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Abstract
Data used for analytics and machine learning of-
ten take the form of tables with categorical entries.
We introduce a family of lossless compression al-
gorithms for such data that proceed in four steps:
(i) Estimate latent variables associated to rows
and columns; (ii) Partition the table in blocks
according to the row/column latents; (iii) Apply
a sequential (e.g. Lempel-Ziv) coder to each of
the blocks; (iv) Append a compressed encoding
of the latents. We evaluate this approach on sev-
eral benchmark datasets, and study optimal com-
pression in a probabilistic model for tabular data,
whereby latent values are independent and table
entries are conditionally independent given the
latent values. We prove that the model has a well
defined entropy rate and satisfies an asymptotic
equipartition property. We also prove that clas-
sical compression schemes such as Lempel-Ziv
and finite-state encoders do not achieve this rate.
On the other hand, the latent estimation strategy
outlined above achieves the optimal rate.

1. Introduction
Classical theory of lossless compression (Cover & Thomas,
2006; Salomon, 2004) assumes that data take the form of
a random vector XN = (X1, X2, . . . , XN ) of length N
with entries in a finite alphabet X . Under suitable ergodic-
ity assumptions, the entropy per letter converges to a limit
h := limN→∞H(XN )/N (Shannon-McMillan-Breiman
theorem). Universal coding schemes (e.g. Lempel-Ziv cod-
ing) do not requite knowledge of the distribution of XN ,
and can encode such a sequence without information loss
using (asymptotically) h bits per symbol.

While this theory is mathematically satisfying, its model-
ing assumptions (stationarity, ergodicity) are unlikely to be
satisfied in many applications. This has long been recog-
nized by practitioners. The main objective of this paper
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is to investigate this fact mathematically in the context of
tabular data, characterize the gap to optimality of classical
schemes, and describe an asymptotically optimal algorithm
that overcomes their limitations.

We consider a data table with m rows and n columns and
entries in X , Xm,n ∈ Xm×n Xm,n := (Xij)i≤m,j≤n.
The standard approach to such data is: (i) Serialize, e.g.
in row-first order, to form a vector of length N = mn,
XN = (X11, X12, . . . , X1n, X21, . . . , Xmn); (ii) Apply a
standard compressor (e.g., Lempel-Ziv) to this vector.

We will show, both empirically and mathematically, that
this standard approach can be suboptimal in the sense of not
achieving the optimal compression rate. This happens even
in the limit of large tables, as long as the number of columns
and rows are polynomially related (i.e. nε ≤ m ≤ nM for
some small constant ε and large constant M ).

We advocate an alternative approach:

1. Estimate row/column latents um = (u1, . . . , um) ∈
Lm, vn = (v1, . . . , vn) ∈ Ln, with L a finite alphabet.

2. Partition the table in blocks according to the
row/column latents, Namely, for u, v ∈ L, define

X(u, v) = vec
(
Xij : ui = u, vj = v

)
. (1.1)

where vec(M) denote the serialization of matrix M
(either row-wise or column-wise).

3. Apply a base compressor (generically denoted by ZX :
X ∗ → {0, 1}∗) to each blockX(u, v)

z(u, v) = ZX (X(u, v)) , ∀u, v ∈ L . (1.2)

4. Encode the row latents and column latents using a
possibly different compressor ZL : X ∗ → {0, 1}∗, to
get zrow = ZL(u), zcol = ZL(v). Finally output the
concatenation (denoted by ⊕)

Enc(Xm,n) = header ⊕ zrow ⊕ zcol ⊕
⊕
u,v∈L

z(u, v) .

(1.3)

Here header is a header that contains encodings of the
lengths of subsequent segments.
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Note that encoding the latents can in general lead to a sub-
optimal compression rate. While this can be remedied with
techniques such as bits-back coding, we observed in our
applications that using such techniques yields limited im-
provement. Our analysis shows that the rate improvement
afforded by bits-back coding is only significant in certain
special regimes. We refer to Sections 5 and 6 for further
discussion.

The above description leaves several design choices unde-
fined, namely: (a) The latents estimation procedure at point
1; (b) The base compressor ZX for the blocks X(u, v);
(c) The base compressor ZL for the latents.

We will provide details for a specific implementation in Sec-
tion 2, alongside empirical evaluation in Section 3. Section
4 introduces a probabilistic model for the dataXm,n, and
Section 5 establishes our main theoretical results: standard
compression schemes are suboptimal on this model, while
the above latents-based approach is asymptotically optimal.
Finally we discuss extensions in Section 6.

1.1. Related work

The use of latent variables is quite prevalent in compression
methods based on machine learning and probabilistic mod-
eling. Hinton and Zemel (1993) introduced the idea that
stochastically generated codewords (e.g., random latents)
can lead to minimum description lengths via bits back cod-
ing. This idea was explicitly applied to lossless compression
using arithmetic coding in (Frey & Hinton, 1996), and ANS
coding in (Townsend et al., 2019a;b).

Compression via low-rank approximation is closely-related
to our latents-based approach and has been studied in the
past. An incomplete list of contributions includes (Cheng
et al., 2005) (numerical analysis), (Li & Li, 2010) (hyper-
spectral imaging), (Yuan & Oja, 2005; Hou et al., 2015)
(image processing), (Taylor, 2013) (quantum chemistry),
(Phan et al., 2020) (compressing the gradient for distributed
optimization), (Chen et al., 2021) (large language models
compression).

The present paper contributes to this line of work, but de-
parts from it in a number of ways. (i) We study lossless
compression while earlier work is mainly centered on lossy
compression. (ii) Most of the papers in this literature do
not precisely quantify compression rate: they do not ‘count
bits.’ (iii) We show empirically an improvement in terms
of lossless compression rate over state of the art.

Another related area is network compression: simple graphs
can be viewed as matrices with entries in {0, 1}. In the
case of graph compression, one is interested only in such
matrices up to graph isomorphisms. The idea of reordering
the nodes of the network and exploiting similarity between
nodes has been investigated in this context, see e.g. (Boldi
& Vigna, 2004; Chierichetti et al., 2009; Lim et al., 2014;

Algorithm 1 Latent-based Tabular Compressor

Input: Data matrixXm,n ∈ Xm×n, range k = |L|
Output: Compressed data Enc(Xm,n) ∈ {0, 1}∗

Estimate latents um ∈ [k]m, vn ∈ [k]n using Algorithm
2, with inputsXm,n, k
for u, v ∈ [k] do
X(u, v) = vec

(
Xij : ui = u, vj = v

)
z(u, v) = ZX (X(u, v))

end for
Compute zrow = ZL(u), zcol = ZL(v)
return concatenation of {z(u, v) : u, v ∈ [k]}, zrow,zcol,
metadata

Besta & Hoefler, 2018) However, we are not aware of results
analogous to ours in this literature.

To the best of our knowledge, our work is the first to prove
that classical lossless compression techniques do not achieve
the ideal compression rate under a probabilistic model for
tabular data. We characterize this ideal rate as well as the
one achieved by classical compressors, and prove that latents
estimation can be used to close this gap.

1.2. Notations

We generally use boldface for vectors and uppercase bold-
face for matrices, without making any typographic distinc-
tion between numbers and random variables. When useful,
we indicate by superscripts the dimensions of a matrix or a
vector: um is a vector of length m, and Xm,n is a matrix
of dimensions m × n. For a string v and a ≤ b, we use
vba = (va, . . . , vb) to denote the substring of v.

If X,Y are random variables on a common probability
space (Ω,F ,P), we denote by H(X), H(Y ) their en-
tropies, H(X,Y ) their joint entropy, H(X|Y ) the condi-
tional entropy of X given Y . We will overload this no-
tation: if p is a discrete probability distribution, we de-
note by H(p) its entropy. Unless stated otherwise, all en-
tropies will be measured in bits. For ε ∈ [0, 1], h(ε) :=
−ε log2 ε− (1− ε) log2(1− ε).

2. Implementation

The overall structure of the compression algorithm was
already described in the introduction. Algorithm 1 sum-
marizes it. In this section we provide further details about
the two basic components it relies on: the base compressor
Z·, and the latents estimation algorithm. In both cases, the
choice is in no-way unique and we only describe what we
used in our implementation.
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2.1. Base compressors

We implemented the following two options for the base
compressors ZX (for data blocks) and ZL (for latents).

Dictionary-based compression (Lempel-Ziv, LZ). For
this we used Zstandard (ZSTD) Python bindings to the C
implementation using the library zstd, with level 12. While
ZSTD can use run-length encoding schemes or literal encod-
ing schemes, we verified that in in this case ZSTD always
use its LZ algorithm.

The LZ algorithm in ZSTD is somewhat more sophisticated
than the plain LZ algorithm used in our proofs. In particular
it includes (Collet & Kucherawy, 2018) Huffman coding
of literals 0-255 and entropy coding of the LZ stream. Ex-
periments with other (simpler) LZ implementations yielded
similar results. We focus on ZSTD because of its broad
adoption in industry.

Frequency-based entropy coding (ANS). For each data
portion (i.e each blockX(u, v) and each of the row latents
u and column latents v) compute empirical frequencies
of the corresponding symbols. Namely for all u, v ∈ L,
x ∈ X , we compute

Q̂(x|u, v) :=
1

N(u, v)

∑
i:ui=u

∑
j:vj=v

1xij=x ,

q̂r(u) :=
1

m

m∑
i=1

1ui=u , q̂c(v) :=
1

n

n∑
i=1

1vi=v ,

where N(u, v) is the number of i ≤ m, j ≤ n such that
ui = u, vj = v. We then apply ANS coding (Duda, 2009)
to each blockX(u, v) modeling its entries as independent
with distribution Q̂( · |u, v), and to the latents um, vn using
the distributions q̂r( · ), q̂c( · ). We separately encode these
counts as long integers.

Since our main objective was to study the impact of learning
latents, we did not try to optimize these base compressors.

2.2. Latent estimation

We implemented latents estimation using a spectral cluster-
ing algorithm outlined in Algorithm 2.

In words, the algorithm encodes the data matrixXm,n as an
m× n real-valued matrixMm,n ∈ Rm×n using a map ψ :
X → R. It then computes the top k−1 left and right singular
vectors ofM , and stores them as matricesA ∈ Rm×(k−1),
B ∈ Rm×(k−1). The rows ai, bj ∈ Rk−1 of these matrices
are used as embedding of the rows and columns indices in
k− 1 dimensions. Finally, we run KMeans on these vectors
to construct k clusters of rows/columns.

A few remarks are in order. The algorithm encodes the data
matrix Xm,n as an m × n real-valued matrix Mm,n ∈

Algorithm 2 Spectral latents estimation

Input: Data matrixXm,n ∈ Xm×n
latents range k = |L|; map ψ : X → R
Output: Factors um ∈ Lm, vn ∈ Ln

Compute top (k − 1) singular vectors of Mm,n =
ψ(Xm,n), (ãi)i≤k−1, (b̃i)i≤k−1

Stack singular vectors in matricesA = [ã1| . . . |ãk−1] ∈
Rm×(k−1),B = [b̃1| · · · |b̃k−1] ∈ Rn×(k−1);
Let (ai)i≤m, ai ∈ Rk−1 be the rows of A; (bi)i≤n,
b ∈ Rk−1 the rows ofB
Apply KMeans to (ai)i≤m; store the cluster labels as
vector um

Apply KMeans to (bi)i≤n; store the cluster labels as
vector vn

return um, vn

Rm×n using a map ψ : X → R. In our experiments we did
not optimize this map and encoded the elements of X as
0, 1, . . . , |X | − 1 arbitrarily, cf. also Section 5.3

The singular vector calculation turns out to be the most time
consuming part of the algorithm. Computing approximate
singular vectors via power iteration requires in this case
of the order of log(m ∧ n) matrix vector multiplications
for each of k vectors. This amounts to mnk log(m ∧ n)
operations, which is larger than the time needed to compress
the blocks or to run KMeans. A substantial speed-up is
obtained via row subsampling, cf. Section 6

For the clustering step we use the scikit-learn implementa-
tion via sklearn.cluster.KMeans, with random initialization.

3. Empirical evaluation
We evaluated our approach on tabular datasets with different
origins. Our objective is to assess the impact of using latents
in reordering columns and rows, so we will not attempt to
achieve the best possible data reduction rate (DRR) on each
dataset, but rather to compare compression with latents and
without in as-uniform-as-possible fashion.

Since our focus is on categorical variables, we preprocess
the data to fit in this setting as described in Section A.2.
This preprocessing step might involve dropping some of
the columns of the original table. We denote the number of
columns after preprocessing by n.

We point out two simple improvements we introduce in the
implementation: (i) We use different sizes for rows latent
alphabet and column latent alphabet |Lr| 6= |Lc|; (ii) We
choose |Lr|, |Lc| by optimizing the compressed size .

3.1. Datasets

More details on these data can be found in Appendix A.1:
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Taxicab. A table with m = 62, 495, n = 18 (NYC.gov,
2022). LZ: |Lr| = 9, |Lc| = 15. ANS: |Lr| = 5, |Lc| =
14.

Network. Four social networks from (Leskovec & Krevl,
2014) with m = n ∈ {333, 747, 786, 1187}. LZ and ANS:
|Lr| = 5, |Lc| = 5.

Card transactions. A table with m = 24, 386, 900 and
n = 12 (Altman, 2019). LZ and ANS: |Lr| = 3, |Lc| = n.

Business price index. A table with m = 72, 750 and n = 10
(stats.govt.nz, 2022). LZ: |Lr| = 6, |Lc| = 7. ANS: |Lr| =
2, |Lc| = 6.

Forest. A table from the UCI data repository with m =
581, 011, n = 55 (Dua & Graff, 2017). LZ and ANS:
|Lr| = 6, |Lc| = 17.

US Census. Another table from (Dua & Graff, 2017) with
m = 2, 458, 285 and n = 68. LZ and ANS: |Lr| = 9,
|Lc| = 68.

Jokes. A collaborative filtering dataset with m = 23, 983
rows and n = 101 (Goldberg et al., 2001; Goldberg et al.).
LZ: |Lr| = 2, |Lc| = 101. ANS: |Lr| = 8, |Lc| = 8.

3.2. Results

Given a lossless encoder φ : Xm×n → {0, 1}∗, we define
its compression rate and data reduction rate (DRR) as

Rφ(Xm,n) :=
len(φ(Xm,n))

mn log2 |X |
,

DRRφ(Xm,n) := 1− Rφ(Xm,n) . (3.1)

(Larger DRR means better compression.)

The DRR of each algorithm is reported in Table 1. For the
table of results, LZ refers to row-major order ZSTD, LZ (c)
refers to column-major order ZSTD. We run KMeans on the
data 5 times, with random initializations finding the DRR
each time and reporting the average.

We make the following observations on the empirical re-
sults of Table 1. First, Latent + ANS encoder achieves
systematically the best DRR. Second, the use of latent in
several cases yields a DRR improvement of 5% (of the
uncompressed size) or more. Third, as intuitively natural,
this improvement appears to be larger for data with a large
number of columns (e.g. the network data).

The analysis of the next section provides further support for
these findings.

4. A probabilistic model
In order to better understand the limitations of classical
approaches, and the optimality of latent-based compression,
we introduce a probabilistic model for the table Xm,n ∈
Xm×n. We assume the true latents (ui)i≤m, (vj)j≤n to be

independent random variables with

P(ui = u) = qr(u) , P(vi = v) = qc(v) . (4.1)

We assume that the entries (Xij)i≤m,j≤n are conditionally
independent given um = (ui)i≤m v

n = (vj)j≤n, with

P
(
Xij = x

∣∣um,vn) = Q(x|ui, vj) . (4.2)

The distributions qr, qc, and conditional distribution
Q are parameters of the model (a total of 2(|L| −
1) + |L|2(|X | − 1) real parameters). We will write
(Xm,n,um,vn) ∼ T (Q, qr, qc;m,n) to indicate that
the triple (Xm,n,um,vn) is distributed according to the
model.

Remark 4.1. Some of our statements will be non-
asymptotic, in which case m, n, X , L, Q, qr, qc are fixed.
Others will be of asymptotic. In the latter case, we have in
mind a sequence of problems indexed by n. In principle, we
could write mn, Xn, Ln, Qn, qr,n, qc,n to emphasize the
fact that these quantities depend on n. However, we will
typically omit these subscripts.

Example 4.2 (Symmetric Binary Model). As a toy example,
we will use the following Symmetric Binary Model (SBM)
which parallels the symmetric stochastic block model for
community detection (Holland et al., 1983). We take L =
[k] := {1, . . . , k}, X = {0, 1}, qr = qc = Unif([k]) (the
uniform distribution over [k]) and

Q(1|u, v) = p1 if u = v, Q(1|u, v) = p0 if u 6= v.
(4.3)

We will write (Xm,n,um,vn) ∼ TSBM(p0, p1, k;m,n)
when this distribution is used.

Figure 1 reports the results of simulations within the SBM,
for ZSTD and ANS base compressors. In this casem = n =
1000, k = 3, and we average DRR values over 4 realizations.
Appendix B reports additional simulations under the same
model for k ∈ {5, 7}: the results are very similar to the
ones of Figure 1. As expected, the use of latents is irrelevant
along the line p1 ≈ p0 (in this case, the latents do not impact
the distribution of Xij). However, it becomes important
when p1 and p0 are significantly different.

The figures also report contour lines of the theoretical pre-
dictions for the asymptotic DRR of various compression
algorithms (cf. Example 5.4). The agreement is excellent.

5. Theoretical analysis
In this section we present our theoretical results on compres-
sion rates under the model T (Q, qr, qc, k;m,n) introduced
above. We first characterize the optimal compression rate in
Section 5.1, then prove that standard compression methods
fail to attain this goal in Section 5.2, and finally show that
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Table 1: Data reduction rate (DRR) achieved by classical and latent-based compressors on real tabular data.

Data Size LZ LZ (c) ANS Latent + LZ Latent + ANS
Taxicab 380 KB 0.41 0.44 0.43 0.48 0.54

FB Network 1 13.6 KB 0.63 0.63 0.76 0.58 0.78
FB Network 2 68.1 KB 0.44 0.44 0.57 0.64 0.75
FB Network 3 75.4 KB 0.59 0.59 0.75 0.69 0.80
GP Network 1 172 KB 0.46 0.46 0.65 0.58 0.70

Forest (s) 6.10 MB 0.29 0.38 0.47 0.41 0.49
Card Transactions (s) 123 MB 0.03 0.21 0.29 0.20 0.30

Business price index (s) 153 KB −0.03 0.20 0.28 0.25 0.32
US Census 43.9 MB 0.38 0.31 0.47 0.52 0.62

Jokes 515 KB −0.21 −0.15 0.07 −0.03 0.14
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Figure 1: Comparing data reduction rate of naive coding and latent-based coding for synthetically generated data. Top:
ZSTD base compressor. Bottom: ANS base compressor. Contour lines correspond to the compression rate predicted by the
theorems of Section 5 (coinciding with optimal rate for latent-based encoders).

latent-based compression does in Section 5.3. Proofs are
deferred to Appendices D, E, F, G.

Throughout, we denote by (X,U, V ) a triple with
joint distribution P(X = x, U = u, V = v) =
Q(x|u, v)qr(u)qc(v) (this is the same as the joint distri-
bution of (Xij , ui, vj) for fixed i, j).

5.1. Ideal compression

Our first lemma provides upper and lower bounds on the
entropy per symbol H(Xm,n)/mn.

Lemma 5.1. Defining H+
m,n(X|U, V ) := H(X|U, V ) +

1
nH(U) + 1

mH(V ), we have

H(X|U, V ) ≤ 1

mn
H(Xm,n) ≤ H+

m,n(X|U, V ) . (5.1)
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Further, for any estimators û : Xm×n → Lm, v̂ :
Xm×n → Ln, let ErrU := minπ∈SL

∑m
i=1 1ûi 6=π(ui)/m,

ErrV := minπ∈SL
∑n
i=1 1v̂i 6=π(vi)/n (min over permuta-

tions of L), letting εU := EErrU , εV := EErrV , we have

H+
m,n(X|U, V )−δm,n ≤

1

mn
H(Xm,n) ≤ H+

m,n(X|U, V ) .

(5.2)
where δm,n := δ(εU )/n + δ(εV )/m and δ(ε) := h(ε) +
ε log(|L| − 1).

Corollary 5.2. There exists a lossless compressor φ whose
rate (cf.Eq. (3.1)) is

ERφ(Xm,n) ≤ 1

log2 |X |

{
H+
m,n(X|U, V ) +

1

mn

}
.

(5.3)

Further, for any lossless compressor φ, ERφ(Xm,n) ≥
H+
m,n(X|U, V )− δm,n − 2 log2(mn)/mn.

Remark 5.1. The simpler bound (5.1) implies that the en-
tropy per entry is H(X|U, V ) +O(1/(m ∧ n)). The opera-
tional interpretation of this result is that we should be able
to achieve the same compression rate per symbol as if the
latents were given to us.

The additional terms 1
nH(U)+ 1

mH(V ) in Eq. (5.2) account
for the additional memory required for the latents. The
lower bound in Eq. (5.2) implies that, if the latents can be
accurately estimated from the dataXm,n (that is if εU , εV
are small), then this overhead is essentially unavoidable.

The nearly ideal compression rate in Eq. (5.3) can be
achieved by Huffmann or arithmetic coding, and requires
knowledge of the probability distribution of Xm,n. Un-
der the these schemes, the length of the codeword asso-
ciated to Xm,n is within constant number of bits from
− log2 P(Xm,n), where P(X0) := P(Xm,n = X0) is the
probability mass function of the random tableXm,n (Cover
& Thomas, 2006; Salomon, 2004). The next lemma implies
that the length concentrates tightly around the entropy.

Lemma 5.3 (Asymptotic Equipartition Property). For
X0 ∈ Xm×n, let P(X0) = PQ,qr,qc;m,n(X0) the
probability of Xm,n = X0 under model Xm,n ∼
T (Q, qr, qc;m,n). Assume there exists a constant c > 0
such that minx∈X minu,v∈LQ(x|u, v) ≥ c. Then there ex-
ists a constant C (depending on c) such that the following
happens.

ForXm,n ∼ T (Q, qr, qc;m,n) and any t ≥ 0 with proba-
bility at least 1− 2 e−t:∣∣− log P(Xm,n)−H(Xm,n)

∣∣ ≤ C√mn(m+ n) t .
(5.4)

For the sake of simplicity, in the last statement we assume
a uniform lower bound on Q(x|u, v). While such a lower

bound holds without loss of generality when Q is indepen-
dent ofm,n (symbols with zero probability can be dropped),
it might not hold in the n-dependent case. Appendix D gives
a more general statement.

5.2. Failure of classical compression schemes

We analyze two types of codes: finite-state encoders and
Lempel-Ziv codes. Both operate on the serialized data
XN = vec(Xm,n), N = mn, obtained by scanning the
table in row-first order (obviously column-first yields sym-
metric results).

5.2.1. FINITE STATE ENCODERS

A finite state (FS) encoder takes the form of a triple (Σ, f, g)
with Σ a finite set of cardinality M = |Σ| and f : X ×Σ→
{0, 1}∗, g : X × Σ→ Σ.

We assume that Σ contains a special ‘initialization’ symbol
sinit. Starting from state s0 = sinit, the encoder scans the in-
putXN sequentially. Assume after the first ` input symbols
it is in state s`, and produced encoding zk(`)

1 . Given input
symbol X`+1, it appends f(X`+1, s`) to the codeword, and
updates its state to s`+1 = g(X`+1, s`).

With an abuse of notation, denote by f`(X`, sinit) ∈ {0, 1}∗
the binary sequence obtained by applying the finite state
encoder toX` = (X1, . . . , X`) We say that the FS encoder
is information lossless if for any ` ∈ N,X` 7→ f`(X

`, sinit)
is injective.

Theorem 5.4. Let X = Xm,n ∼ T (Q, qr, qc;m,n) and
φ := (Σ, f, g) be an information lossless finite state encoder.
Define the corresponding compression rate Rφ(X), as per
Eq. (3.1). Assuming m > 10, |Σ| ≥ |X |, and log2 |Σ| ≤
n log2 |X |/9,

ERφ(X) ≥ H(X|U)

log2 |X |
− 10

√
log |Σ|
n log |X |

· log(n log |Σ|) .

(5.5)

The asymmetry between U and V in the last statement (and
below) arises because we assume that the table is serialized
in row-major order. Of course the roles of U and V are
exchanged if we use column major.

Remark 5.2. The leading term of the above lower bound
is H(X|U)/ log2 |X |. Since conditioning reduces entropy,
this is strictly larger than the ideal rate which is roughly
H(X|U, V )/ log2 |X |, cf. Eq. (5.3).

The next term is negligible provided log |Σ| � n log |X |.
This condition is easy to interpret: it amounts to say that the
finite state machine does not have enough states to memorize
a row of the tableXm,n.

The gap between H(X|U, V ) (appearing in the ideal rate of
Lemma 5.1) and H(X|U) (appearing in the last statement
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and in the analysis of LZ encoders) can be illustrated by
a toy example. Assume ui, vj are uniform in {0, 1} and
Xij = ui + vi( mod 2). Then H(X|U, V ) = 0 while
H(X|U) = H(X|V ) = log 2. It is easy to compress very
well by identifying the latents (just store the latents), but if
we scan a single row (or column), we will only see a random
sequence of bits.

5.2.2. LEMPEL-ZIV

The pseudocode of the Lempel-Ziv algorithm that we will
analyze is given in Appendix F.

In words, after the first k characters of the input have been
parsed, the encoder finds the longest stringXk+`−1

k which
appears in the past. It then encodes a pointer to the position
of the earlier appearance of the string Tk, and its length Lk.
If a simbol Xk never appeared in the past, we use a special
encoding, cf. Appendix F.

We encode the pointer Tk in plain binary using dlog2(N +
|X |)e bits (note that Tk ∈ {−|X |+ 1, . . . , 1, . . . , N}), and
Lk using an instantaneous prefix-free code, e.g. Elias δ-
coding, taking 2blog2 Lkc+ 1 bits.

Assumption 5.5. There exist a constant c0 > 0 such that

max
x∈X

max
u,v∈L

Q(x|u, v) ≤ 1− c0 .

Further Q, qr, co,X ,L are fixed and m,n→∞ with m =
nα+o(1), i.e.

lim
n→∞

logm

log n
= α ∈ (0,∞) . (5.6)

Theorem 5.6. Under Assumption 5.5, the asymptotic
Lempel-Ziv rate is

lim
m,n→∞

ERLZ(Xm,n) = R∞LZ :=
∑
u∈L

qr(u)R∞LZ(u)

log2 |X |
,

(5.7)

R∞LZ(u) := H(X|U = u) ∧
(1 + α

α

)
H(X|U = u, V ) .

Remark 5.3. The asymptotics of the Lempel-Ziv rate is
given by the minimum of two expressions, which corre-
spond to different behaviors of the encoder. For u ∈ L,
define α∗(u) := H(X|U = u, V )/(H(X|U = u) −
H(X|U = u, V )) (with α∗(u) = ∞ if H(X|U = u) =
H(X|U = u, V )). Then:

If α < α∗(u), then we are a ‘skinny table’ regime. The
algorithm mostly deduplicates segments in rows with latent
u by using strings in different rows but aligned in the same
columns. If α > α∗(u), then we are a ‘fat table’ regime.
The algorithm mostly deduplicates segments on rows with
latent u by using rows and columns that are not the same as
the current segment.

Example 5.4 (Symmetric Binary Model, dense regime).
Under the Symmetric Binary Model TSBM(p0, p1, k;m,n)
of Example 4.2, we can compute the optimal compression
rate of Corollary 5.2, the finite state compression rate of
Theorem 5.4, the Lempel-Ziv rate of Theorem 5.6.

If p0, p1 are of order one, andm = nα+on(1) asm,n→∞,
letting p := ((k − 1)/k)p0 + (1/k) p1, h(p0, p1) := ((k −
1)/k)h(p0) + (1/k) h(p1), we obtain:

ERopt(X) =
(

1− 1

k

)
h(p0) +

1

k
h(p1) + on(1) ,

ERfin. st.(X) ≥ h(p) + on(1) ,

ERLZ(X) = h(p) ∧
(1 + α

α

)
h(p0, p1) + on(1) .

These theoretical predictions are used to trace the contour
lines in Figure 1. (ANS coding is implemented as a finite
state code here.)

5.3. Practical latent-based compression

Achieving the ideal rate of Corollary 5.2 via arithmetic
or Huffmann coding requires to compute the probability
P(Xm,n), which is intractable. We will next show that we
can achieve a compression rate that is close to the ideal rate
via latents estimation.

We begin by considering general latents estimators û :
Xm×n → Lm, v̂ : Xm×n → Ln. We measure their accu-
racy by the error (cf. Lemma 5.1)

ErrU (X; û) :=
1

m
min
π∈SL

m∑
i=1

{
1ûi(X) 6=π(ui)

}
and the analogous ErrV (X; v̂). Here the minimization is
over the set SL of permutations of the latents alphabet L.

We can use any estimators û, v̂ to reorder rows and columns
and compress the table Xm,n according to the algorithm
described in the introduction. We denote by Rlat(X) the
compression rate achieved by such a procedure.

Our first result implies that, if the latent estimators are con-
sistent (namely, they recover the true latents with high prob-
ability, up to permutations), then the resulting rate is close
to the ideal one.

Lemma 5.7. Assume data distributed according to model
Xm,n ∼ T (Q, qr, qc;m,n), withm,n ≥ log2 |L|. Further
assume there exists c0 > 0 such that qr(u), qc(v) ≥ c0
for all u, v ∈ L. Let Rlat(X) be the rate achieved by the
latent-based scheme with latents estimators û, v̂, and base
encoders ZX = ZL = Z. Then

ERlat(X) ≤ H(Xm,n)

mn log2 |X |
+ 2Perr(m,n) +

4 log(mn)

mn

+ |L|2∆Z(c ·mn; Q) + 2∆Z(m ∧ n; {qr, qc}) .
(5.8)
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Here Perr(m,n) := P(ErrU (Xm,n; û) > 0) +
P(ErrV (Xm,n; v̂) > 0), ∆Z(N ; P∗) is the worst-case re-
dundancy of encoder Z over i.i.d. sources with distributions
in P∗ (see comments below), Q := {Q( · |u, v)}u,v∈L.

The redundancies of Lempel-Ziv, frequency-based arith-
metic coding and ANS coding can be upper bounded as
(in the last bound Q, qr, qc need to be be independent of N )

∆LZ(N ; P∗) ≤ 40c∗(P∗)
( log logN

logN

)1/2

, (5.9)

∆AC(N ; P∗) ≤
2|X |

log |X |
· logN

N
, (5.10)

∆ANS(N ; P∗) ≤
2|X | logN + C|X |

N
. (5.11)

Here Eq. (5.9) holds for N ≥
exp{supq∈P∗(4 log(2/H(q)))2}, and c∗(P∗) :=
supq∈P∗

∑
x∈X (log q(x))2/|X |.

The proof of this lemma is given in Appendix G.1. The main
content of the lemma is in the general bound (5.8) which is
proven in Appendix G.1.1.

Remark 5.5. We define the worst case redundancy
∆Z(N0; P∗) := maxN≥N0

∆̂Z(N ; P∗), where

∆̂Z(N ; P∗) := max
q∈P∗

Eq len(Z(Y N ))−H(Y N )

N log2 k
,

(5.12)

where P∗ ⊆ P([k]) := {(pi)i≤k ∈ Rk : pi ≥
0 ∀i and

∑
i≤k pi = 1} is a set of probability distributions

over [k] and Y N is a vector with i.i.d. entries Yi ∼ q.

While Eqs. (5.9)—(5.11) are closely related to well known
facts, there are nevertheless differences with respect to state-
ments in the literature. We address them in Section G.1.2.
Perhaps the most noteworthy difference is in the bound (5.9)
for the LZ algorithm. Existing results, e.g. Theorem 2
in (Savari, 1998), assume a single, N -independent, distri-
bution q and are asymptotic in nature. Equation (5.9) is
a non-asymptotic statement and applies to a collection of
distributions P∗ that could depend on N .

Lemma 5.7 can be used in conjunction with any latent
estimation algorithm, as we next demonstrate by consid-
ering the spectral algorithm of Section 2.2. Recall that
the algorithm makes use of a map ψ : X → R. For
(X,U, V ) ∼ Q( · | · , · )qr( · )qc( · ), we define ψ(u, v) :=
E[ψ(X)|U = u, V = v], Ψ :=

(
ψ(u, v)

)
u,v∈L and the

parameters:

µn := σmin(Ψ) , νn := max
u,v∈L

|ψ(u, v)| , (5.13)

σ2
n := max

u,v∈L
Var
(
ψ(X)|U = u, V = v

)
. (5.14)

We further will assume, without loss of generality
maxx∈X |ψ(x)| ≤ 1.

Finally, we need to formally specify the version of the
KMeans primitive in the spectral clustering algorithm. In
fact, we establish correctness for a simpler thresholding pro-
cedure. Considering to be definite the row latents, and for a
given threshold θ > 0, we construct a graphGθ = ([m], Eθ)
by letting (for distinct i, j ∈ [m])

‖ai − aj‖2
(‖ai‖2 + ‖aj‖2)/2

≤ θ ⇔ (i, j) ∈ Eθ . (5.15)

The algorithm then output the connected components of Gθ.

Theorem 5.8. Assume data Xm,n ∼ T (Q, qr, qc;m,n),
with m,n ≥ log2 |L| and minu∈L(qr(u) ∧ qc(u)) ≥ c0
for a constant c0 > 0. Let Rlat(X) be the rate achieved
by the latent-based scheme with spectral latents estima-
tors û, v̂, base compressors ZX = ZL = Z, and
thresholding algorithm as described above. Then, as-
suming σn ≥ c

√
(log n)/n, νn/σn ≤ c

√
log n µn ≥

C(σn
√

(log n)/m ∨ (log n)/
√
mn), θ ≤ √c0/100, we

have

ERlat(X) ≤ H(Xm,n)

mn log2 |X |
+

10 log(mn)

mn

+ |L|2∆Z(c ·mn; Q) + 2∆Z(m ∧ n; {qr, qc}) .

We focus on the simpler thresholding algorithm of Eq. (5.15)
instead of KMeans in order to avoid technical complications
that are not the main focus of this paper. We expect it to be
relatively easy to generalize this result, e.g. using the results
of (Makarychev et al., 2020) for KMeans++.

Example 5.6. Consider the Symmetric Binary Model
TSBM(p0, p1, k;m,n) of Example 4.2, with p0 = p0,n,
p1 = p1,n potentially dependent on n. Since in this case
X = {0, 1} the choice of the map ψ has little impact
and we set ψ(x) = x. We assume, to simplify formulas,
|p1,n−p0,n| ≤ kp0,n, p1,n∨p0,n ≤ 9/10. It is easy to com-
pute µn = |p1,n−p0,n|, νn = p0,n∨p1,n, σ2

n � p1,n∨p0,n:

Theorem 5.8 implies nearly optimal compression rate under
the following conditions on the model parameters:

p1,n ∨ p0,n &

√
log n

n
, |p1,n − p0,n| &

log n√
mn

,

|p1,n − p0,n|
p1,n ∨ p0,n

&

√
log n

n
.

Here & hides factors depending on k, c0. The last of these
condition amounts to requiring that the signal-to-noise ratio
is large enough to consistently reconstruct the latents. In the
special case of square symmetric matrices (m = n), sharp
constants in these bounds can be derived from (Abbe, 2017).
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Method DRR (k = 4) (k = 6) (k = 10)
Oracle 0.27 0.27 0.27

No Latent 0.06 0.11 0.17
kalg = k − 2 0.14 0.21 0.25
kalg = k − 1 0.21 0.25 0.26
kalg = k 0.27 0.27 0.26

kalg = k + 1 0.27 0.27 0.26
kalg = k + 2 0.25 0.27 0.23

Method Taxi Census Forest Jokes
ZSTD 22 0.53 sec 146 sec 17.2 sec 2.8 sec

Latents + LZ 1.2 sec 96 sec 5.2 sec 3.8 sec
Subsampling 0.7 sec 30 sec 3.7 sec 1.5 sec

Table 2: Left: DRR of the latent-based compressor inthe SBM with miss-specified latent space size kalg. Right: average
runtime (seconds) of latent-based compressors on several datasets, compared with state of the art.

6. Discussion and extensions
We proved that classical lossless compression schemes, that
serialize the data and then apply a finite state encoder or
a Lempel-Ziv encoder to the resulting sequence are sub-
optimal when applied to tabular data. Namely, we intro-
duced a simple model for tabular data, and made the follow-
ing novel contributions:

1. We characterized the optimal compression rate under this
model.

2. We rigorously quantified the gap in compression rate
suffered by classical compressors.

3. We showed that a compression scheme that estimates
the latents performs well in practice and provably achieves
optimal rate on our model.

The present work naturally suggests several questions and
directions for future work.

Model miss-specification. The numerical simulations of
Section 4 were carried our within the Symmetric Binary
Model, under the assumption that the correct cardinality of
the latents space, k, is known at the encoder. While the
rigorous guarantees of Section 5.3 are more general, it is im-
portant to understand the effect of model misspecification.

Table 2 presents initial evidence of the robustness of
the proposed approach. We generate tables Xm,n ∼
TSBM(p0, p1, k;m,n), with p0 = 0.2, p1 = 0.8, and di-
mensions m = n = 1000. We vary k ∈ {4, 6, 8} and run
the latent-based compressor in a miss-specified setting by
using a latentss-space size kalg 6= k. We observe that the
resulting DRR is fairly robust to miss-specification in the
the number of latents.

It is also worth pointing out that parameters of the latents
model, such as kalg, can be chosen at compression time to
optimize DRR. However this implies severe performance
losses, and therefore further investigation into model mis-
specification is warranted.

Computational efficiency. While we did not attempt to
develop a highly optimized compressor, we believe that the

present approach is amenable to such a development. The
largest overhead over standard compressors is in the clus-
tering step, and in particular computing the singular value
decomposition (SVD) of the data. This can be accelerated
using methods from randomized linear algebra. We imple-
mented row subsampling SVD (Drineas et al., 2006), and
observed essentially no loss in DRR by using 10% of the
rows as compared to full SVD.

Table 2 reports running time experiments to compare the
original latent based compressor, its subsampling version
and ZSTD at its strongest compression level. Runtimes were
averaged over 5 runs on a Macbook Pro single-threaded with
a 2 GHz 4-core Intel i5 chip.

We observe that row-subsampling yields significant perfor-
mance improvements, and runtimes that compare well with
the industry state of the art.

Bits back coding. As mentioned several times, encod-
ing the latents is sub-optimal, unless these can be es-
timated accurately in the sense of EErrU (X; û) → 0,
EErrV (X; v̂)→ 0, cf. Lemma 5.1. If this is not the case,
then optimal rates can be achieved using bits-back coding.

Continuous latents. Of course, using discrete latents is
somewhat un-natural, and it would be interesting to consider
continuous ones, in which case bits-back coding is required.

Multi-way tables (tensors). A natural extension of the
current work is to order-s multiway tables or (equivalently
for our purposes) tensors X ∈ Xn1×···×ns . The basic
scheme would essentially be the same: estimate s vec-
tor of latents vi ∈ Lni , i ≤ s and use them to partition
rows/columns.
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A. Details on the empirical evaluation
A.1. Datasets

We used the following datasets:

• Taxicab. A table with m = 62, 495 rows, n0 = 20 columns comprising data for taxi rides in NYC during January
2022 (NYC.gov, 2022). After preprocessing this table has n = 18 columns. For the LZ (ZSTD) compressor we used
|Lr| = 9 row latents and 15 column latents, for the ANS compressor we used |Lr| = 5 row latents and 14 column
latents.

• Network. Four social networks from SNAP Datasets, representing either friends as undirected edges for Facebook or
directed following relationships on Google Plus (Leskovec & Krevl, 2014). We regard these as four distinct tables with
0− 1 entries, with dimensions, respectively m = n ∈ {333, 747, 786, 1187}. For each table we used 5 row latents and
5 column latents.

• Card transactions. A table of simulated credit card transactions containing information like card ID, merchant city, zip,
etc. This table has m = 24, 386, 900 rows and n0 = 15 columns and was generated as described in (Altman, 2019)
and downloaded from (IBM, 2022). After preprocessing the table has n = 12 columns. For this table we used 3 row
latents and n column latents.

• Business price index. A table of the values of the consumer price index of various goods in New Zealand between 1996
and 2022. This is a table with m = 72, 750 rows and n0 = 12 columns from the Business price indexes: March 2022
quarter - CSV file from (stats.govt.nz, 2022). After preprocessing this table has n = 10 columns. Due to the highly
correlated nature of consecutive rows, we first shuffle them before compressing. For the LZ method we used 6 row
latents and 7 column latents, for the ANS method we used 2 row latents and 6 column latents.

• Forest. A table from the UCI data repository comprising m = 581, 011 cartographic measurements with n0 = 55
attributes, to predict forest cover type based on information gathered from US Geological Survey (Dua & Graff, 2017).
It contains binary qualitative variables, and some continuous values like elevation and slope. After preprocessing this
data has n = 55 columns. For the LZ method we used 6 row latents and 17 column latents, for the ANS method we
used 6 row latents and 17 column latents.

• US Census. Another table from the UCI Machine Learning Repository (Dua & Graff, 2017) with m = 2, 458, 285
and n0 = 68 categorical attributes related to demographic information, income, and occupation information. After
preprocessing this data has n = 68 columns. For this data we used 9 row latents and n column latents.

• Jokes. A table containing ratings of a series of jokes by 24,983 users collected between April 1999 and May 2003
(Goldberg et al., 2001; Goldberg et al.). These ratings are real numbers on a scale from −10 to 10, and a value of 99 is
given to jokes that were not rated. There are m = 23, 983 rows and n0 = 101. The first column identifies how many
jokes were rated by a user, and the rest of the columns contain the ratings. After preprocessing this data has n = 101
columns, all quantized. For the LZ method we used 2 row latents and n column latents, for the ANS method we used 8
row latents and 8 column latents.

A.2. Preprocessing

We preprocessed different columns as follows:

• If a column comprises K ≤ 256 unique values, then we map the values to {0, . . . ,K − 1}.

• If a column is numerical and comprises more than 256 unique values, we calculate the quartiles for the data and map
each entry to its quartile membership (0 for the lowest quartile, 1 for the next largest, 2 for the next and 3 for the
largest).

• If a column does not meet either of the above criteria, we discard it.

Finally, in some experiments we randomly permuted before compression. The rationale is that some of the above datasets
have rows already ordered in a way that makes nearby rows highly correlated. In these cases, row reordering is –obviously–
of limited use.
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Figure 2: Comparing data reduction rate of naive coding and latent-based coding for data from SBM with k = 5 latents. Top
row: ZSTD base compressor. Bottom row: ANS based compressor. Contour lines correspond to the theoretical predictions
for various compression algorithms (cf. Example 5.4).

B. Further simulations
Figures 2 and 3 report empirical DRR values for ZSTD and ANS coding, for data generated according to the symmetric
model TSBM(p0, p1, k;m,n) of Section 4. We use m = n = 1000 as before, but now k ∈ {5, 7}. Results confirm the
conclusions of Section 4.

C. A basic fact
Lemma C.1. Let A be a finite set and F : A → {0, 1}∗ be an injective map. Then, for any probability distribution p over
A,

∑
a∈A

p(a)len(F (a)) ≥ H(p)− log2 log2(|A|+ 2) . (C.1)

Proof. Assume without loss of generality that A = {1, . . . ,M}, with |A| = K, and that the elements of A have all non-
vanishing probability and are ordered by decreasing probability p1 ≥ p2 ≥ · · · ≥ pK > 0. Let N` := 2 + 4 + · · ·+ 2` =
2`+ 1 − 2. Then the expected length is minimized any map F such that len(F (a)) = ` for N`−1 ≤ a ≤ N` with the
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Figure 3: Same as Figure 2 with k = 7.

maximum length `K being defined by N`K−1 < K ≤ N`K . For A ∼ p, L := len(F (A)), we have

H(p) := H(A)
(a)

≤ H(L) +H(A|L)

≤ log2 `K +

`K∑
`=1

P(L = `)H(A|L = `)

(b)

≤ log2 `K +

`M∑
`=1

P(L = `) `

≤ log2 log2(K + 2) +
∑
a∈A

p(a)len(F (a)) ,

where (a) is the chain rule of entropy and (b) follows because by injectivity, given len(F (A)) = `, A can take at most 2`

values.

D. Proofs of results on ideal compression
D.1. Proof of Lemma 5.1

We begin by claiming that

1

mn
H(Xm,n) = H(X|U, V ) +

1

mn
I(Xm,n;Um,V n) . (D.1)

14
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Indeed, by the definition of mutual information, we haveH(Xm,n) = H(Xm,n|Um,V n)+I(Xm,n;Um,V n). Equation
(D.1) follows by noting that

H(Xm,n|Um,V n) =
∑
u∈Lm

∑
v∈Ln

P(Um = u,V n = v)H(Xm,n|Um = u,V n = v)

(a)
=

m∑
i=1

n∑
j=1

∑
u∈Lm

∑
v∈Ln

P(Um = u,V n = v)H(Xi,j |Ui = u, Vj = v)

=

m∑
i=1

n∑
j=1

∑
u∈L

∑
v∈L

P(Ui = ui, Vj = vj)H(Xi,j |Ui = ui, Vj = vj)

=

m∑
i=1

n∑
j=1

H(Xi,j |Ui, Vj)
(b)
= mnH(X1,1|U1, V1) ,

where (a) follows from the fact that the (Xi,j) are conditionally independent given Um, V n, ad since the conditional
distribution of Xi,j only depends on Um, V n via Ui, Vj ; (b) holds because the triples (Xi,j , Ui, Vj) are identically
distributed.

The lower bound in Eq. (5.1) holds because mutual information is non-negative, and the upper bound because
I(Xm,n;Um,V n) ≤ H(Um,V n) = mH(U1) + nH(V1).

Finally, to prove Eq. (5.2), define

πU ,X := arg min
π∈SL

1

m

m∑
i=1

1ûi 6=π(ui) , πV ,X := arg min
π∈SL

1

n

n∑
i=1

1v̂i 6=π(vi) , (D.2)

If the minimizer is not unique, one can be chosen arbitrarily. We then have holds because

I(Xm,n;Um,V n) = H(Um,V n)−H(Um,V n|Xm,n)

≥ mH(U1) + nH(V1)−H(Um|Xm,n)−H(V n|Xm,n)

≥ mH(U1) + nH(V1)−
[
H(Um|Xm,n, πU ,X) + I(Um;πU ,X |Xm,n)

]
(D.3)

−
[
H(V |Xm,n, πV ,X) + I(V n;πV ,X |Xm,n)

]
≥ mH(U1) + nH(V1)−H(Um|Xm,n, πU ,X)−H(V |Xm,n, πV ,X)− 2|L| log2(|L|) , (D.4)

where in the last inequality we used the fact that I(Um;πU ,X |Xm,n) ≤ H(πU ,X) ≤ log2(|L|!).

Now, consider the term H(Um|Xm,n, πU ,X). Letting Y := (Xm,n, πU ,X) the stated accuracy assumption implies that
there exists an estimators û+ = û+(Y ) such that

εU =
1

m

m∑
i=1

εU,i , εU,i := P
(
û+
i (Y ) 6= Ui

)
.

By Fano’s inequality

H(Um|Xm,n, πU ,X) ≤
m∑
i=1

H(Ui|Xm,n, πU ,X)

≤
m∑
i=1

[
h(εU,i) + εU,i log(|L| − 1)

]
≤ m

[
h(εU ) + εU log(|L| − 1)

]
,

where the last step follows by Jensen’s inequality. The claim (5.2) follows by substituting this bound in Eq. (D.4) and using
a similar bound for H(V n|Xm,n, πV ,X).
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D.2. Proof of Lemma 5.3

We begin with a technical fact.

Lemma D.1. Let ξ = (ξij)i≤m,j≤n, σ = (σi)i≤m, τ = (τj)≤n be collections of mutually independent random variables
taking values in a measurable space Z . x : Z3 → Z , F : Zm×n → R. Define x(ξ,σ, τ ) ∈ Rm×n via x(ξ,σ, τ )ij =
x(ξij , σi, τj).

Given a vector of independent random variables z, we let Varzi(f(z)) := Ezi [(f(z)− Ezif(z))2]. Define the quantities

B∗ := max
x,x′∈Zm×n
d(x,x′)≤1

∣∣F (x)− F (x′′)
∣∣ , (D.5)

B1 := max
σ,σ′∈Zm
d(σ,σ′)≤1

max
τ∈Zn

∣∣EξF (x(ξ,σ, τ ))− EξF (x(ξ,σ′, τ ))
∣∣ , (D.6)

B2 := max
σ∈Zm

max
τ ,τ ′∈Zn
d(τ ,τ ′)≤1

∣∣EξF (x(ξ,σ, τ ))− EξF (x(ξ,σ, τ ′))
∣∣ , (D.7)

V∗ := sup
ξ,τ ,σ

∑
i≤m,j≤n

Varξij
{
F (x(ξ,σ, τ ))

}
, (D.8)

V1 := sup
τ ,σ

∑
i≤m

Varσi
{
EξF (x(ξ,σ, τ )

}
, (D.9)

V2 := sup
τ ,σ

∑
j≤n

Varσj
{
EξF (x(ξ,σ, τ ))

}
. (D.10)

Then, for any t ≥ 0, the following holds with probability at least 1− 8e−t:∣∣F (x(ξ,σ, τ ))− EF (x(ξ,σ, τ ))‖ ≤ 2 max(
√

2V∗t+
√

2V1t+
√

2V2t; (B∗ +B1 +B2)t) . (D.11)

Proof. Let z ∈ ZN be a vector of independent random variables and f : ZN → R. Define the martingale Xk :=
E[f(z)|Fk] (where Fk := σ(z1, . . . , zk)). Then we have

ess sup |Xk −Xk−1| ≤ B0 := sup
d(z,z′)≤1

|f(z)− f(z′)| , (D.12)

N∑
k=1

E[(Xk −Xk−1)2|Fk−1] =

N∑
k=1

E
[
(E[f |z<k, zk]− Ez′kE[f |z<k, z′k])2

∣∣z<k] (D.13)

≤ V0 := sup
z∈ZN

N∑
k=1

Varzk
(
f(z)

)
. (D.14)

By Freedman’s inequality, with probability at least 1− 2e−t, we have∣∣f(z)− Ef(z)
∣∣ ≤ max

(√
2V0t :

2B0t

3

)
. (D.15)

Define E(σ, τ ) := EξF (x(ξ,σ, τ )), L(τ ) := Eσ,bxiF (x(ξ,σ, τ )). Applying the above inequality, each of the following
holds with probability at least 1− 2e−t

|F (x(ξ,σ, τ ))− E(σ, τ )| ≤ max
(√

2V∗t :
2B∗t

3

)
, (D.16)

|E(σ, τ )− L(τ )| ≤ max
(√

2V1t :
2B1t

3

)
, (D.17)

|L(τ )− EF (x)| ≤ max
(√

2V2t :
2B2t

3

)
, (D.18)

and the claim follows by union bound.

We next state and prove a more stronger version of Lemma 5.3.
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Lemma D.2. ForX ∈ Xm×n, let P(X) = PQ,qr,qc;m,n(X) the probability of tableX under the model T (Q, qr, qc;m,n),
i.e.

P(X) =
∑
u∈Lm

∑
v∈Ln

∏
(i,j)∈[m]×[n]

Q(Xij |ui, vi)
∏
i∈[m]

qr(ui)
∏
j∈[n]

qc(vj) . (D.19)

Define the following quantities:

M∗ := max
x,x′∈X

max
u,v∈L

∣∣∣ log
Q(x|u, v)

Q(x′|u, v)

∣∣∣ , (D.20)

M1 := max
τ,σ,σ′

‖Q( · |σ, τ)−Q( · |σ′, τ)‖TV max
u,v,x,x′′

∣∣∣ log
Q(x|u, v)

Q(x′|u, v)

∣∣∣ , (D.21)

M2 := max
τ,τ ′,σ

‖Q( · |σ, τ)−Q( · |σ, τ ′′)‖TV max
u,v,x,x′′

∣∣∣ log
Q(x|u, v)

Q(x′|u, v)

∣∣∣ , (D.22)

s∗ :=
1

2
max

u0,v0∈L

∑
x,x′∈X

Q(x|u0, v0)Q(x′|u0, v0) max
u,v∈L

(
log

Q(x|u, v)

Q(x′|u, v)

)2

, (D.23)

s1 :=
1

2
max

u0,u′0,v0∈L
‖Q( · |u0, v0)−Q( · |u′0, v0)‖TV max

x,x′∈L
max
u,v∈L

(
log

Q(x|u, v)

Q(x′|u, v)

)2

, (D.24)

s2 :=
1

2
max

u0,v0,v′0∈L
‖Q( · |u0, v0)−Q( · |u0, v

′
0)‖TV max

x,x′∈L
max
u,v∈L

(
log

Q(x|u, v)

Q(x′|u, v)

)2

. (D.25)

Then, forX ∼ T (Q, qr, qc;m,n) and any t ≥ 0 the following bound holds with probability at least −2 e−t:∣∣− log P(X)−H(X)
∣∣ ≤ 3 max

(√
s∗mnt+

√
s1mn2t+

√
s2m2nt,M∗ +M1n+M2m

)
. (D.26)

Proof. Let σ = (σi)i≤m ∼iid r, τ = (τi)i≤n ∼iid c, ξ = (ξij)i≤m,j≤n ∼iid Unif([0, 1]), and x : [0, 1]× L× L → X be
such that x(ξij , σi, τj)|σi,τj ∼ Q( · |σi, τj). We define F (x) = − log P(x), and will apply Lemma D.1 to this function.
Using the notation from that lemma, we claim that B∗ ≤ M∗, B1 ≤ M1n, B2 ≤ M2m, and V∗ ≤ mns∗, V1 ≤ mn2s1,
V2 ≤ m2ns2.

Note that, if (xij), (x′ij) differ only for entry i, j, then

F (x)− F (x′) = − log Eu,v|x

{Q(x′ij |ui, vj)
Q(xij |ui, vj)

}
, (D.27)

where Eu,v|x denotes expectation with respect to the posterior measure P(u,v|X = x). This immediately implies
B∗ ≤M∗.
Next consider the constant B1 defined in Eq. (D.6). Using the exchangeability of the (ξi,·, σi), we get

B1 = max
τ

∣∣Eξ log Eu,v|x

{ n∏
j=1

Q(x(ξ1,j , σ
′
1, τj)|u1, vj)

Q(x(ξ1,j , σ1, τj)|u1, vj)

}∣∣
≤ max

τ
Eξ max

u,v

∣∣∣ log
{ n∏
j=1

Q(x(ξ1,j , σ
′
1, τj)|u1, vj)

Q(x(ξ1,j , σ1, τj)|u1, vj)

}∣∣∣
≤ max

τ

n∑
j=1

Eξ max
u,v

∣∣∣ log
{Q(x(ξ1,j , σ

′
1, τj)|u1, vj)

Q(x(ξ1,j , σ1, τj)|u1, vj)

}∣∣∣
≤ n max

τ,σ,σ′
Eξ max

u,v

∣∣∣ log
Q(x(ξ, σ′1, τj)|u, v)

Q(x(ξ, σ1, τj)|u, v)

∣∣∣
≤ n max

τ,σ,σ′
‖Q( · |σ, τ)−Q( · |σ′, τ)‖TV max

u,v,x,x′

∣∣∣ log
Q(x|u, v)

Q(x′|u, v)

∣∣∣ = M1 .

The bound B2 ≤M2m is proved analogously.
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Consider now the quantity V∗ of Eq. (D.8). Denote by ξ(ij)(t) the array obtained by replacing entry (i, j) in ξ by t, and by
x(t) = x(ξ(ij)(t),σ, τ ). Then we have

Varξij (F (x)) =
1

2
Eξ′,ξ′′

{(
F (x(ξ(ij)(ξ

′),σ, τ ))− F (x(ξ(ij)(ξ
′′),σ, τ ))

)2}
=

1

2
Eξ′,ξ′′

{(
log Eu,v|x(ξ′)

{Q(x(ξ′′, σi, τj)|ui, vj)
Q(x(ξ′, σi, τj)|ui, vj)

})2}
≤ 1

2
Eξ′,ξ′′ max

u,v

(
log
{Q(x(ξ′′, σi, τj)|u, v)

Q(x(ξ′, σi, τj)|u, v)

})2

=
1

2

∑
x,x′

Q(x|σ, τ)Q(x′|σ, τ) max
u,v

(
log
{ Q(x|u, v)

Q(x′|u, v)

})2

.

We then have, as claimed

V∗ ≤ max
ξ,σ,τ

∑
i≤m,j≤n

Varξij
{
F (x)

}
≤ mnmax

ξ,σ,τ
Varξij

{
F (x)

}
≤ mns∗ .

Finally consider the quantity V1 of Eq. (D.9) (the argument is similar for V2). Denote by σ(i)(t) the vector obtained by
replacing entry i in σ by t. Proceeding as above, we have

Varσi(EξF (x)) =
1

2
Eσ′,σ′′

{(
EξF (x(ξ,σ(i)(σ

′), τ ))− EξF (x(ξ,σ(i), τ ))
)2}

=
1

2
Eσ′,σ′′

{(
Eξ log Eu,v|x(σ′)

{ n∏
j=1

Q(x(ξij , σ
′′, τj)|ui, vj)

Q(x(ξij , σ′, τj)|ui, vj)

})2}
≤ 1

2
Eσ′,σ′′

{(
Eξ log

{ n∏
j=1

max
u,v

Q(x(ξij , σ
′′, τj)|u, v)

Q(x(ξij , σ′, τj)|u, v)

})2}
≤ 1

2
Eσ′,σ′′

{( n∑
j=1

Eξ log
{

max
u,v

Q(x(ξ, σ′′, τj)|u, v)

Q(x(ξ, σ′, τj)|u, v)

})2}
≤ n2

2
max
τ

Eσ′,σ′′
{(

Eξ log
{

max
u,v

Q(x(ξ, σ′′, τ)|u, v)

Q(x(ξ, σ′, τ)|u, v)

})2}
≤ n2

2
max
τ,σ,σ′

‖Q( · |σ, τ)−Q( · |σ′, τ)‖TV max
x,x′

(
Eξ log

{
max
u,v

Q(x′|u, v)

Q(x|u, v)

})2

= n2s1 .

Therefore

V1 = max
σ,τ

m∑
i=1

Varσi(EξF (x)) ≤ mn2s1 .

This finishes the proof.

E. Proofs for finite state encoders
Recall from Section 5.2 that a finite-state encoder is defined by a triple (Σ, f, g). Formally we can define the action of f , g
onXn ∈ Xn recursively via (recall that ⊕ denotes concatenation)

fm+1(Xm+1, s0) = fm(Xm, s0)⊕ f(Xm+1, g(Xm, s0)) , (E.1)

gm+1(Xm+1, s0) = g(Xm+1, g(Xm, s0)) , (E.2)

and the encoder is thus given by E(Xn) = fn(Xn, sinit).
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We say that the state space Σ is non-degenerate if, for each s1 ∈ Σ there exists m,Xm ∈ Xm such that gm(Xm, sinit) = s1.
Notice that if state space is degenerate, we could always remove one or more symbols from Σ without changing the encoder,
and making the state-space non-degenerate. For this reason, we will hereafter assume non-degeneracy without mentioning it.

We say that the FS encoder is information lossless (IL) if for any n ∈ N,Xn 7→ fn(Xn, sinit) is injective.

Remark E.1. An information-lossless encoder satisfies a stronger condition: for any m ∈ N and any s∗ ∈ Σ, the map
Xm 7→ fm(Xm, s∗) is injective.

Indeed, assume this were not the case. Then there would exist two distinct inputsXm, X̃
m

1 ∈ Xm and a state s∗ ∈ Σ such
that fm(Xm, s∗) = fm(X̃

m
, s∗). By non-degeneracy, there exists a`1 ∈ X ` such that s∗ = g`(a

`
1, sinit), Defining n = `+m,

Y n = a`1 ⊕X
m, Ỹ

n
= a`1 ⊕ X̃

m
, it is not hard to check that these inputs are distinct but fn(Y n, sinit) = fn(Ỹ

n

1 , sinit).

Proposition E.1. Define the compression rate on input xn1 as R(Xn) = len(fn(Xn, sinit))/(n log2 |X |). Then for any
` ≥ 1, the following holds (where n′ := n− 2` and we recall that M := |Σ|):

R(Xn) ≥ n− 2`

n` log2 |X |
H(p̂`

Xn′
1

)− 1

` log2 |X |
(

log2(|Σ|`) + log2 log2 |X |
)
. (E.3)

Proof. We will denote by L(Xm; s∗) the length of the encoding ofXm when starting in state s∗:

L(Xm; s∗) := len(fn(Xm, s∗)) . (E.4)

We then have, for any b ∈ {0, . . . , `− 1}, and setting by convention s0 = sinit, we get

R(Xn) ≥ 1

n log2 |X |

bn/`c−2∑
k=0

L(X
(k+1)`+b
k`+b+1 ; sk`+b) . (E.5)

By averaging over b, and introducing the shorthand n′ := n− 2`, we get

R(Xn) ≥ 1

n` log2 |X |

(bn/`c−1)`∑
m=1

L(Xm+`−1
m ; sm−1) (E.6)

≥ n− 2`

n` log2 |X |
∑
s∈Σ

∑
u`1∈X `

p̂`
Xn′

1

(u`1, s)L(u`1; s) (E.7)

(a)

≥ n− 2`

n` log2 |X |
∑
s∈Σ

{
p̂`
Xn′

1

(s)H(p̂`
Xn′

1

( · |s))− log2 log2(|X |`)
}
, (E.8)

where (a) holds by Lemma C.1. By the chain rule of entropy (recalling that M := |Σ|), we have:∑
s∈Σ

p̂`
Xn′

1

(s)H(p̂`
Xn′

1

( · |s)) = H(X`
1|S) = H(X`

1) +H(S|X`
1)−H(S)

≥ H(X`
1)− log2M = H(p̂`

Xn′
1

)− log2M .

The claim (E.3) follows by using the last inequality in Eq. (E.8).

Theorem E.2. LetXm,n ∼ T (Q, qr, qc;m,n) and (Σ, f, g) be an information lossless finite state encoder. With an abuse
of notation, denote fmn(Xm×n, sinit) ∈ {0, 1}∗ the binary sequence obtained by applying the finite state encoder to the
vector vec(Xm×n) ∈ Xmn obtained by scanningXm×n in row-first order. Define the compression rate by

R(Xm,n) :=
len(fmn(Xm×n, sinit))

mn log2 |X |
. (E.9)

Assuming m > 10, |Σ| ≥ |X |, and log2 |Σ| ≤ n log2 |X |/9, the expected compression rate is lower bounded as follows

ER(Xm,n) ≥ H(X|U)

log2 |X |
− 10

√
log |Σ|
n log |X |

· log(n log |Σ|) . (E.10)
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Proof. We let N := mn, N ′ = mn− 2` where we ` ≤ n/3 will be selected later. We write XN := vec(Xm,n) for the
vectorizationXm,n,XN ′ for the vector comprising its first N ′ entries. Recall the definition of empirical distribution. For
any fixed w ∈ X `

p̂`
XN′ (w) :=

1

N ′ − `+ 1

N ′−`+1∑
i=1

1Xi+`−1
i =w .

Let S := {i ∈ [N ′ − ` + 1] : [i, i + ` − 2] ∩ nN = ∅}. In words, these are the subset of blocks of length ` that
do not cross the end of a line in the table. Since for each line break there are at most ` − 1 such blocks, we have
|S| ≥ N ′ − `+ 1− (m− 1)(`− 1). We will consider the following modified empirical distribution

p`
XN′ (w) :=

1

|S|
∑
i∈S

1Xi+`−1
i =w .

Then by construction

p̂`
XN′ (w) = (1− η`)p`XN′ (w) + η`q

`
XN′ (w) ,

η` := 1− |S|
N ′ − `+ 1

=
(m− 1)(`− 1)

N ′ − `+ 1
,

where q`
XN′ is the empirical distribution of blocks that do cross the line. By concavity of the entropy, we have

H(p̂`
XN′ ) ≥ (1− η`)H(p`

XN′ ) + η`H(q`
XN′ ) ≥ (1− η`)H(p`

XN′ ) . (E.11)

Further, since ` ≤ n/3,

η` =
(m− 1)(`− 1)

mn− 3`+ 1

≤ (m− 1)`

mn− 3`
≤ (m− 1)`

(m− 1)n
≤ `

n
. (E.12)

Now let the row latents u := (ui)i≤m be fixed, and denote by r̂Su their weighted empirical distribution, defined as follows:

r̂Su(s) :=

m∑
i=1

|S ∩ [(i− 1)n+ 1, in]|
|S|

1ui=s .

In words, r̂Su is the empirical distribution of the latents (ui)i≤m where row i is weighted by its contribution to S. Note that
all the weights are equal to (n− 2(`− 1))/|S| except, potentially, for the last one.

We have

p`∗(w) := E[p`
XN′ (w)] =

∑
u∈L

r̂Su(u)
∏̀
i=1

Qx|u(wi|u) , Qx|u(w|u) :=
∑
v∈L

Q(w|u, v) qc(v) .

Using Eq. (E.11), (E.12) and concavity of the entropy, we get

E
[
H(p̂`

XN′ )|u
]
≥
(

1− `

n

)
H(p`∗) . (E.13)

By Proposition E.1, we get

E
[
R(Xm,n)|u

]
≥ mn− 2`

mn` log2 |X |

(
1− `

n

)
H(p`∗)−

1

` log2 |X |
(

log2(|Σ|`) + log2 log2 |X |
)

≥ 1

` log2 |X |
H(p`∗)−

2`

n
− 1

` log2 |X |
(

log2(|Σ|`) + log2 log2 |X |
)
,
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Algorithm 3 Lempel-Ziv

Input: DataXN ∈ XN = {0, · · · , |X | − 1}N
Output: Binary string Z ∈ {0, 1}∗
for k = 1 to N do

if ∃j < k : Xj = Xk then
Lk ← max{` ≥ 1 : ∃j ∈ {1, . . . , k − 1} s.t. Xj+`−1

j = Xk+`−1
k }

Tk ← max{j ∈ {1, . . . , k − 1} s.t. Xj+Lk−1
j = Xk+Lk−1

k }
else
Lk ← 1
Tk ← (−Xk)

end if
Z ← Z⊕plain(Tk)⊕elias(Lk)
k ← k + Lk
if len(Z) ≤ len(plain(XN )) then

return Z
else

return plain(XN )
end if

end for

where in the last inequality we used the fact that H(p`∗) ≤ ` log2 |X |. We choose

` =

√
n log2 |Σ|
log2 |X |

≤ n

3
, (E.14)

Substituting and simplifying, we get

E
[
R(Xm,n)|u

]
≥ H(p`∗)

` log2 |X |
− 10√

n
·

√
log |Σ|
log |X |

· log(n log |Σ|) . (E.15)

Finally, letting (W1, . . . ,W`, U) ∈ X ` × L be random variables with joint distribution r̂Su(u)
∏`
i=1Qx|u(wi|u). Then

H(p`∗) ≥
∑
u∈L

r̂Su(u)H
(
Q⊗`x|u( · |u)

)
(E.16)

≥ `
∑
u∈L

r̂Su(u)H(X|U = u) , (E.17)

and therefore EH(p`∗) ≥ H(X|U), finishing the proof.

F. Proofs for Lempel-Ziv coding
The pseudocode of the Lempel-Ziv algorithm that we will analyze is given here. For ease of presentation, we identify X
with a set of integers.

Note that if a simbol Xk never appeared in the past, we point to Tk = −Xk and set Lk = 1. This is essentially equivalent to
prepending a sequence of distinct |X | symbols toXN .

It is useful to define for each k ≤ N ,

Lk(XN ) := max
{
` ≥ 1 : ∃j ∈ {1, . . . , k − 1} s.t. Xj+`−1

j = Xk+`−1
k

}
, (F.1)

Tk(XN ) := min
{
j ∈ {1, . . . , k − 1} s.t. Xj+Lk−1

j = Xk+Lk−1
k

}
. (F.2)
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F.1. Proof of Theorem 5.6

Lemma F.1. Under Assumption 5.5, there exists a constant C such that the following holds with probability at least
1−N−10:

max
k≤N

Lk(XN ) ≤ C logN . (F.3)

Proof. We begin by considering a slightly different setting, and will then show that our question reduces to this setting. Let
(Zi)i≥1 be independent random variables with Zi ∼ qi a probability distribution over X . Further assume maxx∈X qi(x) ≤
1− c for all i ≥ 1. Then we claim that, for any t, ` ≥ 1, we have

P
(
Z`1 = Zt+`t+1

)
≤ (1− c)` . (F.4)

Indeed, condition on the event Zt1 = xt1 for some x1, . . . , xt ∈ X . Then the event Z`1 = Zt+`t+1 implies that, for i ∈
{t+ 1, . . . , t+ `}, Zi = xπ(i) where π(i) = i mod t, π(i) ∈ [1, t]. Then

P
(
Z`1 = Zt+`t+1

)
≤ max
xt1∈X t

P
(
Z`1 = Zt+`t+1|Zt1 = xt1

)
≤ max
xt1∈X t

P
(
Zi = xπ(i)∀i ∈ {t+ 1, . . . , t+ `}|Zt1 = xt1

)
≤ max
xt1∈X t

t+∏̀
i=t+1

P
(
Zi = xπ(i)

)
≤ (1− c)` .

This proves claim (F.4).

Let us now reconsider our original setting:

P
(

max
k≤N

Lk(XN ) ≥ `
)

= P
(
∃i < j ≤ N : Xi+`−1

i = Xj+`−1
j

)
≤ N2 max

i<j≤N
P
(
Xi+`−1
i = Xj+`−1

j

)
≤ N2 max

um∈Lm,vn∈Ln
max
i<j≤N

P
(
Xi+`−1
i = Xj+`−1

j

∣∣um,vn)
≤ N2(1− c)` ,

where the last inequality follows from claim (F.4), since the (Xi)i≤N are conditionally independent given the latents um,vn,
with probability mass function upper bounded by 1− c. The thesis follows by taking ` = 12 logN/ log(1/(1− c)).

For i ∈ [m], j ∈ [n], we define 〈ij〉 := (i− 1)n+ j. In words, k = 〈ij〉 is the of entry at row i column j when the table
Xm,n is scanned in row first order. For ` ≥ 1, define the events

Ei,j(`) :=
{
∃i′ ∈ [m], j′ ∈ [n] : 〈i′j′〉 < 〈ij〉, |j′ − j| ≥ `, X〈i

′j′〉+`−1
〈i′j′〉 = X

〈ij〉+`−1
〈ij〉 } , (F.5)

Fi,j(`) :=
{
∃i′ ∈ [m], j′ ∈ [n] : 〈i′j′〉 < 〈ij〉, |j′ − j| < `, X

〈i′j′〉+`−1
〈i′j′〉 = X

〈ij〉+`−1
〈ij〉 } . (F.6)

Then we have

P
(
L〈ij〉(X

N ) ≥ `
)
≤ P

(
Ei,j(`)

)
+ P

(
Fi,j(`)

)
. (F.7)

The next two lemmas control the probabilities of these events.

Lemma F.2. Let `(δ, u) := d(1 + δ)(logN)/H(X|U = u)e, n′ = n − maxu∈L `(δ, u), and m0 = m1−on(1). Under
Assumption 5.5, for any δ > 0, there exist constants C, ε > 0 independent of u ∈ Lm, such that the following hold

max
i≤m,j≤n′

P
(
Ei,j(`(δ, ui))

)
≤ C N−ε , (F.8)

min
m0≤i≤m,j≤n′

P
(
Ei,j(`(−δ, ui))

)
≥ 1− C N−ε . (F.9)
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Lemma F.3. Let `c(δ, u) := d(1 + δ)(logm)/H(X|U = u, V )e, n′c = n−maxu∈L `c(δ, u), and m0 = m1−on(1). Under
Assumption 5.5, for any δ > 0, there exist constants C, ε > 0 independent of u ∈ Lm, such that the following hold

max
i≤m,j≤n′c

P
(
Fi,j(`c(δ, ui))

)
≤ Cm−ε , (F.10)

min
m0≤i≤m,j≤n′c

P
(
Fi,j(`c(−δ, ui))

)
≥ 1− Cm−ε . (F.11)

We are now in position to prove Theorem 5.6.

Proof of Theorem 5.6. We denote by (k(1), . . . , k(M)) the values taken by k in the while loop of the Lempel-Ziv pseu-
docode. In particular

k(1) = 1 , (F.12)

k(`+ 1) = k(`) + Lk(`)(X
N ) , (F.13)

k(M) = N . (F.14)

Therefore the total length of the code is

len(LZ(Xm,n)) = Mdlog2(N + |X |)e+

M∑
`=1

len(elias(Lk(`))) (F.15)

By Lemma F.1 (and recalling that len(elias(L)) ≤ 2 log2 L+1) we have, with high probability, max`≤m len(elias(Lk(`))) ≤
2 log2(C logN). Letting G denote the ‘good’ event that this bound holds, we have, on G

M log2N ≤ len(LZ(Xm,n)) ≤Mdlog2(N + |X |)e+ 2M log2(C logN) (F.16)

Since |X | is a constant, this means that for any η > 0, there exists N0(η) such that, for all N ≥ N0(η), with probability at
least 1− η:

M · 1G log2N ≤ len(LZ(Xm,n)) ≤ (1 + η)M · 1G log2N +N · 1Gc log2 |X | , (F.17)

where on the right len(LZXm,n)) ≤ N log2 |X | by construction. We thus have

E
{
M · 1G

} log2N

N log2 |X |
≤ ERLZ(Xm,n) ≤ (1 + η)E

{
M · 1G

} log2N

N log2 |X |
+ η , (F.18)

that is

lim inf
m,n→∞

ERLZ(Xm,n) ≥ lim inf
m,n→∞

E
{
M · 1G

}
· log2N

N log2 |X |
, (F.19)

lim sup
m,n→∞

ERLZ(Xm,n) ≤ lim sup
m,n→∞

E
{
M · 1G

}
· log2N

N log2 |X |
. (F.20)

We are therefore left with the task of bounding E
{
M · 1G

}
We begin by the lower bound. Define the set of ‘bad indices’ B(Xm,n, δ) ⊆ [m]× [n],

B(Xm,n, δ) :=
{

(i, j) ∈ [m]× [n] : Ei,j(`(δ, ui)) or Fi,j(`c(δ, ui))
}

(F.21)

We will drop the argumentsXm,n, δ for economy of notation, and write B := B(Xm,n, δ). We further define

S(u) = S(u;Xm,n) := {(i, j) ∈ [m]× [n] : ui = u and ∃` ≤M : 〈ij〉 = k(`)} . (F.22)

In words, S(u) is the set of positions (i, j) of the tableXm,n where words in the LZ parsing begin.
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We also write N(u) = n · |{i ∈ [m] : ui = u}| for the total number of rows inXm,n with row latent equal to ui and L−i
for the length of the first segment in row i initiated in row i− 1:

N(u) ≤
∑

(i,j)∈S(u)

L〈ij〉 +
∑

i≤m:ui=u

L−i

≤
∑

(i,j)∈S(u)∩Bc
L〈ij〉 +

∑
(i,j)∈B

L〈ij〉 +
∑

i≤m:ui=u

L−i

≤
∑

(i,j)∈S(u)

`(u; δ) ∨ `c(u; δ) + (|B|+m) · C logN

≤ |S(u)|`(u; δ) ∨ `c(u; δ) + (|B|+m) · C logN ,

where the last inequality holds on event G. By taking expectation on this event, we get

E{N(u) · 1G} ≤ E{|S(u)| · 1G}} · `(u; δ) ∨ `c(u; δ) + (E|B|+m) · C logN .

By Lemmas F.2 and F.2,

E(|B|) ≤ m0n+
∑

m0≤i≤m,j≤n′
P
(
Ei,j(`(δ, ui)) ∪ Fi,j(`c(δ, ui))

)
+ Cm logN

≤ m0n+ Cm1−εn+ Cm logN

≤ CN

(logN)2
.

E(|B|) ≤ Cm1−εn+ Cm log n. Further E{N(u)} = Nqr(u) and E{N(u) · 1G} ≥ E{N(u)} −N P(Gc), whence

lim inf
m,n→∞

1

N
E{|S(u)| · 1G}} · `(u; δ) ∨ `c(u; δ) ≥ qr(u) . (F.23)

Recalling the definition of `(u; δ), `c(u; δ) and the fact that δ is arbitrary,n the last inequality yields

lim inf
m,n→∞

E{|S(u)| · 1G}
log2N

N
≥ qr(u)

[
H(X|U = u) ∧

(1 + α

α

)
H(X|U = u, V )

]
. (F.24)

Summing over u, noting that
∑
u∈L |S(u)| = M , and substituting in Eq. (F.19) yields the lower bound on the rate in

Eq. (5.7).

Finally, the upper bound is proved by a similar strategy as for the lower bound. Define the set of ‘bad indices’ B− =
B−(Xm,n, δ) ⊆ [m]× [n],

B−(Xm,n, δ) :=
{

(i, j) ∈ [m]× [n] : Eci,j(`(−δ, ui)) or Fci,j(`c(−δ, ui))
}

(F.25)

We also denote by L+
i the length of the last segment in row i. We then have

N(u) ≥
∑

(i,j)∈S(u)

L〈ij〉 −
∑

i≤m:ui=u

L+
i

≥
∑

(i,j)∈S(u)∩Bc−

L〈ij〉 −
∑

i≤m:ui=u

L+
i

≥
∑

(i,j)∈S(u)∩Bc−

`(u;−δ) ∨ `c(u;−δ)−
∑

i≤m:ui=u

L+
i

≥ |S(u)|`(u; δ) ∨ `c(u; δ)− (|B−|+m) · C logN ,

where the last inequality holds on event G. By taking expectation on this event, we get

E{N(u) · 1G} ≥ E{|S(u)| · 1G}} · `(−δ, u) ∨ `c(−δ, u)− (E|B−|+m) · C logN .
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By Lemmas F.2 and F.2,

E(|B−|) ≤ m0n+
∑

m0≤i≤m,j≤n′
P
(
Eci,j(`(−δ, ui)) ∪ Fci,j(`c(−δ, ui))

)
+ Cm logN

≤ m0n+ Cm1−εn+ Cm logN

≤ CN

(logN)2
.

The proof is completed exactly as for the lower bound.

F.2. Proof of Lemma F.2

We will use the following standard lemmas.
Lemma F.4. Let X be a centered random variable with P(X ≤ x0) = 1, x0 > 0. Then, letting c(x0) = (ex0 − 1−x0)/x2

0,
we have

E(eX) ≤ 1 + c(x0)E(X2) . (F.26)

Proof. This simply follows from exp(x) ≤ 1 + x+ c(x0)x2 for x ≤ x0.

Lemma F.5. Let (pi)i≥1, (qi)i≥1, be probability distributions on X , with supi≥1 maxx∈X pi(x) ≤ 1 − c, and
supi≥1

∑
x∈X pi(x)(log pi(x))2 ≤ C for constants c, C.

Let (Xi)i≤` be independent random variables with Xi ∼ pi, and set X = (X1, . . . , X`). Let Y (j) ∈ X `, j ≥ 1 be a
sequence of i.i.d. random vectors, with (Yi(j))i≤` independent and Yi(j) ∼ qi. Finally, let T := min{t ≥ 1 : Y (t) = X}.

Then, for any ε > 0, there exists δ = δ(ε, c, C) > 0 such that (letting H(p) := `−1
∑`
i=1H(pi))

P(T ≤ e`[H(p)−ε]) ≤ e−δ` . (F.27)

Further, the same bound holds (with a different δ(ε, c, C)) (Y (j))j≥1 are independent not identically distributed, if there
exist a finite set (qai )i≥1,a∈[K], K ≤ `C0 , and a map b : N→ [K] such that Y (j) ∼ qb(j)1 ⊗ · · · ⊗ qb(j)` .

Proof. We denote by Y a vector distributed as Y (i). Conditional onX = x, T is a geometric random variables with mean
1/(1− P(Y = x)). Hence, for t`(ε) := e`[H(p)−ε],

P(T ≤ t`(ε)|X = x) = 1− (1− P(Y = x))t`(ε)

≤ t`(ε)P(Y = x) .

Hence

P
(
T ≤ t`(ε)

)
≤ e−`ε/2 + P

(
P(Y = X|X) ≥ t`(ε/2)−1

)
(F.28)

= e−`ε/2 + P`(ε/2) , (F.29)

P`(u) := P
(∑̀
i=1

log
1

qi(Xi)
<
∑̀
i=1

H(pi)− ` u
)
. (F.30)

By Chernoff bound, for any λ ≥ 0, P`(u) ≤ exp{−`φ(λ, u)}, where

φ(λ, u) := λu− 1

`

∑̀
i=1

[
λH(pi) + logE

[
qi(Xi)

λ
]
. (F.31)

By Hölder inequality, for λ ∈ [0, 1] we have E
[
qi(Xi)

λ
]
≤ (
∑
x p(x)β)1/β where β = 1/(1− λ). Therefore

ψ(λ; p) := λH(p) + (1− λ) log
(∑
x∈X

p(x)1/(1−λ)
)

= (1− λ) logEX∼p exp
( λ

1− λ
(

log p(X) +H(p)
))
.
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Consider the random variable Zi := λ
1−λ

(
log pi(Xi) +H(p)

)
where Xi ∼ pi. Under the assumptions of the lemma, for

λ ∈ [0, 1/2] we have E(Zi) = 0 and

Zi ≤ log(1− c) +H(p) ≤ log
[
|X |(1− c)

]
, (F.32)

E[Z2
i ] ≤

(
λ

1− λ

)2 ∑
x∈X

pi(x)(log pi(x))2 ≤ 4Cλ2 , (F.33)

Using Lemma F.4, we get

ψ(λ; pi) = (1− λ) logEeZi (F.34)

≤ (1− λ) log
(
1 + c0E(Z2

i )
)

(F.35)

≤ log(1 + c∗λ
2) , (F.36)

whence

φ(λ, u) ≥ λu− log(1 + c∗λ
2) .

By maximizing this expression over λ, we find that P`(ε/2) ≤ exp(−δ0(ε)`) which completes the proof for the case of i.i.d.
vectors Y (j).

The case of non-identically distributed vectors follows by union bound over a ∈ [K].

Lemma F.6. Let (pi)i≥1, be probability distributions on X , with supi≥1 maxx∈X pi(x) ≤ 1 − c, and
supi≥1

∑
x∈X pi(x)(log pi(x))2 ≤ C for constants c, C.

Let (Xi)i≤` be independent random variables with Xi ∼ pi,X = (X1, . . . , X`). Let Y (j) ∈ X `, j ≥ 1 be a sequence of
i.i.d. copies ofX . Finally, let T := min{t ≥ 1 : Y (t) = X}.

Then, for any ε > 0, there exists δ = δ(ε, c, C) > 0, such that (letting H(p) := `−1
∑`
i=1H(pi))

P(T ≥ e`[H(p)+ε]) ≤ e−δ` . (F.37)

Proof. The proof follows the same argument as for Lemma F.5. Denote by Y a vector distributed as Y (i). and define
t`(ε) := e`[H(p)+ε],

P(T ≥ t`(ε)|X = x) = (1− P(Y = x))t`(ε)

≤ exp
(
− t`(ε)P(Y = x)

)
.

Hence

P
(
T ≥ t`(ε)

)
≤ exp

{
− e`ε/2

}
+ P

(
P(Y = X|X) ≤ t`(ε/2)−1

)
(F.38)

≤ e−`ε/2 + P̃`(ε/2) , (F.39)

P̃`(u) := P
(∑̀
i=1

log
1

pi(Xi)
≥
∑̀
i=1

H(pi) + ` u
)
. (F.40)

We claim that, for each u > 0, P̃`(u) ≤ e−δ0(u)` for some δ0(u) > 0. Indeed, using again Chernoff’s bound, we get, for
any λ ≥ 0, P̃`(u) ≤ e−`φ̃(λ,u), where

φ̃(λ, u) := λu− 1

`

∑̀
i=1

ψ̃(λ; pi) , (F.41)

ψ̃(λ; pi) := logE exp(λWi) , Wi := log
1

pi(Xi)
−H(pi) . (F.42)

where in the last line Xi ∼ pi. Under the assumptions of the lemma, Wi ≤ C almost surely and applying again Lemma
F.4, we get ψ̃(λ; pi) ≤ log(1 + c∗λ

2) for λ ≤ 1. The proof is completed by selecting for each u > 0, λ > 0 so that
λu− log(1 + c∗λ

2) > 0.
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We are now in position to prove Lemma F.2.

Proof of Lemma F.2. We begin by proving the bound (F.8).

Fix i ≤ m, j ≤ n′, u ∈ Lm, δ > 0, and write ` = `(δ, ui). Define Rij := {(i, j′) : max(1, j − `) ≤ j′ ≤ j − 1} and
Sij := {(i′, j′) : i′ < i or i′ = i, j′ < j − `}. Finally, for t ∈ {0, . . . , ` − 1}, let Sij(t) := Sij ∩ {(i′, j′) : 〈i′j′〉 = t
mod `}.
By union bound

P
(
Ei,j(`)

∣∣u) ≤ A+

`−1∑
t=0

B(t) ,

A :=
∑

(rs)∈Rij

P
(
X
〈rs〉+`−1
〈rs〉 = X

〈ij〉+`−1
〈ij〉

∣∣u) ,
B(t) := P

(
∃(r, s) ∈ Sij(t) : X

〈rs〉+`−1
〈rs〉 = X

〈ij〉+`−1
〈ij〉

∣∣∣u) .
Now, by the bound of Eq. (F.4),

A ≤ ` · (1− c)` ≤ C N−ε , (F.43)

for suitable constants C, ε.

Next, for any t ∈ {0, . . . , ` − 1}, the vectors {X〈rs〉+`−1
〈rs〉 } are mutually independent and independent of {X〈ij〉+`−1

〈ij〉 }.
Conditional on u, the coordinates of X〈rs〉+`−1

〈rs〉 = (X〈rs〉, · · · , X〈rs〉+`−1) are independent with marginal distributions

X〈r′s′〉 ∼ Qx|u( · |ur′) (note that independence of the coordinates holds because ` < m/2 and thereforeX〈rs〉+`−1
〈rs〉 does

not include two entries in the same column). Note that the collection of marginal distributions Qx|u( · |u), u ∈ L satisfies
the conditions of Lemma F.5 by assumption. Further, the vector X〈rs〉+`−1

〈rs〉 can have at most one of K = |L|2(` + 1)
distributions (depending on the latents value and the occurrence of a line break in the block.)

Applying Lemma F.5, we obtain:

B(t) ≤ e−ε0` ≤ C N−ε (F.44)

Summing over t ∈ {0, . . . , `− 1} and adjusting the constants yields the claim (F.8).

Next consider the bound (F.9). Fix u ∈ Lm, i ≤ m,j ≤ n′, and write ` = `(−δ, ui) for brevity below

P
(
Eci,j(`)|u

)
≤ P

(
∀(i′, j′) ∈ Sij(t) s.t. ui′ = ui, j

′ < n′ : X
〈i′j′〉+`−1
〈i′j′〉 6= X

〈ij〉+`−1
〈ij〉

∣∣∣u) . (F.45)

Here t ∈ {0, . . . , `− 1} can be chosen arbitrarily. Let Sij(t;u) := {(i′, j′) ∈ Sij(t) s.t. ui′ = ui, j
′ < n′}. Conditional

on u, the vectors (X
〈i′j′〉+`−1
〈i′j′〉 )(i′,j′)∈Sij(t;u) are i.i.d. and independent of X〈ij〉+`−1

〈ij〉 . Further, they are distributed as

X
〈ij〉+`−1
〈ij〉 . Finally,

Nij(u) :=
∣∣Sij(t;u)

∣∣ ≥ n
(
mi(u)− C logN

)
`

≥ mi(u)n

C logN
− C ′n .

where mi(u) is the number rows i′ < i such that ui′ = u. Since i ≥ i and P(ui′ = u) ≥ minu′ qr(u′) > 0, by Chernoff
bound there exist constants C, c0 such that, for all m,n large enough (since i ≥ m0)

P
(
Nij(u) ≥ c0m0n

logN

)
≥ 1− Ce−m0/C . (F.46)

Further, for any δ > 0 we can choose positive constants ε0, ε1 > 0 such that the following holds for all m,n, large enough

c0m0n

logN
≥ N1−ε1 ≥ e`[H(X|U=ui)+ε0] (F.47)
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Let Tij be the rank of the first (i′, j′) (moving backward)in the set defined above such thatX〈i
′j′〉+`−1
〈i′j′〉 = X

〈ij〉+`−1
〈ij〉 , and

Tij =∞ if no such vector exists. We can continue from Eq. (F.45) to get

P
(
Eci,j(`)

)
≤ P(Tij ≥ Nij(u))

≤ P
(
Tij ≥ Nij(u); Nij(u) ≥ e`[H(X|U=ui)+ε0]

)
+ Ce−m0/C

(a)

≤ exp
{
− δ0 min

u∈L

(
`(−δ;u)

)}
+ Ce−m0/C ≤ CN−ε ,

where in (a) we used Lemma F.6. This completes the proof of Eq. (F.9).

F.3. Proof of Lemma F.3

We begin by considering the bound (F.10).

Fix i ≤ m, j ≤ n′c, u ∈ Lm, v ∈ Ln, δ > 0, and write ` = `c(δ, ui), n′ = n′c. By union bound:

P
(
Fi,j(`)

∣∣u,v) = P
(
∪s∈[n],|j−s|<` B(s)

∣∣∣u,v) ,
B(s) :=

{
∃r < i : X

〈rs〉+`−1
〈rs〉 = X

〈ij〉+`−1
〈ij〉

}
.

Note that for a fixed s, and conditional on u, v, the vectors (X
〈rs〉+`−1
〈rs〉 )1≤s≤i−1 are mutually independent and independent

of X<ij>+`−1
<ij> . Further, X〈rs〉+`−1

〈rs〉 has independent coordinates with marginals X〈r′s′〉 ∼ Qx|u( · |ur′ , vs′) (recall that
we are conditioning both on u and v). In particular, the marginal distributions satisfy the assumption of Lemma F.5
and the law of X〈rs〉+`−1

〈rs〉 can take one of K = |L|2(` + 1) possible values. Letting i − T (s) the last row at which

X
〈rs〉+`−1
〈rs〉 = X

〈ij〉+`−1
〈ij〉 (with T (s) ≥ i if no such row exists), we have, for some constants C, c0 > 0,

P
(
Fi,j(`)

∣∣u,v) ≤ P
(
∪s∈[n],|j−s|<` {T (s) ≤ i− 1} ∩ {i− 1 ≤ e`[H−ε]}

∣∣∣u,v)+ 1(i− 1 > e`[H−ε])

(a)

≤ 2` e−`ε + 1(m > e`[H−ε])

≤ Cm−c0ε + 1(m > e`[H−ε]) ,

where in (a) we used Lemma F.5, and we defined H := `−1
∑j+`−1
k=j H(X|U = ui, V = vk).

Taking expectation with respect to v, we get

P
(
Fi,j(`)

∣∣u) ≤ Cm−c0ε + P
(1

`

j+`−1∑
k=j

H(X|U = ui, V = vk) <
1

1 + δ
(H(X|U = ui, V ) + ε)

)
(a)

≤ Cm−c0ε + e−`ε ≤ C ′m−c0ε ,

where in (a) we used Chernoff bound. This completes the proof of Eq. (F.10).

Finally, the proof Eq. (F.11) is similar to the one of Eq. (F.9). We fix u ∈ Lm, i ≤ m, j ≤ n′c, and write ` = `c(−δ, ui).

P
(
Fci,j(`)|u

)
≤ P

(
∀i′ < iui′ = ui : X

〈i′j〉+`−1
〈i′j〉 6= X

〈ij〉+`−1
〈ij〉

∣∣∣u) . (F.48)

Let Scij(u) := {(i′, j) s.t. ui′ = ui, i
′ < i}. Conditional on u,v, the vectors (X

〈i′j′〉+`−1
〈i′j′〉 )(i′,j′)∈Scij(u) are i.i.d. and

independent copies ofX〈ij〉+`−1
〈ij〉 . Finally, N c

i (u) :=
∣∣Scij(u)

∣∣ is the number rows i′ < i such that ui′ = u. By Chernoff
bound there exist constants C, c0 such that, for all m,n large enough (recalling that we need only to consider i ≥ m0)

P
(
N c
i (u) ≥ c0m0

)
≥ 1− Ce−m0/C . (F.49)

Since m0 ≥ m1−on(1), for any δ > 0 we can choose constants ε0, ε1 > 0 so that

c0m0 ≥ m1−ε1 ≥ e`[H(X|U=ui,V )+2ε0] . (F.50)
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Recall the definition H := `−1
∑j+`−1
k=j H(X|U = ui, V = vk). By an an application of Chernoff bound

P
(
N c
i (u) ≥ e`[H(X|U=ui,V )+ε0]

)
≥ 1− Cm−ε − Ce−m0/C . (F.51)

Let Ti be the rank of the first i′ (moving backward)in the set defined above such thatX〈i
′j〉+`−1
〈i′j〉 = X

〈ij〉+`−1
〈ij〉 , and Ti =∞

if no such vector exists. From Eq. (F.48) we get

P
(
Fci,j(`)

)
≤ P(Ti ≥ Ni(u))

≤ P
(
Ti ≥ Ni(u); Ni(u) ≥ e`[H(X|U=ui,V )+ε0]

)
+ Cm−ε

(a)

≤ exp
{
− δ0 min

u∈L

(
`c(−δ;u)

)}
+ Cm−ε ≤ 2Cm−ε ,

where in (a) we used Lemma F.6.

G. Proofs for latent-based encoders
G.1. Proof of Lemma 5.7

G.1.1. GENERAL BOUND (5.8)

From Eq. (1.3), we get

Rlat(X) =
1

mn log2 |X |

{
len(header) + len(ZL(û)) + len(ZL(v̂)) +

∑
u,v∈L

len(ZX (X̂(u, v)))
}
∧ 1 , (G.1)

where X̂(u, v) := vec
(
Xij : ûi(X) = u, v̂j(X) = v

)
are the estimated blocks ofX . Note that this rate depends on the

base compressors ZL, ZX but we will omit these from our notations.

Define the ‘ideal’ expected compression rate (i.e. the rate achieved by a compressor that is given the latents):

R# :=
1

mn log2 |X |

{
E[len(header)] + E[len(Z(u))] + E[len(Z(v))] +

∑
u,v∈L

E[len(Z(X(u, v)))]
}
.

Since Rlat(X) ≤ 1 by construction, we have

ERlat(X) ≤ E
{
Rlat(X) 1 ErrU (X;û)=11 ErrV (X;v̂)=1

}
+ P

(
ErrU (X; û) < 1

)
+ P

(
ErrV (X; v̂) < 1

)
(∗)
≤ R# + P

(
ErrU (X; û) < 1

)
+ P

(
ErrV (X; v̂) < 1

)
,

where in step (∗) we bounded E[len(Z(û))1 ErrU (X;û)=1] = E[len(Z(u))1 ErrU (X;û)=1] ≤ E[len(Z(u))], because, on the
event {ErrU (X; û) = 1}, û coincides with u up to relabelings, and the compressed length is invariant under relabelings.
Similar arguments were applied to len(Z(v)) and len(Z(X(u, v))).

We now have, by the definition of ∆Z(N ; k) in Eq. (5.12),

E[len(Z(u))]

mn log2 |X |
≤ H(U)

n log2 |X |
+ +

1

n
∆Z(m ∧ n; {r, c}) , (G.2)

E[len(Z(v))]

mn log2 |X |
≤ H(V )

m log2 |X |
+ +

1

m
∆Z(m ∧ n; {r, c}) , (G.3)

E[len(Z(X(u, v)))|u,v]

mn log2 |X |
≤ q̂r(u)q̂c(v)

H(X|U = u, V = v)

log2 |X |
+ ∆Z(c ·mn; {Q( · |u, v)}i,v∈L) , (G.4)

where in the last line r̂ is the empirical distribution of the row latents and ĉ is the empirical distribution of the column latents.
By taking expectation in the last expression, we get∑

u,v∈L

E[len(Z(X(u, v)))|u,v]

mn log2 |X |
≤ H(X|U, V )

log2 |X |
+ |L|2∆Z(c ·mn; {Q( · |u, v)}u,v∈L) . (G.5)
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Finally, the header contains |L|2 + 2 integers of maximum size mn, whence len(header) ≤ 4 log2(mn). We conclude that

R# ≤
1

log2 |X |

{
H(X|U, V ) +

1

n
H(U) +

1

n
H(V )

}
+

2 log2(mn)

mn

+ |L|2∆Z(c ·mn; {Q( · |u, v)}u,v∈L) + 2∆Z(m ∧ n; {r, c}) .

The claim (5.8) follows from the first bound in Eq. (5.2) noticing that, under the stated assumptions on m,n,

1

n

[
h(εU ) + εu log(|L| − 1)

]
≤ εU ≤ P

(
ErrU (Xm,n; û) < 1

)
. (G.6)

G.1.2. REDUNDANCY BOUNDS FOR SPECIFIC ENCODERS: EQS. (5.9)–(5.11)

LZ coding. LetXN = (X1, . . . , XN ) be a vector with i.i.d. symbols Xi ∼ q with q a probability distribution over X . The
analysis is similar to the one in Appendix F, and we will adopt the same notations here. There are two important differences:
data are i.i.d. (not matrix-structured) and we want to derive a sharper estimate (not just the entropy term, but bounding the
overhead as well).

We define Lk(XN ), Tk(XN ) as per Eqs. (F.1), (F.2). We let (k(1), . . . , k(MN )) be the values taken by k in the while loop
of the Lempel-Ziv pseudocode of Section 5.2.2. In particular

k(1) = 1 , (G.7)

k(`+ 1) = k(`) + Lk(`)(X
N ) , (G.8)

k(MN ) = N . (G.9)

(We set k(0) = 0 by convention.) Therefore the total length of the code is

len(LZ(XN )) = MNdlog2(N + |X |)e+

MN∑
`=1

len(elias(Lk(`)))

≤MNdlog2(N + |X |)e+ 2

MN∑
`=1

log2(Lk(`))

≤MNdlog2(N + |X |)e+ 2MN log2(N/MN ) ,

where the last step follows by Jensen’s inequality. By one more application of Jensen, we obtain

ERLZ(XN ) ≤ 1

log2 |X |
· EMN

N
·
{
dlog2(N + |X |)e+ 2 log2(N/EMN )

}
. (G.10)

Define the set of break points and bad positions as

SN :=
{
k(1), k(2), . . . , k(MN )

}
, (G.11)

BN (`) :=
{
k ∈ [N/2, N ] : Lk(XN ) < `

}
. (G.12)

Note that SN = S≤N ∪ S
>
N where:

S≤N :=
{
k(j) : j ≤MN , k(j − 1) ≤ bN/2c

}
, S>N :=

{
k(j) : j ≤MN , k(j − 1) > bN/2c

}
. (G.13)

Further |S≤N |
d
= MbN/2c and, for any ` ∈ N,

N

2
≥
∑
k∈S>N

Lk ≥
(
|S>N | − |BN (`)|

)
` . (G.14)
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Therefore,

E |S>N | ≤
N

2`
+ E |BN (`)|

≤ N

2`
+

N∑
k=dN/2e

P
(
Lk(XN ) < `

)
. (G.15)

We claim that this implies, for C0 = 20c∗ log |X | and logN ≥ (2 log(2/H(q)))2,

1

N
E |S>N | ≤

H(q)

2 log2N
+ C0

(log log2N)1/2

(log2N)3/2
=: ψ(log2N) . (G.16)

Before proving this claim, let us show that it implies the thesis. Recall that MN = |SN | and SN = S≤N ∪ S
>
N where

|S≤N |
d
= MbN/2c. Therefore, we have proven

EMN ≤ Nψ(log2N) + EMbN/2c

≤
K−1∑
`=0

N`ψ(log2N`) + EMNK , (G.17)

where we defined recursively N0 = N , N`+1 = bN/2c, and K := min{` : log2N` < (2 log(2/H(q)))2}. Of
course, MNK ≤ NK ≤ exp((2 log 2/H(q))2). Further N ` ≤ N` ≤ N `, where N0 = N0 = N and N `+1 = N `/2,
N `+1 = (N ` − 1)/2 for ` ≥ 0. We thus get N ` = (N + 1)2−` − 1, N ` = N 2−` and therefore

1

N

K−1∑
`=0

N`ψ(log2N`) ≤
1

N

∞∑
`=0

N `ψ(log2N `)

≤ H(q)

2

∞∑
`=0

2−`
1

log2(N2−` − 1)
+ C0

∞∑
`=0

2−`
(log log2N)1/2

(log2(N2−` − 1))3/2

≤ H(q)

log2N
+ 2C0

(log log2N)1/2

(log2N)3/2
.

Substituting in Eq. (G.17), we get

1

N
EMN ≤

H(q)

log2N
+ 2C0

(log log2N)1/2

(log2N)3/2
+

1

N
exp

{(
2 log(2/H(q))

)2}
≤ H(q)

log2N
+ 3C0

(log log2N)1/2

(log2N)3/2
,

where the last inequality follows for N ≥ exp
{(

4 log(2/H(q))
)2}

(noting that C0 > 1). Finally, the desired bound (5.9)
follows by substituting the last estimate in Eq. (G.10).

We are left with the task of proving claim (G.16). Fix any k, dN/2e ≤ k ≤ N and write q` for the product distribution
q × · · · × q (` times). Setting H = Hnats(q) (measuring here entropy in nats), for any δ > 0,

P
(
Lk(XN ) < `

)
= P

(
Xi+`−1
i 6= Xk+`−1

k ∀i < k
)

(G.18)

≤
∑
x`∈X `

P
(
Zk(x`) = 0

)
· P
(
Xk+`−1
k = x`

)
≤
∑
x`∈X `

q`(x`)
(
1− q`(x`)

)N/2`
≤
∑
x`∈X `

q`(x`) 1
(
q`(x`) ≤ e−`[H+δ]

)
+ exp

{
− N

2`
· e−`[H+δ]

}
=: P≤(`; δ) + P>(`,N ; δ) . (G.19)
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By Chernoff bound

P≤(`; δ) ≤ e−`maxλ>0 ψδ(λ) ,

ψδ(λ) := λ[H + δ]− log
{∑
x∈X

q(x)1−λ
}
.

Note that λ 7→ ψδ(λ) is continuous, concave, with ψ′δ(0) = δ, ψδ(0) = 0, ψδ(1) = δ + H − log |X |. Hence (assuming
H < log |X | because otherwise there is nothing to prove) for all δ small enough ψ is maximized for λ ∈ (0, 1). Further,
defining the random variable Q = q(x) for x ∼ Unif(X ),

ψ′′δ (λ) = −E[Q1−λ(logQ)]

E[Q1−λ]
+
[E[Q1−λ(logQ)2]

E[Q1−λ]

]2
(G.20)

≥ −E[Q1−λ(logQ)2]

E[Q1−λ]
(G.21)

≥ −E[(logQ)2] =: −c∗(q) . (G.22)

Here the last inequality holds because Q 7→ Q1−λ is monotone increasing (for λ ∈ [0, 1]) and Q 7→ (logQ)2 is monotone
decreasing overQ ∈ [0, 1], and therefore E[Q1−λ(logQ)2] ≤ E[Q1−λ]E[(logQ)2]. In what follows, we set c∗ := c∗(q)∧1.

Hence ψδ(λ) ≥ δλ− c∗λ2/2 for λ ∈ [0, 1] and therefore using Eq. (G.20),

P≤(`; δ) ≤ exp
{
− `min

( δ2

2c∗
; δ − c∗

2

)}
.

Substituting in Eq. (G.19), and using this in Eq. (G.15), we get, for δ ∈ [0, c∗]:

1

N
E|S>N | ≤

1

2`
+ exp

{
− `δ2

2c∗

}
+ exp

{
− N

2`
· e−`[H+δ]

}
We set

` =
logN

H
(1− ε) , δ =

1

2
Hε ,

for ε ≤ (2c∗/H) ∧ (1/2). Substituting in the previous bound, we get

1

N
E|S>N | ≤

H

2 logN
(1 + 2ε) + exp

{
− Hε2 logN

16c∗

}
+ exp

{
− HN (ε+ε2)/2

2 logN

}
.

We finally select ε = c0(c∗ log |X |/H)(log logN/ logN)1/2, with c0 a sufficiently small absolute constant. Substituting
above,

1

N
E|S>N | −

H

2 logN
≤ c0 c∗ log |X | (log logN)1/2

(logN)3/2
+ exp

{
− c20(log |X |)2c∗

16H
log logN

}
+ exp

{
− H

2 logN
e(c0c∗ log |X |/2H)

√
logN

}
≤ c0 c∗ log |X | (log logN)1/2

(logN)3/2
+ (logN)−c

2
0/16 + exp

{
− H

2 logN
e(c0/2)

√
logN

}
.

Setting c0 = 5, we get

1

N
E|S>N | −

H

2 logN
≤ 6 c∗ log |X | (log logN)1/2

(logN)3/2
+ exp

{
− H

2 logN
e2
√

logN
}
,

whence, the claim (G.16) follows for logN ≥ (log(2/H))2.
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Arithmetic Coding. In Arithmetic Coding (AC) we encode the empirical distribution ofXN q̂N (x) := N−1
∑
i≤N 1Xi=x,

and then encodeXN in at most − log2 q̂
N (XN ) + 1 bits. The encoding of q̂N amounts to encoding the |X | − 1 integers

Nq̂N (x), x ∈ X \ {0} (assuming that 0 ∈ X , one of the counts can be obtained by difference). We thus have

len(AC(XN )) ≤ − log2 q̂
⊗N
N (XN ) + 1 +

∑
x∈X

len(elias(Nq̂N (x)))

≤ − log2 q̂
⊗N
N (XN ) + 2|X | log2N

=

N∑
i=1

− log2 q̂N (Xi) + 2|X | log2N

= N H(q̂N ) + 2|X | log2N .

Taking expectations

ERAC(XN ) ≤ EH(q̂N )

log2 |X |
+

2|X | log2N

N log2 |X |

≤ H(q)

log2 |X |
+

2|X | log2N

N log2 |X |
.

ANS Coding. The bound (5.11) follows for range ANS coding from the analysis of (Duda, 2009; 2013; Kosolobov, 2022),
where encoding of empirical distributions are analyzed as for AC coding.

G.2. Proof of Theorem 5.8

The proof consists in applying Lemma 5.7 and showing that P
(
ErrU (Xm,n; û) > 0

)
≤ log(mn)/mn,

P
(
ErrV (Xm,n; v̂) > 0

)
≤ log(mn)/mn.

In what follows we will assume without loss of generality m ≤ n, and recall that |L| = k, identifying L = {1, . . . , k}.
We will assume k fixed. We will use C, c, c′, . . . for constants that might depend on k, as well as the constant c0 in the
statement in ways that we do ot track.

We will show that these bounds hold conditional on u, v, on the events minu q̂r(u),minv q̂r(v) ≥ c/2 which holds with
probability at least 1− exp(−c′m) ≥ 1− log(mn)/mn. Hence, hereafter we will treat u,v as deterministic. Recall that
M ∈ Rm×n is the matrix entries with

Mij = ψ(Xi,j) ,

and letM∗ = E{M}. We collect a few facts aboutM and its expectation.

Singular values. Note thatM∗ takes the form

M∗ = LΨRT , (G.23)

where Ψ ∈ Rr×r is a matrix with entries Ψu,v = ψ(u, v), L ∈ {0, 1}m×r, with Lij = 1⇔ ui = j, and R ∈ {0, 1}n×r,
with Rij = 1 ⇔ vi = j. Define L = L0D

1/2
L where DL is a diagonal matrix with (DL)ii = mq̂r(i), and analogously

R = R0D
1/2
L , and introduce the singular value decompositionD1/2

L ΨD
1/2
R = AΣB

T
. We then have the singular value

decomposition

M∗ = A∗ΣB
T
∗ , A∗ = L0A , B∗ = R0B . (G.24)

Therefore σk(M∗) ≥ σmin(DL)1/2σmin(Ψ)σmin(DR)1/2 (here and below σk denotes the k-th largest singular value) and
using the assumptions on q̂r, q̂c,

σk(M∗) ≥ cµ
√
mn . (G.25)
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Concentration. M −M∗ is a centered matrix with independent entries with variance bounded by σ2 and entries bounded
by 1 (by the assumption |ψ(x)| ≤ 1). By matrix Bernstein inequality there exists a universal constant C such that the
following holds with probability at least 1− (100n)−2:

‖M −M∗‖op ≤ C max
(
σ
√
n log n; log n

)
. (G.26)

Incoherence. Since all the entries ofM∗ are bounded by 1, we get

‖M∗‖2→∞ ∨ ‖MT
∗‖2→∞ ≤ ν

√
n . (G.27)

Row concentration. For any i ≤ m, and anyW ∈ Rn×k fixed, with probability at least 1− (100n)−5:

‖(M − bM∗)i,·W ‖2 ≤ C max
(
σ‖W ‖F

√
log n; ‖W ‖2→∞ log n

)
.

Defining ∆∗ := σk(M∗) ≥ cµ
√
mn, this implies

‖(M −M∗)i,·W ‖2 ≤ ∆∗‖W ‖2→∞ϕ
(

‖W ‖F√
n‖W ‖2→∞

)
,

ϕ(x) :=
C

µ
√
mn

max
(
xσ
√
n log n; log n

)
.

Given these, we apply (Abbe et al., 2020)[Corollary 2.1], with the following estimates of various parameters (see (Abbe
et al., 2020) for definitions):

∆∗ � µ
√
mn ,

γ . max

(
σ

µ

√
log n

m
;

log n

µ
√
mn

)
.
σ

µ

√
log n

m
,

‖M∗‖2→∞ ∨ ‖MT
∗‖2→∞ ≤ ν

√
n . γ∆∗ ,

ϕ(1) .
σ

µ

√
log n

m
,

ϕ(γ) . max

(
σ2

µ2

log n

m
;

log n

µ
√
mn

)
,

κ � 1 .

Then (Abbe et al., 2020)[Corollary 2.1] implies that there exists a k × k orthogonal matrix Q̃ such that

‖A−A∗Q̃‖2→∞
‖A∗‖2→∞

. (1 + ϕ(1))(γ + ϕ(γ)) + ϕ(1) (G.28)

.
σ

µ

√
logm

n
. (G.29)

Recall thatA∗ = L0A andA is an othogonal matrix. Therefore, there exists an orthogonal matrixQ such that (with the
desired probability):

‖A−L0Q‖2→∞
‖L0‖2→∞

.
σ

µ

√
logm

n
. (G.30)

Further, the i-th row of L0 is

(L0)i,· =
1√

mq̂r(ui)
eTui =: z(ui)e

T
ui . (G.31)
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Hence, for any i,
√
c0‖L0‖2→∞ ≤ ‖(L0)i,·‖ ≤ ‖L0‖2→∞. Denoting by qj the j-th row ofQ, we thus get for all i,

‖ai − z(ui)qui‖2
‖ai‖2

.
σ

µ

√
logm

n
. (G.32)

The claim follows immediately using the fact that
√
c0 maxu z(u) ≤ minu z(u) ≤ maxu z(u).
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