
Special Properties of Gradient Descent with Large Learning Rates

Amirkeivan Mohtashami 1 Martin Jaggi 1 Sebastian Stich 2

Abstract
When training neural networks, it has been widely
observed that a large step size is essential in
stochastic gradient descent (SGD) for obtaining
superior models. However, the effect of large
step sizes on the success of SGD is not well un-
derstood theoretically. Several previous works
have attributed this success to the stochastic noise
present in SGD. However, we show through a
novel set of experiments that the stochastic noise
is not sufficient to explain good non-convex train-
ing, and that instead the effect of a large learning
rate itself is essential for obtaining best perfor-
mance. We demonstrate the same effects also
in the noise-less case, i.e. for full-batch GD. We
formally prove that GD with large step size—on
certain non-convex function classes—follows a
different trajectory than GD with a small step size,
which can lead to convergence to a global mini-
mum instead of a local one. Our settings provide a
framework for future analysis which allows com-
paring algorithms based on behaviors that can not
be observed in the traditional settings.

1 Introduction

While using variants of gradient descent (GD), namely
stochastic gradient descent (SGD), has become standard
for optimizing neural networks, the reason behind their suc-
cess and the effect of various hyperparameters is not yet
fully understood. One example is the practical observation
that using a large learning rate in the initial phase of training
is necessary for obtaining well performing models (Li et al.,
2019). Though this behavior has been widely observed
in practice, it is not fully captured by existing theoretical
frameworks.

Recent investigations of SGD’s success (Kleinberg et al.,
2018; Pesme et al., 2021) have focused on understanding
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the implicit bias induced by the stochasticity. Note that
the effective variance of the trajectory due to the stochas-
ticity of the gradient is moderated by the learning rate (see
Appendix G for more intuition). Therefore, using a larger
learning rate amplifies the stochasticity and the implicit bias
induced by it which can provide a possible explanation for
the need for larger learning rates. We show that this expla-
nation is incomplete by demonstrating cases where using
stochasticity with arbitrary magnitude but with a small learn-
ing rate, can not guarantee convergence to global minimum
whereas using a large learning rate can. Furthermore, we
provide a practical method to increase stochasticity without
changing the learning rate when training neural networks
and observe that increased stochasticity can not replace the
effects of large learning rates. Therefore, it is important to
study how a larger learning rate affects the trajectory beyond
increasing the stochasticity.

To that end, in this work we show that randomly initial-
ized full-batch gradient descent with a high learning rate
provably escapes local minima and converges to the global
minimum over of a class of non-convex functions. In con-
trast, when using a small learning rate, GD over these func-
tions can converge to a local minimum instead. Such differ-
ence is not observable under traditional assumptions such as
smoothness. Hence, our settings also provide a framework
to compare optimization methods more closely, for example
in their ability to escape local minima.

We further show the positive effect of using a high learning
rate to increase the chance of completely avoiding undesir-
able regions of the landscape such as a local minimum. Note
that this behavior does not happen when using the continu-
ous version of GD, i.e. gradient flow which corresponds to
using infinitesimal step sizes. The difference remains even
after adding the implicit regularization term identified in
(Smith et al., 2021) in order to bring trajectories of gradient
flow and gradient descent closer.

Finally, to show the relevance of our theoretical results in
practice, we demonstrate evidence of an escape from local
minimum (not to be confused with escaping from saddle
points) when applying GD with a high learning rate on a
commonly used neural network architecture. Our observa-
tions signify the importance of considering the effects of
high learning rates for understanding the success of GD.
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Overall, our contributions can be summarized as follows:

• Demonstrating the exclusive effects of large learning
rates even in the stochastic setting both in theory and
in practice, showing that they can not be reproduced by
increasing stochasticity and establishing the importance
of analyzing them.

• Capturing the distinct trajectories of large learning rate
GD and small learning rate GD in theory on a class of
functions, demonstrating the empowering effect of large
learning rate to escape from local minima and providing
a framework for future analysis.

• Providing experimental evidence showing that gradient
descent escapes from local minima in neural network
training when using a large learning rate, establishing the
relevance of our theoretical results in practice.

2 Related Work

Extensive literature exists on studying the effect of stochas-
tic noise on the convergence of GD. Several works have
focused on the smoothing effect of injected noise (Chaud-
hari et al., 2017; Kleinberg et al., 2018; Orvieto et al., 2022;
Wang et al., 2022a). In (Vardhan & Stich, 2022) it has been
shown that by perturbing the parameters at every step (called
perturbed GD) it is possible to converge to the minimum of
a function f while receiving gradients of f + g, assuming
certain bounds on g. Other works use different models for
the stochastic noise in SGD and use it to obtain convergence
bounds or to show SGD prefers certain type (usually flat) of
minima (Wu et al., 2018; Xie et al., 2021). In order to better
understand the effect of various hyperparameters on con-
vergence, Jastrzebski et al. (2019); Jastrzębski et al. (2017)
show the learning rate (and its ratio to batch size) plays an
important role in determining the minima found by SGD. In
(Pesme et al., 2021) it was shown that SGD has an implicit
bias in comparison with gradient flow and its magnitude
depends on the learning rate. While this shows one benefit
of using large learning rates, in this work, we provide
evidence that the effect of learning rate on optimization goes
beyond controlling the amount of induced stochastic noise.

Another line of research has been investigating the ability
of SGD to avoid saddle points. Lee et al. (2016) show that
gradient descent will not converge to saddle points with high
probability. Other works have also investigated the time it
takes SGD to escape from a saddle point. (Daneshmand
et al., 2018; Du et al., 2017; Fang et al., 2019). These results
are tangential to ours since we are interested in escaping
from local minima not saddle points.

Prior work also experimentally establish existence of dif-
ferent phases during training of a neural network. Cohen
et al. (2021) show that initially Hessian eigenvalues tend
to grow until reaching the convergence threshold for the
used learning rate, a state they call "Edge of Stability". This

growth is also reported in (Lewkowycz et al., 2020) for the
maximum eigenvalue of the Neural Tangent Kernel (Jacot
et al., 2018) where it has also been observed that this value
decreases later in training, leading to convergence. Recent
works have also investigated GD’s behavior at the edge of
stability for some settings (Arora et al., 2022) obtaining
insights such as its effect on balancing norms of the layers
of a two layer ReLU network (Chen & Bruna, 2022). In
our results, GD is above the conventional stability threshold
while it is escaping from a local minimum but returns to
stability once the escape is finished.

In (Elkabetz & Cohen, 2021) it is conjectured that gradient
descent and gradient flow have close trajectories for neural
networks. However, the aforementioned observations sug-
gest that gradient descent with a large learning rate visits a
different set of points in the landscape than GD with a small
learning rate. Therefore, this conjecture might not hold for
general networks. The difference in trajectory is also sup-
ported by the practical observation that a large learning rate
leads to a better model (Li et al., 2019).

To bridge this gap and by comparing gradient flow and gra-
dient descent trajectories, Barrett & Dherin (2021) identify
an implicit regularization term on gradient norm induced
by using discrete steps. Still, this term is not enough to
remove a local minimum from the landscape. Other implicit
regularization terms specific to various problems have also
been proposed in the literature (Ma et al., 2020; Razin &
Cohen, 2020; Wang et al., 2022b). In this paper, we provide
experimental evidence and showcase the benefits of using
large step sizes that are unlikely to be representable through
a regularization term, suggesting that considering discrete
steps might be necessary to understand the success of GD.

The type of obstacles encountered during optimization of a
neural network is a long-standing question in the literature.
Lee et al. (2016) show that gradient descent with random
initialization almost surely avoids saddle points. However
it is still unclear whether local minima are encountered
during training. In (Goodfellow & Vinyals, 2015) it was
observed that the loss decreases monotonically over the line
between the initialization and the final convergence points.
However, it was later shown that this observation does not
hold when using larger learning rates (Lucas et al., 2021).
Swirszcz et al. (2016) also show that it is possible to create
datasets which lead to a landscape containing local minima.
Furthermore, better visualization of the landscape shows
non-convexities can be observed on some loss functions
(Li et al., 2018). For the concrete case of two layer ReLU
networks, Safran & Shamir (2018) show gradient descent
converges to local minima quite often without the help
of over-parameterization. Also, it was shown that in the
over-parameterized setting, the network is not locally
convex around any differentiable global minimum and
one-point strong convexity only holds in most but not
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all directions (Safran et al., 2020). These observations
show the importance of understanding the mechanisms of
escaping local minima. We also use these observations to
make assumptions that are practically justifiable.

There also exists a body of work on which properties of a
minimum leads to better generalization (Dinh et al., 2017;
Dziugaite & Roy, 2017; Keskar et al., 2017; Tsuzuku et al.,
2020). In this work, our goal is to show the ability of
gradient descent to avoid certain minima when using a high
learning rate. However, the argument about whether these
minima offer better or worse generalization is outside the
scope of this work.

3 Main Results

In this section, we present a comprehensive summary of our
key findings and their implications. To ensure clarity and
prevent technical details from overshadowing the core ideas,
we present simplified and less formal statements of our re-
sults here. For a more rigorous treatment, we direct readers
to Section 4, where we present the formal presentation of
our results.

Theoretical Proof of Escaping From Local Minima with
a Large Learning Rate The need for a large learning rate
in practice is commonly explained based on the intuition
of escaping certain local minima1 . However, a theoreti-
cal setting where GD escapes from a local minimum and
converges to a global minimum is lacking. Such settings
are necessary both for understanding success of GD and for
analyzing the effectiveness of other optimizers. In this work,
we introduce a class of functions where such behavior can
be observed from GD. This is stated in Theorem 1 which
we describe here informally and leave the formal version to
Section 4.1.

Theorem 1 (Informal). There exists a class of functions Cl

such that for any f ∈ Cl:

1. f has at least two minima x† and x⋆.

2. With a large learning rate, GD with random initializa-
tion converges to x⋆ almost surely but using a small
learning rate there is a strictly positive probability of
converging to x†.

Theorem 1 provides a setting where it is possible to dis-
tinguish different algorithms based on behaviors that were
not observable in the traditional framework, e.g. under L-
smoothness of the whole landscape. In particular, in our

1We would like to note that throughout the paper, we some-
times misuse the terms “global” and “local” minimum to refer to
desirable and undesirable minima respectively. For example when
discussing generalization, a desirable minimum might not have the
lowest objective value but enjoy properties such as flatness.

settings the convergence point will be to a different mini-
mum for the larger learning rate. Furthermore, unlike the
traditional settings, it is possible for GD trajectory to go
through phases where the gradient norm increases temporar-
ily which has also been observed in practice (Cohen et al.,
2021). In Section 5.2 we show that when running GD on
a neural network, a similar phenomenon can be observed
and show that during this phase GD escapes a minimum and
converges to another one. While we do not claim that neural
networks are in the class of functions we introduce, GD over
neural networks shares more similar behaviors with Cl than
with the traditional settings. Hence, it can be expected that
analyzing an optimization algorithm over Cl would allow
better understanding of its behavior over neural network.

Theoretical Analysis of Avoiding Local Minima As an
alternative to escaping from minima, we note that due to
discrete steps in GD, it may not visit any point in an arbitrary
but small part of the landscape X , such as a local minimum.
However, note that there may still exist a set of starting
points for which GD iterates reach a point in X . Therefore,
assuming the starting point is chosen randomly, not visiting
any point in X is a probabilistic event. In this work, we
provide a lower bound for the probability of this event in
Theorem 2 which we state here informally and postpone the
formal statement to Section 4.2.
Theorem 2 (Informal). For any arbitrary part (subset) of
the landscape X sufficiently far from the global minimum,
let EX be the probabilistic event that GD, when initialized
randomly from a large enough set, will not iterate over
any point in X . Then under certain assumptions on the
landscape, Pr [EX ] can be lower bounded where the bound
depends monotonically increasing on the learning rate and
inversely on the size of X (as measured by Lebesgue mea-
sure). In particular, if X is finite, this probability is 1.

Theorem 2 highlights an important difference between con-
tinuous and discrete optimization. In particular, the skipping
behavior can be essential to success of the optimization but
does not occur in the continuous regime. Note that as the
region can be arbitrarily complex, this problem can not be
ratified by adding regularization terms such as those identi-
fied in (Smith et al., 2021). This suggests other methods are
needed to bridge the gap between gradient flow and GD. We
demonstrate an example where both behaviors of escaping
and avoiding local minima are required to converge to the
desired minimum in Appendix I.

Demonstrating Effects of Large Learning Rate in Neural
Networks Traditional analysis of GD’s convergence de-
pends on an upper bound on the learning rate which ensures
GD gets closer to the minimum at every step. In certain
settings, it can be also shown that GD with a learning rate
above this upper bound gets further from the minimum at
every step. As such, there is a threshold which separates
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convergence and divergence of GD. However, this threshold
depends on the local curvature and can be different at each
point. Therefore, the learning rate can violate the upper
bound for some points and satisfy it for others which leads
to GD going through different phases of divergence and
convergence. Indeed, this alternating phases is how GD
converges in the function class introduced in Theorem 1.

While escaping local minima is an intuitive explanation, it
is not evident that the alternation between diverging and
converging phases also happen in neural networks. In partic-
ular, it seems in practice these alternations happen too quick
so that the loss usually always has a decreasing trend. This
makes it hard to verify the relevance of escaping behavior
for neural network landscape. We do so in Section 5.2 by
deliberately finding a point close to a minimum that GD
would converge to with a small learning rate. In contrast,
when applying GD with a large learning rate from this point,
we can clearly observe an escape both in the trajectory and
in the value of the loss.

Importance of Large Learning Rate Despite the Effects
of Stochastic Noise Prior observations in practice that
demonstrate the importance of using a large learning rates
(Li et al., 2019) are made when applying SGD not full-batch
GD. While we establish the importance of escaping from lo-
cal minima in neural networks landscape in Section 5.2, this
behavior can also be a result of stochastic noise since increas-
ing the learning rate magnifies the effect of stochastic noise
(see Appendix G for further intuition). As such, one possible
explanation for the need of large learning rate is the magni-
fied stochastic noise facilitating escaping from local minima.
This explanation makes it questionable whether it is neces-
sary to understand direct effects of learning rate on the tra-
jectory or is it enough to only consider the stochastic noise.

In this work, we show that the effects of using a large
learning rate goes beyond magnifying stochastic noise. To
that end, we first provide an example in Section 4.3 where
escaping from a local minimum and converging to the
global minimum can only be achieved with a large learning
rate even in presence of stochastic noise. Furthermore,
we demonstrate this result in practice in Section 5.1 by
decoupling the effect of stochastic noise on the trajectory
and the magnitude of the learning rate when training neural
networks. Our results show that the effects of large learning
rates remain crucial for converging to the correct minimum
even in presence of (magnified) stochastic noise.

4 Theoretical Analysis

We now state our results more formally. For our theoretical
analysis, we focus on optimizing the minimization problem

f⋆ := min
x∈Rd

f(x)

using (full-batch) gradient descent with random initializa-
tion. For completeness, we provide a pseudo code in the
Appendix A, Algorithm 1.

As is done widely in the literature, we assume smoothness
(as defined in Definition 1) over regions of the landscape to
ensure the gradient does not change too sharply.

Definition 1 (L-smoothness). A function f : Rd → R is
L-smooth if it is differentiable and there exists a constant
L > 0 such that:

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ , ∀x,y ∈ Rd . (1)

Similarly, we need to ensure sharpness of certain regions,
in particular around a local minima, to obtain our results.
Therefore, to ensure a lower bound for sharpness in our
analysis, we use one-point strong convexity assumption on
these regions as defined in the following definition which
also commonly appears in the literature:

Definition 2 (µ-one-point-strongly-convex (OPSC) with
respect to x⋆ over M ). A function f : Rd → R is one-point
strongly convex with respect to x⋆ if it is differentiable and
there exists a constant µ > 0 such that:

⟨∇f(x),x− x⋆⟩ ≥ µ∥x− x⋆∥2 , ∀x ∈M . (2)

Assuming OPSC property is common in the literature.
When this assumption is applied over the whole landscape, it
has been shown to guarantee convergence to x⋆ (Kleinberg
et al., 2018; Lee et al., 2016; Safran et al., 2020). However,
in this work we make this assumption only over regions
around a local minima. Furthermore, we use this assump-
tion to ensure sharpness which we show can result in es-
caping from the regions where this assumption holds rather
than converging to them. Note that recent works have ver-
ified both theoretically and empirically that landscapes of
neural networks satisfy this property to some extent (Klein-
berg et al., 2018; Safran et al., 2020). For example, Safran
et al. (2020) show that the condition is satisfied with high
probability over the trajectory of perturbed gradient descent
on over-parameterized two-layer ReLU networks when ini-
tialized in a neighborhood of a global minimum. We also
note that there exists other variants of this definition such
as quasi-strong convexity (Necoara et al., 2019) or (1, µ)-
(strong) quasar convexity (Hinder et al., 2020), which are
similar but slightly stronger.

4.1 Escaping From Local Minima with a Large
Learning Rate

We first state a lemma which is the key to proving Theo-
rem 1. This lemma defines a set of criteria for the region
M around a minimum x† as well as the region around M ,
called P (M), that ensures GD escapes from M moving
towards a different minimum x⋆. To build further intuition,
Figure 3 provides an example of how GD with large learning
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(c) GD does not escape.

Figure 1: Success of GD to avoid a region based on the magnitude of learning rate when initialized from different points. While various
cases are possible, it is more likely to avoid the minimum with a higher learning rate.

rate may escape a sharp minimum. We state an overview
of the lemma here and provide its formal version and the
complete proof in Appendix B.

Lemma 1. Let f be a function that is Lglobal-smooth with a
global minimum x⋆. Assume there exists a local minimum
x† around which the following holds:

• f is µ†-OPSC with respect to x† over a set M contain-
ing x† with diameter r.

• Let P (M) denote the ball around x† with radius rP
excluding points M . Over P (M), f is L < Lglobal-
smooth and µ⋆-OPSC with respect to the global mini-
mum x⋆ such that µ† > 2L2

µ⋆
. The radius rP depends

on r, γ and Lglobal.

• Assume x† is sufficiently far from x⋆, i.e. ∥x†−x⋆∥2 ≥
τ where τ depends on µ⋆, r and γ.

Then, using a suitable learning rate 2
µ† < γ ≤ µ⋆

L2 , if GD
reaches a point in M , it will escape M and reach a point
with distance to x⋆ of less than ∥x†−x⋆∥− r almost surely.

Figure 4 provides an illustration of different regions defined
in the theorem’s statement. Lemma 1 and Theorem 1 pro-
vide an improved theoretical setting for future analysis. For
example, a second order optimizer may behave differently
in this setting and converge to x† instead. We point out that
Lemma 1 only holds if the learning rate is large enough and
GD with small learning rates, i.e. γ ≤ 2

Lglobal
, would instead

converge to x†. Therefore, this difference is not observable
in the settings of previous works. As we experimentally
verify in Sections 5.1 and 5.2 , GD’s behavior in the large
learning rate settings changes the convergence point in neu-
ral networks as well. As such, analyzing new optimizers in
this settings can be useful to ensure they work more closely
to GD for more complex scenarios such as neural networks.

We emphasize that this lemma allows for multiple local min-
ima to exist on the landscape and only applies constraints
around each local minimum. Furthermore, we point out that

the lemma only ensures that GD will exit the local minima
after some steps. In order to obtain convergence guarantees
to the global minimum, it is necessary to assume a conver-
gence property on the rest of the landscape as well. Indeed,
this is how we build the class of functions to prove Theo-
rem 1. We provide a more thorough discussion about our
assumptions in Appendix F.

Given Lemma 1, it can be seen that if it is possible to ensure
the iterations of GD get closer to the global minimum on
the rest of the landscape, it is possible to ignore existence
of the region M . This is because either the iterations would
never cross M or if they do, they will eventually reach a
point closer to the global minimum according to Lemma 1.
We build the class of functions for Theorem 1 based on
this observation. We now state the formal statement of
Theorem 1 and leave the proof to Appendix C.

Theorem 1 (Formal). Let the set Cl be the set of all func-
tions such as f that is L-smooth and µ⋆-OPSC with respect
to the global minimum x⋆ in its landscape except on a region
M containing a local minimum x† satisfying the conditions
in Lemma 1. GD initialized randomly inside M converges
to x† with a small learning rate γ < µ†

L2
global

. In contrast, GD

initialized randomly over any arbitrary set W with positive
Lebesgue measure L(W ) > 0 will instead converge to x⋆

with a large learning rate 2
µ† < γ ≤ µ⋆

L2 almost surely.

Prior results in non-convex settings only hold for fixed
learning rates below a common threshold, e.g. 2

L for L-
smooth functions (Bottou et al., 2016; Vaswani et al., 2019).
In contrast, Thoerem 1 extends prior convergence results by
proving convergence for learning rate above the traditional
threshold 2

Lglobal
. While the extension comes at the cost of

putting additional constraints on the landscape which might
be unavoidable as we discuss in Appendix F, we emphasize
that this still relaxes the conditions of convergence at least
for functions in Cl and is an extension over prior results.

4.2 Avoiding Local Minima

The following key lemma is used to prove Theorem 2.
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Figure 2: A case where GD keeps return-
ing to a sharp minimum showing that a
lower bound on the distance to the global
minimum might be necessary to show it
can be avoided.
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(a) GD with small LR converges.
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(b) GD with large LR escapes.

Figure 3: Different behaviors of GD based on the magnitude of learning rate in escaping
or converging a sharp minima. GD with a high enough learning rate always escapes the
minimum.
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Figure 4: Illustration of different regions defined in Lemma 1.

Lemma 2. Assume gradient descent is initialized randomly
on the set W and is run with learning rate γ ≤ 1

2L . Let
X ∈ Rd be an arbitrary set of points in the landscape.
Assume f is L-smooth over Rd \X . Let L(S) denote the
Lebesgue measure of any set S. The probability of encoun-
tering any points of X in the first T steps of gradient descent,
i.e. xi ∈ X for some 1 ≤ i ≤ T is at most 2(T+1)·d · L(X)

L(W ) .

We provide the complete proof in Appendix D. The de-
pendence of the bound on T seems inevitable in general
since the optimization might force the iterations toward
certain regions, such as the region around the minimum.
Similarly, the exponential dependence on d seems unavoid-
able in the general case. For example, if the function is
f(x := (x1, . . . , xd)) :=

L
2

∑d
i=1 x

2
i with the set X being

the region around the minimum, GD converges exponen-
tially towards X in each direction. Therefore the Lebesgue
measure set of the points that converge to X within T steps
increases exponentially with d (since each direction con-
tributes with an exponential factor).

Lemma 2 does not need any assumptions about the region
X . However, the dependency on d and T can be alleviated
by making further assumptions. Indeed, we use one such
assumption to ensure the iterations of GD move away from
the undesired region X and obtain Theorem 2 which we
state formally here and leave its proof to Appendix E.

Theorem 2 (Formal). Let X be an arbitrary set of points.
Assume f is L-smooth and µ⋆-OPSC with respect to a min-
ima x⋆ /∈ X over Rd\X . Define cX := inf{∥x−x⋆∥ | x ∈
X} and rW := sup{∥x− x⋆∥ | x ∈ W}. The probability
of not encountering any points of X during running gradient
descent with γ ≤ µ⋆

L2 is at least 1−2d· rWcX
− d

log2(1−γµ⋆) · L(X)
L(W )

when cX ≤ rW and is 1 otherwise.

We note that the dependence of the lower bound on the
learning rate is intuitive as a larger learning rate allows
larger steps and makes it less probable (but not impossible)
to visit a small part of the landscape as illustrated in Fig-
ure 1. Theorem 2 facilitates applying prior results when
assumptions are violated on a part of landscape. In these
cases, so long as the area in violation of the assumptions
is small, the probability of failure can be small enough to
be considered negligible in practice. As such this result can
be useful to prove convergence with high probability using
conditions that hold mostly but not completely everywhere
on the landscape, such as one-point strong convexity on one
hidden layer ReLU neural networks (Safran et al., 2020).

4.3 Importance of Large Learning Rate Despite the
Effects of Stochastic Noise

We now consider the case of SGD where the stochastic noise
is applied as an additive term to the gradient. The update
step of SGD in this case would be:

xt+1 := xt − γ(∇f(xt) + ξt) . (3)

For example, when the global objective f(x) is a finite sum
of n different objectives, e.g. one for each data point, we
will have ξt := ∇frt(x)−∇f(x) where rt is the index of
data point used in t-th step.

In this section we consider the case where the noise ξt is
drawn from a uniform distribution Uniform(−σ, σ) for sim-
plicity. We acknowledge that a uniform additive noise might
not accurately approximate the noise induced by sampling
from the data. Prior work on convergence results usually
consider a bound on the norm of the noise and the research
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Figure 5: Comparsion between performance of SGD with different
learning rates. The gap in performance between large and small
learning rates, even after repeatedly using the same batch to main-
tain the effect of stochastic noise, suggests that learning rate has an
effect on trajectory beyond controlling stochastic noise. Repeating
batches is turned off at epoch 200 and 10 additional epochs are
performed (green). For the experiment with 2000 epochs (orange),
the plot is normalized to 200 epochs.

into the exact distribution of the noise is ongoing (). How-
ever, the intuition behind our results in this section is that
when the region around a local minimum is large, a strong
noise is needed to escape from this region. However, such a
strong noise would also continuously escape from the region
around the global minimum. We use uniform additive noise
as means of demonstration but since the same intuition can
be extended to many of the more accurate settings, we spec-
ulate that our results would extned to those settings as well.

The investigation into the precise distribution and format
of the noise is still ongoing (Gürbüzbalaban et al., 2021;
Hodgkinson & Mahoney, 2021) but we acknowledge that
the use of uniform additive noise may not accurately capture
the complexity of noise encountered during data sampling.
However, the example in this section is based on the follow-
ing intuition that we expect to remain consistent across many
noise settings. When the region around a local minimum is
large, a strong noise is necessary to escape this region. Nev-
ertheless, such a strong noise would also inevitably escape
a large region around the global minimum. Thus, while we
utilize uniform additive noise here for demonstration, we
speculate that our results can potentially be extended to the
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Figure 6: An example where convergence to global minimum can
only be achieved by using large learning rates.

more precise scenarios such as multiplicative noise as well,
given the shared intuition.

We assess the convergence point of GD on an example
function plotted in Figure 6. This function contains a local
minima x† and a global minimum x⋆. Optimally, we would
like to ensure convergence to the global minimum regardless
of the initialization point. The following proposition shows
that this happens only when using a large learning rate and
is not possible when using a small learning rate regardless of
the magnitude of the noise. We provide a formal description
of this proposition and its proof in Appendix H.

Proposition 3. Consider running SGD on the function plot-
ted in Figure 6. If the learning rate is sufficiently small,
starting close to x†, the iterates will never converge to the
optimum x⋆ nor to a small region around it regardless of
the magnitude of the noise.On the other hand, by using a
large learning rate, given that the stochastic noise satisfies
certain bounds, GD will succeed to converge to the optimum
x⋆ given any starting point.

5 Experiments

We now provide practical evidence to show the effects of
high learning rate also apply and are essential in optimiza-
tion of neural networks. In our experiments we train a
ResNet-18 (He et al., 2016) without batch normalization on
CIFAR10 (Krizhevsky & Hinton, 2009) dataset.

5.1 Disentangling Effects of Stochastic Noise and
Learning Rate

As can be seen from (3), reducing the learning rate would
also reduce the variance of the effective stochastic noise
γξt. This entanglement makes it hard to assess the effects
of stochastic noise and large learning rate separately. We
design the following method to maintain the level of noise
when reducing the learning rate.

SGD with Repeats In order to simulate the same magni-
tude of noise while still using a smaller learning rate, every
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Figure 7: Behavior of GD for learning rates 0.001 (small) and 0.01
(large). The initialization is obtained by warm-starting the network
using SGD with a small learning rate 0.001. Using a large learning
rate changes the trajectory sharply and even if the learning rate
is reduced again after several steps (blue line) we move toward
a different direction in the landscape. This is accompanied by a
sharp increase of loss at the beginning that can be attributed to GD
escaping from a local sharp region in the landscape.

time a mini-batch is drawn, we use it for k steps before
drawing another mini-batch. Note that when k = 1, we
recover standard SGD. Re-using the same batch k times,
allows the bias of the mini-batch to be amplified k times,
so when reducing learning rate by 1

k the overall magnitude
remains unchanged. This is explained in more detail in
Appendix G.

We compare standard SGD with learning rate 0.01, stan-
dard SGD with learning rate 0.001, and SGD with k = 10
and learning rate 0.001. We apply 0.0005 weight decay,
0.9 momentum, and decay the learning rate at epochs 80,
120, and 160 by 0.1. Results without momentum are re-
ported in Appendix N. When training with standard SGD
and learning rate 0.001 we train the model for 10 times more
epochs (2000 epochs) in order to obtain a fair comparison
and rescale its plot to 200 epochs. In this case, learning
rate decay happens at epochs 800, 1200, and 1600. Note
that when running SGD with k = 10 repeats, we perform
10 steps using each batch while going through the whole
dataset at each epoch. Therefore, the total number of steps
in SGD with k = 10 is the same as standard SGD with 2000
epochs. Furthermore, when we have k > 1 we train the
model for 10 more epochs at the end and use each batch
only once (as in standard SGD) during the additional epochs.
We perform these additional steps since training for several
steps on one batch at the end of training might lead to overfit-
ting on that batch which is not desirable for test performance.
In Appendix L we also experiment with turning off repeats
earlier in the training and observe no significant improve-
ment. Finally, we ensure that the experiment with k = 10
uses the same initialization point and the same ordering of
batches used for training with learning rate 0.01.

The results (averaged over 3 runs) are plotted in Figure 5.
The first clear observation is that SGD with learning rate
0.01 leads to a much better model than SGD with learning
rate 0.001. More importantly, while amplifying the noise

through repeats helps lower the gap, it still has a perfor-
mance below training with the large learning rate.

Explaining the positive effect of using SGD over GD on
convergence has been the focus of several prior work. For
example, Kleinberg et al. (2018) argue that applying SGD
allows optimization to be done over a smoothed version of
the function which empirically satisfies good convergence
properties, particularly, one-point strong convexity toward a
minimum. We argue that our observation provides a more
complete overview and suggests that even after applying
stochastic noise (which for example can lead to a smoothing
of the function), there might be certain regions of the land-
scape that can only be avoided using a high learning rate. As
we described above, one can consider the effect of stochastic
noise to be the improvement observed when using repeats
with a small learning rate in comparison with training in a
standard way which still does not close the gap with training
using a high learning rate. Therefore, the effects of using
a high learning rate, such as those described in Section 4,
are still important in determining the optimization trajectory
even in stochastic setting.

5.2 Comparing Trajectories of Large and Small
Learning Rates

In Section 4, we proved some of the effects of using large
step sizes in avoiding or escaping certain minima in the
landscape. We now demonstrate that these effects can be
observed in real world applications such as training neural
networks. To be able to observe the effect of large learning
rate more clearly, we first warm-start the optimization by
running SGD with a small learning rate 0.001 with k = 10
repeats (as described in Section 5.1) for 20 epochs to
obtain parameters xwarm. We do this to get near a minimum
that would be found when using the small learning rate.
Then, we start full-batch GD from xwarm with two different
learning rate 0.001 (small) and 0.01 (large). We do not
apply momentum when performing full-batch GD but apply
0.0005 weight decay. However we did not observe any vis-
ible difference in the results without weight decay. Similar
to (Li et al., 2018), we obtain the first two principal compo-
nents of the vectors x1−x0,x2−x0, . . . ,xt−x0 and plot
the trajectory along these two directions in Figure 7. We can
clearly observe that GD with a large learning rate changes
path and moves toward a different place in the landscape.
GD continues on the different path even when the learning
rate is reduced back to 0.001 after 400 steps. Furthermore,
looking at the loss values, we can observe a peak at the
beginning of training that closely resembles what we expect
to observe when GD is escaping from a local sharp region.
This clearly shows that these behaviors of GD are not merely
theoretical and are also relevant in real world applications.

Note that while we do not observe similar high spikes in the
loss in the next steps, we conjecture that this behavior of
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escaping sharp regions is constantly happening throughout
training. This is also confirmed by observations in (Cohen
et al., 2021) which show sharpness increases throughout
training until reaching the threshold 2

µ where µ is the
learning rate. GD will then oscillate between areas sharper
and smoother than this threshold. As a result of constantly
avoiding sharp regions, symptoms of an escape such as a
spike in loss is not observed. While we observe smaller
increases in the loss, these can be due to oscillations
also observed in (Cohen et al., 2021) along the highest
eigenvectors which are not the same as escaping. Results
in the same work show that in these cases the parameters
do not move in these directions and only oscillate around
the same center. Developing better visualization techniques
or identifying other effects of using a high learning rate on
GD’s trajectory can help explain this behavior further and
both of these directions are ground for future work.

6 Future Work

Developing better methods for visualization of the landscape
and trajectory to obtain further insight on how GD avoids lo-
cally sharp regions is grounds for future work. Furthermore,
various extensions on our theoretical results are also possi-
ble, such as showing other effects of using a large learning
rate on trajectory that facilitate escaping from local minima.
Finally, obtaining similar results with a relaxed set of as-
sumptions would also be an interesting direction of research.

7 Conclusion

We argue that for understanding real world applications such
as neural networks training it is crucial to analyze GD in the
large learning rate regime and that the behavior stemming
from using a large learning rate is irreplaceable by other
mechanisms such as stochasticity. In this work, we provide
ample evidence to support our argument as well as providing
a settings where the special behaviors of this regime can be
observed unlike the traditional settings.

In particular, to strengthen prior practical observations on
the importance of large learning rate, we design a method
to amplify stochastic noise without increasing the learning
rate, disentangling the effects of stochastic noise and high
learning rates. We observe that while a higher stochastic
noise leads to a better model, it is not enough to close the
gap with the model obtained using a high learning rate.
Therefore, we argue that the effect of learning rate goes
beyond controlling the impact of stochastic noise even in
SGD. In contrast, recent works on analyzing success of SGD
focus on continuous settings (Xie et al., 2021) and only take
step size into account when modeling the noise (Pesme et al.,
2021). We further demonstrate escaping from sharp regions
in training of neural networks that only happens with large
learning rates.

More importantly, we introduce a setting which is closer
to practice by also imitating the effects of large learning
rates widely observed in practice. Such behaviors are not
observable under previous assumptions such as smoothness.
Therefore, future optimization algorithms can also be eval-
uated in settings similar to ours ensuring they also benefit
from similar escaping mechanisms which seem crucial in
practice. We hope that our results will encourage future
work on large step size regime.
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A Gradient Descent with Random Initialization

Algorithm 1 Gradient Descent with Random Initialization

1: Pick x0 randomly from the set W .
2: for t = 1 . . . T do
3: xt ← xt−1 − γ∇f(xt−1)
4: end for

B Proof of Lemma 1

Lemma. Let f be a function that is Lglobal-smooth and consider running GD with learning rate γ randomly initialized over
a set W with L(W ) > 0. Let M be a set with diameter r, containing a local minimum x† and define P (M) := {x /∈M |
∥x− x†∥2 ≤ r

√
γ2L2

global − 3} to be the set surrounding M . Assume f is L < Lglobal-smooth and µ⋆-OPSC over P (M)

with respect to a (global) minimum x⋆ that is sufficiently far from M , formally, ∥x⋆ − x†∥2 ≥ r · 1+
√

(γ2L2
global−3)(1−γµ⋆)

1−
√
1−γµ⋆

.

Finally, assume f is µ†-OPSC with respect to x† over M where µ† > 2L2

µ⋆
. Then, using a suitable learning rate 2

µ† < γ ≤ µ⋆

L2 ,
if GD reaches a point M , it will escape M and reach a point with distance to x⋆ of less than ∥x† − x⋆∥ − r almost surely.

Proof. Let t be the smallest step where xt ∈ M . Using Corollary 1, xt ̸= x† almost surely. Therefore ∥xt − x†∥ > 0.
Since γ > 2

µ† , we have

∥xt+1 − x†∥22 = ∥xt − γ∇f(xt)− x†∥22
= ∥xt − x†∥22 − 2γ

〈
∇f(xt),xt − x†〉+ γ2∥∇f(xt)∥22

≥ ∥xt − x†∥22 − 2γ∥∇f(xt)∥2∥xt − x†∥2 + γ2∥∇f(xt)∥22
= ∥xt − x†∥22 + γ∥∇f(xt)∥2(γ∥∇f(xt)∥2 − 2∥xt − x†∥2)
≥ ∥xt − x†∥22 + γ∥∇f(xt)∥2(γµ†∥xt − x†∥2 − 2∥xt − x†∥2)
≥ ∥xt − x†∥22 + γ∥∇f(xt)∥2∥xt − x†∥2(γµ† − 2)

(A)

≥ ∥xt − x†∥22 + γµ†∥xt − x†∥22(γµ† − 2)

(B)

≥ (2γµ† − 3)∥xt − x†∥22 ,

where (A) holds because γµ† − 2 > 0 and (B) is obtained by using the lower bound γµ† > 2. Therefore, the distance to x†

grows at least with the rate 2γµ† − 3 > 1. Hence, GD is guaranteed to reach a point xt+k outside M for some k > 0. If
∥xt+k − x⋆∥ ≤ ∥x† − x⋆∥ − r, we are done. Otherwise, we verify that this condition holds for xt+k+1.

First note that

∥xt+k − x†∥22 = ∥xt+k−1 − γ∇f(xt+k−1)− x†∥22
= ∥xt+k−1 − x†∥22 − 2γ

〈
∇f(xt+k−1),xt+k−1 − x†〉+ γ2∥∇f(xt+k−1)∥22

≤ ∥xt+k−1 − x†∥22(1− 2γµ† + γ2L2
global)

≤ r2(1− 2γµ† + γ2L2
global)

≤ r2(γ2L2
global − 3) ,

13
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where the last inequality holds because γ > 2
µ† .

∥xt+k+1 − x⋆∥22 = ∥xt+k − γ∇f(xt+k)− x⋆∥22
= ∥xt+k − x⋆∥22 − 2γ ⟨∇f(xt+k),xt+k − x⋆⟩+ γ2∥∇f(xt+k)∥22
≤ ∥xt+k − x⋆∥22(1− 2γµ⋆ + γ2L2)

≤ ∥xt+k − x⋆∥22(1− γµ⋆) ,

where in the last inequality we used γ ≤ µ⋆

L2 . We can now write

∥xt+k+1 − x⋆∥2 ≤ (∥x† − x⋆∥2 + ∥xt+k − x†∥2)
√

1− γµ⋆

≤
(
∥x† − x⋆∥2 + r

√
γ2L2

global − 3
)√

1− γµ⋆ .

Given the lower bound on distance ∥x† − x⋆∥, we have

r(
√
(γ2L2

global − 3)(1− γµ⋆) + 1) ≤ ∥x† − x⋆∥2(1−
√

1− γµ⋆) .

This yields
∥xt+k+1 − x⋆∥2 ≤ ∥x† − x⋆∥2 − r ,

completing the proof.

C Proof of Theorem 1

Theorem. Consider any function f that is L-smooth and µ⋆-OPSC with respect to some minimum x⋆ in its landscape
except on a region M containing a local minimum x† satisfying the conditions in Lemma 1. GD initialized randomly
inside M converges to x† with a small learning rate γ < µ†

L2
global

but will instead converge to x⋆ with a large learning rate
2
µ† < γ ≤ µ⋆

L2 almost surely.

Proof. When GD is initialized inside M and the learning rate is small satisfying γ < µ†

L2
global

, since we have µ†-OPSC and
Lglobal-smoothness inside M , the iterates will satisfy

∥xt+1 − x†∥22 = ∥xt − γ∇f(xt)− x†∥22
= ∥xt − x†∥22 − 2γ

〈
∇f(xt),xt − x†〉+ γ2∥∇f(xt)∥22

≤ (1− 2γµ† + γ2L2
global)∥xt − x†∥22

≤ (1− γ(2µ† − γL2
global))∥xt − x†∥22

≤ (1− γµ†)∥xt − x†∥22 ,

Therefore, GD will converge to x†. Let us now consider the case when GD is instead applied using a large learning rate
satisfying 2

µ† < γ ≤ µ⋆

L2 . Furthermore, we allow initialization over any arbitrary set (instead of only subsets of M ) as long
as they satisfy L(W ) > 0. In this case, for each iterate, if xt /∈M , similar to above we have

∥xt+1 − x⋆∥22 ≤ (1− γµ⋆)∥xt − x⋆∥22 .

If xt ∈ M , Lemma 1 shows that there exists k > 0 such that xt+k /∈ M and ∥xt+k − x⋆∥22 is less than the distance of
any point in M to x⋆. Since xt+k /∈ M the above argument holds and the distance to x⋆ decreases. Therefore, for any
t′ > t+ k this distance ∥xt′ − x⋆∥22 remains less than the distance of any point in M to x⋆. This guarantees that xt′ /∈M .
Hence the distance to x⋆ keeps decreasing which means GD will converge to x⋆.

14
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D Proof of Lemma 2

Lemma. Assume gradient descent is initialized randomly on the set W and is run with learning rate γ ≤ 1
2L . Let X ∈ Rd

be the set of points that should not be encountered by GD and assume f is L-smooth over Rd \X . Let L(S) denote the
Lebesgue measure of any set S. The probability of encountering any points of X in the first T steps of gradient descent, i.e.
xi ∈ X for some 1 ≤ i ≤ T is at most 2(T+1)·d · L(X)

L(W ) .

Proof. Define g(x) := x − γ∇f(x). When γ < 1
L , since f is L-smooth over Dg := Rd \ X , results of Lee et al.

(2016) show g(x) is a diffeomorphism over Dg. As a result, the function gT obtained by applying g for T times is also a
diffeomorphism over the set

DgT := Rd \ (X ∪ g−1(X) ∪ . . . ∪ (g(T−1))−1(X)) .

According to the change of variable formula for Lebesgue measure (for example, see (Bogachev, 2006, Eq. (3.7.2))), for any
measurable set Y ⊂ DgT

L(gT (Y )) =

∫
Y

|det∇gT (y)|dy .

Since γ ≤ 1
2L , we have for any y ∈ Dg ,

|det∇g(y)| = |det(I − γ∇2f(y))| ≥ 2−d .

The last equality holds because smoothness ensures all eigenvalues of ∇2f(x) are at most L. So for any eigenvalue λi,
1− γλi ≥ 1

2 . Using this result, we also can obtain |det∇gT (y)| ≥ 2−Td for any y ∈ DgT . Thus, we have

L(gT (Y )) ≥ 2−TdL(Y ) ,

which means,

L((gT )−1(X) ∩ DgT ) ≤ 2TdL(X) .

Note that while the above argument works for T ≥ 1, the former inequality also trivially holds for T = 0. Hence

L(∪Tt=0((g
t)−1(X) ∩W )) ≤ L(∪Tt=0(g

t)−1(X))

= L(∪Tt=0((g
t)−1(X) ∩ Dgt))

≤
T∑

t=0

L((gt)−1(X) ∩ Dgt)

≤
T∑

t=0

2tdL(X)

≤ L(X)(

T∑
t=0

2t)d

≤ 2(T+1)dL(X) ,

where in the last inequality we used 20 + 21 + . . . 2T < 2T+1. The theorem follows directly from this result.

The following corollary directly follows from Lemma 2. We use this corollary in proving Lemma 1 to avoid cases where we
directly land on a minimum with∇f(x) = 0.

Corollary 1. Let f be L smooth. If X is a set with L(X) = 0, for example when it is a finite set of points, the probability
of encountering X throughout training with gradient descent using γ ≤ 1

2L and random initialization over a set W with
L(W ) > 0 is 0.
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E Proof of Theorem 2

Theorem. Let f be L-smooth and µ⋆-OPSC with respect to a minima x⋆ over Rd\X . Define cX := inf{∥x−x⋆∥ | x ∈ X}
and rW := sup{∥x− x⋆∥ | x ∈ W}. The probability of encountering any points of X during running gradient descent
with γ ≤ µ⋆

L2 is upper bounded by 2d · rWcX
− d

log2(1−γµ⋆) · L(X)
L(W ) when cX ≤ rW and is zero otherwise.

Proof. Due to µ⋆-OPSC property of the landscape over Rd \X , as long as xt /∈ X , we have

∥xt+1 − x⋆∥22 = ∥xt − γ∇f(xt)− x⋆∥22
= ∥xt − x⋆∥22 − 2γ ⟨∇f(xt),xt − x⋆⟩+ γ2∥∇f(xt)∥22
≤ (1− 2γµ⋆ + γ2L2)∥xt − x⋆∗∥22
≤ (1− γ(2µ⋆ − γL2))∥xt − x⋆∥22
≤ (1− γµ⋆)∥xt − x⋆∥22 ,

where the last inequality holds because γ ≤ µ⋆

L2 . Hence, if xt /∈ X for t ∈ [T − 1], we have

∥xT − x⋆∥22 ≤ (1− γµ⋆)
T ∥xt − x⋆∥22

≤ (1− γµ⋆)
T rW .

Let T0 :=
log2

cX
rW

log2 (1−γµ⋆)
. For T > T0, we have

∥xT − x⋆∥22 ≤ (1− γµ⋆)cX < cX ,

which means xT /∈ X . Therefore, if GD does not reach any point in X in the first T0 steps, it will not reach any point in X
afterwards neither. Therefore, the probability of encountering any point in X is the same as the probability of encountering
such points in the first T0 steps. According to Lemma 2, this value is bounded as:

2(T0+1)d · L(X)

L(W )
= 2d · cX

rW

d
log2 (1−γµ⋆) · L(X)

L(W )

= 2d · rW
cX

− d
log2 (1−γµ⋆) · L(X)

L(W )
.

F Discussion about Lemma 1’s Assumptions

OPSC condition inside M We assume f is OPSC with respect to a different minima inside M in order to ensure GD
will escape from M . However, other conditions might also ensure the same effect. The theorem would also hold with
those assumptions. Note that the sharpness of M with respect to the rest of landscape is reflected through the lower bound
on µ† and is necessary so we can set the learning rate in the given range. As an example, when f is a quadratic function
everywhere except M (such as in Figure 4), we have µ⋆ = L and the lower bound becomes µ† > 2L.

OPSC condition around M We combine this assumption with the assumption on M being sufficiently far from the
global minimum in order to ensure that once GD escapes from a local minima, the gradient points strongly towards x⋆. This
ensures that GD will reach a point closer to the global minimum after escaping M . While the OPSC assumption is not
necessary to show GD will never converge to M and may be replaceable by alternatives, an assumption on the distance to x⋆

might be necessary to show GD will not return to M . For example, consider a quadratic function where the region around
minimum is replaced by a sharper quadratic function, as plotted in Figure 2. In this case, GD with a high learning rate will
keep returning to M though it will never converge to it. As alternatives to OPSC assumption on P (M), one can assume
GD converges in at most a fixed number of steps (which Corollary 1 states can not be to any point in M almost surely) or
assume directly that the gradient points strongly away from M . Finding similar assumptions is grounds for future work.
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G Effect of Learning Rate on Stochasticity

Let us focus on the case where f(x) is the finite-sum 1
N

∑N
i=1 fi(x). Then, using a large learning rate kγ, the iterates would

satisfy

xt+1 − xt

γ
= −k∇frt(xt) = −k∇f(xt)− k(∇frt(xt)−∇f(xt)) . (4)

Let us assume that the deviation direction of each data point from the true gradient changes very slowly, i.e. the functions
fi − f are extremely smooth. Then, using a smaller learning rate we instead have

xt+k − xt

γ
= −

k−1∑
i=0

∇frt+i
(xt+i)

= −
k−1∑
i=0

∇f(xt+i)−
k−1∑
i=0

(∇frt+i
(xt+i)−∇f(xt+i))

≈ −
k−1∑
i=0

∇f(xt+i)−
k−1∑
i=0

(∇frt+i
(xt)−∇f(xt)) .

To compare the strength of noise in each case we can for example compare the variance of the right hand side. Let
σ2 := 1

N

∑N
i=1∥∇fi(xt)−∇f(xt)∥22. Then, the variance when using the large learning rate would be k2σ2. When using a

smaller learning rate and sampling at each step to obtain rt the variance is instead kσ2 and is therefore reduced. However,
using SGD with repeats, i.e. using rt+i = rt for 1 ≤ i ≤ k − 1, we recover the same variance as the large learning rate.
Therefore, using SGD with repeats, allows maintaining the same level of noise while still using a smaller learning rate.

H Proof of Proposition 3

We first state the following key theorem which describes criteria ensuring escaping from or staying around a minimum:

Theorem 4. Let M be a ball with radius r centered at a minimum x† and assume f is LM -smooth over M and µ†-OPSC
with respect to x†. Consider running SGD with a small learning rate γ ≤ µ†

2L2
M

. Assume that when running SGD such that
the oracle noise is bounded as

E∥gt −∇f(xt)∥22 ≤ σ2 .

Furthermore assume that for some c ≤ 1 we have Pr
[
∥gt −∇f(xt)∥22 > c2σ2

]
> 0 for all xt ∈M . Assume SGD reaches

a point in M . If σ2 ≤ µ†

γ r2 it will remain in M with probability at least 2
2−γµ† . On the other hand, if c2σ2 ≥ 2LM

γ r2 + ϵ
for some ϵ > 0 it will escape M almost surely.

Proof. Let t denote the parameters at an iteration such that xt ∈M . We have

E∥xt+1 − x†∥2 = ∥xt − x†∥2 − 2γ
〈
Egt,xt − x†〉+ γ2E∥gt∥2

= ∥xt − x†∥2 − 2γ
〈
∇f(xt),xt − x†〉+ γ2∥∇f(xt)∥2 + γ2σ2

≤ ∥xt − x†∥2(1− 2γµ† + γ2L2
M ) + γr2µ†

≤ r2(1− γµ† + γ2L2
M )

≤ r2(1− γµ†

2
) .

Thus, using Markov inequality we have

Pr
[
∥xt+1 − x†∥2 > r2

]
≤ 1

1− γµ†

2

,
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which shows the claim. On the other hand, let p := Pr
[
∥gt −∇f(xt)∥22 > c2σ2

]
. Then with probability at least p > 0 we

have

∥xt+1 − x†∥22 = ∥xt − γ∇f(xt)− x† − γ(gt −∇f(xt))∥22
= ∥xt − x†∥22 − 2γ

〈
∇f(xt),xt − x†〉+ γ2∥∇f(xt)∥22 + γ2∥gt −∇f(xt)∥22

≥ ∥xt − x†∥22 − 2γ∥∇f(xt)∥2∥xt − x†∥2 + γ2∥∇f(xt)∥22 + c2γ2σ2

= ∥xt − x†∥22 + γ∥∇f(xt)∥2(γ∥∇f(xt)∥2 − 2∥xt − x†∥2) + c2γ2σ2

≥ ∥xt − x†∥22 + γ∥∇f(xt)∥2(γµ†∥xt − x†∥2 − 2∥xt − x†∥2) + c2γ2σ2

≥ ∥xt − x†∥22 + γ∥∇f(xt)∥2∥xt − x†∥2(γµ† − 2) + c2γ2σ2

≥ ∥xt − x†∥22 + γLM∥xt − x†∥22(γµ† − 2) + c2γ2σ2

≥ ∥xt − x†∥22 + γLMr2(γµ† − 2) + 2γLMr2 + ϵ

≥ ∥xt − x†∥22 + γ2LMµ†r2 + ϵ .

This means the distance to x† grows at least with the constant ϵ. Let q := r2

ϵ . Therefore, with probability at least pq , one of
xt+1, . . . ,xt+q will be out of M . This holds for any consecutive q iterates. Partitioning the iterates to parts of consecutive
iterates of size q, each part has a positive probability of containing a point outside M . Therefore SGD will reach a point
outside of M almost surely.

The function plotted in Figure 6 can be formally defined as follows:

f1(x) := 86400((x− α)3 − (2.9− α)3) + 2.92

f2(x) := β((x− 3.1)3 + 0.001) + f1(3)

f3(x) := −300(x− 3.1)2 + f2(3.1)

ftm(x) :=



x2 x ≤ 2.9

f1(x) 2.9 < x ≤ 3

f2(x) 3 < x ≤ 3.1

f3(x) 3.1 < x ≤ 3.7

450 ∗ ((x− 4.1)2 − 0.16) + f3(3.7) 3.7 < x

with α = 2.9−
√
2.9

360 and β = 8640000(3− α)2. This function satisfies the following properties:

• ftm is 2-smooth over {x | x < 2.9}.

• ftm is 900-OPSC towards 4.1 and 900-smooth over {x | 3.7 < x}.

• ftm is 4.5-OPSC towards 4.1 over {x | 3.108 < x}.

We now proceed to proving Proposition 3, stating it formally here:

Proposition 3. Consider running SGD on ftm with stochastic noise ξt drawn i.i.d. at each step from the uniform distribution
Uniform(−σ, σ). If the learning rate is small such that it satisfies γ < 1

302 the algorithm will not converge to x⋆ for some
set of initialization points with positive Lebesgue measure. In contrast, with a large learning rate satisfying 0.4 ≤ γ ≤ 0.5
it is possible to choose σ such that the algorithm will converge to x⋆ almost surely.

Proof. Assume γ < 1
900 . Consider the case where the algorithm is initialized inside M1 := {x | 3.7 < x < 4.5}. Then

if σ satisfies σ2 ≤ 900
γ · 0.4

2 it will remain in M1 with positive probability according Theorem 4. According to the

same theorem, If this bound is not satisfied, then we have σ2

2 ≥
2·2·2.92

γ which means any time SGD reaches a point in
M⋆ := {x | −2.9 < x < 2.9}, it will escape from it almost surely within a constant number of steps. This means that the
algorithm will never stay close to x⋆ = 0 forever or for an arbitrarily long number of steps.
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Figure 8: The function used in the toy experiments which has two local minima, a mostly flat minima near the initialization points and a
sharp minima further away. It can be clearly observed how as the learning rate grows the two effects of avoiding parts of the landscape
and escaping sharp minimas allow GD to converge to the global minimum.

Now consider the case where the learning rate is large enough. Choose σ such that 5.1 < σ < 5.5. Note that if the iterates
reach the set {x | −2.9 < x < 2.9} they will never exit it since we have

|x− γ(2x+ ξt)| = |(1− 2γ)x− γξt|
≤ (1− 2γ)(2.9) + γ(5.5)

≤ (1− 2γ)(2.9) + 2γ(2.9)

≤ 2.9 .

We will now show that from any other point there is a positive probability of reaching the range [−2.9, 2.9]. This fact
combined with the almost sure guarantee of not escaping from [−2.9, 2.9], proves that the algorithm will converge to this set
almost surely.

Note that ftm is 4.5-OPSC towards x = 4 over the set {x | 3.108 < x}. Since γ > 0.45, it can be seen from the proof
of Lemma 1 that SGD will continue to get further from x = 4 while it is in this set. Furthermore, given the direction of
the gradients it is clear that the iterates would alternate between being less and more than 4. Therefore, at some point, the
iterates will exit this set reaching a point xt < 3.108. Note that with a positive probability, the noise will not interfere with
this escape since there is at least 0.5 probability that the noise is aligned with the gradient direction.

If 3.1 < x < 3.108, the gradient value is less than 5. Since σ > 5.1 there is a positive probability of moving to the region
x < 3.1. When 2.9 < x < 3.1, because of the positive probability of alignment between the gradient and the noise, SGD
will move to x < 2.9 with positive probability. Finally, given the smoothness of the region x < 2.9, if x < −2.9 SGD will
converge toward x⋆ = 0, ultimately reaching the region −2.9 < x < 2.9 with positive probability. This completes the
proof.

I Toy Example

In order to demonstrate the effects discussed in Section 4, we experiment with running GD over a simple function. The
landscape of this function is plotted in Figure 8a and its formula is presented in Appendix J. The function has two minima,
one near the initialization and one further away. Since the near-init minimum is almost completely flat, i.e. gradient is
constant and equal to zero (except for the edges which are extremely sharp lines in order to ensure the function remains
continuous), if GD reaches a point in this region, it will remain there. However, as this region is very close to the initialization,
Lemma 2 (more particularly Corollary 2) suggests that GD with large enough learning rate, will probably not reach any
points in this region. To demonstrate this more clearly, we plot the trajectory of GD from several initialization points in
Figure 1. It is worth noting that even with large learning rate it is possible for GD to get stuck in this region while it is
possible to avoid this region even with a small learning rate. However, as suggested by our theoretical upper bound, the
probability of this phenomenon increases with the learning rate.
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The other minimum is much sharper than the rest of the function and therefore we can expect an escaping behavior similar
to the one described by Lemma 1. This behavior is demonstrated in Figure 3. Note that unlike the previous case, GD with
large learning rate always (except when landing directly at the minimum) escapes the sharp minimum while GD with small
learning rate converges.

We measure rate of convergence of GD for 100 different random initialization to each of these three regions for different
learning rates. The results are plotted in Figure 8b. We observe that as the learning increases, the rate of avoiding the near
initialization minimum increases. While the learning rate is not still high enough, GD will converge to the sharp minimum
while as the learning rate increases further, it is also able to escape the sharp minimum and converge to the global minimum.
This behavior is completely compatible with what can be expected based on the results and effects discussed in Section 4.

J Function for Toy Example

f(x) :=



−1600(x− 2.5)5 − 2000(x− 2.5)4 + 800(x− 2.5)3 + 1020(x− 2.5)2 2 ≤ x ≤ 3,

1411.2× (1− 104(x− 8.4)) 8.4 ≤ x ≤ 8.40001,

0 8.40001 ≤ x ≤ 8.59999,

1479.2× (104(x− 8.6) + 1) 8.59999 ≤ x ≤ 8.6,

20x2 otherwise.

K 2D Toy Example

To build more intuition and show the effect of large learning rate extends to multi-dimensions, we also provide a toy example
on 2D. Figure 9 shows the landscape of our toy example which contains four local minima that are also sharp. Consider GD
initialized randomly on the region W := {(x, y) | 3 ≤ x, y ≤ 4}. Then, using a small learning rate GD will converge to the
minimum in the region [1, 2]× [1, 2]. However, using a larger learning rate allows escaping that minimum. Increasing the
magnitude, GD can also jump over the minimum completely. In these cases, GD will converge towards the global minimum
at (0, 0).
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Figure 9: The landscape of the function f(x, y) := x2 + y2 − 200ReLU(|x| − 1)ReLU(|y| − 1)ReLU(2− |x|)ReLU(2− |y|).
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L Results of Stopping Repeats from Different Epochs

In Section 5.1, we explained that at the end of training we stop using the same batch for k steps and train in the standard
way (each batch used just once) for additional 10 epochs. This was done to make sure the model that is used to obtain the
accuracy on the test data is not overfitted on one batch which might be more likely to happen at the end of the training. In
this section, we also experiment with stopping repeats, i.e. using the same batch for k steps, earlier in the training. The
result is plotted in Figure 10. No significant improvement is observed.
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Figure 10: Plot of test accuracy when we stop using the same batch several times (doing repeats) at different epochs. It can be clearly
observed that the stopping epoch does not affect the final accuracy and the gap with the case of GD with a large learning rate can be
clearly observed.

M Experiments on CIFAR100

In order to make sure our results extend to other scenarios, we repeat the experiments in Section 5.1 on CIFAR100 and
observe a similar behavior. The accuracy on the train and test datasets during training are plotted in Figure 11.
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Figure 11: Comparsion between performance of SGD with different learning rates on CIFAR100. Repeating batches is turned off at epoch
200 and 10 additional epochs are performed (green). For the experiment with 2000 epochs (orange), the plot is normalized to 200 epochs.
For more explanations refer to Figure 5 and Section 5.1.

N Experiments on SGD without Momentum

In Section 5.1, we designed an experiment to show the effect of large learning rate is important and goes beyond controlling
the effect of stochastic noise on the trajectory. Since our goal was to demonstrate the relevance and importance of analyzing
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these effects for the practical scenarios, we used the standard training settings including momentum and weight decay. For
completeness, in this section we also include the results of applying SGD with repeats without momentum and without
weight decay. We compare standard SGD with learning rate 0.05. standard SGD with learning rate 0.005, and SGD with
k = 10 repeats and learning rate 0.005. Accuracy on test and train datasets throughout training is plotted in Figure 12. The
figure also contains the accuracy during training with momentum to allow comparison. As expected, applying SGD without
momentum performs worse than SGD with momentum. The gap between small and large learning rate can be observed in
this case as well. However, we do not observe an improvement when applying repeats.
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Figure 12: Comparsion between performance of SGD without momentum and weight decay and with different learning rates on CIFAR10.
Repeating batches is turned off at epoch 200 and 10 additional epochs are performed (green). For the experiment with 2000 epochs
(orange), the plot is normalized to 200 epochs. For more explanations refer to Figure 5 and Section 5.1.

O Loss on the line between large and small learning rate trajectories

In Section 5.2, we observed that GD with a large learning rate shows behavior similar to escaping and follows a different
trajectory than GD with the small learning rate. In this section, we plot the loss along the line between the first point in
the trajectory of GD with small learning rate (hereafter called the origin) and different points along the trajectory of GD
with the large learning rate. Figure 13 shows the loss based on the norm of the distance to the origin. As expected the
loss increases along the line between the origin and points at the beginning of the trajectory. This is when GD is showing
escaping behaviors. However, interestingly, the loss is decreasing along the line between the origin and points encountered
later in the trajectory.
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Special Properties of Gradient Descent with Large Learning Rates
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Figure 13: The value of loss along the line between the first point in the trajectory of GD with small learning rate and different points in
the trajectory of GD with a large learning rate. For more detailed explanation of the settings, refer to Section 5.2. Each line corresponds to
the value of loss measured on 30 points along the line between the initialization and the parameters after an step. The step number for
each line is written in the box located on the top-right of the plot.
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