
WL meet VC

Christopher Morris * 1 Floris Geerts * 2 Jan Tönshoff 1 Martin Grohe 1

Abstract
Recently, many works studied the expressive
power of graph neural networks (GNNs) by link-
ing it to the 1-dimensional Weisfeiler–Leman al-
gorithm (1-WL). Here, the 1-WL is a well-studied
heuristic for the graph isomorphism problem,
which iteratively colors or partitions a graph’s
vertex set. While this connection has led to sig-
nificant advances in understanding and enhancing
GNNs’ expressive power, it does not provide in-
sights into their generalization performance, i.e.,
their ability to make meaningful predictions be-
yond the training set. In this paper, we study
GNNs’ generalization ability through the lens of
Vapnik–Chervonenkis (VC) dimension theory in
two settings, focusing on graph-level predictions.
First, when no upper bound on the graphs’ order
is known, we show that the bitlength of GNNs’
weights tightly bounds their VC dimension. Fur-
ther, we derive an upper bound for GNNs’ VC
dimension using the number of colors produced
by the 1-WL. Secondly, when an upper bound
on the graphs’ order is known, we show a tight
connection between the number of graphs distin-
guishable by the 1-WL and GNNs’ VC dimension.
Our empirical study confirms the validity of our
theoretical findings.

1. Introduction
Graph-structured data are prevalent across application do-
mains ranging from chemo- and bioinformatics (Barabasi
& Oltvai, 2004; Jumper et al., 2021; Stokes et al., 2020)
to image (Simonovsky & Komodakis, 2017) and social-
network analysis (Easley & Kleinberg, 2010), indicating
the importance of machine learning methods for such data.
Nowadays, there are numerous approaches for machine

*Equal contribution 1Department of Computer Science, RWTH
Aachen University, Aachen, Germany 2Department of Computer
Science, University of Antwerp, Antwerp, Belgium. Correspon-
dence to: Christopher Morris <morris@cs.rwth-aachen.de>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

learning for graph-structured, most notably those based on
graph kernels (Borgwardt et al., 2020; Kriege et al., 2020) or
graph neural networks (GNNs) (Chami et al., 2020; Gilmer
et al., 2017; Morris et al., 2021). Here, graph kernels (Sher-
vashidze et al., 2011) based on the 1-dimensional Weisfeiler–
Leman algorithm (1-WL) (Weisfeiler & Leman, 1968), a
well-studied heuristic for the graph isomorphism problem,
and corresponding GNNs (Morris et al., 2019; Xu et al.,
2019), have recently advanced the state-of-the-art in super-
vised vertex- and graph-level learning (Morris et al., 2021).
Further, based on the k-dimensional Weisfeiler–Leman al-
gorithm (k-WL), 1-WL’s more powerful generalization, sev-
eral works generalized GNNs to higher-order GNNs (k-
GNNs), resulting in provably more expressive architectures,
e.g., Azizian & Lelarge (2021); Geerts & Reutter (2022);
Maron et al. (2019); Morris et al. (2019; 2020b; 2021; 2022).

While devising provably expressive GNN-like architectures
is a meaningful endeavor, it only partially addresses the
challenges of machine learning with graphs. That is, expres-
siveness results reveal little about an architecture’s ability
to generalize to graphs outside the training set. Surprisingly,
only a few notable contributions study GNNs’ generaliza-
tion behaviors, e.g., Garg et al. (2020); Kriege et al. (2018);
Liao et al. (2021); Maskey et al. (2022); Scarselli et al.
(2018). However, these approaches express GNN’s gener-
alization ability using only classical graph parameters, e.g.,
maximum degree, number of vertices, or edges, which can-
not fully capture the complex structure of real-world graphs.
Further, most approaches study generalization in the non-
uniform regime, i.e., assuming that the GNNs operate on
graphs of a pre-specified order. Further, they only investi-
gate the case k = 1, i.e., standard GNNs, ignoring more
expressive generalizations; see the previous paragraph.

1.1. Present work

This paper investigates the influence of graph structure and
the parameters’ encoding lengths on GNNs’ generaliza-
tion by tightly connecting 1-WL’s expressivity and GNNs’
Vapnik–Chervonenkis (VC) dimension. Specifically, our
contributions are:

1. In the non-uniform regime, we prove tight bounds on
GNNs’ VC dimension. We show that GNNs’ VC di-
mension depends tightly on the number of equivalence

1



WL meet VC

Uniform?

Bitlength ≤ b?

= b [Prop. 3.5]

1-WL colors ≤ u?

≈ poly(d, L) log(u) [Thm. 3.6]

∞ [Thm. 3.4]= mn,d,L [Prop. 3.1,3.2]

Yes

Yes

No

Yes

NoNo

Figure 1: Overview of our results for bounded-width GNNs. Green and red boxes denote VC dimension bounds. Here,
mn,d,L denotes the number of graphs of order at most n with boolean d-dimensional features distinguishable by 1-WL after
L iterations.

classes computed by the 1-WL over a set of graphs;
see Propositions 3.1 and 3.2. Moreover, our results
easily extend to the k-WL and many recent expressive
GNN extensions.

2. In the uniform regime, i.e., when graphs can have ar-
bitrary order, we show that GNNs’ VC dimension is
lower and upper bounded by the largest bitlength of its
weights; see Proposition 3.5.

3. In both the uniform and non-uniform regimes, GNNs’
VC dimension depends logarithmically on the number
of colors computed by the 1-WL and polynomially on
the number of parameters; see Theorem 3.6.

4. Empirically, we show that our theoretical findings hold
in practice.

Overall, our results provide new insights into GNNs’ gener-
alization behavior and how graph structure and parameters
influence it. Specifically, our results imply that a complex
graph structure, captured by 1-WL, results in worse gener-
alization performance. The same holds for increasing the
encoding length of the GNN’s parameters. Importantly, our
theory provides the first link between expressivity results and
generalization ability. Moreover, our results establish the
first lower bounds for GNNs’ VC dimension. See Figure 1
for a high-level overview of our results.

1.2. Related work

In the following, we discuss relevant related work.

GNNs Recently, GNNs (Gilmer et al., 2017; Scarselli
et al., 2009) emerged as the most prominent graph repre-
sentation learning architecture. Notable instances of this
architecture include, e.g., Duvenaud et al. (2015); Hamilton
et al. (2017), and Veličković et al. (2018), which can be sub-
sumed under the message-passing framework introduced
in Gilmer et al. (2017). In parallel, approaches based on
spectral information were introduced in, e.g., Bruna et al.
(2014); Defferrard et al. (2016); Gama et al. (2019); Kipf
& Welling (2017); Levie et al. (2019), and Monti et al.
(2017)—all of which descend from early work in Baskin

et al. (1997); Goller & Küchler (1996); Kireev (1995); Merk-
wirth & Lengauer (2005); Micheli & Sestito (2005); Micheli
(2009); Scarselli et al. (2009), and Sperduti & Starita (1997).

Limits of GNNs and more expressive architectures Re-
cently, connections between GNNs and Weisfeiler–Leman
type algorithms have been shown (Barceló et al., 2020;
Geerts et al., 2021; Morris et al., 2019; Xu et al., 2019).
Specifically, Morris et al. (2019) and Xu et al. (2019)
showed that the 1-WL limits the expressive power of any
possible GNN architecture in terms of distinguishing non-
isomorphic graphs. In turn, these results have been gen-
eralized to the k-WL, see, e.g., Azizian & Lelarge (2021);
Geerts (2020); Maron et al. (2019); Morris et al. (2019;
2020b; 2022), and connected to permutation-equivariant
functions approximation over graphs, see, e.g., Chen et al.
(2019); Maehara & NT (2019); Azizian & Lelarge (2021);
Geerts & Reutter (2022). Further, Aamand et al. (2022)
devised an improved analysis using randomization. Re-
cent works have extended the expressive power of GNNs,
e.g., by encoding vertex identifiers (Murphy et al., 2019;
Vignac et al., 2020), using random features (Abboud et al.,
2021; Dasoulas et al., 2020; Sato et al., 2021), equivari-
ant graph polynomials (Puny et al., 2023), homomorphism
and subgraph counts (Barceló et al., 2021; Bouritsas et al.,
2020; Nguyen & Maehara, 2020), spectral information (Bal-
cilar et al., 2021), simplicial (Bodnar et al., 2021b) and
cellular complexes (Bodnar et al., 2021a), persistent ho-
mology (Horn et al., 2022), random walks (Tönshoff et al.,
2021; Martinkus et al., 2022), graph decompositions (Talak
et al., 2021), relational (Barceló et al., 2022), distance (Li
et al., 2020) and directional information (Beaini et al., 2021),
subgraph information (Bevilacqua et al., 2022; Cotta et al.,
2021; Feng et al., 2022; Frasca et al., 2022; Huang et al.,
2022; Morris et al., 2021; Papp et al., 2021; Papp & Wat-
tenhofer, 2022; Qian et al., 2022; Thiede et al., 2021; Wi-
jesinghe & Wang, 2022; You et al., 2021; Zhang & Li, 2021;
Zhao et al., 2022; Zhang et al., 2023a), and biconnectiv-
ity (Zhang et al., 2023b). See Morris et al. (2021) for an
in-depth survey on this topic. Geerts & Reutter (2022) de-
vised a general approach for bounding the expressive power
of a large variety of GNNs utilizing the 1-WL or k-WL.

2



WL meet VC

Recently, Kim et al. (2022) showed that transformer archi-
tectures (Müller et al., 2023) can simulate the 2-WL. Grohe
(2023) showed tight connections between GNNs’ expres-
sivity and circuit complexity. Moreover, Rosenbluth et al.
(2023) investigated the expressive power of different aggre-
gation functions beyond sum aggregation.

GNN’s generalization capabilities Scarselli et al. (2018)
used classical techniques from learning theory (Karpin-
ski & Macintyre, 1997) to show that GNNs’ VC dimen-
sion (Vapnik, 1995) with piece-wise polynomial activation
functions on a fixed graph, under various assumptions, is in
O(P 2n log n), where P is the number of parameters and n
is the order of the input graph. We note here that Scarselli
et al. (2018) analyzed a different type of GNN not aligned
with modern GNN architectures (Gilmer et al., 2017). Garg
et al. (2020) showed that the empirical Rademacher com-
plexity, e.g., (Mohri et al., 2018), of a specific, simple GNN
architecture, using sum aggregation, is bounded in the maxi-
mum degree, the number of layers, Lipschitz constants of ac-
tivation functions, and parameter matrices’ norms. We note
here that their analysis assumes weight sharing across layers.
Liao et al. (2021) refined these results via a PAC-Bayesian
approach, further refined in Ju et al. (2023). Maskey et al.
(2022) used random graphs models to show that GNNs’
generalization ability depends on the (average) number of
vertices in the resulting graphs. Verma & Zhang (2019)
studied the generalization abilities of 1-layer GNNs in a
transductive setting based on algorithmic stability. Simi-
larly, Esser et al. (2021) used stochastic block models to
study the transductive Rademacher complexity (El-Yaniv &
Pechyony, 2007; Tolstikhin & Lopez-Paz, 2016) of standard
GNNs. Moreover, (Kriege et al., 2018) leveraged results
from graph property testing (Goldreich, 2010) to study the
sample complexity of learning to distinguish various graph
properties, e.g., planarity or triangle freeness, using graph
kernels (Borgwardt et al., 2020; Kriege et al., 2020). We
stress that all of the above approaches only consider classi-
cal graph parameters to bound the generalization abilities
of GNNs. Finally, (Yehudai et al., 2021) showed negative
results for GNNs’ ability to generalize to larger graphs.
However, the generalization properties of GNNs and their
connection to expressivity is understood to a lesser extent.

See Appendix A for an overview of the Weisfeiler–Leman
algorithm’s theoretical properties.

2. Preliminaries
Let N := {1, 2, 3, . . . }. For n ≥ 1, let [n] := {1, . . . , n} ⊂
N. We use {{. . . }} to denote multisets, i.e., the generaliza-
tion of sets allowing for multiple instances for each of its
elements.

Graphs A graph G is a pair (V (G), E(G)) with finite sets
of vertices or nodes V (G) and edges E(G) ⊆ {{u, v} ⊆
V (G) | u ̸= v}. If not otherwise stated, we set n := |V (G)|,
and the graph is of order n. We also call the graph G
an n-order graph. For ease of notation, we denote the
edge {u, v} in E(G) by (u, v) or (v, u). In the case of
directed graphs, the set E(G) ⊆ {(u, v) ∈ V (G)×V (G) |
u ̸= v} and a directed acyclic graph (DAG) is a directed
graph with no directed cycles. A (vertex-)labeled graph
G is a triple (V (G), E(G), ℓ) with a (vertex-)label func-
tion ℓ : V (G) → N. Then ℓ(v) is a label of v, for v in
V (G). An attributed graph G is a triple (V (G), E(G), a)
with a graph (V (G), E(G)) and (vertex-)attribute function
a : V (G) → R1×d, for some d > 0. That is, contrary to
labeled graphs, we allow for vertex annotations from an
uncountable set. Then a(v) is an attribute or feature of v,
for v in V (G). Equivalently, we define an n-order attributed
graph G := (V (G), E(G), a) as a pair G = (G,L), where
G = (V (G), E(G)) and L in Rn×d is a vertex feature ma-
trix. Here, we identify V (G) with [n]. For a matrix L in
Rn×d and v in [n], we denote by Lv· in R1×d the vth row
of L such that Lv· := a(v). We also write Rd for R1×d.

The neighborhood of v in V (G) is denoted by N(v) :=
{u ∈ V (G) | (v, u) ∈ E(G)} and the degree of a vertex v is
|N(v)|. In case of directed graphs, N+(u) := {v ∈ V (G) |
(v, u) ∈ E(G)} and N−(u) := {v ∈ V (G) | (u, v) ∈
E(G)}. The in-degree and out-degree of a vertex v are
|N+(v)| and |N−(v)|, respectively. Two graphs G and H
are isomorphic and we write G ≃ H if there exists a bijec-
tion φ : V (G) → V (H) preserving the adjacency relation,
i.e., (u, v) is in E(G) if and only if (φ(u), φ(v)) is in E(H).
Then φ is an isomorphism between G and H . In the case of
labeled graphs, we additionally require that l(v) = l(φ(v))
for v in V (G), and similarly for attributed graphs.

2.1. The Weisfeiler–Leman algorithm

We here describe the 1-WL and refer to Appendix B for
the k-WL. The 1-WL or color refinement is a well-studied
heuristic for the graph isomorphism problem, originally
proposed by Weisfeiler & Leman (1968).1 Intuitively, the
algorithm determines if two graphs are non-isomorphic by
iteratively coloring or labeling vertices. Given an initial
coloring or labeling of the vertices of both graphs, e.g.,
their degree or application-specific information, in each
iteration, two vertices with the same label get different labels
if the number of identically labeled neighbors is unequal.
These labels induce a vertex partition, and the algorithm

1Strictly speaking, the 1-WL and color refinement are two
different algorithms. That is, the 1-WL considers neighbors and
non-neighbors to update the coloring, resulting in a slightly higher
expressive power when distinguishing vertices in a given graph;
see (Grohe, 2021) for details. For brevity, we consider both algo-
rithms to be equivalent.

3



WL meet VC

terminates when after some iteration, the algorithm does not
refine the current partition, i.e., when a stable coloring or
stable partition is obtained. Then, if the number of vertices
annotated with a specific label is different in both graphs,
we can conclude that the two graphs are not isomorphic.
It is easy to see that the algorithm cannot distinguish all
non-isomorphic graphs (Cai et al., 1992). Nonetheless, it is
a powerful heuristic that can successfully test isomorphism
for a broad class of graphs (Babai & Kucera, 1979).

Formally, let G = (V (G), E(G), ℓ) be a labeled graph. In
each iteration, t > 0, the 1-WL computes a vertex coloring
C1

t : V (G) → N, depending on the coloring of the neigh-
bors. That is, in iteration t > 0, we set

C1
t (v) := RELABEL

((
C1

t−1(v), {{C1
t−1(u) | u ∈ N(v)}}

))
,

for all vertices v in V (G), where RELABEL injectively
maps the above pair to a unique natural number, which
has not been used in previous iterations. In iteration 0, the
coloring C1

0 := ℓ. To test if two graphs G and H are non-
isomorphic, we run the above algorithm in “parallel” on both
graphs. If the two graphs have a different number of vertices
colored c in N at some iteration, the 1-WL distinguishes
the graphs as non-isomorphic. Moreover, if the number of
colors between two iterations, t and (t+1), does not change,
i.e., the cardinalities of the images of C1

t and C1
i+t are equal,

or, equivalently,

C1
t (v) = C1

t (w) ⇐⇒ C1
t+1(v) = C1

t+1(w),

for all vertices v and w in V (G), the algorithm terminates.
For such t, we define the stable coloring C1

∞(v) = C1
t (v),

for v in V (G). The stable coloring is reached after at most
max{|V (G)|, |V (H)|} iterations (Grohe, 2017). We define
the color complexity of a graph G as the number of colors
computed by the 1-WL after |V (G)| iterations on G.

Due to the shortcomings of the 1-WL or color refinement in
distinguishing non-isomorphic graphs, several researchers,
e.g., Babai (1979); Cai et al. (1992), devised a more pow-
erful generalization of the former, today known as the k-
dimensional Weisfeiler–Leman algorithm, operating on k-
tuples of vertices rather than single vertices; see Appendix B
for details.

2.2. Graph Neural Networks

Intuitively, GNNs learn a vectorial representation, i.e., a d-
dimensional real-valued vector, representing each vertex in a
graph by aggregating information from neighboring vertices.
Formally, let G = (V (G), E(G), ℓ) be a labeled graph with
initial vertex features h(0)

v in Rd that are consistent with ℓ.
That is, each vertex v is annotated with a feature h(0)

v in Rd

such that h(0)
v = h

(0)
u if and only ℓ(v) = ℓ(u), e.g., a one-

hot encoding of the labels ℓ(u) and ℓ(v). Alternatively, h(0)
v

can be an attribute or a feature of the vertex v, e.g., physical
measurements in the case of chemical molecules. A GNN
architecture consists of a stack of neural network layers,
i.e., a composition of permutation-equivariant parameter-
ized functions. Similarly to the 1-WL, each layer aggregates
local neighborhood information, i.e., the neighbors’ fea-
tures around each vertex, and then passes this aggregated
information on to the next layer.

Following, Gilmer et al. (2017) and Scarselli et al. (2009),
in each layer, t > 0, we compute vertex features h(t)

v :=

UPD(t)
(
h(t−1)
v ,AGG(t)

(
{{h(t−1)

u | u ∈ N(v)}}
))

(1)

in Rd, where UPD(t) and AGG(t) may be differentiable
parameterized functions, e.g., neural networks.2 In the case
of graph-level tasks, e.g., graph classification, one uses

hG := READOUT
(
{{h(L)

v | v ∈ V (G)}}
)
∈ R, (2)

to compute a single vectorial representation based on
learned vertex features after iteration L.3 Again,
READOUT may be a differentiable parameterized func-
tion. To adapt the parameters of the above three functions,
they are optimized end-to-end, usually through a variant
of stochastic gradient descent, e.g., Kingma & Ba (2015),
together with the parameters of a neural network used for
classification or regression. See Appendix C for a definition
of (higher-order) k-GNNs.

Notation In the subsequent sections, we use the following
notation. We denote the class of all (labeled) graphs by G,
the class of all graphs with d-dimensional, real-valued vertex
features by Gd, the class of all graphs with d-dimensional
boolean vertex features by GB

d , the class of all graphs with
an order of at most n and d-dimensional vertex features by
Gd,n, and the class of all graphs with d-dimensional vertex
features and of color complexity at most u by Gd,≤u.

Further, we consider the following classes of GNNs. We
denote the class of all GNNs consisting of L layers with
(L + 1)th layer readout layer by GNN(L), the subset of
GNN(L) but whose aggregate, update and readout functions
have a width at most d by GNN(d, L), and the subset of
GNN(L) but whose aggregation function is a summation
and update and readout functions are single layer percep-
trons of width at most d by GNNslp(d, L). More generally,

2Strictly speaking, Gilmer et al. (2017) consider a slightly
more general setting in which vertex features are computed by
h
(t)
v := UPD(t)

(
h
(t−1)
v ,AGG(t)

(
{{(h(t−1)

v ,h
(t−1)
u , ℓ(v, u)) |

u ∈ N(v)}}
))

, where ℓ(v, u) denotes the edge label of the edge

(v, u).
3For simplicity, we assume GNNs to return scalars on graphs.

This makes the definition of VC dimension more concise.

4



WL meet VC

we consider the class GNNmlp(d, L) of GNNs using sum-
mation for aggregation and such that update and readout
functions are multilayer perceptrons (MLPs), all of width of
at most d. We refer to elements in GNNmlp(d, L) as simple
GNNs. See Appendix E for details. We stress that simple
GNNs are already expressive enough to be equivalent to the
1-WL in distinguishing non-isomorphic graphs.

VC dimension of GNNs For a class C of GNNs and
X of graphs, VC-dimX (C) is the maximal number m of
graphs G1, . . . ,Gm in X that can be shattered by C. Here,
G1, . . . ,Gm are shattered if for any τττ in {0, 1}m there
exists a GNN gnn in C such that for all i in [m]:

gnn(Gi) =

{
≥ 2/3 if τi = 1, and
≤ 1/3 if τi = 0.

(3)

The above definition can straightforwardly be generalized
to k-GNNs. Bounding the VC dimension directly implies
an upper bound on the generalization error; see Appendix D
and (Vapnik, 1995; Mohri et al., 2018) for details.

Bitlength of GNNs Below we study the dependence of
GNNs’ VC dimension on the bitlength of its weights. As-
sume an L-layered GNN with a set of parameters Θ, then
the GNN’s bitlength is the maximum number of bits needed
to encode each weight in Θ and the parameters specifying
the activation functions. We define the bitlength of a class
of GNNs as the maximum bitlength across all GNNs in the
class.

3. WL meet VC ±

We first consider the non-uniform regime, i.e., we assume
an upper bound on the graphs’ order. Given the connection
between GNNs and the 1-WL (Morris et al., 2019; Xu et al.,
2018), GNNs’ ability to shatter a set of graphs can easily
be related to distinguishability by the 1-WL. Indeed, let S
be a collection of graphs that GNNs can shatter. Hence, for
each pair of graphs in S , we have a GNN that distinguishes
them. By the results of (Morris et al., 2019; Xu et al.,
2019), this implies that the graphs in S are pairwise 1-WL
distinguishable. In other words, when considering the VC
dimension of GNNs on a class S of graphs with a bounded
number m of 1-WL distinguishable graphs, then m is also
an upper bound on the VC dimension of GNNs on graphs
in S . For example, let us first consider the VC dimension of
GNNs on the class GB

d,n consisting of graphs of an order of
at most n with d-dimensional boolean features. Let mn,d,L

be the maximal number of graphs in GB
d,n distinguishable by

1-WL after L iterations. Then, the same argument as above
implies that mn,d,L is also the maximal number of graphs
in GB

d,n that can be shattered by L-layer GNNs, as is stated
next.

Proposition 3.1. For all n, d and L, it holds that

VC-dimGB
d,n

(
GNN(L)

)
≤ mn,d,L.

This upper bound holds regardless of the choice of aggrega-
tion, update, and readout functions used in the GNNs. We
next show a matching lower bound for the VC dimension of
GNNs on graphs in GB

d,n. In fact, the lower bound already
holds for simple GNNs of width O(nmn,d,L).

Proposition 3.2. For all n, d, and L, all mn,d,L 1-
WL-distinguishable graphs of order at most n with d-
dimensional boolean features can be shattered by suffi-
ciently wide L-layer GNNs. Hence,

VC-dimGB
d,n

(
GNN(L)

)
= mn,d,L.

The lower bound follows from the fact that GNNs are as
powerful as the 1-WL (Morris et al., 2019; Xu et al., 2018).
Indeed, Morris et al. (2019) showed that L iterations of
the 1-WL on graphs in GB

d,n can be simulated by a sim-
ple L-layered GNN of width O(n). To shatter all mn,d,L

graphs, we first simulate 1-WL on all mn,d,L graphs com-
bined using a simple L-layer GNN of width in O(nmn,d,L).
We then define a readout layer whose weights can be used
to shatter the input graphs based on the computed 1-WL
vertex colors in the graphs. We note that the above two
results can be straightforwardly generalized to k-GNNs, i.e.,
their VC dimension is tightly connected to the expressive
power of the k-WL, and other recent extensions of GNNs;
see Appendix C.1.

We now consider the uniform regime, i.e., we assume no up-
per bound on the graphs’ order. Since the number mn,d,L of
1-WL distinguishable graphs increases for growing n, Propo-
sition 3.2 implies that the VC dimension of L-layered GNNs
on the class GB

d of all graphs with d-dimensional boolean
features but of arbitrary order is unbounded.

Corollary 3.3. For all d and L ≥ 1, it holds that
VC-dimGB

d
(GNN(L)) = ∞.

The proof of this result requires update and readout func-
tions in GNNs of unbounded width. Using a different “bit
extraction” proof technique, we can strengthen the previous
result such that fixed-width GNNs can be considered.

Theorem 3.4. For all d, L at least two, it holds that
VC-dimGB

d
(GNN(d, L)) = ∞.

Again, this result holds even for the class of simple GNNs.
The theorem relies on the following result, which is of
independent interest.

Proposition 3.5. There exists a family Fb of simple 2-layer
GNNs of width two and bitlength O(b) using piece-wise
linear activation functions such that its VC dimension is
exactly b.

5



WL meet VC

Theorem 3.4 directly follows from Proposition 3.5. That
is, to show that the VC dimension is infinite for GNNs in
GNN(d, L) with d and L ≥ 2, we leverage Proposition 3.5,
implying that we can shatter an arbitrary number of graphs
by such GNNs, provided that they have bit precision O(b).
The GNNs in Theorem 3.4 have arbitrary precision reals, so
they can also shatter these graphs. Since this works for any
b, Theorem 3.4 follows.

Proposition 3.5 in turn is proved as follows. For the upper
bound, we observe that there are only exponentially many
(in b) GNNs in Fb, from which the upper bound immediately
follows. Indeed, classical VC theory implies a bound on
the VC dimension for finite classes of GNNs, logarithmic
in the number of GNNs in the class. The lower bound proof
is more challenging and requires constructing the collection
Fb of simple GNNs that can shatter b graphs belonging to
GB
d . We remark that the b graphs used are of order O(2b)

and have O(2b) 1-WL vertex colors.

Finally, we show bounded VC dimension when both the
width and the number of layers of GNNs, and input graphs
are restricted. We obtain the bound by leveraging state-
of-the-art VC dimension bounds for feedforward neural
networks (FNNs) by Bartlett et al. (2019a). To control the
number of parameters, we consider the class GNNslp(d, L)
of simple GNNs in which update and readout functions are
single-layer perceptrons of bounded width d. We specify
this class of GNNs using P = d(2dL+L+1)+ 1 parame-
ters and the choice of activation functions in the perceptrons.
Regarding the class of input graphs, we consider the class
Gd,≤u consisting of graphs having d-dimensional features
and color complexity at most u. Note that we only bound
the number of colors appearing in a single graph and not
the number of colors appearing in all graphs of the class.
Intuitively, the parameter u comes into play because we can
reduce input graphs by combining 1-WL equivalent vertices.
The reduced graph has u vertices, and edges have weights.
One can run extended GNNs, taking edge weights into ac-
count on the reduced graph without loss of information.
Moreover, one can tie extended GNNs to FNNs. Hence, the
parameter n can be replaced by u when analyzing the VC
dimension of the GNN-related FNNs.

We now relate Gd,n and Gd,≤u. Since any graph of order
at most n has at most n 1-WL colors, Gd,n ⊆ Gd,≤n. The
bound below thus also complements the upper bound on
GB
d,n given earlier, but now for fixed-width GNNs. However,

Gd,≤u may contain graphs of arbitrary order. For example,
all regular graphs (of the same degree) belong to Gd,≤1. We
also remark that there is no upper bound on the number of
1-WL distinguishable graphs for Gd,≤u, because we only
bound the number of colors appearing in a single graph
and not the number of colors appearing in all graphs of the
class. For example, all regular graphs of arbitrary degrees

are in G0,≤1, but regular graphs of different degrees can be
distinguished. As such, the bounds obtained earlier do not
apply. Finally, in the bound below, input graphs can have
real features.

Theorem 3.6. Assume d and L in N, and GNNs in
GNNslp(d, L) using piece-wise polynomial activation func-
tions with p > 0 pieces and degree δ ≥ 0. Let P =
d(2dL + L + 1) + 1 be the number of parameters in the
GNNs. For all u in N, VC-dimGd,≤u

(GNNslp(d, L)) ≤


O(P log(puP )) if δ = 0,
O(LP log(puP )) if δ = 1,
O(LP log(puP ) + L2P log(δ)) if δ > 1.

We note that the above result can be straightforwardly gen-
eralized to k-GNNs. These upper bounds, concerning the
dependency on u, cannot be improved by more than a con-
stant factor. Indeed, for the b graphs used in Proposition 3.5,
u = O(2b). Moreover, the simple GNNs in Fb belong to
GNNslp(2, 2) and use piecewise-linear activation functions
with p = 4 and δ = 1. Since they shatter b = O(log(u))
graphs, this matches with the upper bound up to constant
factors.

3.1. Implications of your theoretical results

Our results include the first lower bounds of GNNs’ VC
dimension and the first inherent connection between GNNs’
VC dimension and the expressive power of the 1-WL. In
particular, we find that a larger bit precision leads to a higher
VC dimension and sample complexity. Therefore, our find-
ings provide an additional incentive for reducing the preci-
sion of GNNs besides the already-known benefits of reduced
training and inference time. Furthermore, we show that the
VC dimension bounds for GNNs can be tightened when con-
sidering graphs of low color complexity. This connection
to the number of colors indicates that graphs with complex
structures, captured by the 1-WL, may have a higher VC
dimension. Moreover, if the 1-WL can distinguish a large
set of graphs of a given dataset, our results imply that a suf-
ficiently expressive GNN will require a large set of training
samples to generalize well. Therefore, we can use the 1-WL
to assess GNNs’ generalization ability on a given dataset
quickly. The same relation holds for k-GNNs and the k-
WL. Moreover, our results extend easily to recent, more ex-
pressive GNN enhancements, e.g., subgraph-based (Bourit-
sas et al., 2020) or subgraph-enhanced GNNs (Bevilacqua
et al., 2022; Qian et al., 2022). Hence, our results lead
to a better understanding of how expressivity influences
the learning performance of modern GNN architectures;
see Appendix C.1.

6



WL meet VC

Table 1: Train and test classification accuracies with different numbers of parameters, using five layers, studying how the
number of parameters influences generalization.

Dimension Split
Dataset

ENZYMES MCF-7 MCF-7H MUTAGENICITY NCI1 NCI109

4
Train 31.0 ±3.1 92.1 ±0.4 92.1 ±0.4 79.7 ±0.9 76.7 ±7.3 66.4 ±9.5

Test 25.3 ±5.2 92.4 ±0.2 92.3 ±0.3 75.8 ±0.9 72.4 ±7.1 63.6 ±9.1

16
Train 76.8 ±6.4 96.0 ±0.1 96.5 ±0.3 92.7 ±2.7 88.4 ±6.2 86.4 ±0.9

Test 41.7 ±9.4 93.2 ±0.5 93.1 ±0.4 79.8 ±2.2 76.1 ±2.1 78.6 ±1.9

256
Train 98.2 ±3.6 99.7 < 0.1 99.9 < 0.1 100.0 ±0.0 99.8 < 0.1 97.5 ±2.1

Test 54.7 ±2.4 94.0 ±0.2 93.6 ±0.2 80.7 ±1.0 81.8 ±1.5 82.1 ±1.0

1 024
Train 99.8 ±0.2 99.8 < 0.1 99.8 ±0.1 99.9 ±0.2 99.8 ±0.1 98.6 ±1.0

Test 54.3 ±2.3 93.8 ±0.3 93.6 ±0.2 81.7 ±0.8 80.5 ±1.0 82.9 ±0.9

0 100 200 300 400 500
Epoch

10

0

10

20

30

40

Tr
ai

n 
- t

es
t a

cc
ur

ac
y 

[%
]

ENZYMES
4
16
256
1024

(a) ENZYMES

0 100 200 300 400 500
Epoch

0

1

2

3

4

5

Tr
ai

n 
- t

es
t a

cc
ur

ac
y 

[%
]

MCF-7
4
16
256
1024

(b) MCF-7

0 100 200 300 400 500
Epoch

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Tr
ai

n 
- t

es
t a

cc
ur

ac
y 

[%
]

NCI1
4
16
256
1024

(c) NCI1

Figure 2: Difference between train and test accuracy for different feature dimensions in {4, 16, 256, 1 024}. See Figure 5 in
the appendix for additional results.

4. Limitations, possible road maps, and future
work

Although the results are the first ones explicitly drawing a
tight connection between expressivity and generalization,
there are still many open questions. First, excluding Propo-
sition 3.1, the results investigate specific GNN classes using
sum aggregation. Hence, the results should be extended to
specific GNN layers commonly used in practice, such as
that in Xu et al. (2019), and the effect of different aggrega-
tion functions, such as max or mean, should be studied in
detail. Moreover, the results only give meaningful results
for discretely labeled graphs. Hence, the results should be
extended to attributed graphs. Secondly, although the exper-
imental results in Section 5 suggest that our VC dimension
bounds hold in practice to some extent, it is well known
that they do not explain the generalization behavior of deep
neural networks in the over-parameterized regime Bartlett
et al. (2019b), trained with variants of stochastic gradient de-
scent. Therefore, it is a future challenge to understand how
graph structure influences the generalization properties of
over-parameterized GNNs, trained with variants of stochas-
tic gradient descent, and what role the Weisfeiler–Leman
algorithm plays in this context.

5. Experimental evaluation
In the following, we investigate how well the VC dimension
bounds from the previous section hold in practice. Specifi-
cally, we answer the following questions.

Q1 How does the number of parameters influence GNNs’
generalization performance?

Q2 How does the number of 1-WL-distinguishable graphs
influence GNNs’ generalization performance?

Q3 How does the bitlength influence a GNN’s ability to fit
random data?

The source code of all methods and evaluation pro-
cedures is available at https://www.github.com/
chrsmrrs/wl_vs_vc.

Datasets To investigate questions Q1 and Q2, we used
the datasets ENZYMES (Borgwardt et al., 2005; Schomburg
et al., 2004), MCF-7 (Yan et al., 2008), MCF-7H (Yan
et al., 2008), MUTAGENICITY (Kazius et al., 2005; Riesen
& Bunke, 2008), and NCI1 and NCI109 (Wale et al., 2008;
Shervashidze et al., 2011) provided by Morris et al. (2020a).
See Table 3 for dataset statistics and properties. For ques-

7

https://www.github.com/chrsmrrs/wl_vs_vc
https://www.github.com/chrsmrrs/wl_vs_vc


WL meet VC

Table 2: Train and test classification accuracies using different numbers of layers and a feature dimension of 64, studying
how the number of different color histograms influences generalization.

Layers Split
Dataset

ENZYMES MCF-7 MCF-7H MUTAGENICITY NCI1 NCI109

0

Train 40.7 ±0.5 91.7 ±0.1 91.8 ±0.1 77.2 ±0.3 74.5 ±0.3 73.1 ±0.5

Test 33.7 ±1.6 91.9 < 0.1 91.2 ±0.1 75.7 ±1.2 67.9 ±1.3 71.5 ±0.7

Difference 7.0 ±1.9 -0.2 ±0.1 1.0 ±0.1 1.5 ±1.3 6.5 ±1.2 1.6 ±0.6

# Histograms 385 11 533 19 625 2 819 2 889 2 929

1

Train 66.7 ±3.6 91.8 ±0.1 92.1 < 0.1 90.9 ±0.1 92.0 ±1.5 83.4 ±1.5

Test 52.3 ±5.0 91.9 < 0.1 91.4 ±0.1 82.0 ±1.0 78.6 ±1.3 76.1 ±1.0

Difference 14.4 ±5.2 <0.1 ±0.1 0.1 ±0.1 8.9 ±1.3 13.4 ±0.9 7.3 ±0.7

# Histograms 595 25 417 26 037 3 624 3 906 3 950

2

Train 93.5 ±2.1 92.0 ±0.2 91.9 ±0.3 96.9 ±1.9 98.3 ±0.5 91.1 ±0.5

Test 62.7 ±7.2 92.1 ±0.1 91.0 ±0.6 82.5 ±1.0 80.5 ±1.3 78.1 ±1.5

Difference 39.9 ±5.5 -0.1 ±0.2 1.0 ±0.3 14.4 ±1.0 17.8 ±1.0 13.0 ±1.5

# Histograms 595 26 872 27 353 4 239 4 027 4 055

3

Train 98.0 ±2.5 92.1 ±0.3 92.1 ±0.2 99.4 ±0.9 99.8 ±0.1 93.6 ±1.2

Test 58.7 ±5.3 92.1 ±0.2 91.5 ±0.2 82.8 ±1.0 83.5 ±0.7 77.8 ±1.8

Difference 39.4 ±2.8 0.1 ±0.2 1.0 ±0.1 16.6 ±1.0 16.3 ±0.7 15.8 ±1.4

# Histograms 595 27 048 27 524 4 317 4 039 4 067

4

Train 99.8 ±0.3 92.0 ±0.1 92.2 ±0.2 99.1 ±0.2 99.8 < 0.1 96.9 ±1.0

Test 62.7 ±2.5 92.1 ±0.1 91.5 ±0.2 82.7 ±0.8 83.2 ±0.4 79.8 ±1.2

Difference 37.1 ±2.5 -0.1 ±0.1 1.0 ±0.1 16.4 ±0.7 16.6 ±0.4 17.2 ±0.8

# Histograms 595 27 059 OOM 4 317 4 039 4 067

5

Train 98.9 ±1.9 92.1 ±0.2 92.4 ±0.2 99.9 ±0.2 99.8 ±0.0 97.7 ±0.9

Test 57.0 ±3.9 92.3 ±0.2 91.6 ±0.2 83.0 ±0.8 84.1 ±1.1 79.6 ±0.5

Difference 41.9 ±2.9 -0.2 ±0.2 1.0 ±0.2 16.9 ±0.7 15.7 ±1.1 18.1 ±0.5

# Histograms 595 OOM OOM 4 317 4 039 4 067

6

Train 99.4 ±0.8 92.0 ±0.2 92.2 ±0.2 99.1 ±1.9 99.6 ±0.6 95.2 ±1.9

Test 54.0 ±2.3 92.2 ±0.2 91.4 ±0.4 83.5 ±1.0 83.4 ±1.3 79.2 ±1.3

Difference 44.4 ±1.9 -0.2 ±0.1 1.0 ±0.2 15.6 ±1.2 16.2 ±0.9 16.0 ±2.1

# Histograms 595 OOM OOM 4 317 4 039 4 067

tion Q3, to investigate the influence of bitlength on GNN’s
VC dimension, we probed how well GNNs can fit random
data. Hence, the experiments on these datasets aim at em-
pirically verifying the VC dimension bounds concerning
bitlength. To that, we created a synthetic dataset; see Ap-
pendix G.3. Since it is challenging to simulate different
bitlengths without specialized hardware, we resorted to sim-
ulating an increased bitlength via an increased feature di-
mension; see Appendix G.4.

All experiments are therefore conducted with standard 32-bit
precision. We also experimented with 64-bit precision but
observed no clear difference. Furthermore, 16-bit precision
proved numerically unstable in this setting.

Neural architectures For the experiments regarding Q1
and Q2, we used the simple GNN layer described in Ap-
pendix G.1 using a reLU activation function, ignoring pos-
sible edge labels. To answer question Q1, we fixed the
number of layers to five and chose the feature dimension
d in {4, 16, 256, 1 024}. To answer Q2, we set the feature
dimension d to 64 and choose the number of layers from
{0, . . . , 6}. We used sum pooling and a two-layer MLP for
all experiments for the final classification. To investigate
Q3, we used the architecture described in Appendix G.2. In
essence, we used a 2-layer MLP for the message generation

function in each GNN layer and added batch normaliza-
tion (Ioffe & Szegedy, 2015) before each non-linearity and
fixed the number of layers to 3, and varied the feature di-
mension d in {4, 16, 64, 256}.

Experimental protocol and model configuration For
the experiments regarding Q1 and Q2, we uniformly and at
random choose 90% of a dataset for training and the remain-
ing 10% for testing. We repeated each experiment five times
and report mean test accuracies and standard deviations. We
optimized the standard cross entropy loss for 500 epochs
using the ADAM optimizer (Kingma & Ba, 2015). More-
over, we used a learning rate of 0.001 across all experiments
and no learning rate decay or dropout. For Q3, we set the
learning rate to 10−4 and the number of epochs to 100 000,
and repeated each experiment 50 times. All architectures
were implemented using PYTORCH GEOMETRIC (Fey &
Lenssen, 2019) and executed on a workstation with 128GB
RAM and an NVIDIA Tesla V100 with 32GB memory.

5.1. Results and discussion

In the following, we answer questions Q1 to Q3.

Q1 See Table 1 and Figure 2 (and Figure 5 in the ap-
pendix). Increasing the feature dimension d increases the

8



WL meet VC

10 20 30 40 50 60 70 80 90
|V|

70

75

80

85

90

95

100

Ac
cu

ra
cy

 [%
]

Dim=4
Dim=16
Dim=64
Dim=256

Figure 3: GNN’s ability to fit the synthetic dataset for dif-
ferent feature dimensions in {4, 16, 64, 256}.

average difference between train and test accuracies across
all datasets. For example, on the ENZYMES dataset, the
difference increases from around 5% for d = 4 to more
than 45% for d = 1024. However, we also observe that
the difference does not increase when reaching near-perfect
training accuracies, i.e., going from d = 256 to d = 1024
does not increase the difference. Hence, the results show
that the number of parameters plays a crucial role in GNNs’
generalization ability, in accordance with Theorem 3.6.

Q2 See Table 2. The results indicate that the number
of 1-WL-distinguishable graphs (mn,d,L) influence GNNs’
generalization properties. For example, on the MUTAGENIC-
ITY dataset, after two iterations, the number of unique his-
tograms computed by 1-WL stabilizes, and similarly, the
generalization error stabilizes as well. Similar effects can be
observed for the ENZYMES, NCI1, and NCI109 datasets.
Hence, our results largely confirm Propositions 3.1 and 3.2.

Q3 See Figure 3. Increasing the feature dimension boosts
the model’s capacity to fit random class labels, indicating
that increased bitlength implies an increased VC dimension.
For example, for an order of 70, a GNN using a feature
dimension of 4 cannot reach an accuracy of over 75%. In
contrast, feature dimensions 64 and 256 can almost fit such
data. Moreover, for larger graphs, up to order 90, a GNN
with a feature dimension of 256 can almost perfectly fit
random class labels, with a feature dimension of 64 only
slightly worse, confirming Proposition 3.5.

6. Conclusion
We investigated GNNs’ generalization capabilities through
the lens of VC dimension theory in different settings. Specif-
ically, when not assuming a bound on the graphs’ order,
we showed that the VC dimension tightly depends on the

bitlength of the GNNs’ weights. We further showed that the
number of colors computed by the 1-WL, besides the num-
ber of parameters and layers, influences the VC dimension.
When a bound on the graphs’ order is known, we upper
and lower bounded GNNs’ VC dimension via the maximal
number of graphs distinguishable by the 1-WL. Thus, our
theory provides the first link between expressivity results
and generalization. Further, our theory also applies to a
large set of recently proposed GNN enhancements.

Acknowledgements
Christopher Morris is partially funded by a DFG Emmy
Noether grant (468502433) and RWTH Junior Principal In-
vestigator Fellowship under Germany’s Excellence Strategy.
Martin Grohe is partially funded by the European Union
(ERC, SymSim, 101054974). Views and opinions expressed
are, however, those of the author(s) only and do not neces-
sarily reflect those of the European Union or the European
Research Council. Neither the European Union nor the
granting authority can be held responsible for them.

References
Aamand, A., Chen, J. Y., Indyk, P., Narayanan, S., Ru-

binfeld, R., Schiefer, N., Silwal, S., and Wagner, T.
Exponentially improving the complexity of simulating
the Weisfeiler-Lehman test with graph neural networks.
ArXiv preprint, 2022.

Abboud, R., Ceylan, İ. İ., Grohe, M., and Lukasiewicz, T.
The surprising power of graph neural networks with ran-
dom node initialization. In Joint Conference on Artificial
Intelligence, pp. 2112–2118, 2021.

Arvind, V., Köbler, J., Rattan, G., and Verbitsky, O. On the
power of color refinement. In International Symposium
on Fundamentals of Computation Theory, pp. 339–350,
2015.

Arvind, V., Fuhlbrück, F., Köbler, J., and Verbitsky, O.
On Weisfeiler-Leman invariance: Subgraph counts and
related graph properties. In International Symposium
on Fundamentals of Computation Theory, pp. 111–125,
2019.

Atserias, A. and Maneva, E. N. Sherali-adams relaxations
and indistinguishability in counting logics. SIAM Journal
on Computing, 42(1):112–137, 2013.

Atserias, A., Mancinska, L., Roberson, D. E., Sámal, R.,
Severini, S., and Varvitsiotis, A. Quantum and non-
signalling graph isomorphisms. Journal of Combinatorial
Theory, Series B, pp. 289–328, 2019.

Azizian, W. and Lelarge, M. Characterizing the expressive
power of invariant and equivariant graph neural networks.

9



WL meet VC

In International Conference on Learning Representations,
2021.

Babai, L. Lectures on graph isomorphism. Univer-
sity of Toronto, Department of Computer Science.
Mimeographed lecture notes, October 1979, 1979.

Babai, L. Graph isomorphism in quasipolynomial time. In
Symposium on Theory of Computing, pp. 684–697, 2016.

Babai, L. and Kucera, L. Canonical labelling of graphs in
linear average time. In Symposium on Foundations of
Computer Science, pp. 39–46, 1979.

Balcilar, M., Héroux, P., Gaüzère, B., Vasseur, P., Adam, S.,
and Honeine, P. Breaking the limits of message passing
graph neural networks. In International Conference on
Machine Learning, pp. 599–608, 2021.

Barabasi, A.-L. and Oltvai, Z. N. Network biology: Un-
derstanding the cell’s functional organization. Nature
Reviews Genetics, 5(2):101–113, 2004.

Barceló, P., Kostylev, E. V., Monet, M., Pérez, J., Reut-
ter, J. L., and Silva, J. P. The logical expressiveness of
graph neural networks. In International Conference on
Learning Representations, 2020.

Barceló, P., Geerts, F., Reutter, J. L., and Ryschkov, M.
Graph neural networks with local graph parameters. In
Advances in Neural Information Processing Systems, pp.
25280–25293, 2021.

Barceló, P., Galkin, M., Morris, C., and Orth, M. A. R.
Weisfeiler and leman go relational. ArXiv preprint, 2022.

Bartlett, P. L., Harvey, N., Liaw, C., and Mehrabian, A.
Nearly-tight VC-dimension and pseudodimension bounds
for piecewise linear neural networks. Journal of Machine
Learning Research, 20:63:1–63:17, 2019a.

Bartlett, P. L., Long, P. M., Lugosi, G., and Tsigler, A.
Benign overfitting in linear regression. ArXiv preprint,
2019b.

Baskin, I. I., Palyulin, V. A., and Zefirov, N. S. A neural
device for searching direct correlations between struc-
tures and properties of chemical compounds. Journal
of Chemical Information and Computer Sciences, 37(4):
715–721, 1997.

Beaini, D., Passaro, S., Létourneau, V., Hamilton, W. L.,
Corso, G., and Lió, P. Directional graph networks. In
International Conference on Machine Learning, pp. 748–
758, 2021.

Berkholz, C., Bonsma, P. S., and Grohe, M. Tight lower
and upper bounds for the complexity of canonical colour
refinement. Theory of Computing Systems, 60(4):581–
614, 2017.

Bevilacqua, B., Frasca, F., Lim, D., Srinivasan, B., Cai,
C., Balamurugan, G., Bronstein, M. M., and Maron, H.
Equivariant subgraph aggregation networks. In Interna-
tional Conference on Learning Representations, 2022.

Bodnar, C., Frasca, F., Otter, N., Wang, Y. G., Liò, P.,
Montúfar, G., and Bronstein, M. M. Weisfeiler and
Lehman go cellular: CW networks. In Advances in
Neural Information Processing Systems, pp. 2625–2640,
2021a.

Bodnar, C., Frasca, F., Wang, Y., Otter, N., Montúfar, G. F.,
Lió, P., and Bronstein, M. M. Weisfeiler and Lehman
go topological: Message passing simplicial networks.
In International Conference on Machine Learning, pp.
1026–1037, 2021b.

Borgwardt, K. M., Ong, C. S., Schönauer, S., Vishwanathan,
S. V. N., Smola, A. J., and Kriegel, H.-P. Protein func-
tion prediction via graph kernels. Bioinformatics, 21
(Supplement 1):i47–i56, 2005.

Borgwardt, K. M., Ghisu, M. E., Llinares-López, F., O’Bray,
L., and Rieck, B. Graph kernels: State-of-the-art and
future challenges. Foundations and Trends in Machine
Learning, 13(5–6), 2020.

Bouritsas, G., Frasca, F., Zafeiriou, S., and Bronstein, M. M.
Improving graph neural network expressivity via sub-
graph isomorphism counting. ArXiv preprint, 2020.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spectral
networks and deep locally connected networks on graphs.
In International Conference on Learning Representation,
2014.

Cai, J., Fürer, M., and Immerman, N. An optimal lower
bound on the number of variables for graph identifications.
Combinatorica, 12(4):389–410, 1992.

Chami, I., Abu-El-Haija, S., Perozzi, B., Ré, C., and Mur-
phy, K. Machine learning on graphs: A model and com-
prehensive taxonomy. ArXiv preprint, 2020.

Chen, Z., Villar, S., Chen, L., and Bruna, J. On the equiv-
alence between graph isomorphism testing and function
approximation with gnns. In Advances in Neural Infor-
mation Processing Systems, pp. 15868–15876, 2019.

Chen, Z., Chen, L., Villar, S., and Bruna, J. Can graph
neural networks count substructures? In Advances in
Neural Information Processing Systems, 2020.

Cotta, L., Morris, C., and Ribeiro, B. Reconstruction for
powerful graph representations. In Advances in Neural
Information Processing Systems, pp. 1713–1726, 2021.

10



WL meet VC

Dasoulas, G., Santos, L. D., Scaman, K., and Virmaux, A.
Coloring graph neural networks for node disambiguation.
In International Joint Conference on Artificial Intelli-
gence, pp. 2126–2132, 2020.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. In Advances in Neural Information
Processing Systems, pp. 3837–3845, 2016.

Dell, H., Grohe, M., and Rattan, G. Lovász meets Weisfeiler
and Leman. In International Colloquium on Automata,
Languages, and Programming, pp. 40:1–40:14, 2018.

Duvenaud, D., Maclaurin, D., Aguilera-Iparraguirre, J.,
Gómez-Bombarelli, R., Hirzel, T., Aspuru-Guzik, A.,
and Adams, R. P. Convolutional networks on graphs for
learning molecular fingerprints. In Advances in Neural
Information Processing Systems, pp. 2224–2232, 2015.

Easley, D. and Kleinberg, J. Networks, Crowds, and Mar-
kets: Reasoning About a Highly Connected World. Cam-
bridge University Press, 2010.

El-Yaniv, R. and Pechyony, D. Transductive rademacher
complexity and its applications. In Annual Conference
on Learning Theory, pp. 157–171, 2007.

Esser, P. M., Vankadara, L. C., and Ghoshdastidar, D. Learn-
ing theory can (sometimes) explain generalisation in
graph neural networks. In Advances in Neural Infor-
mation Processing Systems, pp. 27043–27056, 2021.

Feng, J., Chen, Y., Li, F., Sarkar, A., and Zhang, M. How
powerful are k-hop message passing graph neural net-
works. In Advances in Neural Information Processing
Systems, 2022.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with PyTorch Geometric. In International Conference on
Learning Representations, Workshop on Representation
Learning on Graphs and Manifolds, 2019.

Frasca, F., Bevilacqua, B., Bronstein, M. M., and Maron,
H. Understanding and extending subgraph GNNs by
rethinking their symmetries. CoRR, 2022.

Fürer, M. On the combinatorial power of the Weisfeiler-
Lehman algorithm. In International Conference on Algo-
rithms and Complexity, pp. 260–271, 2017.

Gama, F., Marques, A. G., Leus, G., and Ribeiro, A. Con-
volutional neural network architectures for signals sup-
ported on graphs. IEEE Transactions on Signal Process-
ing, 67(4):1034–1049, 2019.

Garg, V. K., Jegelka, S., and Jaakkola, T. S. Generalization
and representational limits of graph neural networks. In

International Conference on Machine Learning, pp. 3419–
3430, 2020.

Geerts, F. The expressive power of kth-order invariant graph
networks. ArXiv preprint, 2020.

Geerts, F. and Reutter, J. L. Expressiveness and approxima-
tion properties of graph neural networks. In International
Conference on Learning Representations, 2022.

Geerts, F., Mazowiecki, F., and Pérez, G. A. Let’s agree to
degree: Comparing graph convolutional networks in the
message-passing framework. In International Conference
on Machine Learning, pp. 3640–3649, 2021.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International Conference on Machine Learning,
pp. 1263–1272, 2017.

Goldreich, O. Introduction to testing graph properties. In
Property Testing. Springer, 2010.

Goller, C. and Küchler, A. Learning task-dependent
distributed representations by backpropagation through
structure. In International Conference on Neural Net-
works, pp. 347–352, 1996.

Grohe, M. Descriptive Complexity, Canonisation, and De-
finable Graph Structure Theory. Cambridge University
Press, 2017.

Grohe, M. Word2vec, Node2vec, Graph2vec, X2vec: To-
wards a theory of vector embeddings of structured data.
In Symposium on Principles of Database Systems, pp.
1–16, 2020.

Grohe, M. The logic of graph neural networks. In Sympo-
sium on Logic in Computer Science, pp. 1–17, 2021.

Grohe, M. The descriptive complexity of graph neural
networks. ArXiv preprint, 2023.

Grohe, M. and Otto, M. Pebble games and linear equations.
Journal of Symbolic Logic, 80(3):797–844, 2015.

Grohe, M., Schweitzer, P., and Wiebking, D. Deep Weis-
feiler Leman. ArXiv preprint, 2020.

Hamilton, W. L., Ying, Z., and Leskovec, J. Inductive
representation learning on large graphs. In Advances in
Neural Information Processing Systems, pp. 1024–1034,
2017.

Horn, M., Brouwer, E. D., Moor, M., Moreau, Y., Rieck, B.,
and Borgwardt, K. M. Topological graph neural networks.
In International Conference on Learning Representations,
2022.

11



WL meet VC

Huang, Y., Peng, X., Ma, J., and Zhang, M. Boosting the
cycle counting power of graph neural networks with I2-
GNNs. ArXiv preprint, 2022.

Immerman, N. and Lander, E. Describing graphs: A first-
order approach to graph canonization. In Complexity
Theory Retrospective: In Honor of Juris Hartmanis on
the Occasion of His Sixtieth Birthday, July 5, 1988, pp.
59–81, 1990.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International conference on machine learning, pp. 448–
456, 2015.

Ju, H., Li, D., Sharma, A., and Zhang, H. R. Generalization
in graph neural networks: Improved pac-bayesian bounds
on graph diffusion. ArXiv preprint, 2023.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žı́dek,
A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S.
A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B.,
Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S.,
Reiman, D., Clancy, E., Zielinski, M., Steinegger, M.,
Pacholska, M., Berghammer, T., Bodenstein, S., Silver,
D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli,
P., and Hassabis, D. Highly accurate protein structure
prediction with AlphaFold. Nature, 2021.

Karpinski, M. and Macintyre, A. Polynomial bounds for
VC dimension of sigmoidal and general Pfaffian neural
networks. Journal of Computer and System Sciences, 54
(1):169–176, 1997.

Kazius, J., McGuire, R., and Bursi, R. Derivation and
validation of toxicophores for mutagenicity prediction.
Journal Medicinal Chemistry, 48(13):312–320, 2005.

Kiefer, S. Power and Limits of the Weisfeiler-Leman Al-
gorithm. PhD thesis, Department of Computer Science,
RWTH Aachen University, 2020.

Kiefer, S. and McKay, B. D. The iteration number of Colour
Refinement. In International Colloquium on Automata,
Languages, and Programming, pp. 73:1–73:19, 2020.

Kiefer, S. and Schweitzer, P. Upper bounds on the quantifier
depth for graph differentiation in first-order logic. In
Symposium on Logic in Computer Science, pp. 287–296,
2016.

Kiefer, S., Schweitzer, P., and Selman, E. Graphs identified
by logics with counting. In International Symposium
on Mathematical Foundations of Computer Science, pp.
319–330, 2015.

Kiefer, S., Ponomarenko, I., and Schweitzer, P. The
Weisfeiler-Leman dimension of planar graphs is at most
3. Journal of the ACM, 66(6):44:1–44:31, 2019.

Kim, J., Nguyen, T. D., Min, S., Cho, S., Lee, M., Lee,
H., and Hong, S. Pure transformers are powerful graph
learners. ArXiv preprint, 2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations, 2017.

Kireev, D. B. Chemnet: A novel neural network based
method for graph/property mapping. Journal of Chemi-
cal Information and Computer Sciences, 35(2):175–180,
1995.

Kriege, N. M., Morris, C., Rey, A., and Sohler, C. A prop-
erty testing framework for the theoretical expressivity
of graph kernels. In International Joint Conference on
Artificial Intelligence, pp. 2348–2354, 2018.

Kriege, N. M., Johansson, F. D., and Morris, C. A survey
on graph kernels. Applied Network Science, 5(1):6, 2020.

Levie, R., Monti, F., Bresson, X., and Bronstein, M. M.
Cayleynets: Graph convolutional neural networks with
complex rational spectral filters. IEEE Transactions on
Signal Processing, 67(1):97–109, 2019.

Li, P., Wang, Y., Wang, H., and Leskovec, J. Distance en-
coding: Design provably more powerful neural networks
for graph representation learning. In Advances in Neural
Information Processing Systems, 2020.

Liao, R., Urtasun, R., and Zemel, R. S. A PAC-Bayesian
approach to generalization bounds for graph neural net-
works. In International Conference on Learning Repre-
sentations, 2021.

Lichter, M., Ponomarenko, I., and Schweitzer, P. Walk
refinement, walk logic, and the iteration number of the
Weisfeiler-Leman algorithm. In Symposium on Logic in
Computer Science, pp. 1–13, 2019.

Maehara, T. and NT, H. A simple proof of the universality
of invariant/equivariant graph neural networks. ArXiv
preprint, 2019.

Malkin, P. N. Sherali–Adams relaxations of graph isomor-
phism polytopes. Discrete Optimization, pp. 73–97, 2014.

Maron, H., Ben-Hamu, H., Serviansky, H., and Lipman,
Y. Provably powerful graph networks. In Advances in
Neural Information Processing Systems, pp. 2153–2164,
2019.

12



WL meet VC

Martinkus, K., Papp, P. A., Schesch, B., and Wattenhofer,
R. Agent-based graph neural networks. ArXiv preprint,
2022.

Maskey, S., Lee, Y., Levie, R., and Kutyniok, G. General-
ization analysis of message passing neural networks on
large random graphs. In Advances in Neural Information
Processing Systems, 2022.

Merkwirth, C. and Lengauer, T. Automatic generation of
complementary descriptors with molecular graph net-
works. Journal of Chemical Information and Modeling,
45(5):1159–1168, 2005.

Micheli, A. Neural network for graphs: A contextual con-
structive approach. IEEE Transactions on Neural Net-
works, 20(3):498–511, 2009.

Micheli, A. and Sestito, A. S. A new neural network model
for contextual processing of graphs. In Italian Workshop
on Neural Nets Neural Nets and International Workshop
on Natural and Artificial Immune Systems, pp. 10–17,
2005.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. Founda-
tions of Machine Learning. MIT Press, 2018.

Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svoboda,
J., and Bronstein, M. M. Geometric deep learning on
graphs and manifolds using mixture model cnns. In IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 5425–5434, 2017.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and Leman go
neural: Higher-order graph neural networks. In AAAI
Conference on Artificial Intelligence, pp. 4602–4609,
2019.

Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel, P.,
and Neumann, M. TUDataset: A collection of benchmark
datasets for learning with graphs. ArXiv preprint, 2020a.

Morris, C., Rattan, G., and Mutzel, P. Weisfeiler and Le-
man go sparse: Towards higher-order graph embeddings.
In Advances in Neural Information Processing Systems,
2020b.

Morris, C., L., Y., Maron, H., Rieck, B., Kriege, N. M.,
Grohe, M., Fey, M., and Borgwardt, K. Weisfeiler and
Leman go machine learning: The story so far. ArXiv
preprint, 2021.

Morris, C., Rattan, G., Kiefer, S., and Ravanbakhsh, S. Spe-
qNets: Sparsity-aware permutation-equivariant graph net-
works. In International Conference on Machine Learning,
pp. 16017–16042, 2022.

Müller, L., Galkin, M., Morris, C., and Rampásek, L. At-
tending to graph transformers. CoRR, abs/2302.04181,
2023.

Murphy, R. L., Srinivasan, B., Rao, V. A., and Ribeiro, B.
Relational pooling for graph representations. In Interna-
tional Conference on Machine Learning, pp. 4663–4673,
2019.

Nguyen, H. and Maehara, T. Graph homomorphism convo-
lution. In International Conference on Machine Learning,
pp. 7306–7316, 2020.

Papp, P. A. and Wattenhofer, R. A theoretical comparison
of graph neural network extensions. In International Con-
ference on Machine Learning, pp. 17323–17345, 2022.

Papp, P. A., K. Martinkus, L. F., and Wattenhofer, R.
DropGNN: Random dropouts increase the expressive-
ness of graph neural networks. In Advances in Neural
Information Processing Systems, 2021.

Puny, O., Lim, D., Kiani, B. T., Maron, H., and Lipman,
Y. Equivariant polynomials for graph neural networks.
ArXiv preprint, 2023.

Qian, C., Rattan, G., Geerts, F., Morris, C., and Niepert, M.
Ordered subgraph aggregation networks. In Advances in
Neural Information Processing Systems, 2022.

Riesen, K. and Bunke, H. IAM graph database repository for
graph based pattern recognition and machine learning. In
Structural, Syntactic, and Statistical Pattern Recognition,
Joint IAPR International Workshop, pp. 287–297, 2008.

Rosenbluth, E., Tönshoff, J., and Grohe, M. Some might
say all you need is sum. ArXiv preprint, 2023.

Sato, R., Yamada, M., and Kashima, H. Random features
strengthen graph neural networks. In SIAM International
Conference on Data Mining, pp. 333–341, 2021.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2009.

Scarselli, F., Tsoi, A. C., and Hagenbuchner, M. The Vapnik-
Chervonenkis dimension of graph and recursive neural
networks. Neural Networks, pp. 248–259, 2018.

Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt,
C., Huhn, G., and Schomburg, D. Brenda, the enzyme
database: updates and major new developments. Nucleic
acids research, pp. D431–3, 2004.

Shervashidze, N., Schweitzer, P., van Leeuwen, E. J.,
Mehlhorn, K., and Borgwardt, K. M. Weisfeiler-Lehman
graph kernels. Journal of Machine Learning Research,
pp. 2539–2561, 2011.

13



WL meet VC

Simonovsky, M. and Komodakis, N. Dynamic edge-
conditioned filters in convolutional neural networks on
graphs. In IEEE Conference on Computer Vision and
Pattern Recognition, pp. 29–38, 2017.

Sperduti, A. and Starita, A. Supervised neural networks
for the classification of structures. IEEE Transactions on
Neural Networks, 8(3):714–35, 1997.

Stokes, J., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz,
A., Donghia, N., MacNair, C., French, S., Carfrae, L.,
Bloom-Ackerman, Z., Tran, V., Chiappino-Pepe, A., Bad-
ran, A., Andrews, I., Chory, E., Church, G., Brown, E.,
Jaakkola, T., Barzilay, R., and Collins, J. A deep learning
approach to antibiotic discovery. Cell, pp. 688–702.e13,
2020.

Talak, R., Hu, S., Peng, L., and Carlone, L. Neural trees for
learning on graphs. ArXiv preprint, 2021.

Thiede, E. H., Zhou, W., and Kondor, R. Autobahn:
Automorphism-based graph neural nets. In Advances
in Neural Information Processing Systems, pp. 29922–
29934, 2021.

Tolstikhin, I. O. and Lopez-Paz, D. Minimax lower bounds
for realizable transductive classification. ArXiv preprint,
2016.

Tönshoff, J., Ritzert, M., Wolf, H., and Grohe, M. Graph
learning with 1D convolutions on random walks. ArXiv
preprint, 2021.

Vapnik, V. N. The Nature of Statistical Learning Theory.
Springer, 1995.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations,
2018.

Verma, S. and Zhang, Z. Stability and generalization of
graph convolutional neural networks. In International
Conference on Knowledge Discovery & Data Mining, pp.
1539–1548, 2019.

Vignac, C., Loukas, A., and Frossard, P. Building powerful
and equivariant graph neural networks with structural
message-passing. In Advances in Neural Information
Processing Systems, 2020.

Wale, N., Watson, I. A., and Karypis, G. Comparison of
descriptor spaces for chemical compound retrieval and
classification. Knowledge and Information Systems, 14
(3):347–375, 2008.

Weisfeiler, B. On Construction and Identification of Graphs.
Springer, 1976.

Weisfeiler, B. and Leman, A. The reduction of a
graph to canonical form and the algebra which ap-
pears therein. Nauchno-Technicheskaya Informatsia, 2
(9):12–16, 1968. English translation by G. Ryabov is
available at https://www.iti.zcu.cz/wl2018/
pdf/wl_paper_translation.pdf.

Wijesinghe, A. and Wang, Q. A new perspective on ”how
graph neural networks go beyond weisfeiler-lehman?”. In
International Conference on Learning Representations,
2022.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K., and
Jegelka, S. Representation learning on graphs with jump-
ing knowledge networks. In International Conference on
Machine Learning, pp. 5449–5458, 2018.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2019.

Yan, X., Cheng, H., Han, J., and Yu, P. S. Mining sig-
nificant graph patterns by leap search. In International
Conference on Management of Data, pp. 433–444, 2008.

Yehudai, G., Fetaya, E., Meirom, E. A., Chechik, G., and
Maron, H. From local structures to size generalization in
graph neural networks. In International Conference on
Machine Learning, pp. 11975–11986, 2021.

You, J., Gomes-Selman, J., Ying, R., and Leskovec, J.
Identity-aware graph neural networks. In AAAI Confer-
ence on Artificial Intelligence, pp. 10737–10745, 2021.

Zhang, B., Feng, G., Du, Y., He, D., and Wang, L. A
complete expressiveness hierarchy for subgraph gnns via
subgraph weisfeiler-lehman tests. CoRR, abs/2302.07090,
2023a.

Zhang, B., Luo, S., Wang, L., and He, D. Rethinking the
expressive power of gnns via graph biconnectivity. ArXiv
preprint, 2023b.

Zhang, M. and Li, P. Nested graph neural networks. In
Advances in Neural Information Processing Systems, pp.
15734–15747, 2021.

Zhao, L., Jin, W., Akoglu, L., and Shah, N. From stars
to subgraphs: Uplifting any GNN with local structure
awareness. In International Conference on Learning
Representations, 2022.

14

https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf


WL meet VC

A. Extended related work
In the following, we discuss more related work.

Expressive power of k-WL The Weisfeiler–Leman algorithm constitutes one of the earliest and most natural approaches
to isomorphism testing (Weisfeiler, 1976; Weisfeiler & Leman, 1968), and the theory community has heavily investigated it
over the last few decades (Grohe, 2017). Moreover, the fundamental nature of the k-WL is evident from various connections
to other fields such as logic, optimization, counting complexity, and quantum computing. The power and limitations of the
k-WL can be neatly characterized in terms of logic and descriptive complexity (Babai, 1979; Immerman & Lander, 1990),
Sherali-Adams relaxations of the natural integer linear optimization problem for the graph isomorphism problem (Atserias
& Maneva, 2013; Grohe & Otto, 2015; Malkin, 2014), homomorphism counts (Dell et al., 2018), and quantum isomorphism
games (Atserias et al., 2019). In their seminal paper, Cai et al. (1992) showed that, for each k, a pair of non-isomorphic
graphs of size O(k) exists not distinguished by the k-WL. Kiefer (2020) gives a thorough survey of more background and
related results concerning the expressive power of the k-WL. For k = 1, the power of the algorithm has been completely
characterized (Arvind et al., 2015; Kiefer et al., 2015). Moreover, upper bounds on the running time (Berkholz et al., 2017)
and the number of iterations for k = 1 (Kiefer & McKay, 2020) and the non-oblivious k = 2 (Kiefer & Schweitzer, 2016;
Lichter et al., 2019) have been shown. For k in {1, 2}, Arvind et al. (2019) studied the abilities of the (non-oblivious)
k-WL to detect and count fixed subgraphs, extending the work of Fürer (2017). The former was refined in (Chen et al.,
2020). Kiefer et al. (2019) showed that the non-oblivious 3-WL completely captures the structure of planar graphs. The
algorithm for logarithmic k plays a prominent role in the recent result of (Babai, 2016) improving the best-known running
time for the graph isomorphism problem. Recently, Grohe et al. (2020) introduced the framework of Deep Weisfeiler–Leman
algorithms, which allow the design of a more powerful graph isomorphism test than Weisfeiler–Leman type algorithms.
Finally, the emerging connections between the Weisfeiler–Leman paradigm and graph learning are described in two recent
surveys (Grohe, 2020; Morris et al., 2021).

B. Oblivious k-WL

Intuitively, to surpass the limitations of the 1-WL, the k-WL colors ordered subgraphs instead of a single vertex.4 More
precisely, given a graph G, the k-WL colors the tuples from V (G)k for k ≥ 2 instead of the vertices. By defining a
neighborhood between these tuples, we can define a coloring similar to the 1-WL. Formally, let G be a graph, and let k ≥ 2.
In each iteration, t ≥ 0, the algorithm, similarly to the 1-WL, computes a coloring Ck

t : V (G)k → N. In the first iteration,
t = 0, the tuples v and w in V (G)k get the same color if they have the same atomic type, i.e., Ck

0 (v) := atp(v). Here, we
define the atomic type atp : V (G)k → N, for k > 0, such that atp(v) = atp(w) for v and w in V (G)k if and only if the
mapping φ : V (G)k → V (G)k where vi 7→ wi induces a partial isomorphism, i.e., we have vi = vj ⇐⇒ wi = wj and
(vi, vj) ∈ E(G) ⇐⇒ (φ(vi), φ(vj)) ∈ E(G). Then, for each layer, t > 0, Ck

t is defined by

Ck
t (v) := RELABEL

(
Ck

t−1(v),Mt(v)
)
,

with Mt(v) the multiset

Mt(v) :=
(
{{Ck

t−1(ϕ1(v, w)) | w ∈ V (G)}}, . . . , {{Ck
t−1(ϕk(v, w)) | w ∈ V (G)}}

)
,

and where
ϕj(v, w) := (v1, . . . , vj−1, w, vj+1, . . . , vk).

That is, ϕj(v, w) replaces the j-th component of the tuple v with the vertex w. Hence, two tuples are adjacent or j-neighbors
if they are different in the jth component (or equal, in the case of self-loops). Hence, two tuples v and w with the same
color in iteration (t− 1) get different colors in iteration t if there exists a j in [k] such that the number of j-neighbors of v
and w, respectively, colored with a certain color is different.

We run the k-WL algorithm until convergence, i.e., until for t in N

Ck
t (v) = Ck

t (w) ⇐⇒ Ck
t+1(v) = Ck

t+1(w),

4There exists two definitions of the k-WL, the so-called oblivious k-WL and the folklore or non-oblivious k-WL; see Grohe (2021).
There is a subtle difference in how they aggregate neighborhood information. Within the graph learning community, it is customary to
abbreviate the oblivious k-WL as k-WL, a convention we follow in this paper.

15



WL meet VC

for all v and w in V (G)k, holds. For such t, we define Ck
∞(v) = Ck

t (v) for v in V (G)k. At convergence, we call the
partition of V (G)k induced by Ck

t the stable partition. We set Ck
∞(v) := Ck

∞(v, . . . , v) and refer to this as the color of the
vertex v.

Similarly to the 1-WL, to test whether two graphs G and H are non-isomorphic, we run the k-WL in “parallel” on both
graphs. Then, if the two graphs have a different number of vertices colored c, for c in N, the k-WL distinguishes the graphs
as non-isomorphic. By increasing k, the algorithm gets more powerful in distinguishing non-isomorphic graphs, i.e., for
each k ≥ 2, there are non-isomorphic graphs distinguished by (k + 1)-WL but not by k-WL (Cai et al., 1992). For a finite
set of graphs S ⊂ G, we run the algorithm in “parallel” over all graphs in the set S.

C. k-order GNNs
By generalizing Equation (1) in Section 2.2, following (Morris et al., 2019; 2020b; 2021), we can derive k-GNNs computing
features for all k-tuples V (G)k, for k > 0, defined over the set of vertices of an attributed graph G = (V (G), E(G), a)
with features from Rd. Concretely, in each layer, t > 0, for each k-tuple v = (v1, . . . , vk) in V (G)k, we compute a feature

h(t)
v := UPD(t)

(
h(t−1)
v ,AGG(t)

(
{{h(t−1)

v (ϕ1(v, w)) | w ∈ V (G)}}, . . . ,

{{h(t−1)
v (ϕk(v, w)) | w ∈ V (G)}}

))
.

Initially, for t = 0, we set

h(0)
v := UPD([atp(v), a(v1), . . . , a(vk)]) ∈ Rd,

i.e., the atomic type and the attributes of a given k-tuple determine the initial feature of a k-tuple’s vertices. In the above,
UPD, UPD(t), and AGG(t) may be differentiable parameterized functions, e.g., neural networks. In the case of graph-level
tasks, e.g., graph classification, one additionally uses

hG := READOUT
(
{{h(L)

v | v = (v, . . . , v), v ∈ V (G)}}
)
∈ Rd,

to compute a single vectorial graph representation based on the learned k-tuple features after iteration L.

C.1. Transfering VC bounds from GNNs to k-order GNNs and other more expressive architectures

In the following, we briefly sketch how Propositions 3.1 and 3.2, Corollary 3.3, and Theorem 3.6 can be lifted to k-GNNs.
First, observe that we can simulate the computation of a k-GNN via a GNN on a sufficiently defined auxiliary graph. That
is, the auxiliary graph contains a vertex for each k-tuple, and an edge connects two k-tuples j if they are j-neighbors for j
in [k]; see Morris et al. (2021) for details. Using a 1-WL equivalent GNN taking edge labels into account, we can extend
Propositions 3.1 and 3.2 and Corollary 3.3 to k-GNNs. Similar reasoning applies to Theorem 3.6, i.e., we can apply the
proof technique from Appendix F.3 to this auxiliary graph.

C.1.1. ARCHITECTURES BASED ON SUBGRAPH INFORMATION

Further, we note that Propositions 3.1 and 3.2 also easily extend to recent GNN enhancements, e.g., subgraph-based (Bourit-
sas et al., 2020) or subgraph-enhanced GNNs (Bevilacqua et al., 2022; Qian et al., 2022). Since suitably defined variations
of the 1-WL, incorporating subgraph information at initialization, upper bound the architectures’ expressive power, we
can easily apply the reasoning behind the proofs of Propositions 3.1 and 3.2 to these cases. Hence, the architectures’ VC
dimensions are also tightly related to the number of graphs distinguishable by respective 1-WL variants.

D. Relationship between VC dimension and generalization error
If we can bound the VC dimension of a hypothesis class C of GNNs, we directly get insights into its generalization ability,
i.e., the difference of the empirical error RS(h) and the true error RD(h) for h ∈ C and a data generating distribution D.

Theorem D.1. Let C be a class of GNNs, with finite VC dimension VC-dim(C) = d. Then for C, for all ε > 0 and δ ∈ (0, 1),
using

m = O
(

1

ε2

(
d ln

(
d

ε

)
+ ln

(
1

δ
+ 1

)))
16



WL meet VC

samples, for all data generating distributions D, we have

Pr
S≃Dm

(∀h ∈ C : |RS(h)−RD(h)| ≤ ε) ≥ 1− δ.

This result was first proven by Vladimir Vapnik and Alexey Chervonenkis in 1960’s; see, e.g., Mohri et al. (2018) for a
proof.

E. Simple GNNs
We here provide more detail on the simple GNNs mentioned in Section 2.2. That is, for given d and L in N, we define the
class GNNmlp(d, L) of simple GNNs as L-layer GNNs for which, according to Equation (1), for each t in [L], the aggregation
function AGG(t) is simply summation and the update function UPD(t) is a multilayer perceptron mlp(t) : R2d → Rd of
width at most d. Similarly, the readout function in Equation (2) consists of a multilayer perceptron mlp : Rd → R applied
on the sum of all vertex features computed in layer L.5 More specifically, GNNs in GNNmlp(d, L) compute on a graph
(G,L) in Gd, for each v ∈ V (G),

h(t)
v := mlp(t)

(
h(t−1)
v ,

∑
u∈N(v)

h(t−1)
u

)
∈ Rd, (4)

for t in [L] and h
(0)
v := Lv., and

hG := mlp
( ∑
v∈V (G)

h(L)
v

)
∈ R. (5)

We also consider an even simpler class GNNslp(d, L) of GNNmlp(d, L) in which the multilayer perceptrons are in fact single
layer perceptrons. That is, Equation (4) is replaced by

h(t)
v := σt

(
h(t−1)
v W

(t)
1 +

∑
u∈N(v)

h(t−1)
u W

(t)
2 + b(t)

)
∈ Rd, (6)

where W
(t)
1 in Rd×d and W

(t)
2 in Rd×d are weight matrices, and b(t) in R1×d is a bias vector, and σt : R → R is an

activation function, for t in [L]. Similarly, Equation (5) is replaced by

hG := σL+1

( ∑
v∈V (G)

h(L)
v w + b

)
∈ R. (7)

with w in Rd×1 a weight vector and b in R a bias value of the final readout layer. Also, σL+1 : R → R is an activation
function. We can thus represent elements in GNNslp(d, L) more succinctly by the following tuple of parameters,

Θ =
(
W

(1)
1 ,W

(1)
2 ,b(1), . . . ,W

(L)
1 ,W

(L)
2 ,b(L),w, b

)
,

together with the tuple of activation functions σσσ = (σ1, . . . , σL, σL+1). We can equivalently view Θ as an element in
Rd(2dL+L+1)+1. Each Θ in Rd(2dL+L+1)+1 and σσσ = (σ1, . . . , σL+1) induces a permutation-invariant graph function

gnnΘ,σσσ : Gd → R : (G,L) 7→ gnnΘ,σσσ(G,L) := hG,

with hG as defined in Equation (7).

F. Missing proofs
In the following, we outline missing proofs from the main paper.

5For simplicity we assume that all feature dimensions of the layers are fixed to d in N and also assume that the readout layer returns a
scalar.

17



WL meet VC

F.1. Proofs of Proposition 3.1 and Proposition 3.2

We start with the general upper bound on the VC dimension in terms of the number of 1-WL-indistinguishable graphs.
Proposition F.1 (Proposition 3.1 in the main text). For all n, d, and L, the maximal number of graphs of order at most n
with d-dimensional boolean features that can be shattered by L-layer GNNs is bounded by the maximal number (mn,d,L) of
1-WL-distinguishable graphs. That is,

VC-dimGB
d,n

(
GNN(L)

)
≤ mn,d,L.

Proof. Clearly, every set S of mn,d,L + 1 graphs from GB
d,n contains at least two graphs G and G′ not distinguishable by

the 1-WL. Since GNNs cannot distinguish 1-WL-indistinguishable graphs (Morris et al., 2019; Xu et al., 2019), they cannot
tell G and G′ apart and hence cannot not shatter S. Hence, the VC dimension can be at most mn,d,L.

We next show a corresponding lower bound. In fact, the lower bound already holds for the class of simple GNNs of arbitrary
width, that is for GNNs in GNNmlp(L) :=

⋃
d∈N GNNmlp(d, L).

Proposition F.2 (Proposition 3.2 in the main paper). For all n, d, and L, all mn,d,L 1-WL-distinguishable graphs of order
at most n with d-dimensional boolean features can be shattered by sufficiently wide L-layer GNNs. Hence,

VC-dimGB
d,n

(
GNN(L)

)
= mn,d,L.

Proof. For all i in [mn,d,L], choose Gi in GB
d,n such that S = {G1, . . . ,Gmn,d,L

} consists of the maximum number of
graphs in GB

d,n pairwise distinguishable by the 1-WL after L iterations.

We next show that the class of simple GNNs which are wide enough, that is, GNNmlp(d
′, L) for large enough d′, is

sufficiently rich to shatter S. That is, we show that for each T ⊆ S there is a gnnT in GNNmlp(d
′, L) such that for all i in

[mn,d,L]:

gnnT (Gi) =

{
1 if Gi ∈ T , and
0 otherwise.

This shows that S is shattered by GNNmlp(d
′, L) and hence its VC dimension is at least |S| = mn,d,L, as desired.

Overview of the construction Intuitively, we will show that GNNmlp(d
′, L), with d′ large enough, is powerful enough to

return a one-hot encoding of the color histograms of graphs in S. That is, there is a simple GNN gnn in GNNmlp(d
′, L)

which in the MLP in its readout layer embeds a graph Gi in S as a vector hG in {0, 1}mn,d,L satisfying (hG)i = 1 if and
only if Gi in T and i ∈ [mn,d,L]. Then, we extend the readout multilayer perceptron of gnn by one more layer such that on
input G the revised GNN evaluates to the scalar

gG := sign(hG ·wT − 1) ∈ {0, 1},

with w in Rd′×1. We observe that given T ⊆ S it suffices to let the parameter vector w be the indicator vector for T .
Indeed, this ensures that gG = 1 if and only if G is in a color class included in T . We can explore all such subsets T of S
by varying w; hence, this GNN will shatter S.

Encoding 1-WL colors via GNNs We proceed with the construction of the required GNN. For simplicity of exposition, in
the description below we will construct GNN layers of non-uniform width. One can easily obtain uniform width by padding
each layer. First, by Morris et al. (2019, Theorem 2), there exists a GNN architecture with feature dimension (at most) n and
consisting of L layers such that for each Gi in S it computes 1-WL-equivalent vertex features fv in R1×d for v ∈ V (Gi).
That is, for vertices v and w in V (Gi) it holds that

fv = fw ⇐⇒ C1
L(v) = C1

L(w).

We note here that we can construct a single GNN architecture for all graphs by applying (Morris et al., 2019, Theorem 2)
over the disjoint union the graphs in S. This increases the width from n to nmn,d,L.

Encoding 1-WL histograms via GNNs Moreover, again by (Morris et al., 2020b, Theorem 2) there exists W in
Rnmn,d,L×nmn,d,L and b in Rnmn,d,L such that

σ
( ∑

v∈V (G)

fvW + b
)
= σ

( ∑
v∈V (H)

fvW + b
)

⇐⇒ hG = hH,

18



WL meet VC

for graphs G and H in S. We use ReLU as activation function σ here, just as in (Morris et al., 2019). Other activation
functions could be used as well (Grohe, 2021). Hence, for each graph in S, we have a vector in R1×nmn,d,L uniquely
encoding it. Since the number of vertices n is fixed, there exists a number M in N such that Mσ(

∑
v∈V (G) Wfv) is in

N1×nmn,d,L for all G in S. Moreover, observe that there exists a matrix W′ in Nnmn,d,L×2mn,d,L such that

Mσ
( ∑

v∈V (G)

fvW + b
)
W′ = Mσ

( ∑
v∈V (H)

fvW + b
)
W′ ⇐⇒ hG = hH,

for graphs G and H in S. For example, we can set

W′ =

K
nmn,L−1 · · · Knmn,L−1

... · · ·
...

K0 · · · K0

 ∈ Nnmn,d,L×2mn,d,L

for sufficiently large K > 1. Hence, the above GNN architecture computes a vector kG in N2mn,d,L containing 2mn,d,L

occurrences of a natural number uniquely encoding each color histogram for each graph G in S .

We next turn kG into our desired hG as follows. We first define an intermediate vector h′
G whose entries will be used to

check which color histogram is returned. More specifically, we define

h′
G = lsig(kG · (w′′)T + b),

with w′′ = (1,−1, 1,−1, . . . , 1,−1) ∈ R2mn,L and b = (−c1−1, c1+1,−c2−1, c2+1, . . . ,−cmn,d,L
−1, cmn,d,L

+1) ∈
R2mn,d,L with ci the number encoding the ith color histogram. We note that for odd i,

(h′
G)i := lsig(col(G)− ci − 1) =

{
1 col(G) ≥ ci

0 otherwise.

and for even i,

(h′
G)i := lsig(−col(G) + ci + 1) =

{
1 col(G) ≤ ci

0 otherwise.

In other words, ((h′
G)i, (h

′
G)i+1) are both 1 if and only if col(G) = ci. We thus obtain hG by combining ((h′

G)i, (h
′
G)i+1)

using an “AND” encoding (e.g., lsig(x+ y − 1)) applied to pairs of consecutive entries in h′
G. That is,

hG := lsig


h′
G ·



1 0 · · · 0
1 0 · · · 0
0 1 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 1


− (1, 1, . . . , 1)


∈ Rmd,n,L

We thus see that a 3-layer MLP suffices for the readout layer of the simple GNN, finishing the proof. We remark that the
maximal width is 2nmn,d,L, so we can take d′ = 2nmn,d,L.

F.2. Proof of Proposition 3.5

We now prove Proposition 3.5.

Proposition F.3 (Proposition 3.5 in the main text). There exists a family Fb of simple 2-layer GNNs of width two and of
bitlength O(b) using a piece-wise linear activation such that its VC dimension is exactly b.

Proof. We first show the lower bound. We fix some n ≥ 1. We shall construct a family of GNNs whose weights have
bitlength O(n) and a family of n graphs shattered by these GNNs. Thereto, for all x = (x1, . . . , xn) in {0, 1}n, we let

ρ(x) :=

n∑
i=1

(2−2i+1 + xi2
−2i).

19



WL meet VC

Written in binary, we have
ρ(x) = 0.1x11x21x3 . . . 1xn.

Observe that
1

2
≤ ρ(x) ≤ 1. (8)

For 1 ≤ k ≤ n, we let

ρk(x) := ρ
(
(xk+1, . . . , xk+n)

)
=

n∑
i=1

(2−2i+1 + xk+i2
−2i),

where xk+i := 0 for k + i > n. Then it follows from (8) that

1

2
≤ ρk(x) ≤ 1. (9)

We claim that

ρk(x) = 22kρ(x)−

(
k∑

i=1

22(k−i)+1 −
k∑

i=1

22(k−n−i)+1

)
︸ ︷︷ ︸

=:ak

−
k−1∑
i=1

22(k−i)xi︸ ︷︷ ︸
:=bk(x)

−xk (10)

Indeed, we have

22kρ(x) =

n∑
i=1

(
22(k−i)+1 + xi2

2k−2i
)

=

n+k∑
i=1

(
22(k−i)+1 + xi2

2(k−i)
)
−

n+k∑
i=n+1

22(k−i)+1

=

k∑
i=1

22(k−i)+1 −
n+k∑

i=n+1

22(k−i)+1 +

k∑
i=1

xi2
2(k−i) +

n+k∑
i=k+1

(
22(k−i)+1 + xi2

2(k−i)
)

=

k∑
i=1

22(k−i)+1 −
k∑

i=1

22(k−n−i)+1 +

k∑
i=1

xi2
2(k−i) +

n∑
i=1

(
2−2i+1 + xk+i2

−2i
)

=

k∑
i=1

22(k−i)+1 −
k∑

i=1

22(k−n−i)+1 +

k−1∑
i=1

xi2
2(k−i) + xk + ρk(x)

= ak + bk(x) + xk + ρk(x),

which proves (10). Now let
ck(x) := bk(x) + ak + 1.

Then by (9) and (10), we have

xk − 1

2
≤ 4kρ(x)− ck(x) ≤ xk. (11)

For x = (x1, . . . , xn) and y = (y1, . . . , yn) in {0, 1}n, we write x ̸=k y if xi ̸= yi for some i < k. Observe that x ̸=k y
implies

∣∣bk(x)− bk(y)
∣∣ ≥ 4 and thus ∣∣ck(x)− ck(y)

∣∣ ≥ 4. (12)

Let A : R → R be the continuous piecewise-linear function defined by

A(x) :=



0 if x < 0,

2x if 0 ≤ x < 1
2 ,

1 if 1
2 ≤ x < 1,

3− 2x if 1 ≤ x < 3
2

0 if 3
2 ≤ x.

20



WL meet VC

Since xk ∈ {0, 1}, by (11) we have
xk = A

(
4kρ(x)− ck(x)

)
. (13)

If follows from (12) that for y with y ̸=k x we have

A
(
4kρ(x)− ck(y)

)
= 0. (14)

Let
Ck :=

{
ck(y)

∣∣∣ y ∈ {0, 1}n
}
.

Then
xk =

∑
c∈Ck

A
(
4kρ(x)− c

)
. (15)

Note that the only dependence on x of the right-hand side of (15) is in ρ(x), because Ck does not depend on x.

Observe that |Ck| = 2k−1, because ck(y) only depends on y1, . . . , yk−1 ∈ {0, 1} and is distinct for distinct values of the yi.
We have

ak =

k∑
i=1

22(k−i)+1 −
k∑

i=1

22(k−n−i)+1

︸ ︷︷ ︸
=:s≤1

= 2

k−1∑
i=0

4i − s =
2

3

(
4k − 1

)
− s.

Thus
2

3

(
4k − 1

)
− 1 ≤ ak ≤ 2

3

(
4k − 1

)
.

Furthermore,

0 ≤ bk(x) ≤
k−1∑
i=1

22(k−i) =

k−1∑
i=1

4k−i = 4

k−2∑
i=0

4i =
4

3

(
4k−1 − 1

)
.

Thus
2

3

(
4k − 1

)
≤ c ≤ 2

3

(
4k − 1

)
+

4

3

(
4k−1 − 1

)
+ 1 = 4k − 1. (16)

Now for each ρ in R we construct a 2-layer GNN Gρ as follows:

• Initially, all nodes v carry the 1-dimensional feature h
(0)
v := 1.

• The first layer computes the 2-dimensional feature

(
h
(1)
v,1

h
(1)
v,2

)
defined by

h
(1)
v,1 :=

∑
w∈N(v)

ρ · h(0)
w − ρ,

h
(1)
v,2 :=

∑
w∈N(v)

h(0)
w − 1.

• The second layer computes the 1-dimensional feature h
(2)
v defined by

h(2)
v = A

h
(1)
v,1 −

∑
w∈N(v)

h
(1)
w,2

.

• The readout functions just takes the sum of all the h
(2)
v .

We define a graph Fk as follows. The graph Fk is a forest of height 2.

• Fk has a root node rc for every c ∈ Ck.

21



WL meet VC

• Each rc has a child sc and 4k additional children tc,1, . . . , tc,4k .

• The tc,i are leaves.

• Each sc has children uc,1, . . . , uc,c.

• The uc,i are leaves.

Now we run the GNN Gρ on Fk with ρ = ρ(x) for some x = (x1, . . . , xn) in {0, 1}n.

• We have h
(0)
v = 1 for all v in V (Fk).

• We have

h
(1)
tc,i,1

= h
(1)
uc,i,1

,

h
(1)
sc,1

= cρ,

h
(1)
rc,1

= 4kρ,

and

h
(1)
tc,i,2

= h
(1)
uc,i,1

= 0,

h
(1)
sc,2

= c,

h
(1)
rc,2

= 4k.

• We have

h
(2)
tc,i = A

(
− 4k

)
= 0

h(2)
uc,i

= A
(
− c
)
= 0

h(2)
sc = A

(
cρ− 4k

)
= 0

h(2)
rc = A

(
4kρ− c

)
=

{
xk if c = ck(x)

0 otherwise
by (13) and (14).

To see that the first three equalities hold, recall that A(x) ̸= 0 only if 0 < x < 3
2 . Thus A(−4k) = 0. Moreover, by

(16) we have 2 ≤ c and thus A(c) = 0. Finally, A
(
cρ− 4k

)
= 0 because ρ < 1 and c ≤ 4k − 1 by (16) and therefore

cρ− 4k < 0.

• As there is exactly one node rc with c = ck(x), the readout is
∑

v∈V (Fk)
h
(2)
v = xk.

Hence
Gρ(x)(Fk) = xi

Thus the GNNs Gρ(x) for x ∈ {0, 1}n shatter the set {F1, . . . , Fn}. Since the bitlength is upper bounded by O(b) and the
number of parameters in the above construction is constant, the hypothesis set is finite, and the upper bound follows from
standard learning-theoretic results; see, e.g., (Mohri et al., 2018).

F.3. Proof of Theorem 3.6

In the following, we outline the proof of Theorem 3.6. First, we define feedforward neural networks and show how simple
GNNs can be interpreted as such.

Feedforward neural networks A feedforward neural network (FNN) is specified by a tuple N = (N , β, γ) where
N describes the underlying architecture and where β and γ define the parameters or weights. More specifically, N =(
V N , EN , i1, . . . , ip, o1, . . . , oq, α

N ) where (V N , EN ) is a finite DAG with p input nodes i1, . . . , ip of in-degree 0, and q
output nodes o1, . . . , oq of out-degree 0. No other nodes have in- or out-degree zero. Moreover, αN is a function assigning to
each node v ∈ V N \{i1, . . . , ip} an activation function α(v) : R → R. Furthermore, the function β : V N \{i1, . . . , ip} → R

22



WL meet VC

is a function assigning biases to nodes, and finally, the function γ : EN → R assigns weights to edges. For an FNN N , we
define its size s as the number of biases and weights, that is s = |V N | − p+ |EN |.

Given an FNN N = (N , β, γ), we get a function fnnN : Rp → Rq defined as follows. For all v in V N , we define a function
hN
v : Rp → R such for a = (a1, . . . , ap) in Rp,

hN
v (a) :=

{
aj if v = ij for j ∈ [p],

αN (v)
(∑

u∈N+(v) γ(u, v)h
N
u (a) + β(v)

)
otherwise.

Finally, fnnN : Rp → Rq is defined as a 7→ fnnN (a) :=
(
hN
o1(a), . . . , h

N
oq (a)

)
.

Simple GNNs as FNNs We next connect simple GNNs in GNNslp(d, L) to FNNs. As described in Section E such GNNs
are specified by L+1 activation functions σσσ := (σ1, . . . , σL+1) and a weight vector Θ in Rd(2dL+L+1)+1 describing weight
matrices and bias vectors in all the layers. We show that for any attributed graph of order at most n G = (G,L) in Gn,d

with G = (V (G), E(G)) and L in Rn×d there exists an architecture NG(σσσ) such that for any weight assignment Θ in
Rd(2dL+L+1)+1 of the GNN, there exists βΘ : V NG → R and γΘ : ENG → R, satisfying

gnnΘ,σσσ(G,L) = fnnN=(NG(σσσ),βΘ,γΘ)(L
′), (17)

where L′ in Rnd is the (column-wise) concatenation of the rows of the matrix L. Moreover, NG(σσσ) is of polynomial size in
the number of vertices and edges in G, the feature dimension d, and the number of layers L. Furthermore, NG(σσσ) has only
a single output node o.

The idea behind the construction of NG(σσσ) is to consider the tree unraveling or unrolling, see, e.g., (Morris et al., 2020b), of
the computation of gnnΘ,σσσ(G,L) but instead of a tree we represent the computation more concisely as a DAG. The DAG
NG(σσσ) is defined as follows.

• The node set V NG consists of the following nodes.

– We have input nodes iv,j for v in V (G) and j in [d] which will take the vertex labels Lvj in R as value.

– For each t in [L], we include the following nodes: n(t)
v,j for v in V (G), j in [d].

– Finally, we have a single output node o.

We thus have d(L+ 1)|V (G)|+ 1 nodes in total.

• The edge set ENG consists of the following edges.

– We have edges encoding the adjacency structure of the graph G in every layer. More specifically, we have an edge
eu,j,v,k,t := (n

(t−1)
u,j , n

(t)
v,k) whenever u in N(v) ∪ {v} and where u and v are in V (G), j and k in [d], and t in

{2, . . . , L}.

– We also have edges from the input nodes iu,j to n
(1)
v,k for all u in NG(v) ∪ {v} and where u and v are in V (G)

and j and k in [d].

– Finally, we have edges connecting the last layer nodes to the output, i.e., edges ev,j := (n
(L)
v,j , o) for all v in V (G)

and j in [d].

We thus have d|V (G)|+ d2((L− 1)(E(G) + V (G)) + (E(G) + V (G))) edges in total.

• Finally, we define the activation functions.

– αN (n
(t)
v,j) := σt for all v in V (G), j in [d] and t in [L], and αN (o) := σL+1.

This fixes the architecture NG(σσσ). We next verify Equation (17). Let Θ in Rd(2dL+L+1)+1 and G = (G,L) in Gn,d. Let
NG(σσσ) be the architecture defined above for the graph G. We define βΘ and γΘ, as follows.

• βΘ := V NG → R is such that βΘ(n
(t)
v,j) = b

(t)
j for all v in V (G), j in [d] and t in [L]. We also set βΘ(o) = b.

• γΘ : ENG → R is such that γΘ(eu,j,v,k,t) := W
(2,t)
jk if u ̸= v and γΘ(eu,j,v,k,t) := W

(1,t)
jk otherwise, and γΘ(ev,j) =

wj , for u and v in V (G), j and k in [d], and t in [L].

23



WL meet VC

Note that we share weights across edges that correspond to the same edge in the underlying graph.

Now, if we denote by f
(t)
v the feature vector in Rd computed in the tth layer by the GNN gnnΘ,σσσ(G,L), then it is readily

verified, by induction on the layers, that for N = (NG, ασσσ, βΘ, γΘ):

hN

n
(t)
v,j

= f
(t)
v,j and thus hN

o := σL+1

 ∑
v∈V (G)

∑
j∈[d]

wjf
(L)
vj + b

,

from which Equation (17) follows.

We next expand the construction by obtaining an FNN that simulates GNNs on multiple input graphs. More specifically,
consider a set G consisting of m graphs G1 = (G1,L1), . . . ,Gm = (Gm,Lm) in Gn,d and a GNN in GNNslp(d, L) using
activation functions σσσ = (σ1, . . . , σL+1) in its layers. We first construct an FNN architecture NGi

(σσσ) for each graph
separately, as explained above, such that for every Θ in RP , there exists βΘ and γΘ such that

gnnΘ,σσσ(Gi,Li) = fnnNGi
:=(NGi

(σσσ),βΘ,γΘ)(L
′
i),

with L′
i is the concatenation of rows in Li, as before.

Then, let NG(σσσ) be the FNN architecture obtained as the disjoint union of NG1
(σσσ), . . . ,NGm

(σσσ). If we denote by oi the
output node of NGi

(σσσ) in NG(σσσ), then we have again that for every Θ in RP , there exists βΘ and γΘ such that

gnnΘ,σσσ(Gi) = hNG:=(NG(σσσ),βΘ,γΘ)
oi (L′)

for all i in [m], where L′ := (L′
1, . . . ,L

′
m).

We recall that, for t in [L], the nodes in NG(σσσ) are of the form ν
(t),g
v,j for v in VGg

, j in [d] and g in [m]. In layer L+ 1, we
have the output nodes o1, . . . , om. If the order of the graphs in G is at most n, then every layer, except the last one, has ndm
nodes. The last layer only has m nodes.

Piece-wise polynomial activation functions A piece-wise polynomial activation function σp,δ : R → R is specified
by a partition of R into p intervals Ij and corresponding polynomials pj(x) of degree at most δ, for j in [p]. That is,
σp,δ(x) = pj(x) if x in Ij . Examples of σp,δ(x) are: sign(x) : R → R : x 7→ 1x≥0 for which p = 2 and δ = 0,
relu(x) : R → R : x 7→ max(0, x) for which p = 2 and δ = 1, and lsig(x) : R → R : x 7→ max(0,min(1, x)) for which
p = 3 and δ = 1. Piece-wise linear activation functions are of the form σp,1, i.e., they are defined in terms of linear
polynomials. The parameters of an activation function σp,δ consist of the coefficients of the polynomials involved and the
boundary points (numbers) of the intervals in the partition of R.

Proof of Theorem 3.6 We next derive upper bounds on the VC dimension of GNNs by the approach used in Bartlett
et al. (2019a), where they used it for bounding the VC dimension of FNNs using piecewise polynomial activation functions.
Their approach allows for recovering known bounds on the VC dimension of FNNs in a unified manner. As we will see, the
bounds by Bartlett et al. (2019a) for FNNs naturally translate to bounds for GNNs.

Assume d and L in N. In this section, we will consider the subclass of GNNs in GNNslp(d, L) that use piece-wise polynomial
activation functions with p > 0 pieces and degree δ ≥ 0. As explained in Section E, d(2dL+L+1)+ 1 is the total number
of (learnable) parameters for our GNNs in GNNslp(d, L). As shorthand notation, we define P := d(2dL+ L+ 1) + 1. We
first bound VC-dimGd,n

(
GNNslp(d, L)

)
and then use this bound to obtain a bound for VC-dimGd,≤u

(
GNNslp(d, L)

)
.

We take G consisting of m graphs G1 = (G1,L1), . . . ,Gm = (Gm,Lm) in Gn,d and consider the FNN architecture
NG(σσσ) define above with output nodes o1, . . . , om. Let tresh : R → R such that tresh(x) = 1 if x ≥ 2/3 and tresh(x) = 0
if x ≤ 1/3. We will bound

K ′ :=
∣∣{(tresh(hNG

o1 (L′)), . . . , tresh(hNG
om (L′))

)
: NG := (NG(σσσ), βΘ, γΘ), Θ ∈ RP

}∣∣,
as this number describes how many 0/1 patterns can occur when Θ ranges over RP . These 0/1 patterns correspond, by the
construction of NG and the semantics of its output nodes, to how many of the input graphs in G can be shattered. To bound
K ′ using the approach in Bartlett et al. (2019a) we need to slightly change the activation function σL+1 used in the FNN

24



WL meet VC

architecture. The reason is that Bartlett et al. use the sign function to turn a real-valued function into a 0/1-valued function.
In contrast, we use the tresh function described above.

Let σσσ′ := (σ1, . . . , σL, σL+1 − 1/3). We will bound K ′ by bounding

K :=
∣∣{(sign(hNG

o1 (L′)), . . . , sign(hNG
om (L′))

)
: NG := (NG(σσσ

′), βΘ, γΘ), Θ ∈ RP
}∣∣.

Note that K ′ ≤ K because if tresh(σL+1)(x) = 1 then σL+1(x) ≥ 2/3 and hence σL+1(x) − 1/3 > 0 and hence
sign(σL+1(x)− 1/3) = 1. Similarly, tresh(σL+1)(x) = 0 then σL+1(x) ≤ 1/3 and hence σL+1(x)− 1/3 ≤ 0 and hence
sign(σL+1(x)− 1/3) = 0.

Then, if VC-dimGd,n

(
GNNslp(d, L)

)
= m then K ≥ 2m. We thus bound K in terms of a function κ in m and then use

2m ≤ κ(m) to find an upper bound for m, i.e., an upper bound for VC-dimGd,n

(
GNNslp(d, L)

)
. To bound K we can now

use the approach of Bartlett et al. (2019a). In a nutshell, the entire parameter space RP is partitioned into pieces S1, . . . , Sℓ

such that whenever Θ and Θ′ belong to the same piece (i) they incur the same sign pattern in {0, 1}m; and (ii) each hNG
o1 (L′)

is a polynomial of degree at most 1 + LδL. For δ = 0, these are polynomials in d+ 1 variables, for δ > 0, the number of
variables is P . Crucial in Bartlett’s approach is the following lemma.

Lemma F.4 (Lemma 17 in Bartlett et al. (2019a)). Let p1(x), . . . , pr(x) be polynomials of degree at most δ and in variables
x satisfying |x| ≤ r, where | · | denotes the number of components of a vector. Then

∣∣∣{(sign(p1(Θ)), . . . , sign(pr(Θ))
)
| Θ ∈ R|x|}∣∣∣ ≤ 2

(
2erδ

|x|

)|x|

.

Given property (ii) of the pieces S1, . . . , Sℓ, we can apply the above lemma to the polynomials hNG
o1 (L′), . . . , hNG

om (L′)

and, provided that the number of variables is at most m, obtain a bound for K by ℓ2
(

2em
d+1

)d+1

, when δ = 0, and

K ≤ ℓ2
(

2em(1+LδL)
P

)P
for δ > 0.

It then remains to bound the number of parts ℓ. Bartlett et al. show how to do this inductively (on the number of layers),
again using Lemma F.4. More precisely, every node in the FNN architecture is associated with a number of polynomials. In
layer t we have nmd nodes (number of computation nodes), and we associate with each node p polynomials (number of
breakpoints of activation function) of degree at most 1+ (t− 1)δt−1 and have (2d+1)d variables for δ = 0 and (2d+1)dt
variables for δ > 0. We then get, for δ = 0,

K ≤ 2L

((
2edmnp

(2d+ 1)d

)(2d+1)d
)L

2

(
2em

d+ 1

)d+1

, (18)

and for δ > 0,

K ≤
L∏

t=1

2

(
2edmnp(1 + (t− 1)δt−1)

(2d+ 1)dt

)(2d+1)dt

2

(
2em(1 + LδL)

P

)P

. (19)

These are precisely the bounds given in Bartlett et al. (2019a) applied to our FNN. It is important, however, to note that
this upper bound is only valid when Lemma F.4 can be applied, and hence, the number of variables must be smaller
than the number of polynomials. For t in [L], we must have that the number of variables is less than the number of
polynomials. We have nmdp polynomials, and up to layer t we have (2d + 1)dt parameters (variables). Hence, we
must have (2d + 1)dt ≤ nmdp or (2d + 1)t ≤ nmp, and also D ≤ m or P ≤ nmdp for δ > 0. For δ = 0, we need
(2d+ 1)d ≤ nmdp (or (2d+ 1) ≤ nmp) and d+ 1 ≤ m. The following conditions are sufficient

P ≤ m for δ > 0, and 2d+ 1 ≤ m for δ = 0. (†)

FNN size reduction based on 1-WL We next bring in 1-WL into consideration by collapsing computation nodes in NG in
each layer based on their equivalence with regards to 1-WL. In other words, if we assume that the graphs to be shattered
have at most u vertex colors, then we have at most u—rather than n—computation nodes per graph. This implies that the
parameter n in the above expression can be replaced by u.

25



WL meet VC

As a consequence, following Bartlett et al. (2019a), using the weighted AM–GM inequality on the right-hand side of the
inequalities (18) and (19), we obtain a bound for the VC dimension by finding maximal m satisfying, for δ = 0,

2m ≤ 2L+1

(
2ep(udL+ 1)m

P

)P

and for δ > 0,

2m ≤ 2L+1

(
2ep
(
ud
∑L

t=1(1 + (t− 1)δt−1) + (1 + LδL)
)
m

L(L+1)
2 (2d+ 1)d+ P

)L(L+1)
2 (2d+1)d+P

.

Such m are found in (Bartlett et al., 2019a), resulting in the following bounds.

Proposition F.5 ((Bartlett et al., 2019a) modified for our FNN NG).

VC-dimGd,≤u

(
GNNslp(d, L)

)
≤


O(Ld2 log(p(udL+ 1))) if δ = 0

O(L2d2 log(p(udL+ 1))) if δ = 1

O(L2d2 log(p(udL+ 1)) + L3d2 log(δ)) if δ > 1.

We can simplify this to O(P log(puP )), O(LP log(puP )), and O(LP log(puP ) + L2P log(δ)), respectively. We note
that since these are larger than P , the condition (†) is satisfied.

G. Additional experimental data and results
Here, we report on additional experimental details, results, and dataset generation.

G.1. Simple GNN layer used for Q1 and Q2

The simple GNN layer used in Q1 and Q2 updates the feature of vertex v at layer t via

f (t)v := σ
(
f (t−1)
v W

(t)
1 +

∑
u∈N(v)

f (t−1)
u W

(t)
2

)
∈ Rd, (20)

where W
(t)
1 and W

(t)
2 ∈ Rd×d are parameter matrices. In the experiments, we used reLU activation functions.

G.2. GNN architecture used for Q3

For the experiments on Q3 we extend the simple GNN layer from Equation (20) used in Q1 and Q2. We update the feature
of vertex v at layer t via

f (t)v := σ
(

BN
(
f (t−1)
v W(t) +

∑
u∈N(v)

mlp(t)(f (t−1)
u )

))
∈ Rd, (21)

where BN is a batch normalization module (Ioffe & Szegedy, 2015) and mlp(t) is a two-layer perceptron with architecture,

Linear → BN → reLU → Linear.

We, therefore, use a normalized 2-layer MLP to generate messages in each layer. We found this change necessary to ensure
smooth convergence on the challenging synthetic task posed by Q3, where the GNN has to memorize an arbitrary binary
graph labeling. Moreover, in the experiments, we used reLU activation functions.

G.3. Synthetic dataset generation

To address Q3, we aim to empirically estimate how well GNNs of different sizes can fit arbitrary binary labelings of graphs.
We construct a synthetic dataset that focuses on a simple class of trees. Formally, for two natural numbers m and n in N≥0,
we define the graph Tm,n = (Vm,n, Em,n) as a directed tree with vertex set V = {v0, . . . , vm+n+3}. The root v0 has two
children v1 and v2. The remaining m+ n vertices form the leaves such that vertex v1 has m children and v2 has n children.
Figure 4 provides a visual example.

26



WL meet VC

v0

v1 v2

. . .︸ ︷︷ ︸
m

. . .︸ ︷︷ ︸
n

Figure 4: A visualization of a Tm,n.

Table 3: Dataset statistics and properties.

Dataset
Properties

Number of graphs Number of classes/targets ∅ Number of nodes ∅ Number of edges Node labels Edge labels

ENZYMES 600 6 32.6 62.1 ✓ ✗

MCF-7 27 770 2 26.4 28.5 ✓ ✓

MCF-7H 27 770 2 47.3 49.4 ✓ ✓

MUTAGENICITY 4 337 2 30.3 30.8 ✓ ✓

NCI1 4 110 2 29.9 32.3 ✓ ✗

NCI109 4 127 2 29.7 32.1 ✓ ✗

For a chosen k in N, k ≥ 4, we define:

Tk =
{
Tm,n | 0 ≤ m ≤

⌊ (k − 3)

2

⌋
, n = k − 3−m

}
.

Therefore, Tk contains all distinct graphs Tm,n with |Vm,n(Tm,n)| = k. In particular, we observe |Tk| = ⌊ (k−3)
2 ⌋.

For k ∈ {10, 20, . . . , 90}, we aim to test how well a GNN with a given feature dimension d in {4, 16, 64, 256} can learn
binary labelings y : Tk → {0, 1} of Tk. The labeling y is obtained by sampling the label y(T ) uniformly at random for all T
in Tk. We then train a GNN model with stochastic gradient descent to minimize the binary cross entropy on the dataset
(Tk, y). For each combination of k and d, we repeat the experiment 50 times. We resample a new labeling y and a new
random initialization of the GNN model in each repetition.

G.4. Simulating bitlength via higher feature dimension

Here, we outline how to simulate a higher bitlength via a higher feature dimension. Assume the simple GNN layer
of Equation (20). Clearly, we can express the matrices W(t)

1 and W
(t)
2 as the sum of k matrix with smaller bitlength, e.g.,

W
(t)
2 = W

(1,t)
2 + · · ·+W

(k,t)
2 .

Hence, we can re-write the aggregation in Equation (20) as∑
u∈N(v)

f (t−1)
u

[
W

(1,t)
2 , · · · ,W(k,t)

2

]
·M ∈ Rd,

where [· · · ] denotes column-wise matrix concatenation and M in {0, 1}kd×d is a matrix such that

σ
(
f (t−1)
v W

(t)
1 +

∑
u∈N(v)

f (t−1)
u

[
W

(1,t)
2 , · · · ,W(k,t)

2

]
·M

)
= σ

(
f (t−1)
v W

(t)
1 +

∑
u∈N(v)

f (t−1)
u W

(t)
2

)
,

i.e., the matrix M sums together columns of the aggregated features such that they have feature dimension d.

27



WL meet VC

0 100 200 300 400 500
Epoch

10

0

10

20

30

40

Tr
ai

n 
- t

es
t a

cc
ur

ac
y 

[%
]

ENZYMES
4
16
256
1024

(a) ENZYMES

0 100 200 300 400 500
Epoch

0

1

2

3

4

5

Tr
ai

n 
- t

es
t a

cc
ur

ac
y 

[%
]

MCF-7
4
16
256
1024

(b) MCF-7

0 100 200 300 400 500
Epoch

0

1

2

3

4

5

Tr
ai

n 
- t

es
t a

cc
ur

ac
y 

[%
]

MCF-7H
4
16
256
1024

(c) MCF-7H

0 100 200 300 400 500
Epoch

5

0

5

10

15

Tr
ai

n 
- t

es
t a

cc
ur

ac
y 

[%
]

Mutagenicity
4
16
256
1024

(d) MUTAGENICITY

0 100 200 300 400 500
Epoch

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Tr
ai

n 
- t

es
t a

cc
ur

ac
y 

[%
]

NCI1
4
16
256
1024

(e) NCI1

0 100 200 300 400 500
Epoch

2.5

0.0

2.5

5.0

7.5

10.0

12.5

Tr
ai

n 
- t

es
t a

cc
ur

ac
y 

[%
]

NCI109
4
16
256
1024

(f) NCI109

Figure 5: Difference between train and test accuracy for different feature dimensions in {4, 16, 256, 1 024}.

28


