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Abstract

Pre-trained diffusion models have been success-
fully used as priors in a variety of linear inverse
problems, where the goal is to reconstruct a signal
from noisy linear measurements. However, exist-
ing approaches require knowledge of the linear
operator. In this paper, we propose GibbsDDRM,
an extension of Denoising Diffusion Restoration
Models (DDRM) to a blind setting in which the
linear measurement operator is unknown. Gibbs-
DDRM constructs a joint distribution of the data,
measurements, and linear operator by using a pre-
trained diffusion model for the data prior, and it
solves the problem by posterior sampling with an
efficient variant of a Gibbs sampler. The proposed
method is problem-agnostic, meaning that a pre-
trained diffusion model can be applied to various
inverse problems without fine-tuning. In experi-
ments, it achieved high performance on both blind
image deblurring and vocal dereverberation tasks,
despite the use of simple generic priors for the
underlying linear operators.

1. Introduction
Inverse problems are frequently encountered in various sci-
ence and engineering fields such as image processing, acous-
tic signal processing, and medical imaging. In an inverse
problem, the goal is to restore a clean data signal from mea-
surements generated by some forward (measurement) pro-
cess. In image processing, problems such as deblurring (Zhu
et al., 2018; Kupyn et al., 2019; Tu et al., 2022), inpaint-
ing (Yeh et al., 2017), and colorization (Larsson et al., 2016)
are naturally formulated as inverse problems. In audio sig-
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Figure 1. Blind image deblurring results obtained by GibbsDDRM:
(a) measurement, (b) restored clean images with blur kernels (bot-
tom right insets), and (c) ground truth images and blur kernels.

nal processing, problems such as dereverberation (Nakatani
et al., 2010; Saito et al., 2023) and band extension (Larsen
& Aarts, 2005) are also classic inverse problems. In medi-
cal imaging, many problems such as computed tomography
(CT) (Zhu et al., 2018; Song et al., 2021a) also rely on
inverse problem solving.

In general, inverse problems are ill-posed because the infor-
mation in the original data is lost through the measurement
process (e.g., because of noise); the incorporation of prior
knowledge about the original data is thus critical. In the past,
assumptions such as sparsity (Candès & Wakin, 2008), low
rank (Fazel et al., 2008), and total variation (Candès et al.,
2006) were made for the data distribution to narrow the set
of plausible candidate solutions. A more recent trend has
been to solve inverse problems by using richer deep genera-
tive models (Rick Chang et al., 2017; Anirudh et al., 2018;
Kadkhodaie & Simoncelli, 2020; Whang et al., 2021) trained
with a large amount of data as priors. In particular, the evo-
lution of methods related to diffusion models (Kawar et al.,
2021; 2022; Chung et al., 2023b;a) has been significant,
and many such methods are problem-agnostic, meaning that

1



GibbsDDRM: A Partially Collapsed Gibbs Sampler for Solving Blind Inverse Problems with Denoising Diffusion Restoration

they do not require retraining of the generative model used
for inference on each task (i.e., each inverse problem).

Existing approaches typically assume that the measurement
process is known. However, many settings are blind, mean-
ing that the measurement process itself is (partially) un-
known. This is known as a blind setting and includes prob-
lems such as blind image deblurring (Pan et al., 2016) and
audio dereverberation (Nakatani et al., 2010). For example,
in a blind image deblurring problem, the original image has
to be restored from the convolution process where the blur
kernel is unknown. To address this additional uncertainty,
priors are introduced on both the data and the parameters of
the linear operator involved (Chan & Wong, 1998; Krishnan
& Fergus, 2009; Xu et al., 2013). BlindDPS (Chung et al.,
2023a) is a method that uses a pre-trained diffusion model
for both data and parameters. However, while it can lever-
age widely available pre-trained diffusion models for signals
such as images and audio, it requires training a diffusion
model for the parameters of the linear operators of interest,
severely restricting its applicability in practice.

To overcome this limitation, we propose GibbsDDRM,
which does not require a data-driven prior model of the mea-
surement process. This method is an extension of Denoising
Diffusion Restoration Models (DDRM) (Kawar et al., 2022)
– a method designed for non-blind linear inverse problems –
to the blind linear setting. It constructs a joint distribution
of the data, the measurements, and the linear operator’s
parameters by using a pre-trained diffusion model for the
data and a generic prior for the measurement parameters.
Then, it performs approximate sampling from the corre-
sponding posterior distribution of the data and parameters
conditioned on the measurements. Here, we adopt a par-
tially collapsed Gibbs sampler (PCGS) (Van Dyk & Park,
2008) to enable efficient sampling from the posterior distri-
bution. PCGS allows us to replace an intractable conditional
distribution in the naı̈ve Gibbs sampler with a more tractable
one without changing the stationary distribution. PCGS al-
ternately samples the data or latent variables and the linear
operator’s parameters, and the generative model’s represen-
tational power is exploited while sampling the parameters
of the linear operator. This allows our method to accurately
estimate both data and the parameters despite using a simple
prior for the parameters.

We conducted experiments on the tasks of blind image de-
blurring in the image processing domain and vocal dere-
verberation in the acoustic signal processing domain. The
results confirm that high performance can be achieved on
both tasks without strong assumptions on the prior for the
linear operator’s parameters. In the blind image deblurring
task, GibbsDDRM demonstrates exceptional quantitative
performance in terms of both image quality and faithfulness.
It outperforms competing methods and BlindDPS by a large

margin in LPIPS, which measures the perceptual similarity
of images. The results also show that a faithful image can
be restored even with large measurement noise. (see Fig-
ure 1 for restored images and estimated blur kernels.) In
vocal dereverberation, GibbsDDRM outperforms alternative
methods in terms of the quality of the processed vocal, the
proximity of the signals, and the degree of reverberation
removal.

2. Background
Blind linear inverse problems. Blind linear inverse prob-
lems involve the estimation of both unknown clean data
and the parameters of a linear operator from noisy measure-
ments. This type of problem can be formulated as a linear
system of equations of the following form:

y = H’x0 + z; (1)

where y 2 Rdy is a vector of measurements, H’ 2
Rdy�dx0 is a linear operator parameterized by ’ 2 Rd’ ,
and x0 2 Rdx0 is the unknown original clean data to be es-
timated. z � N (0; �2

yI) is a Gaussian measurement noise
with known covariance �2

yI, where I is the identity matrix.
For notational convenience, we index the clean data x0 with
“0” to distinguish it from latent variables of the diffusion
model that are defined later. The aim here is to find estimates
of both x0 and ’ that fit the given noisy measurements y.
The problem is ill-posed without any additional assump-
tions. To obtain a solution, it is assumed that x0 is drawn
from a generative model p�(x0) (close to the true data distri-
bution), and that the parameters ’ are drawn from a known
prior p(’) independently of the data. In the Bayesian frame-
work, the optimal solution is to sample from the posterior
p(x0;’jy).

Denoising Diffusion Probabilistic Models. Denoising
Diffusion Probabilistic Models (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Song & Ermon, 2019; Song et al., 2021b;
Lai et al., 2022), or diffusion models for short, are generative
models with a Markov chain xT ! � � � ! xt ! � � � ! x0

represented by the following joint distribution:

p�(x0:T ) = p
(T )
� (xT )

T�1Y
t=0

p
(t)
� (xtjxt+1); (2)

where the model’s output is x0. To train a diffusion model,
a fixed variational inference distribution is introduced:

q(x1:T jx0) = q(T )(xT jx0)

T�1Y
t=1

q(t)(xtjxt+1;x0); (3)

which gives the evidence lower bound (ELBO) on the maxi-
mum likelihood objective. With Gaussian parameterization
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for p� andq, the ELBO objective is reduced to the following
denoising autoencoder objective:

TX

t =1


 t E(x 0 ;x t ) � pdata(x 0 )q(x t j x 0 )

h
kx0 � f ( t )

� (x t )k2
2

i
: (4)

Here, f ( t )
� is a � -parameterized neural network that esti-

mates noiseless datax0 from noisyx t and characterizesp� ;
x �;t denotes the estimate of noise-less data byf ( t )

� ; 
 t are
positive weighting coef�cients determined byq.

Denoising Diffusion Restoration Models. Denoising Dif-
fusion Restoration Models (DDRM) (Kawar et al., 2022) is
a method that uses a pre-trained diffusion model as a prior
for data in a non-blind linear inverse problem. It is de�ned
as a Markov chainxT ! xT � 1 ! � � � ! x1 ! x0 (where
x t 2 Rdx 0 ) conditioned on the measurementsy :

p(x0:T jy ) = p(T )
� (xT jy )

T � 1Y

t =0

p( t )
� (x t jx t +1 ; y ); (5)

wherex0 is the model's output. The conditionals in DDRM
are de�ned in terms of the denoising functionf ( t )

� of a pre-
trained diffusion model; intriguingly, the objective derived
using the ELBO coincides with that of the unconditional
diffusion model, except for a constant factor. This means
that the unconditionally pre-trained diffusion model can be
used during inference without �netuning. The core idea of
DDRM is to use the singular value decomposition (SVD)
of a linear operatorH to transform both the unknown in-
put x0 and the observed outputy , potentially corrupted by
noise, to a shared spectral space. In this space, DDRM exe-
cutes denoising on dimensions for which information from
y is available (i.e., when the singular values are non-zero).
When such information is not available (i.e., when the sin-
gular values are zero or the noise in the dimension is large),
DDRM performs imputation while explicitly considering
the measurement noise.

Partially collapsed Gibbs sampler. A Gibbs sampler is
a simple, widely used Markov chain Monte Carlo method
for sampling from the joint distribution of a set of vari-
ables (Casella & George, 1992). The procedure entails
iterative sampling from the fully conditional distributions of
each variable, given the current values of the other variables.
A blocked Gibbs sampler (Liu et al., 1994) is a variant
in which, instead of sampling each variable individually,
variables in a group or a “block” of variables are sampled
simultaneously while conditioned on all the other variables.
This approach is effective when the variables within a block
are highly correlated, and it can improve the sampler's con-
vergence speed.

A partially collapsed Gibbs sampler (PCGS) (Van Dyk &
Park, 2008; Kail et al., 2012) is a generalization of a blocked

Figure 2.Graphical model for the joint distribution in Eq. (7).

Gibbs sampler that effectively explores the probability space
through three basic operations in the sampling procedure:
marginalization, permutation, andtrimming, which are de-
scribed in detail in (Van Dyk & Park, 2008) and Appendix A.
In short, the removal of certain variables among the condi-
tional variables does not alter the Gibbs sampler's stationary
distribution, as long as these variables are not included
among the conditional variables until the next time they are
sampled. Hence, we can achieve ef�cient sampling when
the distributions obtained after trimming are tractable.

3. GibbsDDRM: Partially Collapsed Gibbs
Sampler with DDRM

3.1. Target joint distribution for blind linear inverse
problems

In this paper, we seek to solve blind linear inverse problems
by sampling from the posterior of the joint distribution of
the data and the linear operator's parameters, given the mea-
surements. The joint distribution of the datax0, parameters
' , and measurementsy is de�ned as follows:

p(x0; y ; ' ) = p� (x0)p(' )N (y jH ' x0; � 2
y I ); (6)

wherep� (x0) andp(' ) are the known prior distributions
for the data and the parameters, respectively. The Gaussian
distributionN (y jH ' x0; � 2

y I ) comes from the measurement
model given in Eq.(1). The aim is to sample from the
joint posterior distributionp(x0; ' jy ). Using a pre-trained
generative model as a priorp� (x0) can drastically improve
the solutions in inverse problems; however, inference can
be challenging. Even in the non-blind setting where'
is known, sampling from the posterior is intractable and
requires approximations like in DDRM (Kawar et al., 2022).

Here we model the data distribution using a pre-trained
diffusion model as in Eq.(2). This leads to the following
joint distribution over the data, its latent variables, and the
parameters, as shown in Figure 2,

p(x0:T ; ' ; y )

= p(T )
� (xT )

T � 1Y

t =0

p( t )
� (x t jx t +1 )p(' )N (y jH ' x0; � 2

y I ):

(7)
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Note that sampling from the posterior distribution
p(x0:T j' ; y ) under a �xed' corresponds to the objective
of DDRM. In addition, we also assume that the parameters'
prior p(' ) is a generic and simple prior, such as a sparsity
prior.

3.2. Partially Collapsed Gibbs Sampler for the joint
distribution

To sample from the joint posterior in Eq.(7), we could at-
tempt to sample from the joint posterior distribution that
includes the latent variables of the diffusion model. How-
ever, it is still not feasible to run a na�̈ve Gibbs sampler for
the posteriorp(x0:T ; ' jy ), as it would require a conditional
distribution for every individual variable, conditioned on all
the other variables. For instance, the conditional distribution
p(x t jx0:t � 1; x t +1: T ; ' ; y ) for the joint distribution de�ned
in Eq. (7) is not obvious.

A possible strategy is to use a blocked Gibbs sampler (Liu
et al., 1994) with the variables divided into two groups,x0:T

and' , and sampled alternately. In more detail, after initial-
izing ' , the sampling procedure of DDRM is performed
keeping' �xed to obtain an estimate of the clean datax0.
Then,' is sampled such that it is consistent with the es-
timated datax0 and measurementsy . By repeating these
operations, we can samplex0 and' from the joint posterior.
However, this approach may be inef�cient because of the
small number of updates made to' : the entire sampling
of x0:T must be performed for a step of sampling' , which
results in slow convergence.

Hence, we adopt a partially collapsed Gibbs sampler
(PCGS) (Van Dyk & Park, 2008) for the joint posterior.
This strategy's main advantage is that we can still use a
similar sampling method de�ned by the original DDRM.
This enables simultaneous sampling of the latent variables
x1:T and the linear operator's parameters' within a cycle
of DDRM sampling, thus improving the convergence speed.

In a nä�ve Gibbs sampler, the order of sampling variables is
arbitrary. In a PCGS, however, the sampling order must be
carefully chosen to facilitate the trimming operation, which
removes conditional variables from the conditional distribu-
tion. Speci�cally, once a variable has been marginalized and
removed from the conditional set, it should not be added
back until the next time it is sampled. We show a simple
example of a PCGS in Appendix A. Figure 3 shows the
sampling order of the proposed PCGS. After samplingxT ,
the following operations are performed in descending order
of t, until t = 0 : for eacht, x t is sampled once, and then'
andx t are alternately sampledM t times. One set of these
operations constitutes a single cycle of the PCGS, and the
operations are repeated forN cycles.

The proposed PCGS is de�ned in Algorithm 1. The fol-

Figure 3.Sampling order of variables in the proposed PCGS,
whose output entails the �nal sample of datax 0 and parameters' .

lowing proposition ensures that it samples from the true
posterior distribution.

Proposition 3.1. The PCGS de�ned in Algorithm 1 has
the true posterior distributionp(x0:T ; ' jy ) as its station-
ary distribution if the approximations to the conditional
distributions are exact.

We give the proof in Appendix A.

Algorithm 1 Proposed PCGS for the posterior in Eq. (7)

Input: Measurementy , initial values' (0 ;0) .
Output: Restored datax (N;M 0 )

0 , linear operator's param-
eters' (N;K ) .
K  0 // K counts the number of updates for' in a
cycle.
for n = 1 to N do

' (n; 0)  ' (n � 1;K ) , K  0
Samplex (n; 0)

T � p(xT j' (n;K ) ; y )
// " approximated byp� (xT j' ; y ).
for t = T � 1 to 0 do

� t  f x (n;M t +1 )
t +1 ; x (n;M t +2 )

t +2 ; � � � ; x (n; 0)
T g

Samplex (n; 0)
t � p(x t j' (n;K ) ; � t ; y )

// " approximated byp� (x t jx t +1 ; ' ; y ).
for m = 1 to M t do

Sample' (n;K +1) � p(' jx (n;m � 1)
t ; � t ; y )

// " Langevin sampling with the approximated
scorer ' logp(y jx �;t ; ' ).
K  K + 1
Samplex (n;m )

t � p(x t j' (n;K ) ; � t ; y )
// " approximated byp� (x t jx t +1 ; ' ; y ).

end for
end for

end for

Proposition 3.1 states that it is possible to sample reason-
able data and parameters by executing the PCGS de�ned
in Algorithm 1, but the conditional distributions the PCGS
includes are intractable. Hence, we replace each conditional
distribution with approximations from which we can ef�-
ciently sample. In the following paragraphs, we provide the
details of the sampling procedures at each step.
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Sampling of xT . The sampling ofxT is performed with
the distributionp(xT j' ; y ), which is obtained by trimming
x0:T � 1. Because this conditional distribution is intractable,
as discussed above, we use modi�ed DDRM to approximate
the conditional distribution.

Here, in order to introduce the modi�ed DDRM, we use
SVD of the linear operatorH ' and its spectral space, sim-
ilarly to previous studies (Kawar et al., 2021; 2022). The
SVD is given asH ' = U ' � ' V T

' , whereU ' 2 Rdy � dy

andV ' 2 Rdx 0 � dx 0 are orthogonal matrices, and� ' 2
Rdy � dx 0 is a rectangular diagonal matrix. Here we assume
dy � dx 0 , but our method would work fordy > d x 0 . The
diagonal elements of� ' are the singular values ofH ' in
descending order, denoteds1;' ; s2;' ; � � � ; sdy ;' . Hereafter,
we omit the subscript' from the singular values for nota-
tional simplicity. The values in the spectral space are rep-
resented as follows:x ( i )

t is thei -th element ofx t = V T
' x t ,

andy ( i ) is thei -th element ofy = � y
' U T

' y , whereA y

is the Moore-Penrose pseudo-inverse of a matrixA . Note
that the spectral space also depends on the parameters' ,
which is unknown in our blind setting, unlike in DDRM.
Our modi�ed DDRM update for samplingxT is de�ned as
follows:

p(T )
�

�
x ( i )

T j y ; '
�

=
(

N
�

y ( i ) ; � 2
T � � 2

y =s2
i

�
if si > 0

N
�
0; � 2

T

�
if si = 0

; (8)

where the only difference from the original DDRM is that
the parameters' are treated as random variables.

Sampling of x t . The sampling ofx t (t < T ) is per-
formed by sampling from the conditional distribution
p(x t jx t +1: T ; ' ; y ), which trimsx0:t � 1 if t > 0. As in
the sampling ofxT , we approximate the conditional distri-
bution by modifying DDRM. Denoting the prediction ofx0

at every time stept by x �;t which is made by the diffusion
model as in Sec. 2, modi�ed DDRM is de�ned as follows:

p( t )
�

�
x ( i )

t j x t +1 ; ' ; y
�

=
8
>>>>><

>>>>>:

N
�

x ( i )
�;t +

p
1 � � 2� t

x ( i )
t +1 � x ( i )

�;t

� t +1
; � 2� 2

t

�
if si = 0

N
�

x ( i )
�;t +

p
1 � � 2� t

y ( i ) � x ( i )
�;t

� y =si
; � 2� 2

t

�
if � t < � y

si

N
�

(1 � � b) x ( i )
�;t + � by ( i ) ; � 2

t �
� 2

y

s2
i

� 2
b

�
if � t � � y

si

;

(9)

where0 � � � 1 and0 � � b � 1 are hyperparameters, and
0 = � 0 < � 1 < � 2 < � � � < � T are noise levels that is the
same as that de�ned with the pre-trained diffusion model.

Thus we have the approximation

p(x t jx t +1: T ; ' ; y ) ' p� (x t jx t +1: T ; ' ; y )

= p� (x t jx t +1 ; ' ; y ); (10)

where the �nal equation comes from the Markov property
of the modi�ed DDRM.

Sampling of ' . At time stept, the sampling of the pa-
rameters' is done by using the conditional distribution
p(' jx t :T ; y ). For the joint distribution de�ned by Eq.(7),
the conditional distribution is not easily obtained because,
while ' andx t :T are related throughx0, the distribution
of x0 cannot be evaluated at this point. Hence, we use the
approximation in (Chung et al., 2023b;a) for the score of
the conditional distribution and then perform sampling by
Langevin dynamics (Langevin, 1908), as follows:

'  ' + ( �=2)r ' logp(' jx t :T ; y ) +
p

� � ; (11)

where� is a step size and� � N (0; I ). By Bayes' rule,
the scorer ' logq(' jx t :T ; y ) can be decomposed into two
terms:

r ' logp(' jx t :T ; y ) =

r ' logp(y jx t :T ; ' ) + r ' logp(' jx t :T ): (12)

Regarding the �rst term, we exploit the following theorem.

Theorem 3.2. (modi�ed version of Theorem 1 in (Chung
et al., 2023b)) For the measurement model in Eq.(1), we
have

p(y jx t :T ; ' ) ' p(y jx �;t ; ' ); (13)

and the approximation error can be quanti�ed with the
Jensen gap (Gao et al., 2017), which is upper bounded by

J �
1

� y

� q
2�� 2

y

� dy
e� 1=2s1m1; (14)

wherem1 :=
R

kx0 � x �;t kp(x0jx t :T )dx0, ands1 is the
largest singular value ofH ' .

By leveraging Theorem 3.2, we obtain the approximate
gradient with respect to' for the Langevin dynamics:

r ' logp(y jx t :T ; ' ) ' r ' logp(y jx �;t ; ' ); (15)

and for our measurement model in Eq. (1), the gradient is

r ' logp(y jx �;t ; ' ) = �
1

2� 2
y

r ' ky � H ' x �;t k2
2; (16)

which is tractable in practice.

As for the second term in Eq.(12), the conditional variables
can be eliminated sincex t :T and' are independent from
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Figure 4.Visualization of GibbsDDRM for the blind image deblurring task on the AFHQ dataset.

Eq.(7). As a result, we can use a simple prior distribution
(e.g., a Gaussian prior) for' that does not depend onx t :T .

We now have the conditional score of' for the Langevin
dynamics as follows:

r ' logp(' jx t :T ; y )

' �
1

2� 2
y

r ' ky � H ' x �;t k2
2 + r ' logp(' ): (17)

Note that at a particular time stept, x t varies because of
the Gibbs sampling, and so doesx �;t . This iterative process
can be viewed as feeding the information from the diffusion
model to the parameter estimation. It allows for accurate
parameter estimation even with simple priors.

We refer to the proposed PCGS as the Gibbs Denoising Dif-
fusion Restoration Models (GibbsDDRM), and we describe
the details of its instantiation for each of our experimental
tasks in Appendix B.

3.3. Implementation considerations

Initialization of ' . In GibbsDDRM, the initialization for
' is arbitrary. If an existing simple method can be used
to obtain an estimate of' , then we can use that estimate
as the initial value. In our experiments, we initialize the
blur kernel with a Gaussian blur kernel in the blind image
deblurring task. For the vocal dereverberation task, the
parameters are initialized with estimates obtained by the
weighted prediction error method (WPE) (Nakatani et al.,
2010), which is an unsupervised method that is not based
on machine learning, to accelerate the convergence speed.

Dependence of number of iterations,M t , on time step.
Whent is large, the estimation ofx0 ( = x �;t ) is dif�cult
because of the large amount of noise inx t . This uncertainty
can lead to instability in the sampling of' . The number

of sampling steps for' can vary across the diffusion time
steps and may even be zero. Accordingly, we use a strategy
of not updating' whent is large.

4. Experiments

We demonstrate our approach through two tasks: blind
image deblurring in the image processing domain and vocal
dereverberation in the audio processing domain.

4.1. Blind image deblurring.

The aim of blind image deblurring is to restore a clean
image from a noisy blurred image without knowledge of
the blur kernel. The details of the problem formulation and
its instantiation as a linear inverse problem are given in
Appendix B. Our code is available athttps://github.
com/sony/gibbsddrm .

Experimental settings. We conduct experiments on the
Flickr Face High Quality (FFHQ)256� 256dataset (Karras
et al., 2019) and the Animal Faces-HQ (AFHQ)256� 256
dataset (Choi et al., 2020b). We use a 1000-image vali-
dation set for FFHQ and a 500-image test set for the dog
class in AFHQ. All images are normalized to the range
[0; 1]. The blur type used is motion blur, and blur kernels
of size64 � 64 are generated via code1, with an inten-
sity value of0:5. We use the pre-trained diffusion models
from (Choi et al., 2021)2 for FFHQ and from (Dhariwal &
Nichol, 2021) for AFHQ, without �netuning for this task.
Measurements are generated by convolving the blur kernel
with a ground truth image and adding Gaussian noise with
� y = 0 :02. We use� = 0 :80 and� b = 0 :90 for the pro-

1https://github.com/LeviBorodenko/
motionblur

2https://github.com/jychoi118/ilvr_adm
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