
Multi-User Reinforcement Learning with Low Rank Rewards

Dheeraj Nagaraj 1 Suhas S Kowshik 2 3 Naman Agarwal 4 Praneeth Netrapalli 1 Prateek Jain 1

Abstract
We consider collaborative multi-user reinforce-
ment learning, where multiple users have the same
state-action space and transition probabilities but
different rewards. Under the assumption that the
reward matrix of theN users has a low-rank struc-
ture – a standard and practically successful as-
sumption in the collaborative filtering setting – we
design algorithms with significantly lower sample
complexity compared to the ones that learn the
MDP individually for each user. Our main con-
tribution is an algorithm which explores rewards
collaboratively with N user-specific MDPs and
can learn rewards efficiently in two key settings:
tabular MDPs and linear MDPs. When N is large
and the rank is constant, the sample complexity
per MDP depends logarithmically over the size of
the state-space, which represents an exponential
reduction (in the state-space size) when compared
to the standard “non-collaborative” algorithms.
Our main technical contribution is a method to
construct policies which obtain data such that low
rank matrix completion is possible (without a gen-
erative model). This goes beyond the regular RL
framework and is closely related to mean field
limits of multi-agent RL.

1. Introduction
Reinforcement learning (RL) has recently seen tremendous
empirical and theoretical success (Mnih et al., 2015; Sutton
et al., 1992; Jin et al., 2020b; Gheshlaghi Azar et al., 2013;
Dann & Brunskill, 2015). Near optimal algorithms have
been proposed to explore and learn a given MDP with sam-
ple access to trajectories. Multi-agent RL, where multiple
agents interact among themselves and the environment to
collect rewards, has gained a lot of interest due to immense
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practical applications. However, even simple instances of
multi-agent RL, like restless bandits, can be provably hard
(Papadimitriou & Tsitsiklis, 1999).

In this work, we consider the problem of learning optimal
policies for multiple MDPs collaboratively so that the total
number of trajectories sampled per MDP is smaller than the
number of trajectories required to learn them individually.
We assume that the various users have the same transition
matrices, but different rewards and the rewards have a low
rank structure. This is closely related to mean-field lim-
its of certain instances of multi-agent RL as described in
Section 3.

Motivation From the point of view of RL, this is an instance
of multi-task reinforcement learning (MTRL), various ver-
sions of which have been considered in the literature (Brun-
skill & Li, 2013; D’Eramo et al., 2020; Teh et al., 2017;
Hessel et al., 2019; Lazaric, 2012). Here, an agent learns
different MDPs together with certain common structures.
This shared structure could be a common domain (such as
moving towards different target points, but in the same en-
vironment) or similarity in the task to be performed (such
as picking up and moving different kinds of objects). Our
problem setup falls in the former category.

Recently, collaborative filtering has been studied in the on-
line learning setting (Bresler & Karzand, 2021; Jain & Pal,
2022; Ariu et al., 2020; Huleihel et al., 2021; Nguyen-Thanh
et al., 2019), where multiple bandit instances are simultane-
ously explored under low rank assumptions in order to learn
the preferences of multiple users simultaneously. From this
point of view, our work adds temporal dynamics, such as
change in preferences over time, based on past actions. That
is, we consider non-stationary environments via Markov
Decision Processes.

To motivate our setup, we consider the example of recom-
mendation systems in e-commerce or video streaming. In
this context, classical collaborative filtering setup assumes
that the preferences are static and not influenced by the rec-
ommendation system itself. However, this is untrue in the
real world. Buying an item changes the preferences of the
customer. In case the system recommends a TV and the
customer buys a TV, a TV stand might be the most relevant
recommendation. In case they watch a recommended video
about astrophysics, they might want to watch other astro-
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physics videos because the first video piqued their interest
in the topic.

Our work captures such scenarios by formulating this as
an RL problem where the state is affected by the actions
of the recommendation system and the state in turn affects
the rewards (i.e, the user preferences). This idea has gained
traction recently, as shown by the survey paper (Afsar et al.,
2022). However, in the papers which have been discussed
in the survey, the user information is apriori encoded into
the state embedding and the resulting system is treated as
a single agent MDP. In this work, we bring forth the multi-
agent aspect by viewing the RL approach as an enhancement
of the classical collaborative filtering allowing us discover
similarity among users. We believe the theoretical insights
gained in such a setting can lead to Deep RL algorithms
which utilize this multi-agent structure effectively and ex-
plicitly. The assumption of a common transition matrix
can be relaxed in practice by clustering users based on side
information and modeling each cluster to have a common
transition matrix (see (Mate et al., 2022) and references
therein).

Our Contributions We introduce the setting of multi-user
collaborative reinforcement learning in the case of tabular
and linear MDPs. In our study, we isolate and overcome
several technical and conceptual challenges in order achieve
sample efficient learning. The main technical challenge
we encounter is obtaining the right distribution of state-
action pairs from users such that we can successfully run
low-rank matrix estimation algorithms, without access to a
generative model (i.e, we can only deploy policies and query
trajectories corresponding to this policy). This requires
clever algorithm design since some states can be hard to
even reach. In fact, this endeavor goes beyond standard RL
methods and is related to functional reward maximization
and mean field limits of multi-agent RL as explained in
Section 3. To summarize our contributions:

a) Improved Sample Complexity: We provide sample
efficient algorithms for both these scenarios without access
to a generative model. Under the low rank assumption on
the reward matrix, the total sample complexity required
to learn the near-optimal policies for every user scales as
Õ(N + |S||A|) instead of O(N |S||A|) for tabular MDPs
and Õ(N + d) instead of O(Nd2) for linear MDPs.

b) Collaborative Exploration: In order to learn the rewards
of all the users efficiently under the low-rank assumption,
we need to deploy standard low rank matrix estimation algo-
rithms. These require specific kinds of linear measurements
(See Section 1.1). Without access to a generative model,
the main challenge in this setting is to obtain these linear
measurements by querying trajectories of carefully designed
policies. We design such algorithms in Section 4.

c) Functional Reward Maximization: In the case of linear
MDPs, matrix completion is more challenging since we
observe measurements of the form e⊺i Θ

∗ψ where Θ∗ ∈
RN×d, corresponding to the reward obtained by user i, with
respect to an embedding ψ. Estimating Θ∗ under low rank
assumptions requires the distribution of ψ to have certain
isotropy properties (see Section 7). We design a procedure
which can sample-efficiently estimate policies which lead
to these isotropic measurements (Section 6).

d) Matrix Completion With Row-Wise Linear Measure-
ments: For the linear MDP setting, the low rank matrix
estimation problem lies somewhere in between the matrix
completion (Recht, 2011; Jain et al., 2013) and matrix es-
timation with restricted strong convexity (Negahban et al.,
2009). We give a novel active learning based algorithm
where we estimate Θ∗ row by row without any assumptions
like incoherence. This algorithm maybe of independent
interest. This is described in Section 7.

1.1. Related Works

Related Settings: Multi-task Reinforcement learning has
been studied empirically and theoretically (Brunskill & Li,
2013; Taylor & Stone, 2009; D’Eramo et al., 2020; Teh
et al., 2017; Hessel et al., 2019; Sodhani et al., 2021). (Modi
et al., 2017) considers learning a sequence of MDPs with
side information, where the parameters of the MDP varies
smoothly with the context. (Shah et al., 2020) assumes the
optimal Q function Q∗(s, a), when represented as a S ×A
matrix, has low rank. With a generative model, they obtain
algorithms which makes use of this structure to obtain a
smaller sample complexity whenever the discount factor
is bounded by a constant. (Sam et al., 2022) improves the
results in this setting with additional assumptions on the
transition matrices. Our setting is different in that we con-
sider multiple users, and do not assume a generative model.
Our main contribution is to efficiently obtain measurements
conducive to matrix completion. (Hu et al., 2021) considers
a multi-task RL problem with linear function approximation
similar to our setting, but with the assumption of low-rank
Bellman closure, where the application of the Bellman op-
erator retains the low rank structure. They obtain a bound
depending on the quantity N

√
d instead of (N + d) like in

our work. (Lei & Li, 2019) RL with low rank assumptions
in an experimental context.

Low Rank Matrix Estimation:The low rank assumption
is popular in the collaborative filtering literature and has
been deployed successfully in a variety of tasks (Bell &
Koren, 2007; Gleich & Lim, 2011; Hsieh et al., 2012). Low
rank matrix estimation has been extensively studied in the
statistics and ML community for decades in the context
of supervised learning (Candès & Tao, 2010; Negahban
& Wainwright, 2011; Fazel, 2002; Chen et al., 2019; Jain
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et al., 2013; 2017; Recht, 2011; Chen et al., 2020; Chi et al.,
2019) in multi-user collaborative filtering settings. The
basic question is to estimate a d1×d2 matrixM given linear
measurements (x⊺iMyi)

n
i=1 when the number of samples is

much smaller than d1×d2 using the assumption that M has
low rank.

a) Matrix Completion: xi and yi are standard basis vectors.
Typically xi and yi are picked uniformly at random and
recovery guarantees are given whenever the matrix M is
incoherent (Recht, 2011).

b) Matrix Estimation: xi and yi are not restricted to be
standard basis vectors. Typically, they are chosen i.i.d such
that the restricted strong convexity holds (Negahban et al.,
2009).

For the case of tabular MDPs, we use the matrix completion
setting and for the case of linear MDPs, our setting lies some
where in between settings a) and b) as explained above.

1.2. Notation

By ∥ · ∥ we denote the Euclidean norm and by e1, . . . , em
the standard basis vectors of the space Rm for some m ∈ N.
Let Sd−1 := {x ∈ Rd : ∥x∥ = 1}, Bd(r) := {x ∈ Rd :
∥x∥ ≤ r}. For any m × n matrix A and a set Ω ⊆ [n]
by AΩ, we denote the sub-matrix of A where the columns
corresponding to Ω∁ are deleted. By ∆(A), we denote the
set of all Borel probability measures over the set A. In the
sequel,

2. Problem Setting
We consider N users indexed by [N ], each of them associ-
ated with an MDP with the same state-space S , action space
A, horizon H and transition matrices P = (P1, . . . , PH−1).
Here Ph(·|sh, ah) is a probability measure over S, which
gives the distribution of the state at time h+ 1 given the ac-
tion ah ∈ A was taken in state sh ∈ S at time h. Each user
has a different reward denoted by Ru = (R1u, . . . , RHu)
where Rhu : S ×A → [0, 1]. Denote the MDP associated
with the user u byMu := (S,A,P,Ru). For the sake of
simplicity, we will assume that the rewards are determinis-
tic.

Assume that all the MDPs start at a random state S1 with
the same distribution. Consider a policy Π := (π1, . . . , πH)
where πh : ∆(A) × S → R+ is a kernel - i.e, πh(·|s)
gives the probability distribution over actions given a
state s at time h. By (S1:H , A1:H) we denote the tra-
jectory (S1, A1), (S2, A2), . . . , (SH , AH) ∈ S × A. By
(S1:H , A1:H) ∼M(Π) we mean the random trajectory un-
der the policy Π - where Ah ∼ πh(·|Sh) and Sh+1 ∼
Ph(·|Sh, Ah). That is, it is the trajectory of the MDP under
the policy Π. Define the value function ofMu under policy

Π as: V (Π,Mu) := E(S1:H ,A1:H)∼Π

∑H
h=1Rhu(Sh, Ah).

We will call a policy Π̂u to be ϵ optimal for Mu if
V (Π̂u,Mu) ≥ supΠ V (Π,Mu)− ϵ. Our goal is to find ϵ
optimal policies for every u ∈ [N ] under low rank assump-
tions on the rewards Ruh. We assume that we are allowed
to pick any user u and query a trajectory corresponding to
any policy Π.

Reward Free Exploration: The objective of reward free
RL is to explore an MDP (without looking at the rewards)
such that we can obtain the optimal policy for every pos-
sible reward. After collecting K trajectories from the
MDP sequentially (denoted by DK), the algorithm out-
puts functions Π̂ and V̂ whose input is a reward function
R = (Rh(·, ·))Hh=1 (bounded between [0, 1]) and the output
is a nearly-optimal policy Π̂(R) and its estimated value
V̂ (Π̂(R)) for this reward function. Denote the MDP with
this reward function byMR. Given ϵ > 0 and δ ∈ [0, 1],
we let Krf(ϵ, δ) to be such that whenever K ≥ Krf(ϵ, δ),
with probability at-least 1− δ we have:

a) supR |V (Π̂,MR) − V̂ (Π̂(R))| ≤ ϵ and b) Π̂ is an ϵ
optimal policy forMR for everyR.

This setting was introduced in (Jin et al., 2020a). In this
work, we will use the reward free exploration algorithms
in (Zhang et al., 2020) for tabular MDPs and (Wagenmaker
et al., 2022) for linear MDPs.

Tabular MDP Setting S and A are finite sets. Denote
the reward Rhu(s, a) by the N × |S||A| matrix Rh where
Rh(u, (s, a)) = Rhu(s, a). We have the following low-rank
assumption:

Assumption (Tab) 2.1. The matrix Rh has rank r for some
r ≤ 1

2 min(N, |S||A|).

Linear MDP Setting Our definition is slightly different
from the one in (Jin et al., 2020b): a) we use two different
embeddings for rewards and transitions and b) we impose
an ℓ1 constraint on the transition embedding and an ℓ2 con-
straint on the reward embedding (instead of ℓ2 on both).
This is a natural choice since transition embeddings describe
a mixture of probability measures as the law of the next state.
On a technical level, ℓ1 norm is natural when controlling the
statistical error due to policy search described in Section 6,
which is based on the structural result in Lemma 6.1.

We consider embeddings ϕ : S×A → Rd, ψ : S×A → Rd

such that ∥ϕ(s, a)∥1 ≤ 1, ∥ψ(s, a)∥2 ≤ 1. We make the
following assumptions:

1. There exists θhu ∈ Rd, ∥θhu∥2 ≤
√
d such that

Rhu(s, a) = ⟨θhu, ψ(s, a)⟩ and Rh(s, a) ∈ [0, 1].

2. There exist signed measures µ1h, . . . , µdh
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over the space S such that: Ph(·|s, a) =∑d
i=1 µih(·)⟨ϕ(s, a), ei⟩

We will assume that µi are such that
∥
∫
µih(ds)ϕ(s, a)π(da|s)∥1 ≤ 1 and

supi,h
∫
|µih(ds)| ≤ Cµ. This is true whenever µih

are probability measures. We consider different embed-
dings for transition (ϕ) and reward (ψ) as the transition
embeddings have a natural ∥ · ∥1 structure since they give
linear combinations of measure which make up Ph(·|s, a).
We denote the N × d matrix whose u-th row is θ⊺uh to
be Θh. The low-rank assumption in this setting takes the
following form:

Assumption (Lin) 2.2. . The N × d matrix Θh has rank
r ≤ 1

2 min(N, d).

We restrict our attention to policies given by some fixed
policy space Q. As explained below in Section 3, this
is necessitated by the fact that our techniques are re-
quired to go beyond the standard RL setup and might
necessarily require non-deterministic policies. However,
the space of all possible policies can be very large and
intractable. We refer to Section A for the construc-
tion of randomized policy class Q such that it contains
all ϵ-optimal policies for every possible linear reward.
With some abuse of notation, we define the total vari-
ation distance between two kernels as: TV(πh, π

′
h) :=

sups∈S TV(πh(·|s), π′
h(·|s)). We define a distance over

Q by DQ(Π
(1),Π(2)) = suph∈[H] TV(π

(1)
h , π

(2)
h ), where

Π(i) = (π
(i)
h : h ∈ [H]).

3. Connection to Multi-Agent RL
We now connect our results to multi-agent reinforcement
learning in order to demonstrate why the problem of col-
laborative RL as described above can be hard. Low rank
matrix estimation requires random measurements with spe-
cific isotropy properties. For instance, matrix completion
results are derived when we observe entries from uniformly
random indices ((Recht, 2011)). In our context, this trans-
lates to sampling from specific distribution of state and
action (Sh, Ah) at time h by depolying a policy Π over a
uniformly random user u ∈ [N ]. Rather than maximizing
a scalar reward, this requires us to sample from a distribu-
tion with certain properties, going beyond the framework of
standard RL. In fact, Section A, we show that this requires
randomized policies even for simple MDPs. In the tabular
MDP case, we sidestep these issues with clever algorithm
design. However, in the linear MDP case, this does not
seem to be feasible. We use the following connection to
mean-field limits of multi-agent RL as sketched below in
order to solve the sampling question.

Suppose we pick users uniformly at random (U1, . . . , UT ∈

[N ]) and deploy a policy Π for each of them with
corresponding trajectories S

(t)
1:H , A

(t)
1:H ∼ M(Π). We

observe ‘linear measurements’ of Θh of the form
(eUt

, ψ(S
(t)
h , A

(t)
h ), e⊺Ut

Θhψ(S
(t)
h , A

(t)
h )). To achieve ma-

trix estimation, we need to query (S
(t)
h , A

(t)
h ) such that the

distribution of ψ(S(t)
h , A

(t)
h ) is ‘nearly isotropic’ ( See (4) in

Section 7). Let Γh(Π) denote the distribution of S(1)
h , A

(1)
h .

In Theorem 6.2, we show that the conditions in (4) are satis-
fied whenever J(Γh(Π)) > 0 for J : ∆(S ×A)→ R given
by:

J(Γh(Π)) :=

inf
x∈Sd−1

E|⟨ψ(S(1)
h , A

(1)
h ), x⟩|

√
d− ξd⟨ψ(S(1)

h , A
(1)
h ), x⟩2

Our objective now is to find a policy by solving the follow-
ing optimization problem

arg sup
Π∈Q

J(Γh(Π)) (1)

This is similar to the mean field multi-agent control problem
presented in (Cammardella et al., 2020). To demonstrate
the connection to multi-agent systems, consider n agents
with the same MDPM and embeddings ϕ, ψ. A trajectory
here corresponds to jointly and independently running MDP
associated with each agent with the same policy. The col-
lective reward of the system is given by J(Γ̂h), where Γ̂h

denotes the empirical distribution of state-actions of the n
agents at time h. Note that, picking a policy Πn to maxi-
mize this reward is a reward maximization problem on the
joint multi-agent system. And, for any fixed policy Π, as
n → ∞, Γ̂h(Π) → Γh(Π) under reasonable assumptions
on the state space via the law of large numbers. Hence
J(Γ̂h(Π)) → J(Γh(Π)) under continuity (in some appro-
priate distance between probability measures). Therefore
the planning problem in (1) is the same as the multi-agent
RL problem described above in the limit n→∞.

4. The Algorithm
Our algorithm proceeds in 4 phases. In phase 1, we run
reward free RL, which selects trajectories from uniformly
random users since all the users share the same MDP. Thus,
this does not incur a large per-user sample complexity. This
step allows us to find near-optimal for any reward function
of our choice. At the end of phase 1, the main unknown will
the reward matrix of the users.

Phase 2 is the main technical contribution of work. In phase
2, we use the reward free RL output from phase 1 in order
to design collaborative exploration policies. These policies
obtain the right linear measurements of the low-rank reward
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matrix so that we can successfully apply matrix estimation
algorithms in phase 3. Phase 4 uses the reward estimate
from phase 3 and the reward free RL output from phase 1 in
order to learn the optimal policy for every user.

4.1. Tabular MDP Case:

Phase 1: Reward Free Exploration We run the reward
free RL algorithm in (Zhang et al., 2020) for Krf( ϵ8 ,

δ
2 ) =

C
|S||A|H2

(
|S|+log(

1
δ )

)
ϵ2 polylog( |S||A|H

ϵ ) time steps by pick-
ing the MDP corresponding to a uniformly random user
whenever the reward free RL algorithm queries a trajectory.
Let the output of the reward free RL algorithm be Π̂ and V̂ .

Phase 2: Querying the Reward Matrix In this phase we
query a ‘uniform mask’ with the parameter p for the reward
matrix Rh using Algorithm 1. For each (s, a) ∈ S ×A and
h ∈ [H], maintain a counter Th,(s,a) for (s, a) ∈ S × A
and h ∈ [H], initialized at 0. Given the ‘active sets’ G =
(Gh)h∈[H] ⊆ S × A and h ∈ [H], we define the reward
J (;G) = (J1, . . . , Jh) by

Jh(s, a;G) = 1((s, a) ∈ Gh) (2)

We will denote this reward by J (·;G). Initialize active set
G = (Gh)h∈[H] such that Gh = S × A. We initialize the
reward matrix R̂h(u, (s, a)) = ∗, where ∗ denotes unknown
entry. This algorithm terminates when it detects that suf-
ficient number of samples have been collected for matrix
completion.

Phase 3: Reward Matrix Completion We receive Gh and
the partially observed matrix R̂h for each h as the output

of Algorithm 1. By R̂G∁
h

h , we denote the sub-matrix where
the columns corresponding to Gh are deleted. We use the
nuclear norm minimization algorithm given in (Recht, 2011)

to recover RG∁
h

h from R̂
G∁
h

h for every h ∈ [H].

Phase 4: Computing the Optimal Policy Phase 3 outputs

the completed sub-matrix RG∁
h

h , where only the columns
corresponding to |G∁h| are recovered. We construct the re-

covered matrix R̄h by setting R̄G∁
h

h = R
G∁
h

h and R̄Gh

h = 0.
We compute the optimal policy for each user using the re-
wards from R̄h via the output of the reward free RL, Π̂,
from Phase 1.

4.2. Linear MDP Case:

Phase 1 : Reward Free RL We run the reward free RL
algorithm for Linear MDPs from (Wagenmaker et al., 2022),
with error ϵ and probability of failure δ

4 . We use trajectories
from random users whenever a trajectory is queried. Here,

Krf(ϵ, δ/4) =
CdH5(d+log(

1
δ ))

ϵ2 +
Cd9/2H6 log4(

1
δ )

ϵ .

Phase 2: Querying Linear Measurements of the Reward

Algorithm 1 Uniform Mask Sampler for Tabular MDPs
Output:Active sets G = (Gh)h∈[H], Partially complete
matrix R̂h

t← 0 P̂G ← V̂ (J (·;G))
Π̂G ← Π̂(J (·;G))
while P̂G > ϵ

2 do
Ut ← Unif([N ]) {Pick a user uniformly at random}
S
(t)
1:H , A

(t)
1:H , R

(t)
1:H ∼MUt

(Π̂G) {Query trajectory}
for h ∈ [H] do

if (S(t)
h , A

(t)
h ) ∈ Gh and Rh(Ut, (S

(t)
h , A

(t)
h )) = ∗

then
T
h,(S

(t)
h ,A

(t)
h )
← T

h,(S
(t)
h ,A

(t)
h )

+ 1 {Increment
count}
R̂h(Ut, (S

(t)
h , A

(t)
h )) ← R

(t)
h {Fill Missing En-

try}
end if
if T

h,(S
(t)
h ,A

(t)
h )

= Np then

Gh ← Gh \{(S(t)
h , A

(t)
h )} {Remove element from

Active Set}
end if

end for
t← t+ 1
P̂G ← V̂ (J (·;G))
Π̂G ← Π̂(J (·;G))

end while

Matrix We obtain policies whose trajectory data allows low
rank matrix estimation of the reward matrix.

Step 1: For each time step h ∈ [H], we
want to query obtain samples (s

(t)
h , a

(t)
h ) such that∑T

t=1 ϕ(s
(t)
h , a

(t)
h )ϕ⊺(s

(t)
h , a

(t)
h ) ⪰ κ2I . This can be done

by Algorithm 2. Given a projector Q to some subspace
of Rd, by Qh,Q denote the reward ∥Qϕ(s, a)∥2 at time h
and 0 otherwise. The termination condition ensures that we
see enough data in all directions ϕ, which allows us to find
collaborative exploration policy below.

Step 2: Using the observations given in Step 1, we compute
the policy Π̂f,h which approximately satisfies the property
given in Assumption 5.6. This procedure is described in
Section 6.

Phase 3: Estimating Low Rank Reward Matrix For this,
we use the active learning procedure given in Section 7
via row-wise linear measurements along with the policy
ΠMC,h = Π̂f,h, which was computed in Phase 2.

Phase 4: Computing the Optimal Policy Once the reward
matrix Θh have been reconstructed for every h in Phase 3,
we use the output of reward free RL in order to compute the
ϵ optimal policy for each user.
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Algorithm 2 Well Conditioned Matrix Sampler
Input:Total time T ; Tolerance γ; lower isometry κ
Output:ϕht, S(h+1)t for h ∈ [H − 1], t ∈ [T ]
for h = 1 to h = H − 1 do
Q← I Π̂Q ← Π̂(Qh,Q)
Gϕ,h ← 0 {Grammian initialized to 0}
for t = 1 : to t = T do
Ut ∼ Unif([N ]) {Pick a uniformly random user}
S1:H , A1:H ∼MUt

(Π̂Q) {Obtain Trajectory}
ϕht ← ϕ(Sh, Ah) S(h+1)t ← Sh+1

Gϕ,h ← Gϕ,h + ϕhtϕ
⊺
ht {Update Grammian}

if ∃y ∈ Sd−1 : y⊺Gϕ,hy < κ2 then
Q← eigenspace of Gϕ,h with eigenvalues < κ2

Π̂Q ← Π̂(Qh,Q)
end if

end for
end for

5. Main Results
5.1. Tabular MDP:

Incoherence is a standard assumption for low rank matrix
completion. This ensures that the matrix is not too sparse
so that sparse measurements are sufficient to learn it. The
following definition is used in (Recht, 2011).

Definition 5.1. Given a r dimensional sub-space U of Rn ,
we define the coherence of U as:

µ(U) :=
n

r
sup

1≤i≤n
∥PUei∥2 .

A n1 × n2 matrix M with singular value decomposition
UΣV ⊺ is called (µ0, µ1) coherent if:

a) The coherence of the row and column spaces of M are
at-most µ0 b) The absolute value of every entry of UV ⊺ is
bounded above by µ1

√
r

n1n2
.

Given a policy Π, and Ω ⊆ S × A, by PΠ
h (Ω) we denote

the probability that at time h we have (Sh, Ah) ∈ Ω under
the policy Π.

Assumption (Tab) 5.2. Given the reward matrix Rh and
Ωh ⊂ S ×A, recall the notation for the sub-matrix RΩh

h of
Rh. If supΠ P

Π(Ω∁
h) < ϵ have:

1) RΩh

h is (µ0, µ1) incoherent 2) |Ω∁
h| ≤

|S|
2

The incoherence assumption for RΩ
h makes sense since the

set Ω∁ cannot be easily reached with any policy with a
probability larger than ϵ. In fact we can arrive at an ϵ optimal
policy for the original reward by just setting the rewards
at Ω∁ to be 0. These can be thought of as redundant states
which do not matter for our RL model with any reward.

Theorem 5.3. Suppose Assumption
(Tab) 2.1, 5.2 hold. Let the parameter p =

C
max(µ2

1,µ0)r(N+|S||A|) log2 |S||A| log(Hδ )

N |S||A| . for some
large enough constant C. Assume that |S||A| and N are
large enough such that p < 1/2. Then, with probability
at-least 1− δ, we can find an ϵ optimal policy Π̂u for every
user u ∈ [N ] whenever the total number of trajectories
queried is:

C
|S||A|H2

(
|S|+ log( 1δ )

)
ϵ2

polylog( |S||A|H
ϵ )

+
Cmax(µ2

1, µ0)r(N + |S||A|)H log2 |S||A| log(Hδ )
ϵ

Remark 5.4. For largeN , the number of trajectories queried
per user is Õ( rH log2(|S||A|)

ϵ ), which is an exponential im-
provement in the state-space size dependence when com-
pared to the minimax rate of |S||A|H2

ϵ2 (Dann & Brun-
skill, 2015) for learning a single MDP. Every phase in
the algorithm has polynomial computational complexity
in N, |S||A| and 1

ϵ . The probability p is chosen such that
p|S||A|N = Õ(r(|S||A| + N)), which is the number of
free parameters required to describe a rank r matrix.

5.2. Linear MDP

Assumption (Lin) 5.5. There exists a γ > 0 such that
for every x ∈ Sd−1, and every h ∈ [H] there exists
a policy Πx,h such that whenever S1:H , A1:H ∼ Πx,h,
E⟨ϕ(Sh, Ah), x⟩2 ≥ γ

The assumption above shows that we can obtain information
about all directions. If this does not hold for any γ, then
ϕ(Sh, Ah) does not have any component in some direction
x0 with any policy. Thus, we can remove the sub-space
spanned by x0 and make the embedding space Rd−1 at time
h.

Assumption (Lin) 5.6. There exist ζ, ξ > 0 such that for
every h ∈ [H], there exists a policy Πh,ζ,ξ ∈ Q such that
whenever S1:H , A1:H ∼M(Πh,ζ,ξ), we have:

inf
x∈Sd−1

E
[
|⟨x, ψ(Sh, Ah)⟩|

√
d− ξd⟨x, ψ(Sh, Ah)⟩2

]
≥ ζ

The assumption above ensures that there exist measure-
ments ψ(Sh, Ah) which are conducive to low rank matrix
estimation as considered in Section 7. This means that
|⟨ψ(Sh, Ah), x⟩| = Ω(1/

√
d) just like an isotropic random

vector, which gives us information about all directions. How-
ever, this condition is much looser than the assumption of
uniform distribution on the sphere.

Assumption (Lin) 5.7. For any 1 ≥ η > 0, there exists an
η net for Q, denoted by Q̂η such that log |Q̂η| ≤ D log( 1η ).
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We refer to Section A, where we justify this assumption.
We first demonstrate that deterministic policies which are
sufficient for reward maximization (as used in (Jin et al.,
2020b)) cannot be used in this context, so a set of stochastic
policies is required. We then construct such policy classes
with D = O(dH log dH log log(|A|)).
Theorem 5.8. Suppose Assumptions (Lin) 2.2 5.5 5.6
and 5.7 hold and suppose ϵ < γ

2 . In Algorithm 2, we

set κ =
CCµdH

√
dH+D(

√
d+ξd)

ζ

√
log
(

CµH(d+D)
ζγδ

)
and

T = C κ2d
γ2 log dκ

γ .

Then, with probability at least 1− δ, our algorithm finds ϵ
optimal policy for every user u ∈ [N ] with the total number
of trajectories being bounded by: Trf + Tpol + Tmat−comp,
where:

Trf =
dH5(d+ log( 1δ ))

ϵ2
+
d9/2H6 log4( 1δ )

ϵ
,

Tpol =
C2

µd
5H3(dH +D) log2

(
CµH(d+D)

ζγδ

)
ζ2γ2

,

Tmat−comp = C
Hr(N + d logN) log d

ζξ

ζ2ξ2

+
H logN log

(
logN

δ

)
ζ2ξ2

. (3)

Remark 5.9. WhenN is very large, the per user sample com-
plexity is O(Hr), which is much better than the mini-max
optimal complexity of Ω(d2H2) (Wagenmaker et al., 2022).
While Phases 1 and 2 of the algorithm have a computational
complexity which is polynomial in d and 1

ϵ , the optimization
problems posed in Phase 3 and 4 are not necessarily poly-
nomial time. We leave the computational aspects to future
work. The sample complexity Õ(r(N + d)) corresponds to
the number of free parameters required to describe a rank r
matrix.

6. Obtaining Policies With Given Statistics
In this section, we consider the Linear MDP setting and
describe the sub-routine described in Step 2 of Phase 2 of
the algorithm where we compute a policy Π̂f,h such that the
law of ϕ(Sh, Ah) under this policy approximately satisfies
the property given in Assumption 5.6. This is required in
order to use the guarantees for low matrix estimation in
Phase 3, which is described in Section 7. We first state a
structural lemma which characterizes the law of Sh+1, Ah+1

under any policy Π.

Lemma 6.1. Consider any policy Π = (π1, . . . , πH−1, πH)
to the MDPM. Let S1:H , A1:H ∼ M(Π). Then for any

bounded, measurable function g : S ×A → R, we have:

Eg(Sh+1, Ah+1) =

d∑
i=1

νi

∫
g(s, a)dµih(ds)πh+1(da|s)

Where νi := ⟨Eϕ(Sh, Ah), ei⟩

We now want to estimate certain statistics under any
policy using available data, obtained from the out-
put of Algorithm 2. Notice that the output of
Algorithm 2 gives a sequence of random variables
(ϕh1, s(h+1)1), . . . , (ϕhT , s(h+1)T ) ∈ Rd × S such that

(s(h+1)l)
T
l=1|(ϕhl)Tl=1 ∼

∏T
l=1

(∑d
i=1⟨ϕhl, ei⟩µhi(·)

)
and

Gϕ,h :=
∑T

t=1 ϕhtϕ
⊺
ht. For any measurable function

g : S × A → RK , ν ∈ Rd such that ∥ν∥ ≤ 1 and any
randomized policy Π = (π1, . . . , πH) we define:

1. T1(g, π1) = E
∫
g(S1, a)π1(da|S1)

2. Th+1(g; ν, πh+1) =∑d
i=1⟨ν, ei⟩

∫
µih(ds)πh+1(da|s)g(s, a) when h ≤

H − 1

3. Eν
1 (Π) := ∥T1(ϕ, π1)− ν∥1

4. Eν
h(Π) = infν1,...,νh−1∈Bd(1) F (Π, ν1, . . . , νh−1, ν)

whenever h > 1

Define αht,ν = ϕ⊺htG
−1
ϕ,hν. We estimate these operators

from data as follows:

1. T̂1(g, π1) = 1
T

∑T
t=1

∫
g(s1t, a)π1(da|s1t)

2. T̂h+1(g, ν, πh+1) =∑T
t=1 αht,ν

∫
g(s(h+1)t, a)πh+1(da|s(h+1)t)

3. Êν
1 (Π) := ∥T̂1(ϕ, π1)− ν∥1

4. Êν
h(Π) = infν1,...,νh−1∈Bd(1) F̂ (Π, ν1, . . . , νh−1, ν)

whenever h > 1

Where, for h > 1 and ν1, . . . , νh−1 ∈ Bd(1), we have
defined:

1. F (Π, ν1, . . . , νh−1, νh) := Eν1
1 (Π) +∑h

j=2 ∥Tj(ϕ, νj−1, πj)− νj∥1

2. F̂ (Π, ν1, . . . , νh−1, νh) := Êν1
1 (Π) +∑h

j=2 ∥T̂j(ϕ, νj−1, πj)− νj∥1

Define f(s, a;x) := |⟨x, ψ(s, a)⟩|
√
d − ξd⟨x, ψ(s, a)⟩2.

The output of our method is:
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1.

Π̂f,1 =

arg sup
Π=(π1,...,πH)∈Q

inf
x∈Sd−1

T̂1(f(·;x), π1)

2.

(Π̂f,h, ν̂) =

arg sup
ν∈B(1)

Π=(π1,...,πH)∈Q

inf
x∈Sd−1

T̂h(f(·;x); ν, πh)

whenever h > 1, subject to Êν̂,h−1(Π̂f,h) ≤ η0

3. Assign output: Π̂ζ,ξ,h = Π̂f,h

The idea behind this method is as follows. First, us-
ing the output of algorithm 2, we construct T̂h(g, ν, πh),
which approximates the functional Th(g, ν, πh) uniformly
for every ν, πh. This is shown in Lemma E.1 in the ap-
pendix. We will show in Theorem 6.2 that obtaining poli-
cies which can be used with the matrix completion rou-
tine reduces to picking a policy Πf,h = (π1, . . . , πH)
such that whenever S1:H , A1:H ∼ M(Πf,h), we must
have: infx∈Sd−1 Ef(Sh, Ah;x) ≥ ζ. Now, we use
Lemma 6.1 to conclude that if such a policy exists, then
there exist ν1, . . . , νh−1 such that Eϕ(Sj , Aj) = νj and
infx∈Sd−1 Th(f(;x); νh, πh) ≥ ζ . Since we only have sam-
ple access, we find such a policy approximately by optimiz-
ing using the estimates T̂ instead of the exact functional T
as described above.

Theorem 6.2. We condition on the event Gϕ,h ≥ κ2I for
every h ∈ [H]. Let κ, η, η0 be such that for some small
enough constants c0, c > 0 and a large enough constant
C > 0:

1. η ≤ c ζ

CµdH(
√
d+ξd)H

√
κ2

T ; η0 = c0
ζ

Cµ(
√
d+dξ)

2. κ ≥ C Cµ(
√
d+ξd)dH
ζ

√
log
(

dH|Q̂η|
δ

)
+ dH log

(
d
η

)

Recall the policy Π̂f,h. Suppose the Assumption 5.6 holds.
Then, with probability at-least 1− δ

4 we obtain the policy
Π̂f,h is such that whenever S1:H , A1:H ∼ M(Π̂f,h), we
have:

inf
x∈Sd−1

Ef(Sh, Ah;x) ≥
ζ

2

This implies that ψ(Sh, Ah) satisfies E|⟨ψ(Sh, Ah), x⟩| ≥
ζ

2
√
d
; Eψ(Sh, Ah)ψ

⊺
ik ≤

1
dξ2

7. Matrix Estimation with Row-wise Linear
Measurements

We now describe the active learning based low rank matrix
estimation procedure. For an unknown rank r matrix Θ∗

(corresponding to Θ∗
h in the definition of Linear MDPs) of

dimensions N × d, we are allowed to query samples of
the form (ei, ψ, e

⊺
i Θ

∗ψ) for any i ∈ [N ] of our choice and
ψ = ψ(Sh, Ah) where S1:H , A1:H ∼M(ΠMC,h), for some
input policy ΠMC,h. This corresponds to running the MDP
of user i, with the policy ΠMC,h and observing the reward at
time h, given by ⟨ei,Θ∗

hΨ(Sh, Ah)⟩. We want to estimate
the matrix Θ∗ from these samples with high-probability.

7.1. The Estimator

Given any N × d matrix ∆, by ∆⊺
i , we denote its i-th row.

Given K ∈ N, and a sequence of vectors Ψ = (ψik ∈
Rd)i∈[N ],k∈[K].

L(∆,Ψ) :=
1

NK

N∑
i=1

K∑
k=1

|⟨∆i, ψik⟩|2

We estimate Θ∗ row-wise using the following iterative pro-
cedure, where recover some rows of Θ∗ into Θ̂ in each
iteration and obtain the corresponding linear measurements
of Θ∗. Letting the set of unknown rows at iteration t to be
Īt−1 (with Ī0 = [N ]). We draw a fresh sequence of vectors
Ψ(t) from some distribution, we then recover some rows
Ī∁t ⊆ Īt−1 of Θ∗ and store them in Θ̂.

1. Draw Ψ(t) = (ψ
(t)
ik )k∈[Kt],i∈Īt−1

, we obtain θ∗ik =

e⊺i Θ
∗ψ

(t)
ik .

2. Consider the loss function

L(Θ−Θ∗,Ψ(t))

:=
1

Kt|Īt−1|
∑

i∈Īt−1

K∑
k=1

|⟨Θi, ψ
(t)
ik ⟩ − θ

∗
ik|2 .

3. Find a matrix Θ with rank ≤ r such that L(Θ −
Θ∗,Ψ(t)) = 0.

4. Initialize Īt ← ∅.

5. For every i ∈ Īt−1, draw K fresh samples using
ψ̃
(t)
i1 , · · · , ψ̃

(t)
iK and compute

∑K
k=1 |⟨Θi, ψ̃

(t)
ik ⟩ − θ∗ik|2.

If
∑K

k=1 |⟨Θi, ψ̃
(t)
ik ⟩ − θ∗ik|2 > 0 then add i to Īt i.e.,

Īt ← Īt ∪ {i}.

6. End routine when Īt = ∅.
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Suppose ψik are i.i.d random vectors such that there exist
ζ, ξ > 0 such that for any x ∈ Rd, ∥x∥ = 1 we have:

∥ψik∥ ≤ 1 almost surely; E|⟨ψik, x⟩| ≥
ζ√
d
;

Eψikψ
⊺
ik ≤

1

dξ2
(4)

To give some intuition, the second condition above means
that given any vector x, there is some overlap between the
random vector ψ and x, ensuring that every measurement
gives us some information helping us to complete the matrix.
The third assumption is a standard bound on the covariance
matrix. Then we have the following theorem whose proof is
presented in Section F.

Theorem 7.1. Assume that supi ∥Θ∗
i ∥ ≤ Cθ and that

the distribution of ψ(t)
ik satisfies (4). Suppose Kt|Īt−1| =

C r|Īt−1|+dr
ζ2ξ2 log d

ζξ +C
log( log N

δ )
ζ2ξ2 . With probability at-least

1− δ, the algorithm terminates after logN iterations and
the output Θ̂ satisfies Θ̂ = Θ∗. Therefore, with probability
at-least 1− δ, the sample complexity for estimation of Θ∗

is:

C
r(N + d logN)

ζ2ξ2
log d

ζξ + C
logN log

(
logN

δ

)
ζ2ξ2

8. Discussion
In this work, we designed methods to perform collaborative
exploration of a number of MDPs with near optimal sample
complexity. In particular, we encountered and solved the
important problem of exploring such that the data can be
used down-stream to learn the optimal policy for every one
of the MDPs. We also established connections to mean-field
limits of multi-agent reinforcement learning problems. In
future work, we hope to use the observations in the current
work in order to design collaborative RL algorithms based
on practically deployed RL algorithms like PPO, DQN and
TD3.
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A. More Discussion Regarding Policy Space
A.1. Necessity of Randomized Policies

We will first show that randomized policies might be necessary in such contexts with a simple example and show that
obtaining states which satisfy conditions like (4) goes beyond simple reward maximization. Suppose H = 1, S = {1}
and A = {1, . . . , d}. We consider the embedding ψ(s, a) = ea. Suppose we want to obtain a policy π such that
whenever S1, A1 ∼ π, λmin(Eψ(S1, A1)ψ(S1, A1)

⊺) is maximized (where λmin denotes the minimum eigenvalue). This is
maximized when π(da|s) is chosen to be the uniform distribution over A and the corresponding value is 1/d. Note that
whenever π is a deterministic policy we will have λmin = 0 whenever d > 1. This is in contrast to reward maximization
problems where, under general conditions, a deterministic optimal policy exists (See Theorem 1.7 in (Agarwal et al., 2019)).

If fact, we can also show that the policy which minimizes ∥Eψ(S1, A1)− 1
d

∑d
a=1 ea∥ must also necessarily be random.

In the case of linear MDPs, we can find such a deterministic optimal policy Π = (π1, . . . , πH) as πh(s) =
arg supa⟨ψ(s, a), u∗h⟩ + ⟨ϕ(s, a), v∗h⟩ (Jin et al., 2020b). This reduces the problem to estimating the parameters u∗h, v

∗
h

even when the state-action space is an infinite set. However, when such policies are not guaranteed to exist, as in case of
functional maximization required in Section 7, the set of all policies can be intractably large. This is the justification for
picking a nice enough policy space denoted by Q.

A.2. Constructing Policy Spaces

We consider any linear MDP satisfying the definition given in Section 2 and suppose A is finite. We consider the set of
all probability distributions πh(a|s;u, v) ∝ exp(⟨ϕ(s, a), u⟩ + ⟨ψ(s, a), v⟩). We consider Qh = {πh(a|s, u, v) : u, v ∈
Bd(R)}, We let our policy space be Q = {Π = (π1, . . . , πH) : πh ∈ Qh}.
Lemma A.1. Consider the probability distribution over a finite set [|A|] give by pβ(a) ∝ exp(βxa) for every a ∈ [|A|]
some xa ∈ R+ and β ∈ R+. For any ϵ > 0 and random variable A ∼ pβ , we must have:

P(xA < sup
a
xa − ϵ) ≤ |A| exp(−βϵ)

And
ExA ≥ (sup

a
xa − ϵ)(1− |A| exp(−βϵ))

Lemma A.2. Let Q∗
h(s, a) be the optimal action-value function for the MDP. Then the policy Π = (π1, . . . , πh) given by

πh(a|s) ∝ exp(βQ∗
h(s, a)) is ϵH +H2|A| exp(−βϵ) sub-optimal for any ϵ > 0

Proof. Consider the optimal value function defined by V ∗
h (s) = supaQ

∗
h(s, a). Let Q̄h(s, a) denote the optimal action

value function under the policy Π and let V̄ (s) =
∫
Q̄h(s, a)πh(da|s) denote the value at state s with the policy Π. Clearly,

we have: Q̄H(s, a) = Q∗
H(s, a) = R(s, a). Q̄h(s, a) ≥ Q∗

h(s, a)− η uniformly. Then we have

V̄h(s) ≥
∫
Q∗

h(s, a)πh(da|s)− η

≥ (sup
a
Q∗

h(s, a)− ϵ)(1− |A| exp(−βϵ))− η

≥ sup
a
Q∗

h(s, a)− ϵ−H|A| exp(−βϵ)− η = V ∗
h (s)− ϵ−H|A| exp(−βϵ)− η (5)

In the second step, we have invoked Lemma A.1. In the last step, we have used the fact that Q∗
h ∈ [0, H] uniformly. Now,

by the Bellman iteration, we have:

Q∗
h−1(s, a) = Rh−1(s, a) + Es′∼Ph−1(|s,a)V

∗
h (s

′)

≥ Rh−1(s, a) + Es′∼Ph−1(|s,a)V̄h(s
′)− ϵ−H|A| exp(−βϵ)− η

= Q̄h−1(s, a)− ϵ−H|A| exp(−βϵ)− η (6)

Therefore, by induction, we conclude that V̄1(s) ≥ V ∗
1 (s)− ϵH −H2|A| exp(−βϵ)

12
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Therefore, by the definition of the value function, we conclude the claim.

Now, by a simple extension of Proposition 2.3 in (Jin et al., 2020b), we conclude that the optimal Q∗
h function for any linear

MDP can be written as:
Q∗

h(s, a) = ⟨ψ(s, a), u∗h⟩+ ⟨ϕ(s, a), v∗h⟩ .

Where ∥u∗h∥2 ≤
√
d and ∥v∗h∥∞ ≤ HCµ. Observe that choosing ϵ = η

2H and β = 2 log(2H|A|/η)
η will ensure that the

randomized policy Π in the statement of Lemma A.2 is η optimal. Therefore, we can take R = 2dHCµ
log(2H|A|/η)

η in the
definition of Qh above and conclude that this includes every η optimal policy for every MDP with embedding functions ϕ, ψ.
We will now bound the covering number. Recall the definition of the distance DQ(Π1,Π2) = suph∈[H] TV(π

(1)
h , π

(2)
h ).

Therefore it is sufficient to obtain an η cover for Qh (denoted by Q̂h,η) and then construct Q̂η = {Π = (π1, . . . , πH) : πh ∈
Q̂h,η∀h ∈ [H]} =

∏H
h=1 Q̂h,η .

Lemma A.3. π(|s;u, v) be as defined in the beginning of this Subsection.

TV(π(·|s;u, v), π(·|s;u′, v′)) ≤ 1

2
(exp(2∥u− u′∥2 + 2∥v − v′∥∞)− 1)

Proof. Denote π(a|s;u, v) by π(a) and π(a|s;u′, v′) by π′(a). Consider the corresponding partition functions denoted by
Z :=

∑
a∈A exp(⟨ψ(s, a), u⟩+ ⟨ϕ(s, a), v⟩) and Z ′ :=

∑
a∈A exp(⟨ψ(s, a), u′⟩+ ⟨ϕ(s, a), v′⟩). We conclude that using

Hölder’s inequality for ⟨u− u′, ψ⟩ and ⟨v − v′, ϕ⟩ that:

exp(−∥u− u′∥2 − ∥v − v′∥∞) ≤ Z ′

Z
≤ exp(∥u− u′∥2 + ∥v − v′∥∞)

exp(−2∥u− u′∥2 − 2∥v − v′∥∞) ≤ π′(a)

π(a)
≤ exp(2∥u− u′∥2 + 2∥v − v′∥∞) (7)

TV(π, π′) = 1
2

∑
a∈A
|π(a)− π′(a)|

= 1
2

∑
a∈A

π(a)
∣∣1− π′(a)

π(a)

∣∣
≤ 1

2
(exp(2∥u− u′∥2 + 2∥v − v′∥∞)− 1) (8)

Using the lemma above, we conclude that Q̂h,η = {πh(|s;u, v) : u, v ∈ B̂d,η/4(R)} whenever η ≤ 1. Here B̂d,η/4(R) an
η/4 net over Bd(R) with respect to the norm ∥ · ∥2. From the results in (Vershynin, 2018), we can therefore take:

|Q̂h,η| ≤ |B̂d,η/4(R)|2 ≤ exp(Cd log(Cη
R )) (9)

Since we had Q̂η =
∏H

h=1, we conclude that:

log(|Q̂η|) ≤ cdH
(
log dH

η + log log(2H|A|/η)
)

B. Analysis - Tabular MDPs
We will call the reward free RL procedure in Phase 1 to be successful if it outputs the ϵ optimal policy. This has probability
atleast 1− δ

2 .

13



Multi-User Reinforcement Learning with Low Rank Rewards

B.1. Analysis of Algorithm 1

Lemma B.1. Suppose p ≤ 1
2 , conditioned on the success of Phase 1, with probability at-least 1− exp(−cNp|S||A|H),

Algorithm 1 terminates after querying C|S||A|NHp
ϵ trajectories. (Gh)h∈[H], the active sets at the termination of the algorithm.

They satisfy:

sup
π

H∑
h=1

Pπ
h (Gh) ≤

5ϵ

8
(10)

For any a× b matrix R, let R̂ be its partially observed version (that is, there exists a set of indices I ⊆ [a]× [b] such that
R̂ij = Rij if (i, j) ∈ I and R̂ij = ∗ otherwise). We call a random set of indices J to have the distribution Unif(m, [a], [b])
if J is drawn uniformly at random such that |J | = m.

Lemma B.2 (Modification: Mod1). Suppose we run, independently, a modification of algorithm 1 where on the “Query tra-
jectory” step the trajectories are sampled from a fixed MDPM1 (but rewards are from the reward function corresponding to
Ut). Consider all the random variables that determine the trajectory of this algorithm:

(
V̂ , Π̂, (S

(t)
1:H , A

(t)
1:H , R

(t)
1:H)t, (Ut)t

)
.

Then the joint distribution of this collection of random variables is unchanged under the modification.

Proof. The proof follows from an induction argument on the time index t. We describe the key steps here. For the ease
of notation, let Tt =

(
(S

(t)
1:H , A

(t)
1:H , R

(t)
1:H), Ut

)
Let XT =

(
V̂ , Π̂, (Tt)t≤T

)
. Let X̃T and T̃t denote the corresponding

quantities under the modification. It is enough to show that finite dimensional marginals have the same joint distribution
under the modification. In particular, we will show:

1. T0
d
= T̃0

2. Suppose XT
d
= X̃T . Then the Markov kernel kTT+1|XT

is almost surely (under the common distribution of XT , X̃T )

equal to kT̃T+1|X̃T
. Thus XT+1

d
= X̃T+1

The first statement is straightforward since, in the zeroth step, the distribution of Π̂G not affected by the modification, and
thus due to identical MDP transitions across users, the distribution of T0 is preserved under modification. A similar argument
proves the second statement. Roughly, given a realization of XT the distribution of TT+1 is same as the distribution of
T̃T+1 given the same realization of X̃T , due to the exact same reason presented for the first statement. A fully formal proof
requires setting up appropriate proability spaces, so we omit it here. Furthermore, since the random variables considered are
all discrete, one can argue via PMFs as well.

Lemma B.3. Suppose p ≤ 1
2 . conditioned on the success of Phase 1 and termination of Algorithm 1, for every h ∈ [H], the

Algorithm 1 returns partially filled reward matrices R̂h. Consider the sub-matrix R̂G∁
h

h . Let Ih ⊆ [N ]× G∁h be the sub-set of

observed indices for R̂h. Let Jh|Gh ∼ Unif(
Np|G∁

h|
2 , [N ],G∁h). There exists a coupling between Jh and Ih such that

P
(
Jh ⊆ Ih

∣∣Gh) ≥ 1− |S||A| exp(−cNp)

Proof. Let us fix Gh and construct a coupling between Ih and Jh.

Consider any fixed, arbitrary permutations σg over [N ], for g ∈ G∁h. By σ(Ih), we denote {(σg(i), g) : (i, g) ∈ Ih}.
Claim B.4. Conditioned on Gh, σ(Ih) has the same distribution as Ih.

Proof. Let {σ(s,a):[N ]→[N ]|(s, a) ∈ S × A} be a set of arbitrary permutations on [N ]. From lemma B.2 it is enough to
prove the statement for the random variables under the modification described in that lemma (call this Mod1). Now consider
a further modification (call it Mod2) where in every iteration t, we sample Ut ∼ Unif([N ]), for each horizon h we set
Ũ

(t)
h = σ

(S
(t)
h ,A

(t)
h )

(Ut), and then update the entries of Rh(Ũ
(t)
h , (S

(t)
h , A

(t)
h )) (instead of Rh(Ut, (S

(t)
h , A

(t)
h ))). Next, we

couple these two modifications by using same (V̂ , Π̂) and the same set of Ut’s for both the modifications. Further, we couple
the MDP used in these modifications to be the same, single MDP.

14
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Now an induction argument shows that the sequence of active sets G obtained in these modifications are also identical for
every time t; only the rows of Rh where entries are filled change according to the set of permutations chosen.Thus, under
the described coupling, Mod1 and Mod2 produce identical trajectories (i.e., (S(t)

1:H , A
(t)
1:H)), the columns of reward matrices

are just permutations of each other described by the chosen set of permutations, and algorithm 1 terminate at the same time
in both these cases. However, the same induction argument also shows that for each t and h, conditioned on Gh, trajectories
(which is same in Mod1 and Mod2) until at beginning of iteration t, we have (Ut, (S

(t)
h , A

(t)
h ))

d
= (Ũ

(t)
h , (S

(t)
h , A

(t)
h )).

Therefore if Ih, Ĩh ⊂ [N ] × G∁h denotes the subset of observed indices at termination (outside the active set), then

Ĩh = σ(Ih) ≡ {(σ(s,a)(i), (s, a)) : (i, (s, a) ∈ Ih)} and, conditioned on Gh, Ĩh
d
= Ih

Claim B.5. At termination, conditioned on Gh, random sets Igh = {(i, g) : (i, g) ∈ Ih} are jointly independent.

Proof. Again we work with the modification Mod1 described in lemma B.2. For each (s, a) consider the collection of Ut’s
that are used populate the column (s, a) of matrix Rh in algorithm 1. Call this collection U(s,a).

Remark B.6. Since the columns of Ih have exactly Np entries, permutation invariance proved in the above claim implies
that

For any set J̄ ⊆ [N ]× G∁h, define the count function (N J̄
g )g∈G∁

h
such that N J̄

g = |{i ∈ [N ] : (i, g) ∈ J̄}|.

We are now ready to give the coupling: given Gh, draw uniformly random, independent permutations σg for g ∈ G∁h. Draw
(Ng)g∈G∁

h
independent of σg and to have the joint law of (NJh

g )g∈G∁
h

. Define:

J̃h = {(σg(i), g) : i ≤ Ng, g ∈ G∁h}

Ĩh = {(σg(i), g) : i ≤ Np, g ∈ G∁h}

Claim B.7. The marginal distributions of J̃h and Ĩh are respectively the distributions of Jh and Ih.

Proof. First we will prove a general statement about J ∼ Unif(r, [N ], [M ]). Let X ∈ {0, 1}N×M with Xi,m = 1 iff
(i,m) ∈ J . Let (Nm)m∈[M ] be the count functions corresponding to J i.e.,Nm =

∑
iXi,m. Let Ym = (X1,m, · · · , XN,m).

We will argue that conditional on {Nm : m ∈ [M ]}, the random vectors Ym are jointly independent. Indeed, pick any
x ∈ {0, 1}N×M and (n1, · · · , nm). Let ym be the m’th column of x. Then

P [X = x,∩m{Nm = nm}] =

(∏
m

1

[∑
i

xi,m = nm

])
1

∑
i,m

xi,m = r

 1(
MN
r

)
The above can also be written as

P [∩m{Ym = ym},∩m{Nm = nm}] =

(∏
m

1

[∑
i

xi,m = nm

])
1

[∑
m

nm = r

]
1(

MN
r

)
Let 1 denote the all 1 vector in RN . Note that ym = (x1,m, · · · , xN,m)⊤. Marginalizing the above, we see that

P [∩m{Nm = nm}] =

(∏
m

1(
N
nm

)) 1

[∑
m

nm = r

]
1(

MN
r

)
Thus the conditional distribution can be expressed as

P
[
∩m{Ym = ym}

∣∣∣∣ ∩m {Nm = nm}
]
=

(∏
m

1
[
1⊤ym = nm

](
N
nm

) )
1 [
∑

m nm = r](
MN
r

)
15
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Since the (conditional) joint PMF factors, it is an easy calculation to show the conditional independence i.e.,

P
[
∩m{Ym = ym}

∣∣∣∣ ∩m {Nm = nm}
]
=
∏
m

P
[
Ym = ym

∣∣∣∣ ∩m {Nm = nm}
]

Furthermore, for any n1, · · ·nm such that
∑

m nm = r, marginalization shows

P [Ym = ym| ∩m {Nm = nm}] =
1
[
1⊤ym = nm

](
N
nm

)
Let N−m = (N1, · · · , Nm−1, Nm+1, · · · , NM ), and similarly for n−m. Then

P [Ym = ym, N−m = n−m|Nm = nm]

= P [Ym = ym| ∩m {Nm = nm}]P [N−m = n−m|Nm = nm]

=

0,
∑

m nm ̸= r
1[1⊤ym=nm]

( N
nm

)
P [N−m = n−m|Nm = nm] , otherwise

The above factorization directly implies that Ym, conditioned onNm is uniformly distributed on its support {y : 1⊤y = Nm}
and is independent of N−m. Thus

P
[
∩m{Ym = ym}

∣∣∣∣ ∩m {Nm = nm}
]

=
∏
m

P
[
Ym = ym

∣∣∣∣Nm = nm

]
=
∏
m

1
[
1⊤ym = nm

](
N
nm

)
Observation: The above calculations give another way to generate Y : first generateN1, · · · , NM from the right distribution,
and then conditioned on Nm generate each Ym uniformly such that 1⊤Ym = Nm.

Next we apply the above calculations and observation to J = Jh|Gh ∼ Unif(
Np|G∁

h|
2 , [N ],G∁h). For a uniformly random

permutation σ on [N ], the set {σ(i) : 1 ≤ i ≤ k} is uniformly distributed on all k-sized subsets of [N ]. In the statement of
the claim the permutations are chosen independently for each g ∈ G∁c . Thus from the above observation, we have Jh

d
= J̃h

conditioned on Gh.

The claim about Ĩh follows directly from permutation invariance proved by claim B.4.

Claim B.8. P(Ng > Np|Gh) ≤ exp(−c0Np) for every g ∈ G∁h

Proof. Throughout this proof, we will condition on the terminal active set Gh. We will show this using the results on
concentration with negative regression property as established in Proposition 29 in (Dubhashi & Ranjan, 1996). Ng =∑N

i=1 1((i, g) ∈ J̃h). Now we will show that the collection Xig := 1((i, g) ∈ J̃h) for i ∈ [N ], g ∈ G∁h satisfy the negative
regression property. By the definition of negative regression, we can conclude that the sub-collection (Xig)i∈[N ] also
satisfies this property for every g ∈ G∁h.

Consider the partial order over binary vectors X ⪰ Y iff Xl ≥ Yl for every l. The negative regression property is satisfied iff
for every K1,K2 ⊆ [N ]×G∁h such that K1∩K2 = ∅, and a real valued function f(Xm : m ∈ K1) which is non-decreasing
with respect to the partial order, we must have:

g(tl : l ∈ K2) := E
[
f(Xm : m ∈ K1)

∣∣Xl = tl,∀l ∈ K2

]
16
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be such that g is a non-increasing function in tl with respect to the partial order. Note that in the case of uniform distribution
as in J̃h, the distribution (Xm)m∈K1 is the uniform, permutation invariant distribution with constant sum almost surely. The

sum being Np|G∁
h|

2 −
∑

l∈K2
tl. Therefore, whenever t′l ≥ tl for every l ∈ K2, we have the following stochastic dominance:[
(Xm)m∈K1

∣∣∣∣Xl = t′l∀l ∈ K2

]
⪯
[
(Xm)m∈K1

∣∣∣∣Xl = tl∀l ∈ K2

]
Therefore, this coupling leads us to conclude that:

g(tl : l ∈ K2) := E
[
f(Xm : m ∈ K1)

∣∣Xl = tl∀l ∈ K2

]
≥ E

[
f(Xm : m ∈ K1)

∣∣Xl = t′l∀l ∈ K2

]
= g(t′l : l ∈ K2) (11)

The second step follows from stochastic dominance. This implies that the function g is non-increasing which establishes
the negative regression property. Now, we consult Proposition 29 in (Dubhashi & Ranjan, 1996) to show that we can take
Chernoff bounds on Ng =

∑
i∈[N ]Xig as though Xig were i.i.d Ber(p). Therefore, from an application of Bernstein’s

inequality (Boucheron et al., 2013), we conclude the statement of the claim.

Now, Jh ⊆ Ih if and only if Ng ≤ Np for every g ∈ G∁h. Therefore, from the claim above, we have P(Jh ⊆ Ih|G∁h) ≥
1− |S||A| exp (−c0Np).

We are now ready to prove Theorem 5.3.

Proof of Theorem 5.3. In order to establish the result, we need to show that with p as set in the statement, the algorithm
returns ϵ optimal policies Π̂u for every user u ∈ [N ] with probability at-least 1− δ.

The total sample complexity is the number of trajectories queried in Phase 1 plus the number of trajectories queried in Phase

2. Phase 1 queries Krf( ϵ8 ,
δ
2 ) trajectories, which is C

|S||A|H2
(
|S|+log(

1
δ )

)
ϵ2 polylog( |S||A|H

ϵ ) by the results of (Zhang et al.,
2020). By Lemma B.1, we conclude that the sample complexity of phase 2 is C|S||A|NHp

ϵ and with the value of p given in
the statement of the theorem, this succeeds with probability at-least 1− δ

4 when conditioned on the success of Phase 1.

We will show that conditioned on the success of Phase 2, with probability at-least 1 − δ
4 , the nuclear norm min-

imization algorithm of (Recht, 2011) successfully obtains RG∁
h

h . Indeed by Theorem 1 in (Recht, 2011), we see

that whenever co-ordinates of RG∁
h

h corresponding to random indices drawn from Unif(m, [N ],G∁h) are observed with

m = C1 max(µ2
1, µ0)r(N + |G∁h|) log

2 |G∁h| log(Hδ ), the algorithm succeeds at recovering RG∁
h

h with probability at-least
1− δ

8H . The number of co-ordinates we observe is

Np|G∁h| ≥
Np|SA|

2
≥ 2C1 max(µ2

1, µ0)r(N + |G∁h|) log
2 |G∁h| log(Hδ )

In the last step, we have used Assumption 5.2 to conclude that |G∁h| ≥
|S||A|

2 . For the constant C in the definition of p large
enough, we must have:

m ≤ Np|G∁h|
2

Note that the results of (Recht, 2011) requires at-least m observations to be chosen uniformly at random co-ordinates, but
we do not obtain observations which are uniformly at uniformly random co-ordinates. Here, we will use the results of
Lemma B.3. Let Jh be a fictitious subset of co-ordinates distributed as Unif(m, [N ],G∁h) when conditioned on G∁h. If the
observed co-ordinates are Jh, then we can successfully estimate the reward matrix Rh with proability at-least 1− δ

8H in this
case. Now, suppose that the actually observed co-ordinates are Ih, which is a strict super-set of Jh. Then we check that
the matrix completion algorithm, which is based on constrained nuclear-norm minimization, still succeeds with observed
co-ordinates corresponding to Ih whenever it succeeds with the observed co-ordinates correspond to Jh.

17



Multi-User Reinforcement Learning with Low Rank Rewards

We now refer to the coupling in Lemma B.3, which shows that we can couple Jh to the real distribution Ih such that Jh ⊆ Ih
with probability at-least 1 − δ

8H When the constant C1 in the definition of p is large enough, we conclude by invoking
Lemma B.3 that: Jh ⊆ Ih with probability at-least 1− δ

8H . Applying union bound for h ∈ [H], we conclude that Phase 3
succeeds with probability at-least 1− δ

4 when conditioned on the success of Phases 1 and 2.

Therefore, from the arguments above, we conclude that Phases 1,2 and 3 succeed with probability at-least 1− δ and give us

the reward matrices RG∁
h

h where the sets satisfy the following equation from Lemma B.1.

sup
π

H∑
h=1

Pπ
h (Gh) ≤

5ϵ

8
(12)

It now remains to show that we obtain ϵ optimal policies for each user after Phase 4. Note that whenever Phase 1 succeeds,
we can compute ϵ/4 optimal policies for every possible reward function bounded in [0, 1]. Since we do not know the rewards
over the set Gh, we set it to zero as described in the algorithm to obtain R̄h. It remains to show that planning with R̄h and
using it with the reward free RL algorithm gives us an ϵ optimal policy. Suppose Π∗

u is the optimal policy for user u and
suppose Π̄u be the optimal policy for user u under rewards R̄h(u, (s, a)). Note that combined with the guarantees for the
reward free RL, in order to complete the proof of the theorem, it is sufficient to show that the policy Π̄u is 3ϵ/4 optimal with
respect to the actual rewards Rh(u, (s, a)). Let S∗

1:H , A
∗
1:H ∼M(Π∗

u) and S̄1:H , Ā1:H ∼M(Π̄u).

E
H∑

h=1

Rh(u, (S
∗
h, A

∗
h)) ≤ E

H∑
h=1

Rh(u, (S
∗
h, A

∗
h))1((S

∗
h, A

∗
h) ∈ G∁h) + 1((S∗

h, A
∗
h) ∈ Gh)

= E
H∑

h=1

R̄h(u, (S
∗
h, A

∗
h)) + 1((S∗

h, A
∗
h) ∈ Gh) = E

H∑
h=1

R̄h(u, (S
∗
h, A

∗
h)) +

H∑
h=1

PΠ∗

h (Gh)

≤ E
H∑

h=1

R̄h(u, (S
∗
h, A

∗
h) +

5ϵ

8

≤ E
H∑

h=1

R̄h(u, (S̄h, Āh) +
5ϵ

8

≤ E
H∑

h=1

Rh(u, (S̄h, Āh) +
5ϵ

8

(13)

In the first step we have used the fact that the rewards are uniformly bounded in [0, 1]. In the second step, we have used
the definition of R̄h(u, (s, a)) := Rh(u, (s, a))1((s, a) ∈ G∁h). In the third step, we have used the guarantee in (12). In
the fourth step, we have used the fact that P̄ i maximizes the reward R̄h. In the fifth step, we have used the fact that
Rh(u, (s, a)) ≥ R̄h(u, (s, a)) uniformly. From the discussion above, this concludes the proof of the theorem.

C. Analysis - Linear MDPs

Lemma C.1. Suppose Assumption 5.5 holds. Let κ > 1 and T ≥ C dκ2

(γ−ϵ)2 log
dκ
γ−ϵ . With probability at-least 1 −

H exp(−c(γ − ϵ)T ), the output of Algorithm 2 returns ϕth such that
∑T

t=1 ϕthϕ
⊺
th ⪰ κ2I for every h ∈ [H]

Proof of Theorem 5.8. By Theorem 1 in (Wagenmaker et al., 2022), we take Krf(ϵ, δ/4) =
CdH5(d+log(

1
δ ))

ϵ2 +

Cd9/2H6 log4(
1
δ )

ϵ . Phase 1 succeeds with probability 1− δ
4 .

Note that this is the quantity Trf in the statement of the theorem. We now condition on the success of Phase 1. The number
of trajectories queried by Algorithm 2 which is given by HT = Tpol. By Lemma C.1, we conclude that for the given values
of T and κ, this algorithm successfully outputs ϕht such that Gϕ,h ⪰ κ2I for every h ∈ [H], with probability at-least 1− δ

4 .
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Now, condition on the success of Algorithm 2. By theorem 6.2, we conclude that with these conclude that with proabability
at-least 1− δ

4 , with the values of the given parameters, for every h ∈ [H], the procedure in Step 2 of Phase 2 outputs a policy
Π̂f,h such that whenever S1:H , A1:H ∼M(Π̂f,h), the conditions in (4) is satisfied for the random vector ψ(Sh, Ah) with ζ
replaced by ζ/2. We then use the active learning based matrix completion procedure given in Section 7, where the vectors
ψjk are sample using the policy Π̂f,h on the given user. By theorem 7.1, we conclude that conditioned on the success of
all the steps above, with probability 1− δ

4 , we can exactly estimate each of the matrices Θ∗
h for h ∈ [H] with Tmat−comp

number of samples.

Upon the success of Phases 1, 2, 3 (which occurs with probability at-least 1− δ by union bound), we conclude that Phase 4
gives the ϵ optimal policy for each user u ∈ [N ] because of the guarantees of reward free RL.

D. Deferred Proofs
D.1. Proof of Lemma B.1

Proof. We suppose that the reward free RL in Phase 1 succeeds and returns the ϵ
8 optimal policy for every choice of rewards

bounded in [0, 1]. The algorithm terminates whenever the active sets are such that

V̂ (J (;G)) ≤ ϵ

2
(14)

Note that by the definition of J (;G), the maximum value for the MDP with reward J (;G) is supΠ
∑H

h=1 P
Π(Gh). Since

V̂ is the output of the reward free RL algorithm, we conclude that we have:

|V̂ (J (;G))− sup
Π

H∑
h=1

PΠ
h (Gh)| ≤

ϵ

8
(15)

We conclude via (14) and (15) that (10) holds, which establishes the second part of the theorem. We now consider the
termination time.

Suppose G(t) is the sequence of active sets before termination at step t (i.e, it satisfies V̂ (J (;G(t))) > ϵ
2 ). Recall Π̂, the

output of the reward free RL algorithm. It follows from the guarantees for reward free RL that:

|
H∑

h=1

P Π̂G

h (G(t)h )− sup
Π

H∑
h=1

PΠ
h (G(t)h )| ≤ ϵ

8

Combining this with Equation (15) and the fact that V̂ (J (;G(t))) > ϵ
2 , we conclude:

H∑
h=1

P Π̂G

h (G(t)h ) ≥ ϵ

4
(16)

We consider the potential function with φ(0) = 0 and φ(t) =
∑

h∈[H]

∑
(s,a)∈S×A T

(t)
h,(s,a), where T (t)

h,(s,a) is the counter
Th,(s,a) inside Algorithm 1 at the beginning of the step t.

Whenever G(t) is such that V̂ (J (;G(t))) > ϵ
2 , we define Nt := φ(t + 1) − φ(t) (i.e, before termination). Just for

the sake of theoretical arguments, we define the fictious random variables Nt = Ber( ϵ8 ) i.i.d after termination. Let
Ft = σ(G(s), S(s)

1:H , A
(s)
1:H , R

(s)
1:H , U

(s) : s ≤ t)
Claim D.1. The following relations hold:

1. E [Nt|Ft] ≥ ϵ
8

2. E
[
N2

t |Ft

]
≤ E[Nt|Ft]H

4

3. |Nt| ≤ H almost surely.
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Proof. The inequalities are clear when G(t) is such that V̂ (J (;G(t))) ≤ ϵ
2 . Now consider the case V̂ (J (;G(t))) > ϵ

2 . By
definition, conditioned on this event, we have almost surely:

Nt =

H∑
h=1

1((S
(t)
h , A

(t)
h ) ∈ G(t)h ).1(R̂

(t)
h (Ut, (S

(t)
h , A

(t)
h )) = ∗)

That is, we increment the Th,(s,a) only when we encounter an element of the active set such that the entry for this user has
not been observed before. Observe that for any arbitrary (s, a) ∈ S ×A

P
(
R̂

(t)
h (Ut, (s, a)) = ∗

∣∣Ft, (S
(t)
h , A

(t)
h ) = (s, a)

)
=
|{u : R̂

(t)
h (s, a) = ∗}|
N

. (17)

This is true since the law of S(t)
h , A

(t)
h is independent of Ut (since all users share the same MDP), when conditioned on Ft.

Now, the algorithm only fills the column corresponding to (s, a) until the number of entries is smaller than Np ≤ N
2 . We

conclude that:

|{u : R̂(t)(h, (s, a)) = ∗}| ≥ N −Np ≥ N

2
.

This allows us to conclude P
(
R̂

(t)
h (Ut, (s, a)) = ∗

∣∣Ft, (S
(t)
h , A

(t)
h ) = (s, a)

)
≥ 1

2 and hence:

ENt =

H∑
h=1

E1((S(t)
h , A

(t)
h ) ∈ G(t)h ).1(R

(t)
h (Ut, (S

(t)
h , A

(t)
h )) = ∗)

≥ 1

2

H∑
h=1

E1((S(t)
h , A

(t)
h ) ∈ G(t)h )

=
1

2

H∑
h=1

P Π̂G

h (G(t)h ) ≥ ϵ

8
(18)

In the last step we have used (16). The bound |Nt| ≤ H almost surely follows from definition. Now note that E
[
N2

t |Ft

]
≤

HE [Nt|Ft].

Claim D.2. For any τ ∈ N and some c0 > 0 small enough, we have:

P

(
τ−1∑
t=0

Nt <
ϵτ

16

)
≤ exp(−c0 ϵτ

H )

Proof. For 3
4H > λ > 0, consider Mt = −

λ2E[N2
t |Ft]

1−λH
3

+ λ (E [Nt|Ft]−Nt). Now consider:

E exp(

τ−1∑
t=0

Mt) = E

[
E [exp(Mτ−1)|Fτ−1] exp

(
τ−1∑
t=0

Mt

)]

= E [exp(λE [Nτ−1|Fτ−1]− λNt)|Fτ−1] exp

(
τ−2∑
t=0

Mt

)
exp

(
−λ2E[N2

τ−1|Fτ−1]
1−λH

3

)

≤ E exp

(
−λ2E[N2

τ−1|Fτ−1]
1−λH

3

)
exp

(
τ−2∑
t=0

Mt

)
exp

(
−λ2E[N2

τ−1|Fτ−1]
1−λH

3

)

= E exp(

τ−2∑
t=0

Mt) (19)
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In the first step we have used the fact that
∑τ−2

t=0 Mt isFτ−1 measurable and the towering property of conditional expectation.
In the third step, we have used the exponential moment bound given in Exercise 2.8.5 in (Vershynin, 2018), as applied to
Nτ −E [Nτ−1|Fτ−1] along with the fact thatNt ∈ [0, H] almost surely. From (19), we conclude that E exp(

∑τ
t=0Mt) ≤ 1

and thus applying the Chernoff bound, we conclude that for any β > 0

P

(
τ−1∑
t=0

−λE[N2
t |Ft]

1−λH
3

+ (E [Nt|Ft]−Nt) > β

)
≤ exp(−λβ)

Now, using item 2 from Claim D.1, we conclude that

P

(
τ−1∑
t=0

Nt < −β + 3−4λH
3−λH

τ−1∑
t=0

E [Nt|Ft]

)
≤ exp(−λβ)

Now, using item 1 from Claim D.1, we note that
∑τ−1

t=0 E [Nt|Ft] ≥ ϵτ
8 almost surely. Setting λ = 1

4H and β = c0ϵτ for
some small enough constant ϵ, we conclude:

P

(
τ−1∑
t=0

Nt <
ϵτ

16

)
≤ exp(−c0 ϵτ

H )

Let τ term denote the termination time for the algorithm. This is true since φ(t) is increasing in t, φ(t) ≤ NpH|S||A|, and
strict inequality holds when t < τ term. For every τ < τ term we have φ(τ) =

∑τ−1
t=0 Nτ < NpH|S||A|. Therefore, we have

the following relationship between the events:

{τ term > τ} ⊆
{ τ∑

t=1

Nτ < Np|S||A|H
}

Setting τ = 16Np|S||A|H
ϵ , we have:

P(τ term > τ) ≤ P

(
τ∑

t=1

Nτ < Np|S||A|H

)
≤ exp(−cNp|S||A|)

D.2. Proof of Lemma C.1

Proof. By Remark 4.3 in (Wagenmaker et al., 2022), we show that non-linear rewards can be handled by the reward free RL
algorithm in Phase 1 as long all the reward are uniformly bounded in [0, 1]. Let Bth be the matrix I +Aϕ in Algorithm 2
at step t for horizon h. Similarly, let the corresponding projection Q be Qth. Recall that Qth is the projection onto an
eigenspace of Bth. Now, suppose S1:H , A1:H ∼MUt

(Π̂Qt,h) as in the algorithm. Let ϕth := ϕ(Sh, Ah). Now, if Qth ̸= 0,
then:

ϕ⊺thB
−1
th ϕth ≥ ϕ

⊺
thQthB

−1
th Qthϕth

≥ ϕ⊺thQth
I

1 + κ2
Qthϕth

=
∥Qthϕth∥2

1 + κ2
(20)

In the first step, we have used the fact that Qth is the projector to the eigenspace of B−1
th . In the second step, we have

used the fact that over the eigenspace corresponding to Qth, the eigenvalues of B−1
th are at-least 1

1+κ2 . We now invoke
Assumption 5.5 in order to show that, along with the guarantees of reward free RL in phase 1, we conclude that:
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E
[
∥Qthϕth∥2|Qth ̸= 0, Bth

]
≥ γ − ϵ (21)

Now, note by the fact that Qth is a projector and that ∥ϕth∥ ≤ 1, we have:

E
[
∥Qthϕth∥4

∣∣Qth ̸= 0, Bth

]
≤ E

[
∥Qthϕth∥2

∣∣Qth ̸= 0, Bth

]
(22)

Recall the Paley-Zygmund inequality which states that for any positive random variable Z, we must have: P(Z > EZ
2 ) ≥

1
4
(EZ)2

EZ2 . Therefore,

P
[
ϕ⊺thB

−1
th ϕth >

γ − ϵ
2(1 + κ2)

∣∣∣∣Qth ̸= 0, Bth

]
≥ P

[
∥Qthϕth∥2 >

γ − ϵ
2

∣∣∣∣Qth ̸= 0, Bth

]
≥ P

[
∥Qthϕth∥2 >

1

2
E
[
∥Qthϕth∥2

∣∣Qth ̸= 0, Bth

]∣∣∣∣Qth ̸= 0, Bth

]
≥ 1

4

E
[
∥Qthϕth∥2

∣∣Qth ̸= 0, Bth

]2
E
[
∥Qthϕth∥4

∣∣Qth ̸= 0, Bth

] ≥ 1

4
E
[
∥Qthϕth∥2

∣∣Qth ̸= 0, Bth

]
≥ γ − ϵ

4
(23)

In the first step, we have used (20). In the second step, we have used (21). In the third step, we have used the Paley-Zygmund
inequality and the moment bound in (22).

Define the stopping time τ = inf{t ≤ T : Qth = 0} and τ = ∞ if the set in the RHS is empty. Let Ξ0
t for t ∈ {0} ∪ N

be a sequence of i.i.d random variables with the law γ−ϵ
2(1+κ2)Ber(

γ−ϵ
4 ). We consider the sequence of random variables

Ξt = ϕ⊺thB
−1
th ϕth for t < τ and Ξt = Ξ0

t for t ≥ τ

Now, we apply the matrix determinant lemma which states that det(B + uu⊺) = det(B)(1 + u⊺B−1u). We note that
B(t+1)h = Bth + ϕthϕ

⊺
th. Therefore, whenever t < τ , we must have:

det(B(t+1)h) = det(Bth)(1 + Ξt) (24)

Since ∥ϕth∥ ≤ 1 almost surely, we must have

Tr(Bth) =

d∑
i=1

⟨ei, Bthei⟩ ≤ d+ t

It is easy to show that for any PSD matrix, A, if Tr(A) ≤ α, then det(A) ≤ (αd )
d (since trace is the sum of the eigenvalues

and the determinant is the product). Combining the equations above, we conclude that whenever t < τ , we must have:

(
t+ 1 + d

d

)d

≥
t∏

s=0

(1 + Ξt)

Therefore, the event

{τ > T} ⊆ {
(
T+1+d

d

)d ≥ T∏
s=0

(1 + Ξt)} (25)

Claim D.3.

P

 T∏
s=0

(1 + Ξt) ≥
(
1 +

γ − ϵ
2(1 + κ2)

) (γ−ϵ)T
8

 ≥ 1− exp (−c0T (γ − ϵ))

Let κ > 1 and T ≥ C dκ2

(γ−ϵ)2 log
dκ
γ−ϵ , we have:
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P

[
T∏

s=0

(1 + Ξt) ≥
(
T+1+d

d

)d] ≥ 1− exp (−c0T (γ − ϵ))

Proof. Let NT be the number of variables (Ξt)
T
t=0 such that Ξt ≥ γ−ϵ

2κ2 . Then, it is clear that
∏T

s=0(1+Ξt) ≥ (1+ γ−ϵ
2κ2 )

NT .

Therefore,

P

 T∏
s=0

(1 + Ξt) ≥
(
1 +

γ − ϵ
2(1 + κ2)

) (γ−ϵ)T
8

 ≥ P
(
NT ≥

(γ − ϵ)T
8

)

≥ P
(
Bin(T, γ−ϵ

4 ) ≥ (γ − ϵ)T
8

)
≥ 1− exp (−c0T (γ − ϵ)) (26)

Here Bin refers to the law of a binomial random variable. The first step follows from the fact that
∏T

s=0(1 + Ξt) ≥
(1 + γ−ϵ

2(1+κ2) )
NT almost surely. The second step follows from (23), which shows that conditioned on Qth, Bth, the random

variable 1(Ξt ≥ γ−ϵ
2(1+κ2) ) stochastically dominates Ber(γ−ϵ

4 ). The last step follows from an application of Bernstein’s
inequality for binomial random variables.

Now, using (25) along with Claim D.3, we conclude:

P(τ > T ) ≤ P

((
T+1+d

d

)d ≥ T∏
s=0

(1 + Ξt)

)
≤ exp(−c0T (γ − ϵ))

D.3. Proof of Lemma 6.1

Proof. By the definition of Linear MDP, we must have Sh+1|Sh, Ah ∼
∑d

i=1⟨ϕ(Sh, Ah), ei⟩µih(·) and Ah+1|Sh+1 ∼
πh+1(·|Sh). Therefore, for any bounded, measurable function g : S ×A → R, we must have:

Eg(Sh+1, Ah+1) = E
[
E
[
g(Sh+1, Ah+1)

∣∣Sh, Ah

]]
= E

d∑
i=1

⟨ϕ(Sh, Ah), ei⟩
∫
µi(h−1)(ds)πh+1(da|s)g(s, a)

=

d∑
i=1

νih

∫
µih(ds)πh+1(da|s)g(s, a) (27)

D.4. Proof of Lemma E.1

Proof. It is clear from the assumption that E
[∫
g(s(h+1)t, a)πh+1(da|st)|(ϕht)t≤T

]
=∑d

i=1⟨ϕht, ei⟩
∫
µih(ds)πh+1(da|s)g(s, a).

Note that
T∑

t=1

αht,νϕht =

T∑
t=1

ϕ⊺htG
−1
ϕ,hνϕht

=

T∑
t=1

ϕhtϕ
⊺
htG

−1
ϕ,hν = (

T∑
t=1

ϕhtϕ
⊺
ht)G

−1
ϕ,hν

= Gϕ,hG
−1
ϕ,hν = ν (28)
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Therefore,

E
[
T̂ (g; ν, πh)|(ϕl)t∈[T ]

]
=

d∑
i=1

⟨
T∑

t=1

αt,νϕt, ei⟩
∫
µi(h−1)(ds)πh(da|s)g(s, a)

=

d∑
i=1

⟨ν, ei⟩
∫
µi(h−1)(ds)πh(da|s)g(s, a) = T (g; ν, πh) (29)

Note that, conditioned on (ϕt)t∈[T ], αht,ν

∫
g(s(h+1)t, a)πh+1(da|s(h+1)t) are independent random variables bounded

above by αht,νB. Therefore, applying the Azuma-Hoeffding inequality, we conclude:

P
(
|T̂ (g; ν, πh)− T (g; ν, πh)| > β

∣∣∣∣(ϕt)t∈[T ]

)
≤ 2 exp

(
− t2

2B2
∑

t α
2
t,ν

)
Now, observe that

∑
t α

2
ht,ν =

∑
t ν

⊺G−1
ϕ,hν ≤

1
κ2 whenever Gϕ,h ⪰ κ2I This concludes the proof.

D.5. Proof of Lemma E.2

Proof. Notice that: ∣∣Eν1
1 (Π)− Eν′

1
1 (Π′)

∣∣ ≤∣∣Eν1
1 (Π)− Eν1

1 (Π′)
∣∣+∣∣Eν1

1 (Π′)− Eν′
1

1 (Π′)
∣∣

≤
∣∣Eν1

1 (Π)− Eν1
1 (Π′)

∣∣+ ∥ν1 − ν′1∥1
≤
∥∥E∫ ϕ(S1, a)π1(da|S1)− E

∫
ϕ(S1, a)π

′
1(da|S1)

∥∥
1
+ ∥ν1 − ν′1∥1

≤ sup
(s,a)

∥ϕ(s, a)∥1TV(π1, π′
1) + ∥ν1 − ν′1∥1 ≤ TV(π1, π

′
1) + ∥ν1 − ν′1∥1 (30)

In the first, second and third steps we have used the triangle inequality. In the last step, we have used the fact that for any
bounded function, and any probability measures µ, ν, we have |

∫
f(x)µ(dx)−

∫
f(x)ν(dx)| ≤ supx |f(x)|TV(ν, µ).

Now consider:∣∣∥Tj(ϕ, νj−1, πj)− νj∥1 − ∥Tj(ϕ, ν′j−1, π
′
j)− ν′j∥1

∣∣
≤ ∥νj − ν′j∥1+

∥∥Tj(ϕ, νj−1, πj)− Tj(ϕ, ν′j−1, π
′
j)
∥∥
1

≤ ∥νj − ν′j∥1+
∥∥Tj(ϕ, νj−1, πj)− Tj(ϕ, ν′j−1, πj)

∥∥
1
+
∥∥Tj(ϕ, ν′j−1, πj)− Tj(ϕ, ν′j−1, π

′
j)
∥∥
1

(31)

Now, observe that:

∥∥Tj(ϕ, νj−1, πj)− Tj(ϕ, ν′j−1, πj)
∥∥
1
≤

d∑
i=1

|⟨νj−1 − ν′j−1, ei⟩|
∥∥∥∥ ∫ ϕ(s, a)µi(j−1)(ds)πj(da|s)

∥∥∥∥
1

≤
d∑

i=1

|⟨νj−1 − ν′j−1, ei⟩| = ∥νj−1 − ν′j−1∥1 (32)

Where we recall supi,h,π ∥
∫
ϕ(s, a)µih(ds)π(da|s)∥1 ≤ 1 as given in the definition of Linear MDP. Using the Hahn-Jordan

decomposition of a signed measure, we conclude:∥∥Tj(ϕ, ν′j−1, πj)− Tj(ϕ, ν′j−1, πj)
∥∥
1

≤
d∑

i=1

|⟨ν′j−1, ei⟩|
∥∥∥∥∫ ϕ(s, a)µi(j−1)(ds)(πj(da|s)− π′

j(da|s))
∥∥∥∥
1

≤
d∑

i=1

Cµ|⟨ν′j−1, ei⟩|TV(πj , π′
j) ≤ Cµ∥ν′j−1∥1TV(πj , π′

j) (33)
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Combining (31), (32) and (33) we conclude:∣∣∥Tj(ϕ, νj−1, πj)− νj∥1 − ∥Tj(ϕ, ν′j−1, π
′
j)− ν′j∥1

∣∣
≤ ∥νj − ν′j∥1 + Cµ∥ν′j−1∥1TV(πj , π′

j) + ∥νj−1 − ν′j−1∥1 (34)

Combining (30) and (34), we conclude the first inequality in the statement of the lemma.

With a reasoning very similar to that in (30), we have:∣∣Êν1
1 (Π)− Êν′

1
1 (Π′)

∣∣ ≤ TV(π1, π
′
1) + ∥ν1 − ν′1∥1 (35)

Using similar reasoning as in (34):∣∣∥Tj(ϕ, νj−1, πj)− νj∥1 − ∥Tj(ϕ, ν′j−1, π
′
j)− ν′j∥1

∣∣
≤ ∥νj − ν′j∥1 +

(
T∑

t=1

|(νj−1 − ν′j−1)
⊺G−1

ϕ,j−1ϕ(j−1)t|

)
+

(
T∑

t=1

|(ν′j−1)
⊺G−1

ϕ,j−1ϕ(j−1)t|

)
TV(πj , π

′
j) (36)

Now note that for any ν ∈ Rd, we have:

T∑
t=1

∣∣ν⊺G−1
ϕ,j−1ϕ(j−1)t

∣∣ ≤√T∑
t

∣∣ν⊺G−1
ϕ,j−1ϕ(j−1)t

∣∣2

=

√√√√T

T∑
t=1

ν⊺G−1
ϕ,j−1ϕ(j−1)tϕ

⊺
(j−1)tG

−1
ϕ,j−1ν

=
√
Tν⊺G−1

ϕ,j−1ν

≤
√

T
κ2 ∥ν∥2 (37)

Here, in the first step we have used the fact that whenever x ∈ RK , we must have ∥x∥1 ≤
√
K∥x∥2. In the third step,

we have used the fact that
∑T

t=1 ϕ(j−1)tϕ
⊺
(j−1)t = Gϕ,j−1 by definition. In the last step, we have used the fact that

Ĝϕ,j−1 ⪰ κ2I . Plugging this into (36), we conclude:∣∣∥Tj(ϕ, νj−1, πj)− νj∥1 − ∥Tj(ϕ, ν′j−1, π
′
j)− ν′j∥1

∣∣
≤ ∥νj − ν′j∥1 +

√
T
κ2 ∥νj−1 − ν′j−1∥2 +

√
T
κ2 ∥ν′j−1∥2TV(πj , π′

j) (38)

Using this and the definition of F̂ we conclude the second inequality in the statement of the lemma. (45) and (46) follow
from a similar reasoning.

D.6. Proof of Lemma E.3

Proof. First consider the case h = 1. Let g(s, a) := ϕ(s, a). In this case, supν∈Bd(1)
|Êν,1(Π)−Eν,1(Π)| ≤ ∥T0(g;π1)−

T̂0(g;π1)∥1. By (30) and (35), we conclude that π1 → T0(ϕ;π1) and π1 → T̂0(ϕ;π1) are 1-Lipschitz with respect to TV()
and ∥ · ∥1.

sup
Π=π1,...,πH∈Q

∥T0(g;π1)− T̂0(g;π1)∥1 ≤ sup
Π=π1,...,πH∈Q̂η

∥T0(g;π1)− T̂0(g;π1)∥1 + 2η

We apply Lemma E.1 co-ordinate wise to the co-ordinates of ϕ and union bound over Q̂η . We have:

P
(

sup
Π=π1,...,πH∈Q

∥T0(g;π1)− T̂0(g;π1)∥1 > 2η + dβ

)
≤ d|Q̂η| exp(−β2κ2

2 ) (39)
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Now, consider h > 1. Consider any η net over Bd(1), denoted by B̂d,η with respect to the norm ∥ · ∥1. We can take
|B̂d,η| ≤ exp(Cd log(d/η)) (Vershynin, 2018). Invoking Lemma E.2, we conclude:

sup
Π∈Q

sup
ν∈Bd(1)

|Eν,h(Π)− Êν,h(Π)| ≤ sup
ν1,...,νh∈Bd(1)

Π∈Q

|F̂ (Π, ν1, . . . , νh)− F (Π, ν1, . . . , νh)|

≤ sup
ν1,...,νh∈B̂d,η

Π∈Q̂η

|F̂ (Π, ν1, . . . , νh)− F (Π, ν1, . . . , νh)|+ 2

(
1 + Cµ +

√
T
κ2

)
ηh (40)

Now, by the triangle inequality, we have:

|F̂ (Π, ν1, . . . , νh)− F (Π, ν1, . . . , νh)|

≤ ∥T0(ϕ, π1)− T̂0(ϕ, π1)∥1 +
h−1∑
j=1

∥Tj(ϕ, νj , πj+1)− T̂j(ϕ, νj , πj+1)∥1 (41)

Therefore, by invoking Lemma E.1, along with union bound over every component in the sum in (41) and over the net
in (40) we conclude that:

P

 sup
ν1,...,νh∈B̂d,η

Π∈Q̂η

|F̂ (Π, ν1, . . . , νh)− F (Π, ν1, . . . , νh)| > βdh


≤ 2dh|Q̂η||B̂d,η|h exp(−β2κ2

2 ) (42)

Combining (40) and (42), we conclude the second item in the statement of the lemma.

The concentration of X1 and Xh follow in a similar fashion, but here we consider an η net even over x and use the
Lipschitzness results given in Lemma E.2 and the fact that x→ f(ϕ;x) is 1 Lipschitz.

E. Proof of Theorem 6.2
Lemma E.1. Suppose h ∈ [H − 1], and g : S ×A → R be such that |g(s, a)| ≤ B for every (s, a). For any policy πh and
any ν such that ∥ν∥2 ≤ 1, we must have:

P
(
|T̂h(g; ν, πh)− Th(g; ν, πh)| > β

∣∣∣∣(ϕht)t∈[T ], Gϕ,h ⪰ κ2I
)
≤ 2 exp

(
−β2κ2

2B2

)
Lemma E.2. Let Π = (π1, . . . , πH), Π′ = (π′

1, . . . , π
′
H) be policies in Q. Conditioned on the event Gϕ,h ⪰ κ2I , the

following hold:

|F (Π, ν1, . . . , νh−1, νh)− F (Π′, ν′1, . . . , ν
′
h−1, ν

′
h)|

≤

 h∑
j=2

CµTV(πj , π
′
j)∥νj∥1 + 2∥νj − ν′j∥1

+ TV(π1, π
′
1) + 2∥ν1 − ν′1∥1 (43)

|F̂ (Π, ν1, . . . , νh−1, νh)− F̂ (Π′, ν′1, . . . , ν
′
h−1, ν

′
h)|

≤
√

T
κ2

 h∑
j=2

TV(πj , π
′
j)∥νj∥2 + ∥νj − ν′j∥2

+ TV(π1, π
′
1) +

h∑
j=1

∥νj − ν′j∥1 (44)
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Suppose x ∈ Sd−1

|Th(f(·;x), ν, πh)− Th(f(·;x′), ν′, π′
h)|

≤ 2Cµ(
√
d+ ξd) (∥ν − ν′∥1 + TV(πh, π

′
h) + ∥x− x′∥2∥ν∥1) (45)

|T̂h(f(·;x), ν, πh)− T̂h(f(·;x′), ν′, π′
h)|

≤ 2
√

T
κ2 (
√
d+ ξd) (∥ν − ν′∥2 + TV(πh, π

′
h) + ∥x− x′∥2∥ν∥2) (46)

Lemma E.3. Condition on the event Gϕ,h ⪰ κ2I for every h ∈ [H]. Fix some η > 0 and let Q̂η denote any η-net over Q.
With probability at-least 1− δ/4, the following hold simultaneously:

1.

sup
ν

sup
Π∈Q
|Eν

1 (Π)− Êν
1 (Π)| ≤ C d

κ

√
log
(

d|Q̂η|
δ

)
+ Cη .

2. For h > 1:

sup
Π∈Q

sup
ν∈Bd(1)

|Eν
h(Π)− Êν

h(Π)| ≤ CdH

κ

√
log
(

dH|Q̂η|
δ

)
+Hd log

(
d
η

)
+ C

(√
T
κ2

)
ηH

3. X1 := supΠ=(π1,...,πH)∈Q
∣∣ infx∈Sd−1 T̂1(f(·;x), π1)− infx∈Sd−1 T1(f(·;x), π1)

∣∣
X1 ≤

C(
√
d+ ξd)

κ

√
log
(

|Q̂η|
δ

)
+ d log

(
d
η

)
+ Cη(

√
d+ ξd)

4. Xh := sup ν∈B(1)
Π=(π1,...,πH)∈Q

∣∣ infx∈Sd−1 T̂h(f(·;x); ν, πh)− infx∈Sd−1 Th(f(·;x); ν, πh)
∣∣

Xh ≤
C(
√
d+ ξd)

κ

√
log
(

|Q̂η|H
δ

)
+ d log

(
d
η

)
+ Cη(

√
d+ ξd)

(
Cµ +

√
T
κ2

)
Lemma E.4. Π = (π1, . . . , πH). For any η ≥ 0, and h ∈ [H], suppose Eν

h(Π) ≤ η. Then, we have:

∥Eϕ(Sh, Ah)− ν∥1 ≤ η .

Proof. Let S1:H , A1:H ∼M(Π). By Lemma 6.1, we conclude that: Eϕ(S1, A1) = T1(ϕ, π1). Therefore we conclude the
lemma for the case h = 1. Now let h > 1.

Now, note that for j > 1, we have: Eϕ(Sj , Aj) = Tj(ϕ,Eϕ(Sj−1, Aj−1), πj). There exists a sequence ν1, . . . , νh−1 such
that

Eν1
1 (Π) +

h∑
j=2

∥Tj(ϕ, νj−1, πj)− νj∥1 ≤ η0

Letting Eν1
1 (Π) =: η1, ∥Tj(ϕ, νj−1, πj)− νj∥1 =: ηj , we have from the case h = 1 : ∥Eϕ(S1, A1)− ν1∥1 ≤ η1.

∥Eϕ(Sj , Aj)− νj∥1 = ∥Tj(ϕ,Eϕ(Sj−1, Aj−1), πj)− νj∥1
≤ ∥Tj(ϕ,Eϕ(Sj−1, Aj−1), πj)− Tj(ϕ, νj−1, πj)∥1 + ∥Tj(ϕ, νj−1, πj)− νj∥1
≤ ∥νj−1 − Eϕ(Sj−1, Aj−1)∥1 + ηj (47)

We have used (32) in the last step. Continuing recursively, we conclude the result

27



Multi-User Reinforcement Learning with Low Rank Rewards

Proof of Theorem 6.2. We condition on the event described in Lemma E.3. We suppose that κ, η and η0 are related as in
the statement of the theorem. We will apply these values whenever we invoke the concentration bounds obtained from
Lemma E.3 in all the inequalities below. First consider h = 1. Let Π̂f,1 = (πf,1

H , . . . , πf,H
H ). By item 3 in Lemma E.3, we

have (with X1 as defined in the lemma):

inf
x∈Sd−1

T̂1(f(;x), πf,1
1 ) ≥ sup

Π∈Q
inf

x∈Sd−1
T1(f(;x), π1)−X1 ≥ ζ −X1 ≥ 3ζ

4

Similarly, we have:
inf

x∈Sd−1
T1(f(;x), πf,1

1 ) ≥ inf
x∈Sd−1

T̂1(f(;x), πf,1
1 )− ζ

4

Combining the two displays above, we conclude the theorem for h = 1. Now consider h > 1. We will first show that
the constraint Êν,h−1(Π) ≤ η0 is feasible for some Π ∈ Q and some ν. Note that, for any policy Π there exists a
ν1, . . . , νh−1 ∈ Rd such that Eϕ(Sj , Aj) = νj whenever S1:H , A1:H ∼ M(Π). For the choice ν = νh−1, we must have
Eν,h−1(Π) = 0. Now, by item 1 and 2 of Lemma E.3, we conclude that Êν,h−1 ≤ η0. Therefore this optimization is
feasible.

Consider the solutions to the optimization problem given by ν̂ and Π̂f,h. Note again from Lemma E.3 that Eν̂,h−1(Π̂f,h) ≤
Êν̂,h−1(Π̂f,h) + η0 ≤ 2η0. Now, applying Lemma E.4, we conclude that whenever S1:H , A1:H ∼M(Π̂f,h)

∥Eϕ(Sh−1, Ah−1)− ν̂∥1 ≤ 2η0

By a similar reasoning as the case h = 1, we conclude:

inf
x∈Sd−1

Th(f(;x), ν̂, πf,h
h ) ≥ 3 ζ

4

Now, applying (45), we conclude:

inf
x∈Sd−1

Ef(Sh, Ah;x) = inf
x∈Sd−1

Th(f(;x),Eϕ(Sh−1, Ah−1), π
f,h
h )

≥ inf
x∈Sd−1

Th(f(;x), ν̂, πf,h
h )− sup

x∈Sd−1

|Th(f(;x),Eϕ(Sh−1, Ah−1), π
f,h
h )− Th(f(;x), ν̂, πf,h

h )|

≥ 3ζ

4
− 2Cµ(

√
d+ ξd) (∥ν̂ − Eϕ(Sh−1, Ah−1)∥1) ≥

ζ

2
(48)

In the last step, we have used the lipschitzness bound for Th given in Lemma E.2. We will show that the conditions given
in (4) are satisfied for ψ(Sh, Ah) with parameters ζ/2 instead of ζ.

∥ψ(Sh, Ah)∥2 ≤ 1 almost surely follows from the definition of ψ. Now, Ef(Sh, Ah, x) ≥ ζ
2 for every x ∈ Sd−1 implies

E|⟨x, ψ(Sh, Ah)⟩| ≥ ζ

2
√
d

. Using the definition of f(Sh, Ah, x) (see Section 6) and the fact that Ef(Sh, Ah, x) ≥ ζ
2 as

established above, we conclude that for every x ∈ Sd−1, we also have:

dξE⟨x, ψ(Sh, Ah)⟩2 ≤
√
dE|⟨x, ψ(Sh, Ah)⟩| −

ζ

2

≤
√
dE|⟨x, ψ(Sh, Ah)⟩| ≤

√
d
√

E⟨x, ψ(Sh, Ah)⟩2 (49)

In the second step, we have used Jensen’s inequality. From this, we conclude E⟨x, ψ(Sh, Ah)⟩2 ≤ 1
dξ2 for every x ∈ Sd−1

and thence Eψ(Sh, Ah)ψ(Sh, Ah)
⊺ ⪯ 1

dξ2 .

F. Proof of Theorem 7.1
Let the unknown row set in the iteration t in the matrix estimation procedure of Section 7.1 be denoted by Īt−1. For
the analysis, we will use the convention that Īt = ∅ if the procedure terminates before the t-th iteration. Suppose Kt is

such that for every t ≤ logN , we have: Kt|Īt−1| ≥ C r|Īt−1|+dr
ζ2ξ2 log d

ζξ + C
log( log N

δ )
ζ2ξ2 . We will then show that the event

{|Īt| ≤ 1
10 |Īt−1|∀t ≤ logN} ∩ {Θ̂i = Θ∗

i ,∀i ∈ Ī∁logN} has probability at-least 1 − δ. To show this, it is sufficient to
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consider the step t = 1 with Ī0 = [N ], K1 = K, Ψ(1) = Ψ and show that with probability 1 − δ
logN , Ī1 ≤ 9N

10 and

Θ̂i = Θ∗
i for every i ∈ Ī∁1 . The result then follows from a union bound. We will therefore establish the following structural

lemma and prove the Theorem 7.1. The rest of the section is then dedicated to proving Lemma F.1.

Lemma F.1. Suppose the distribution of ψik satisfies (4). Let K ≥ C(r+
dr
N )

ζ2ξ2 log d
ζξ . Let Y(Ψ) denote the set of all matrices

∆ with rank at most 2r such that L(∆,Ψ) = 0. Let IZ(∆) = {i ∈ [N ] : ∆i ̸= 0}. With probability 1− exp(−cζ2ξ2NK)
we must have:

Y(Ψ)∩
{
∆ : |IZ(∆)| > N

10

}
= ∅

Proof of Theorem 7.1. Let Θ̄ be the rank ≤ r matrix found satisfying L(Θ̄ − Θ∗,Ψ(t)) = 0. By Lemma F.1, we have
that |IZ(Θ̄−Θ∗)| ≤ N

10 with probability at-least 1− δ
logN (by setting K = K1 as in the statement of Theorem 7.1). By

Lemma F.2, the probability that there exists an i ∈ [N ] such that Θ̄i ̸= Θ∗
i , and

∑K
k=1

∣∣∣⟨Θ̄i, ψ̃ik⟩ − θ∗ik
∣∣∣2 = 0 is at most

|I| · exp(−cζ2ξ2K) ≤ δ ·N−c for some large constant c. From this we conclude that Θ̄i = Θ∗
i for every i ∈ Ī∁1 .

Lemma F.2. Fix any Θ̂. Suppose the distribution of (ψik)i∈[N ],k∈[K] satisfies (4). Then, there exists a small enough
constant c such that:

P

(
∃i s.t.

K∑
k=1

∣∣∣⟨Θ̂i, ψik⟩ − θ∗ik
∣∣∣2 < Kζ4ξ2∥Θ̂i−Θ∗

i ∥2
32d

)
≤ |I| · exp(−cζ2ξ2K).

Proof. Consider the Paley-Zygmund inequality, which states that for any positive random variable Z,

P
(
Z ≥ EZ

2

)
≥ (EZ)2

4EZ2
.

Suppose i ∈ I and denote Γi := Θ̂i −Θ∗
i . By the properties of ψik, we have that E|⟨Γi, ψik⟩| ≥ ζ∥Γi∥√

d
and E|⟨Γi, ψik⟩|2 ≤

∥Γi∥2

ξ2d .

Applying the Paley-Zygmund inequality to the random variable |⟨Γi, ψik⟩|, we conclude the result in (53):

P
(
|⟨ψik,Γi⟩| ≥

ζ ∥Γi∥
2
√
d

)
≥ ζ2ξ2

4
(50)

Let p0 := ζ2ξ2

4 . LetN(Γi,Ψi) :=
∑K

k=1 1

(
|⟨ψik,Γi⟩| > ζ

2
√
d

)
. Clearly,

∑K
k=1

∣∣∣⟨Θ̂i, ψik⟩ − θ∗ik
∣∣∣2 ≥ ζ2∥Γi∥2

4d ·N(Γi,Ψi).
Therefore, we have:

P

(
K∑

k=1

∣∣∣⟨Θ̂i, ψik⟩ − θ∗ik
∣∣∣2 < Kζ4ξ2∥Γi∥2

32d

)
≤ P

(
N(Γi,Ψi) <

Kζ2ξ2

8

)
≤ P

(
Bin(K, p0) ≤ Kp0

2

)
≤ exp(−cp0K) (51)

Here Bin(K, p0) denotes the binomial random variable. In the second step we have used the fact that N(Γi,Ψi) is a sum
of K independent Bernoulli random variables with probability of being 1 for each of them being at-least p0 = ζ2ξ2

4 . In
the last step, we have used Sanov’s theorem for large deviations. In the last step we have used Bernstein’s inequality for
concentration of sums of Bernoulli random variables (see (Boucheron et al., 2013)). The statement of the result then follows
from a union bound argument over i ∈ I .
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F.1. Proof of Lemma F.1

Suppose I ̸= ∅, I ⊆ [N ] be any fixed subset. ByM(N, d, I, 2r), we denote the set of all N × d matrices ∆ with rank
at-most 2r such that ∥∆i∥ > 0 for all i ∈ I . By B(N, d, I, 2r) we denote the set of all N × d matrices with rank at-most 2r
such that ∥Γi∥ = 1 whenever i ∈ I .

Lemma F.3. Suppose infΓ∈B(N,d,I,2r) L(Γ,Ψ) > 0. Then, L(∆,Ψ) > 0 for every ∆ ∈M(N, d, I, 2r)

Proof. For every ∆ ∈M(N, d, I, 2r), we construct Γ such that:

Γi =

{
∆i

∥∆i∥ whenever i ∈ I
0 otherwise

(52)

Now, by hypothesis, L(Γ,Ψ) > 0. This implies, there exists an i ∈ I and k ∈ K such that |⟨ψik,Γi⟩| > 0. This implies
|⟨ψik,∆i⟩| > 0 and thence we conclude that L(∆,Ψ) > 0.

Lemma F.4. Suppose Γ is such that ∥Γi∥ = 1 for every i ∈ I . Suppose the distribution of (ψik)i∈[N ],k∈[K] satisfy (4).
Then, there exists a small enough constant c such that:

P
(
L(Γ,Ψ) < |I|ζ4ξ2

32Nd

)
≤ |I|2K2 exp(−cζ2ξ2|I|K)

Proof. Consider the Paley-Zygmund inequality, which states that for any positive random variable Z,

P
(
Z ≥ EZ

2

)
≥ (EZ)2

4EZ2
.

Suppose i ∈ I . By the properties of ψik, we have that E|⟨Γi, ψik⟩| ≥ ζ√
d

and E|⟨Γi, ψik⟩|2 ≤ 1
ξ2d

Applying the Paley-Zygmund inequality to the random variable |⟨Γi, ψik⟩|, we conclude the result in (53):

P
(
|⟨ψik,Γi⟩| ≥

ζ

2
√
d

)
≥ ζ2ξ2

4
(53)

Let p0 := ζ2ξ2

4 . Let N(Γ,Ψ) :=
∑

i∈I

∑K
k=1 1

(
|⟨ψik,Γi⟩| > ζ

2
√
d

)
. Clearly, L(Γ,Ψ) ≥ ζ4

4dNKN(Γ,Ψ) almost surely.
Therefore, we have:

P
(
L(Γ,Ψ) < |I|ζ4ξ2

32N
√
d

)
≤ P

(
N(Γ,Ψ) < |I|Kζ2ξ2

8

)
≤ P

(
Bin(|I|K, p0) ≤ |I|Kp0

2

)
≤ exp(−cp0|I|K) (54)

Here Bin(|I|K, p0) denotes the binomial random variable. In the second step we have used the fact that N(Γ,Ψ) is a sum
of |I|K independent Bernoulli random variables with probability of being 1 for each of them being at-least p0 = ζ2ξ2

4 . In
the last step, we have used Sanov’s theorem for large deviations. In the last step we have used Bernstein’s inequality for
concentration of sums of Bernoulli random variables (see (Boucheron et al., 2013))

Lemma F.5. Suppose the distribution of (ψik)i∈[N ],k∈[K] satisfy (4). Let |I| ≥ N
10 . There exist positive constants c0, c, C

such that whenever KN ≥ Cr(N+d)
ζ2ξ2 log d

ζξ , we have:

P
(

inf
Γ∈B(N,d,I,2r)

L(Γ,Ψ) < c0
ζ4ξ2

d

)
≤ exp(−cζ2ξ2NK)
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Proof. It is sufficient to prove this result for Γ ∈ B0(N, d, I, 2r) ⊆ B(N, d, I, 2r), which is the set of all matrices such that
∥Γi∥ = 1 for every i ∈ I and 0 otherwise. Define ∥Γ∥1,2,⊺ := 1

N

∑N
i=1 ∥Γi∥. Suppose Γ̂ ∈ B0(N, d, I, 2r) is such that

∥Γ− Γ̂∥1,2,⊺ < η. Then,

L(Γ,Ψ) =
1

NK

N∑
i=1

N∑
k=1

|⟨Γi, ψik⟩|2

≥ 1

NK

N∑
i=1

N∑
k=1

|⟨Γ̂i, ψik⟩|2 − 2|⟨Γ̂i − Γi, ψik⟩||⟨Γ̂i, ψik⟩| (55)

= L(Γ̂,Ψ)− ∥Γ− Γ̂∥1,2,⊺ ≥ L(Γ̂,Ψ)− 2η (56)

In the third step, we have used the fact that ∥ψik∥ ≤ 1 and the Cauchy-Schwarz inequality to imply |⟨Γ̂i − Γi, ψik⟩| ≤
∥Γ̂i − Γi∥. Therefore, given any η net of B0(N, d, I, 2r), denoted by B̂0,η , we must have:

inf
Γ∈B0(N,d,I,2r)

L(Γ,Ψ) ≥ inf
Γ∈B̂0,η

L(Γ̂,Ψ)− 2η (57)

We will now parametrize B0(N, d, I, 2r) as follows:

Claim F.6. Every Γ ∈ B0(N, d, I, 2r) can be written as

Γi =

{∑2r
k=1 uikvk if i ∈ I

0 otherwise
(58)

Where v1, . . . , v2r are orthonormal vectors in Rd and ui = (uik)
2r
k=1 ∈ R2r are such that ∥ui∥ = 1.

Proof. By the singular value decomposition, we have: Γ =WΣV ⊺ for orthogonal matrices W,V and the singular value
matrix Σ. Therefore, Γij =

∑2r
k=1 wikσkvkj Denoting uik := wikσk, we note that Γi =

∑2r
k=1 uikvk, where vk is the k-th

column of V .

Now, it remains to show that ∥ui∥ = 1. By ortho-normality of v1, . . . , v2r and the definition of Γ, we have: 1 = ∥Γi∥2 =∑2r
k=1 |uik|2 = ∥ui∥2

Therefore, we construct an η-net for B0(N, d, I, 2r) as follows: consider any η/2-net over the sphere S2r−1, denoted by
Ŝη

2
(2r) with respect to the Euclidean norm. Similarly, consider any η

2
√
2r

-net over the sphere Sd−1, denoted by Ŝ η

2
√
2r
(d).

We draw (ui)i∈I , (vk)k∈[2r] from the set
∏

i∈I Ŝη
2
(2r)

∏
k∈[2r] Ŝ η

2
√
2r
(d) and take B̂0,η to be the set of all Γ̂(u, v) of the

form given in Claim F.6.

Claim F.7. B̂0,η is an η net for B0(N, d, I, 2r) with respect to the norm ∥ · ∥1,2,⊺.

|B̂0,η| ≤ exp
(
2dr log( 4

√
2r

η + 1) + 2|I|r log( 4η + 1)
)

Proof of Claim F.7. Let Γ ∈ B0(N, d, I, 2r). Let (ui), (vk) be such that: Claim F.6, Γi =
∑2r

k=1 uikvk. By construction,
there exists Γ̂ ∈ B̂0,η such that:

Γ̂i =
2r∑
k=1

ûikv̂k

with ∥ui − ûi∥ ≤ η
2 and ∥vk − v̂k∥ ≤ η

2
√
2r

for every i ∈ I and k ∈ [2r].

In order to show that ∥Γ− Γ̂∥1,2,⊺ ≤ η, it is sufficient to show that ∥Γ̂i − Γ̂i∥ ≤ η for every i ∈ [I].
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∥Γ̂i − Γi∥ =
∥∥ 2r∑

k=1

(ûik − uik)vk +

2r∑
k=1

uik(vk − v̂k)
∥∥

≤
∥∥ 2r∑

k=1

(ûik − uik)vk
∥∥+∥∥ 2r∑

k=1

uik(vk − v̂k)
∥∥

=

√√√√ 2r∑
k=1

(ûik − uik)2+
∥∥ 2r∑

k=1

uik(vk − v̂k)
∥∥ ≤ η

2
+
∥∥ 2r∑

k=1

uik(vk − v̂k)
∥∥

≤ η

2
+

√√√√ 2r∑
k=1

u2ik

√√√√ 2r∑
k=1

∥vk − v̂k∥2 ≤ η (59)

Therefore B̂0,η is an η net with respect to ∥ · ∥1,2,⊺. By Corollary 4.2.13 in (Vershynin, 2018), we can pick:
∣∣Ŝ η

2
√
2r
(d)
∣∣ ≤

( 4
√
2r

η + 1)d and |Ŝη
2
(2r)| ≤ ( 4η + 1)2r and conclude the bound on the cardinality of B̂0,η .

By Lemma F.4 and a union bound,

P

(
inf

Γ̂∈B̂0,η

L(Γ̂,Ψ) <
ζ4ξ2|I|
32Nd

)
≤ |B̂0,η| exp(−cζ2ξ2|I|K)

≤ exp
(
2dr log( 4

√
2r

η + 1) + 2|I|r log( 4η + 1)− cζ2ξ2|I|K
)

(60)

Therefore, whenever taking |I| ≥ N
10 and η = c1

ζ4ξ2

d for some constant c1 small enough, and combining (60) with (56), we

conclude that whenever K ≥ C(r+
dr
N )

ζ2ξ2 log d
ζξ for a large enough constant C, we have:

P
(

inf
Γ∈B0(N,d,I,2r)

L(Γ,Ψ) < c0
ζ4ξ2

d

)
≤ exp(−cζ2ξ2NK)

Now, consider |I| ≥ N
10 . The number of such sets I is at-most exp(c1N) for some constant c1 > 0. Therefore, applying

Lemma F.5 along with the union bound over all I such that |I| ≥ N
10 we have:

Corollary F.8. Under the conditions of Lemma F.5, we have:

inf
I⊆N

|I|≥N
10

inf
Γ∈B(N,d,I,2r)

L(Γ,Ψ) > c0
ζ4ξ2

d

with probability at-least 1− exp(−cζ2ξ2NK)

We are now ready to prove Lemma F.1.

Proof of Lemma F.1. Combining Lemma F.3 and Corollary F.8, we conclude that with probability at-least 1 −
exp(−cζ2ξ2NK),

Y(Ψ)
⋂( ⋃

I⊆[N ]

|I|≥N
10

M(N, d, I, 2r)

)
= ∅
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Note that if ∆ ∈ Y(Ψ) such that |IZ(∆)| > N
10 implies ∆ ∈M(N, d, I, 2r) for some |I| > N

10 . This allows us to conclude
the statement of the lemma.
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