of sparsity schedules
(left) and we track the loss function value along the asso-
ciated SpODE paths (middle). In high sparsity regimes,
the exponential schedule demonstrates its ability to effec-
tively preserve the loss value, whereas the linear and inverse-
exponential schedules cause an evident increase in the loss
function. Furthermore, when using an exponential ∆t sched-
ule, PSO attains the highest top-1 accuracy across multi-
ple sparsity levels. We hypothesize that, in high sparsity
regimes, the population of the optimal masks is scarcer,
making the SpODE path more irregular and harder to be
approximated numerically. Therefore, it is recommended to
allocate more computational resources to the high sparsity
regimes by using decaying ∆t schedules like the exponen-
tial schedule.
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Figure 8. Ablation on the SpODE explicit update. ’Regu-λ’ rep-
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Ablation on explicit SpODE update. To confirm the
superiority of using the explicit SpODE update, we com-
pare the performance of the standard PSO with that of the
regularized-based counterpart of PSO with a penalized ob-
jective function Eε + λ/2(G − (1 − d′/d))2, λ > 0 is the
penalty weight. The regularized counterpart updates the
mask by standard SGD until the target sparsity is reached.
As shown in Figure 8, the regularized-based pruner struggles
to achieve the same level of performance as the standard
PSO, highlighting the advantage of using explicit SpODE
update. However, with a fine-tuned regularization param-
eter (e.g. λ = 104), the regularized-based pruner can still
surpass other baseline pruners. This can be attributed to the
fact that our polarized soft pruning model (3) effectively
approximates the hard pruning problem.

Implicit Mask Regrowing. Conventional pruners typically
compute pruning scores based on the current unpruned pa-
rameters, making them vulnerable to premature and perma-
nent mask removal, unless a well-designed mask-regrowing
strategy is implemented. In contrast, PSO travels along
the SpODE path that is composed of optimal masks, thus
enabling implicit mask regrowing. We empirically verify
this property by 1) collecting PSO checkpoints of different
sparsity levels along a single SpODE path; 2) pruning each
checkpoint and retraining it until convergence; 3) computing
the number of regrown masks for each sparsity. As shown
in Figure 9, when the sparsity is high, the mask regrowing is

intense and the PSO checkpoints exhibit significantly better
performance than baseline. This shows that in high spar-
sity regimes, where the risk of premature removal is high,
PSO’s improved performance can be partly attributed to its
implicit mask-regrowing feature. Moreover, this supports
the claim of Proposition 4 that the SpODE path intersects
with optimal masks at various sparsity levels, providing
a robust solution for neural pruning.
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Figure 9. PSO exhibits intense implicit mask regrowing in high
sparsity regimes.

6. Conclusion
In this paper, we proposed a novel Sparsity-indexed ODE
(SpODE) pruning framework (Proposition 3) that illumi-
nates the evolution of optimal masks as the sparsity level
increases continuously. Then we develop the Pruning via
SpODE (PSO) algorithm (Algorithm 1) that enables effec-
tive pruning by traveling along the SpODE path. Our PSO
achieves SOTA performance across various of pruning set-
tings. Noteworthily, our oneshot-PSO is able to achieve bet-
ter or comparable performance than the expensive iterative
pruners (Table 1); our PSO significantly narrows the per-
formance gap between unstructured pruning and structured
pruning (Table 2); PSO allows for implicit mask regrowing,
making it more robust in high sparsity regimes (Figure 9).
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M., and Günnemann, S. Winning the lottery ahead of
time: Efficient early network pruning. In Chaudhuri, K.,
Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato,
S. (eds.), Proceedings of the 39th International Confer-
ence on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pp. 18293–18309. PMLR,
17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/rachwan22a.html.

Radosavovic, I., Kosaraju, R. P., Girshick, R., He, K., and
Dollár, P. Designing network design spaces. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 10428–10436, 2020.

Schwarz, J., Jayakumar, S. M., Pascanu, R., Latham, P. E.,
and Teh, Y. W. Powerpropagation: A sparsity induc-
ing weight reparameterisation. In Neural Information
Processing Systems, 2021.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition, 2015.

Singh, S. P. and Alistarh, D. Woodfisher: Efficient second-
order approximation for neural network compression.
In Proceedings of the 34th International Conference on
Neural Information Processing Systems, NIPS’20, Red
Hook, NY, USA, 2020. Curran Associates Inc. ISBN
9781713829546.

Srinivas, S. and Babu, R. V. Data-free parameter pruning for
deep neural networks. arXiv preprint arXiv:1507.06149,
2015.

Tanaka, H., Kunin, D., Yamins, D. L., and Ganguli, S. Prun-
ing neural networks without any data by iteratively con-
serving synaptic flow. Advances in Neural Information
Processing Systems, 33:6377–6389, 2020.

Wang, C., Zhang, G., and Grosse, R. Picking winning
tickets before training by preserving gradient flow. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=SkgsACVKPH.

Xiao, X., Wang, Z., and Rajasekaran, S. Autoprune: Auto-
matic network pruning by regularizing auxiliary parame-
ters. Advances in neural information processing systems,
32, 2019.

Zagoruyko, S. and Komodakis, N. Wide residual net-
works, 2016. URL https://arxiv.org/abs/
1605.07146.

Zhang, T., Ye, S., Zhang, K., Tang, J., Wen, W., Fardad, M.,
and Wang, Y. A systematic dnn weight pruning frame-
work using alternating direction method of multipliers.
In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 184–199, 2018.

11

https://proceedings.mlr.press/v119/kusupati20a.html
https://proceedings.mlr.press/v119/kusupati20a.html
https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=SJem8lSFwB
https://openreview.net/forum?id=SJem8lSFwB
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=rumv7QmLUue
https://openreview.net/forum?id=rumv7QmLUue
https://proceedings.neurips.cc/paper/2019/file/a4613e8d72a61b3b69b32d040f89ad81-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/a4613e8d72a61b3b69b32d040f89ad81-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/a4613e8d72a61b3b69b32d040f89ad81-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/a4613e8d72a61b3b69b32d040f89ad81-Paper.pdf
https://proceedings.mlr.press/v162/rachwan22a.html
https://proceedings.mlr.press/v162/rachwan22a.html
https://openreview.net/forum?id=SkgsACVKPH
https://openreview.net/forum?id=SkgsACVKPH
https://arxiv.org/abs/1605.07146
https://arxiv.org/abs/1605.07146


Pruning via Sparsity-indexed ODE: a Continuous Sparsity Viewpoint

Zhou, X., Zhang, W., Xu, H., and Zhang, T. Effective sparsi-
fication of neural networks with global sparsity constraint.
In 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3598–3607, 2021. doi:
10.1109/CVPR46437.2021.00360.

Zhu, M. H. and Gupta, S. To prune, or not to prune: Ex-
ploring the efficacy of pruning for model compression.
In International Conference on Learning Representa-
tions Workshop, 2018. URL https://openreview.
net/forum?id=S1lN69AT-.

Zhuang, T., Zhang, Z., Huang, Y., Zeng, X., Shuang,
K., and Li, X. Neuron-level structured pruning
using polarization regularizer. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H.
(eds.), Advances in Neural Information Processing
Systems, volume 33, pp. 9865–9877. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/
703957b6dd9e3a7980e040bee50ded65-Paper.
pdf.

Zimmer, M., Pokutta, S., and Spiegel, C. Back to basics: Ef-
ficient network compression via imp, 2022. URL https:
//openreview.net/forum?id=AsDSpwXYGeT.

12

https://openreview.net/forum?id=S1lN69AT-
https://openreview.net/forum?id=S1lN69AT-
https://proceedings.neurips.cc/paper/2020/file/703957b6dd9e3a7980e040bee50ded65-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/703957b6dd9e3a7980e040bee50ded65-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/703957b6dd9e3a7980e040bee50ded65-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/703957b6dd9e3a7980e040bee50ded65-Paper.pdf
https://openreview.net/forum?id=AsDSpwXYGeT
https://openreview.net/forum?id=AsDSpwXYGeT


Pruning via Sparsity-indexed ODE: a Continuous Sparsity Viewpoint

A. Implementation Details
A.1. Pruning Configurations

A general pruning evaluation process consists of three key steps:

1. Compressing a pretrained model θ∗ to the target sparsity level using a specific pruner and pruning configuration.

2. Retraining the pruned sparse model for some epochs to achieve convergence.

3. Evaluate the average top-1 classification accuracy of the associated pruned model in the last several retraining epochs.

Different pruning configurations vary only in step 1, while the subsequent retraining (Table 6) and evaluating procedures
remain consistent across all settings, enabling a fair comparison of the pruning methods. Specifically, a pruning configuration
is determined by the pruning scope (unstructured / structured) and the pruning scheme (one-shot/iterative prune-and-retrain).

Pruning scopes. In this work, we conduct experiments on both types of pruning scopes: unstructured and structured pruning.
For unstructured (structured) pruning, we first compute the pruning score of each individual parameter (each neuron) and
cancel out those with the lowest pruning scores. For unstructured pruning methods, we extend them to structured pruning
by defining the neuron score as the sum of the scores of the individual weights associated with that neuron. Following the
pruning conventions, we leave the first convolutional layer and all batch normalization layers unpruned.

Pruning schemes. Experiments are also conducted on both types of pruning schemes: one-shot and iterative pruning.
Generally, one-shot pruning emphasizes that the parameter elimination (but the pruning score evaluation can take place
multiple times) is performed only once before final retraining; on the contrary iterative pruning allows for multiple prune-
and-retrain cycles. Thus, an iterative pruning configuration is characterized by a series of intermediate sparsity levels (also
known as a pruning schedule) and the optimization strategy for retraining at each intermediate stage. For all pruners, we
adopt the traditional exponential pruning schedule. In each prune-and-retrain iteration, the intermediate sparse model is
tuned for 5 epochs with the same training strategy as the final retraining stage (Table 6). In addition, the batch size of dataset
(if needed) used for pruning score evaluation is 256 for CIFAR-10/100, and 64 for Tiny ImageNet and ImageNet.

Table 6. Hyperparameter configurations for retraining procedure.
VGG16-bn VGG19-bn WRN20 WRN34 ResNet-20 ResNet-50

CIFAR-10/100 ImageNet Tiny ImageNet CIFAR-10/100 Tiny ImageNet CIFAR-10/100 Tiny ImageNet ImageNet
Optimizer SGD-Momentum SGD-Momentum SGD-Momentum SGD-Momentum SGD-Momentum SGD-Momentum SGD-Momentum SGD-Momentum

Training Epochs 100 45 70 100 70 100 70 45
Batch Size 64 128 128 64 128 64 128 128

Learning Rate 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2
Learning Rate Schedule CosineAnnealing CosineAnnealing CosineAnnealing CosineAnnealing CosineAnnealing CosineAnnealing CosineAnnealing CosineAnnealing

Minimal Learning Rate and When to Reach 1e-6
last 10 epochs

1e-6
last 0 epochs

1e-6
last 10 epochs

1e-6
last 10 epochs

1e-6
last 10 epochs

1e-6
last 10 epochs

1e-6
last 10 epochs

1e-6
last 0 epochs

Evaluated Epochs last 10 epochs last 3 epochs last 10 epochs last 10 epochs last 10 epochs last 10 epochs last 10 epochs last 3 epochs

A.2. Implementation of Pruning via Sparsity-indexed ODE

A detailed version of Pruning via Sparsity-indexed ODE (PSO) algorithm is shown in Algorithm 2.

A.3. Implementation of Empirical Polarizers

In this section, we elaborate the implementation of three empirical mask polarizers, including the one-hot polarizer
(Algorithm 3), the quantile polarizer (Algorithm 4), and the Gaussian polarizer (Algorithm 5).
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Algorithm 2 Pruning via Sparsity-indexed ODE (PSO)
Input: reference model fθ∗(·), loss function l(·, ·), target parameter budget d′, soft sparsity function G(·), empirical
mask polarizer P̂ε,α(·), localization shceme rt, SpODE discretization steps number N .
Output: a hard mask pruned by SpODE m̂ ∈ {0, 1}d.
Initialization t← 0, m̃t ← 1, ∆t← (1− d′/d)/N
for i = 1 to N do
m̂t ← P̂ε,α(m̃t) {Mask polarization}
(x,y)← Mini Batch
Eε(m̂t)← l(fθ∗⊙m̂t

(x),y)
e← ∇Eε(m̂t) {Calculate gradient w.r.t energy (mini-batch lossa)}
g← ∇G(m̂t) {Calculate gradient w.r.t soft sparsity}
if ∥g∥∥e∥ ≠ (g⊤e)2 then
x←

√
(r2 − 1)/((∥g∥∥e∥)2 − (g⊤e)2)

y ← (1− g⊤ex)/∥g∥2
F (m̃t)← xe+ yg

else
F (m̃t)← g/∥g∥2

end if
m̃t+∆t ← m̃t + F (m̃t)∆t {SpODE discretization by Eq. (8)}
t← t+∆t

end for
m̂← topd′(P̂ε,α(m̃d′/d)) {Empirical mask polarization}
return m̂

Algorithm 3 One-hot Polarizer
Input: a soft dense mask m ∈ Rd, soft sparsity function G(·).
Output: a nearly sparse P̂oh(m) ∈ {0, 1}d.
t← G(m)
k ← ⌈td⌉
P̂oh(m)← topk(m)

Algorithm 4 Quantile Polarizer
Input: a soft dense mask m ∈ Rd, soft sparsity function G(·), hyperparameters ε, α ∈ (0, 1).
Output: a nearly sparse P̂quant

ε,α (m) ∈ [0, 1]d.
t← G(m)
Cl, Cu ← quantileα∗(1−t)(m), quantile(1−t)(m) {Calculate the quantiles of m}
C ′

l , C
′
u ← logit(ε), logit(1− ε)

P̂quant
ε,α (m)← sigmoid(

C′
u−C′

l

Cu−Cl
(m− Cl) + C ′

l) {Match to sigmoid distribution via quantiles alignment}

Algorithm 5 Gaussian Polarizer
Input: a soft dense mask m ∈ Rd, soft sparsity function G(·), hyperparameters ε, α ∈ (0, 1).
Output: a nearly sparse P̂gau

ε,α (m) ∈ [0, 1]d.
t← G(m)
cl, cu ← quantileα∗(1−t)(N(0, 1)), quantile(1−t)(N(0, 1)) {Approximate the quantiles of m with Gaussian quantiles}
µ, σ ← mean(m), std(m)
Cl, Cu ← µ− clσ, µ+ cuσ
C ′

l , C
′
u ← logit(ε), logit(1− ε)

P̂gau
ε,α (m)← sigmoid(

C′
u−C′

l

Cu−Cl
(m− Cl) + C ′

l) {Match to sigmoid distribution via quantiles alignment}
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B. Theoretical Results

Method E(θ) Energy Type

ℓ1 Magnitude (Han et al., 2015) ∥θ∥2 Capacity mearsure
SNIP (Lee et al., 2019) L(θ) Evaluation loss

GraSP (Wang et al., 2020) ∥∇L(θ)∥2 Model optimality
SynFlow (Tanaka et al., 2020) 1⊤ ∏

l |θl|1 Capacity mearsure

Table 7. Unifying various neural pruning methods via the energy preservation viewpoint. θl denotes the weight matrix of the l-th layer of
deep model θ.

Proposition 5 (Greedy Path of Optimal Masks (formal version of Proposition 1)). For any sparsity level t ∈ [0, 1], we define
Γt ≜ {m : G(m) = t},Mt as the set of all optima of (3) at sparsity level t and E∗t as the associated optimal energy value.
Assume that

• Locally regularity ofMt: ∀mt ∈Mt, ∀ r > 0 there exists δ > 0 s.t.Mt−δ ∩Br(mt) ̸= ∅.

• Finite critical sparsity levels: the set of critical sparsity levels

crit(Eε, G) ≜ {t : ∃mt ∈Mt s.t. Eε(·) is not differentiable at m}

is finite, i.e. ∃K ∈ Z, s.t. crit(Eε, G) = {τi}Ki=1, τi < τj if i < j.

• Locally regularity of G(·): for any m /∈
⋃

t∈crit(Eε,G) Γt, there exists R,C > 0, s.t. for any m′ satisfying ∥m−m′∥ ⩽
R, it holds that

∥m−m′∥ ⩽ C|G(m)−G(m′)|.

For any fixed ∆t and any total order ⪯ on Rd, we are able to construct a discretely indexed series of optimal masks
{mt}t∈T , where τ0 ≜ 0, τK+1 ≜ 1 and

T ≜
K−1⋃
i=0

Tτi,τi+1 , Ta,b ≜ {a, b} ∪ {a+ k∆t}⌈(b−a)/∆t⌉
k=1 ,

such that

m0 ≜ 1, mti+1
≜ min

⪯

(
arg min

m′∈Mti+1

∥m′ −mti∥

)
,

where ti+1 is the successive element of ti ∈ T . Then, when we take ∆t → 0, {mt}t∈T converges to (m∗
t )t∈[0,1], a

piecewise locally Lipschitz function on [0, 1].

Proof. We only need to show that lim∆t→0 ∥mt+∆t −mt∥ = 0, where t, t+∆t ∈ T \crit(Eε, G). This implies that, as
the resolution ∆t tends to zero, any m∗

t can be approximated by elements in {mt}t∈T at any precision.

Suppose t /∈ crit(Eε, G), for any ϵ > 0, we need to find a ∆t s.t. ∥mt+∆t −mt∥ ⩽ ϵ. By the locally regularity of G, there
exists R,C > 0 s.t. ∥m−mt∥ ⩽ C|G(m)− t|, ∀m ∈ BR(mt). Since for sufficiently small ∆t,Mt+∆t∩BR(mt) ̸= ∅,
the proof is completed by

∥mt+∆t −mt∥ = min
m∈Mt+∆t

∥m−mt∥ ⩽ min
m∈Mt+∆t∩BR(mt)

∥m−mt∥ ⩽ C∆t.

Example B.1 (An example of the total order ⪯ in Proposition 5). We are able to define a total order ⪯ over Rd based on a
reference model θ∗ ∈ Θ. Suppose there are no value collisions in the entries of |θ∗|, i.e. |θ[i]| ̸= |θ[j]| if i ̸= j. We sort |θ|
in an descending order such that |θ[i1]| ⩾ |θ[i2]| ⩾ · · · ⩾ |θ[id]|. Then, the total order is defined by:

m ⪯m′ ⇐⇒ ∃ k ⩽ d, s.t. |m[j]| = |m′[j]|, ∀ j < ik, |m[id]| ⩽ |m′[id]|. (10)

The total order is merely an auxiliary to ensure that we can choose a unique successive state when constructing {mt}T and
calculating the projection Eε(·).
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Definition 4 ((Formal) Mask Polarizer). The mask polarizer Pε(·) is defined as the minimum element (w.r.t a total order ⪯)
projection from Rd to Iε ∩ Γt, i.e.

Pε(m) ≜ min
⪯

arg min
m′∈Iε∩Γt

∥m−m′∥.

Thus, the output of a polarizer is always unique.

Proof of Proposition 2. The proof directly follows the lemma below.

Lemma 1. The following optimization problem

max
δ

e⊤δ, s.t. g⊤δ = a, ∥δ∥ ⩽ r, (11)

admits a closed-form solution

δ∗ =

{
ag/∥g∥2, if ∥g∥∥e∥ = |g⊤e|2,
xe+ yg, else,

where

x ≜

√
(r∥g∥)2 − a2

(∥g∥∥e∥)2 − (g⊤e)2
, y ≜ (a− (g⊤e)x)/∥g∥2. (12)

Proof of Lemma 1.

By convex optimization theory, the optimal is attained at the decision boundary Γ, where Γ ≜ {δ | g⊤δ = a, ∥δ∥ = r}.
Notice that, the solution of maxδ∈Γ e

⊤δ resides at the hyperplane spanned by {g, e}, i.e. δ∗ = xe+ yg, x, y ∈ R+. Thus,
we can solve the optimal x, y by

xg⊤e+ y∥g∥2 =a, (13)

x2∥e∥2 + 2xye⊤g + y2∥g∥2 =r2. (14)

Thus we have

y =(a− (g⊤e)x)/∥g∥2, (15)

∥e∥2x2+
2x

∥g∥2
(a− (g⊤e)x) · (e⊤g) + 1

∥g∥2
(a− (g⊤e)x)2 = r2, (16)

which further implies Ax2 + 2Bx+ C = 0, where

A = ∥e∥2 − (g⊤e)2/∥g∥2, B = 0, C = a2/∥g∥2 − r2. (17)

The proof is hence completed by taking

x =

√
(r∥g∥)2 − a2

(∥g∥∥e∥)2 − (g⊤e)2
. (18)

Proposition 6 (Sparsity-Indexed ODE (formal version of Proposition 3)). Following the notations and conditions in 5,
taking ∆t→ 0, the series {m̃k∆t} constructed by m̃t+∆t ≜ m̃t + δ̃t, where

δ̃t ≜

{
∇G(mt)∆t, if [t−∆t, t+∆t] ∩ crit(Eε, G) ̸= ∅
F (mt)∆t, otherwise

(19)
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converges to a piecewise smooth Sparsity-Indexed ODE (SpODE), which is given by

dm̃t =F (m̃t)dt, t ∈ [0, 1], (20)
m̃0 =1,

where F (·) is defined in (8).

Proof. Following the notations in the proof of Proposition 5, let crit(Eε, G) = {τi}Ki=1, we can see both Eε(·) and G(·)
are smooth at {(Mt)t∈(τi−1,τi)}Ki=1. Thus, the constructed subsequence {m̃k∆t}k:(k∆t)∈(τi−1,τi) is a Euler discretization
sequence which converges to the SpODE in the sparsity segment (τi−1, τi). To complete the proof, it is sufficient to
demonstrate that the convergence of the constructed sequence remains unaltered at the critical sparsity levels. By the locally
regularity of G, for k such that k∆t ⩽ τ1 ⩽ (k + 1)∆t, we have

∥m̃(k+1)∆t − m̃k∆t∥ ⩽ 2 max
κ∈{k,k+1}

∥∇G(m̃κ∆t)∥∆t,

which implies the limitation m̃τi ≜ lim∆t→0 m̃k(∆t)∆t exists. This demonstrates that {m̃k∆t} converges to a smooth
SpODE path on the interval [0, τ1]. The proof is completed by iteratively applying this argument to the remaining K
intervals {(τi, τi+1)}Ki=1. Since K < +∞, the constructed sequence converges to the piecewise smooth SpODE on [0, 1] as
∆t→ 0.

Proposition 7 (SpODE Estimation (formal version of Proposition 4)). Following the notations in Proposition 5 and
Proposition 6, let (m∗

t )t∈[0,1] be the greedy path defined in Proposition 5, and (m̃t)t∈[0,1−d′/d] follows the SpODE with an
oracle localization scheme rt, where t 7→ rt is an a.e. smooth function defined by

rt ≜ ∥∇G(m∗
t )∥−1

∥∥∥∥ d

dt
m∗

t

∥∥∥∥ . (21)

If we further assume

• Inevitable energy explosion: ∃ ϕ > 0, s.t. cos(−∇Eε(m),∇G(m)) > ϕ holds for any m ∈ {m : G(m) > 0}.

• Dominant first-order information: for any t ∈ [0, 1]\crit(Eε, G), the projection to span({∇Eε(m∗
t )})⊥ is a contraction

mapping at the vicinity of m∗
t .

• Both ∇Eε(·) and ∇G(·) are L-locally Lipschitz at m∗
t for any t ∈ [0, 1]\crit(E∗ε , G).

Then it holds that m̃1−d′/d = m∗
1−d′/d.

Proof. We only need to show ∥m̃t −m∗
t ∥ = 0 holds for any t in the first smooth segment of the SpODE, i.e. [1, τ1]. Then

the proof is completed by repeating this argument on the remaining finite many smooth segments.

We tackle the proof via a discrete argument, then we take the limit ∆t→ 0 for desired conclusions. For any t ∈ [1, τ1] and
∆t > 0, it holds that

∥m̃t+∆t −m∗
t+∆t∥ − ∥m̃t −m∗

t ∥ (22)
⩽ ∥F ∗(m∗

t )− F (m∗
t )∥︸ ︷︷ ︸

Localization error

+ ∥F (m∗
t )− F (m̃t)∥︸ ︷︷ ︸

Displacement error

, (23)

where F ∗(·) is the oracle displacement function, i.e. m∗
t + F ∗(m∗

t ) is the optimal solution of

min
m
Eε(m), s.t. G(m) = t+∆t, ∥m−m∗

t ∥ ⩽ rt∆t. (24)

To cope with the localization error term, we further introduce an auxiliary displacement function F̂ (·) such that m∗
t + F̂ (m∗

t )
attains the minimal energy of the following problem

min
m
Eε(m), s.t.∇G(m∗

t )
⊤m = ∆t, ∥m−m∗

t ∥ ⩽ rt∆t. (25)

17
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Suppose the optimal solution of (25) is m̂t, by a second order Taylor expansion argument at m∗
t , it holds that

∇Eε(m∗
t )

⊤(m̂t+∆t − m̃t+∆t) (26)

⩽
1

2
(C + λmax(∇2Eε(m∗

t )))
(
∥(m̂t+∆t −m∗

t+∆t)∥2 + ∥(m̃t+∆t −m∗
t+∆t)∥2

)
(27)

⩽Cr2t∆t2, (28)

where λ∗(·) denotes the largest eigen-value of a matrix and C represents the absolute constant. Recall that the projection to
span({∇Eε(m∗

t )})⊥ is a contraction mapping near m∗
t , for ∆t that is sufficiently small, we have

∥P(m̂t+∆t − m̃t+∆t)∥ ⩽ γ∥m̂t+∆t − m̃t+∆t∥, (29)

with γ < 1 and P ≜ I− ∥∇Eε(m∗
t )∥−2 · ∇Eε(m∗

t )∇Eε(m∗
t )

⊤. This further implies

∥(I−P)(m̂t+∆t − m̃t+∆t)∥ ⩾(1− γ)∥m̂t+∆t − m̃t+∆t∥, (30)

=⇒ ∥F̂ (m∗
t )− F (m∗

t )∥ = ∥m̂t+∆t − m̃t+∆t∥ ⩽
1

(1− γ)∥∇Eε(m∗
t )∥
|∇Eε(m∗

t )
⊤(m̂t+∆t − m̃t+∆t)|, (31)

⩽
Cr2t

(1− γ)∥∇Eε(m∗
t )∥

∆t2 ≜ C ′∆t2. (32)

This shows ∥F̂ (m∗
t )− F (m∗

t )∥ is a second order term w.r.t ∆t. In addition, by the locally regularity of G(·), it holds that

∥F̂ (m∗
t )− F ∗(m∗

t )∥ = ∥m̂t+∆t −m∗
t+∆t∥ (33)

⩽C|G(m̂t+∆t)−G(m∗
t+∆t)| ⩽

C

2
(C + λmax(∇2G(m∗

t )))∥m̂t+∆t −m∗
t+∆t∥2 ⩽ C ′′r2t∆t2. (34)

The combination of (32) and (34) indicates that the localization error term is bounded by a second-order term w.r.t ∆t, i.e.

∥F ∗(m∗
t )− F (m∗

t )∥ ⩽ O(∆t2).

At this point, we only need to upper bound the displacement error term. Following the notations in Propostion 2, we have

∥F (m∗
t )− F (m̃t)∥ = ∥δ∗t − δ̃t∥∆t (35)

⩽

∥x∗∇Eε(m∗
t )− x̃∇Eε(m̃t)∥︸ ︷︷ ︸

(A)

+ ∥y∗∇G(m∗
t )− ỹ∇G(m̃t)∥︸ ︷︷ ︸

(B)

∆t. (36)

By the L-locally Lipschitzness of∇Eε and ∇G, it holds that

(A) ⩽ ∥∇Eε(m̃t)∥ · |x∗ − x̃|+ |x̃| · ∥∇Eε(m∗
t )−∇Eε(m̃t)∥ , (37)

(B) ⩽ ∥∇G(m̃t)∥ · |y∗ − ỹ|+ |ỹ| · ∥∇G(m∗
t )−∇G(m̃t)∥ , (38)

∥∇Eε(m∗
t )−∇Eε(m̃t)∥ ⩽ L · ∥m∗

t − m̃t∥, (39)
∥∇G(m∗

t )−∇G(m̃t)∥ ⩽ L · ∥m∗
t − m̃t∥. (40)

Since that |∇Eε(m)⊤∇G(m)|/(∥∇Eε(m)∥∥∇G(m)∥) = cos(∇G(m),∇Eε(m)) ⩾ β > 0 holds for any m with
G(m) < 1, both x̃, ỹ are bounded. Moreover, following the notations in Proposition 2, by using (39) and (40), when ∆t is
sufficiently small, it holds that ∣∣((∥g̃t∥∥ẽt∥)2 − (g̃⊤

t ẽt)
2
)
−
(
(∥g∗

t ∥∥e∗t ∥)2 − (g∗⊤
t e∗t )

2
)∣∣ (41)

⩽
∣∣(∥g̃t∥∥ẽt∥)2 − (∥g∗

t ∥∥e∗t ∥)2
∣∣+ ∣∣(g̃⊤

t ẽt)
2 − (g∗⊤

t e∗t )
2
∣∣

⩽M(L)∥m̃t −m∗
t ∥, (42)

where M(L) is an absolute constant that only depends on L. This implies that both |x∗ − x̃| and |y∗ − ỹ| are upper bounded
by M ′(L,C, β, t)∥m̃t+∆t −m∗

t+∆t∥, where M ′ is an absolute constant that only depends on M(L), C, β and t.
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Now that we have obtained

∥m̃t+∆t −m∗
t+∆t∥ − ∥m̃t −m∗

t ∥ ⩽ O(∆t2) +M ′(L,C, β, t)∥m̃t −m∗
t ∥∆t, (43)

by taking ∆t→ 0, we have

d∥m̃t −m∗
t ∥ ⩽ M ′(L,C, β, t)∥m̃t −m∗

t ∥dt. (44)

Thus, the initial argument is proven by applying Gröwnwall inequality to the mapping t 7→ ∥m̃t −m∗
t ∥.
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