
On Many-Actions Policy Gradient

Michal Nauman 1 2 Marek Cygan 1 3

Abstract

We study the variance of stochastic policy gra-
dients (SPGs) with many action samples per
state. We derive a many-actions optimality condi-
tion, which determines when many-actions SPG
yields lower variance as compared to a single-
action agent with proportionally extended trajec-
tory. We propose Model-Based Many-Actions
(MBMA), an approach leveraging dynamics mod-
els for many-actions sampling in the context of
SPG. MBMA addresses issues associated with
existing implementations of many-actions SPG
and yields lower bias and comparable variance
to SPG estimated from states in model-simulated
rollouts. We find that MBMA bias and variance
structure matches that predicted by theory. As
a result, MBMA achieves improved sample effi-
ciency and higher returns on a range of continuous
action environments as compared to model-free,
many-actions, and model-based on-policy SPG
baselines.

1. Introduction
Stochastic policy gradient (SPG) is a method of optimizing
stochastic policy through gradient ascent in the context of
reinforcement learning (RL) (Williams, 1992; Sutton et al.,
1999; Peters & Schaal, 2006). When paired with powerful
function approximators, SPG-based algorithms have proven
to be one of the most effective methods for achieving op-
timal performance in Markov Decision Processes (MDPs)
with unknown transition dynamics (Schulman et al., 2017).
Unfortunately, the exact calculation of the gradient is un-
feasible and thus the objective has to be estimated (Sutton
et al., 1999). Resulting variance is known to impact learning
speed, as well as performance of the trained agent (Konda
& Tsitsiklis, 1999; Tucker et al., 2018).

1Informatics Institute, University of Warsaw 2Ideas National
Centre for Research and Development 3Nomagic. Correspondence
to: Michal Nauman <nauman.mic@gmail.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

On-policy sample efficiency (ie. the number of environment
interactions needed to achieve a certain performance level)
is particularly affected by variance, as the gradient must be
evaluated over long sequences in order to produce a suffi-
cient quality of the SPG estimate (Mnih et al., 2016). As
such, a variety of methods for SPG variance reduction have
been proposed. The most widely used is baseline variance
reduction, which has been shown to improve algorithms
stability and became indispensable to contemporary SPG
implementations (Peters & Schaal, 2006; Schulman et al.,
2015b). Alternative approaches include Q-value bootstrap-
ping (Gu et al., 2017), reducing the effect of long-horizon
stochasticity via small discount (Baxter & Bartlett, 2001), in-
creasing number of samples via parallel agents (Mnih et al.,
2016) or using many-actions estimator (Asadi et al., 2017;
Kool et al., 2019b; Petit et al., 2019; Ciosek & Whiteson,
2020).

In many-actions SPG (MA), the gradient is calculated using
more than one action sample per state, without including the
follow-up states of additional actions. The method builds
upon conditional Monte-Carlo and yields variance that is
smaller or equal to that of single-action SPG given fixed
trajectory length (Bratley et al., 2011). These additional
action samples can be drawn with (Ciosek & Whiteson,
2020) or without replacement (Kool et al., 2019b) and can
be generated through rewinding the environment (Schulman
et al., 2015a) or using a parametrized Q-value approximator
(Asadi et al., 2017). However, drawing additional action
samples from the environment is unacceptable in certain
settings, while using a Q-network may introduce bias to
the gradient estimate. Furthermore, a diminishing variance
reduction effect can be achieved by extending the trajectory.
This leads to the following questions:

1. Given fixed trajectory length and cost of sampling ac-
tions, is SPG variance more favorable when sampling
additional actions or extending the trajectory?

2. Given that more samples translate to smaller variance,
what is the bias associated with simulating such addi-
tional samples via neural networks?

The contributions of this paper are twofold. Firstly, we ana-
lyze SPG variance theoretically. We quantify the variance
reduction stemming from sampling multiple actions per state

1

On Many-Actions Policy Gradient

(a) Expected steps to solve (thousands) (b) Expected reward gain after update

Figure 1. Variance reduction leads to better sample efficiency. We train a CartPole Actor-Critic agent with different batch sizes and
many action samples per state (denoted as N). In Figures 1a and 1b X-axis denotes batch size (ie. trajectory length) and Y-axis denotes
thousands of steps and average performance gain resulting from a single policy update. Increasing batch size leads to better gradient
quality at the cost of fewer updates during training. Sampling more actions yields better gradient quality with fewer environment steps.

as compared to extending the trajectory of a single-action
agent. We calculate conditions under which adopting MA
estimation leads to greater variance reduction than extend-
ing trajectory length. We show that the conditions are often
met in RL, but are impossible for contextual bandits. Sec-
ondly, we propose an implementation of MA, which we re-
fer to as the Model-Based Many-Actions module (MBMA).
The module leverages a learned dynamics model to sample
state-action gradients and can be used in conjunction with
any on-policy SPG algorithm. MBMA yields a favorable
bias/variance structure as compared to learning from states
simulated in the dynamics model rollout (Janner et al., 2019;
Kaiser et al., 2019; Hafner et al., 2019) in the context of on-
policy SPG. We validate our approach and show empirically
that using MBMA alongside PPO (Schulman et al., 2017)
yields better sample efficiency and higher reward sums on a
variety of continuous action environments as compared to
many-actions, model-based and model-free PPO baselines.

2. Background
A Markov Decision Process (MDP) (Puterman, 2014) is a
tuple (S,A,R, p, γ), where S is a countable set of states,
A is a countable set of actions, R(s, a) is the state-action
reward, p(s′|s, a) is a transition kernel (with the initial state
distribution denoted as p0) and γ ∈ (0, 1] is a discount factor.
A policy π(a|s) is a state-conditioned action distribution.
Given a policy π, MDP becomes a Markov reward process
with a transition kernel pπ(s′|s) =

∫
a
π(a|s) p(s′|s, a) da,

which we refer to as the underlying Markov chain. The
underlying Markov chain is assumed to have finite variance,
a unique stationary distribution denoted as pπ0 (Ross et al.,
1996; Konda & Tsitsiklis, 1999), t-step stationary transition
kernel pπt and a unique discounted stationary distribution
denoted as pπ∗ . Interactions with the MDP according to
some policy π are called trajectories and are denoted as
τπT (st) = ((st, at, rt), ..., (st+T , at+T , rt+T)), where at ∼
π(at|st), rt ∼ R(s, a) and st+1 ∼ p(st+1|st, at). The
value function V π(s) = Eτπ

∞(s)[
∑∞

t=0 γ
tR(st, at)] and Q-

value function Qπ(s, a) = Eτπ
∞(s|a)[

∑∞
t=0 γ

tR(st, at)] =
R(s, a) + γEs′∼p(s′|s,a)[V

π(s′)] sample at according to
some fixed policy π. State-action advantage is defined as
Aπ(s, a) = Qπ(s, a)−V π(s). An optimal policy is a policy
that maximizes discounted total return J =

∫
s0
V π(s0) ds0.

2.1. On-policy SPG

Given a policy parametrized by θ, the values of θ can be
updated via SPG θ ← θ + ∇θJ . Since we are interested
only in gradient wrt. θ, we drop it from the gradient notation
in further uses. The SPG is given by (Sutton & Barto, 2018):

∇J = E
s∼pπ

∗
E

a∼π
Qπ(s, a)∇ log π(a|s) (1)

As such, SPG is proportional to a double expectation of
Qπ(s, a)∇θ log π(a|s), with the outer expectation taken
wrt. the discounted stationary distribution pπ∗ and the in-
ner expectation taken wrt. policy π. The gradient can be
estimated via a trajectory sampled according to the policy
(Nota & Thomas, 2020; Wu et al., 2022). We denote ∇Ĵ as
the estimator, ∇J(st, at) = Qπ(st, at)∇ log π(at|st) with
st, at ∼ pπt , π. Then, SPG can be calculated:

∇Ĵ =
1

T

T−1∑
t=0

γt ∇J(st, at) (2)

In the setup above, the outer expectation of Equation 1 is
estimated via Monte-Carlo (Metropolis & Ulam, 1949) with
T state samples drawn from the non-discounted stationary
distribution pπ0 ; and the inner expectation is estimated with
a single action per state drawn from the policy π(a|s). The
resulting variance can be reduced to a certain degree by a
control variate, with state value being a popular choice for
such baseline (Schulman et al., 2015b). Then, the Q-value
from Equation 1 is replaced by Aπ(st, at). If the state value

2

On Many-Actions Policy Gradient

is learned by a parametrized approximator, it is referred to
as the critic. Critic bootstrapping (Gu et al., 2017) is defined
as Qπ(s, a) = R(s, a) + γV π(s′) with s′ ∼ p(s′|s, a) and
can be used to balance the bias-variance tradeoff of Q-value
approximations.

2.2. On-policy Many-Actions SPG

Given a control variate, the variance of policy gradient can
be further reduced by approximating the inner integral of
Equation 2 with a quadrature of N > 1 action samples.
Then, ∇Ĵ is equal to:

∇Ĵ =
1

T

T−1∑
t=0

γt 1

N

N−1∑
n=0

∇J(st, ant)︸ ︷︷ ︸
N actions per state︸ ︷︷ ︸

T state samples in a trajectory

(3)

Where ant denotes the nth action sampled at state st. Fur-
thermore, MDP transitions are conditioned only on the first
action performed (ie. pπ(st+1|st, ant) = pπ(st+1|st) ⇐⇒
n ̸= 0). Implementations of such an approach were called
all-action policy gradient or expected policy gradient (Asadi
et al., 2017; Petit et al., 2019; Ciosek & Whiteson, 2020).
As follows from the law of iterated expectations, the many-
actions (MA) estimator is unbiased and yields lower or
equal variance as compared to single-action SPG with equal
trajectory length (Petit et al., 2019). Since the policy log
probabilities are known, using MA requires approximating
the Q-values of additional action samples. As such, MA
is often implemented by performing rollouts in a rewinded
environment (Schulman et al., 2015a; Kool et al., 2019a;b)
or by leveraging a Q-network at the cost of bias (Asadi et al.,
2017; Petit et al., 2019; Ciosek & Whiteson, 2020). The vari-
ance reduction stemming from using MA has been shown
to increase both performance and sample efficiency of SPG
algorithms (Schulman et al., 2015a; Kool et al., 2019b).

3. Variance of Stochastic Policy Gradients
Throughout the section, we assume no stochasticity induced
by learning Q-values and we treat Q-values as known. Fur-
thermore, when referring to SPG variance, we refer to the
diagonal of the policy parameter variance-covariance ma-
trix. Finally, to unburden the notation, we define Υt =
γt ∇J(st, at) and Ῡt = γt Ea∼π∇J(st, at), where we
skip the superscript when t = 0. Similarly, we use Oa(·) =
Oa∼π(·), Os(·) = Os∼pπ

0
(·) and Os,a(·) = Ost,at∼pπ

t ,π
(·),

where O denotes expected value, variance and covariance
operators. As shown, given fixed trajectory length T , MA-
SPG variance is smaller or equal to the variance of single-
action agent Petit et al. (2019); Ciosek & Whiteson (2020).
However, approximating the inner expectation of SPG al-

ways uses resources (ie. compute or environment interac-
tions), which could be used to reduce the SPG variance
through other means (eg. extending the trajectory length).
To this end, we extend existing results (Petit et al., 2019;
Ciosek & Whiteson, 2020) by comparing the variance re-
duction stemming from employing MA as opposed to using
regular single-action SPG with an extended trajectory length.
If the underlying Markov chain is ergodic the variance of
SPG, denoted as V, can be calculated via Markov chain
Central Limit Theorem (Jones, 2004; Brooks et al., 2011):

V =
1

T
Var
s,a

[
Υ
]
+ 2

T−1∑
t=1

T − t

T 2
Cov
s,a

[
Υ,Υt

]
(4)

The states underlying Υ and Υt are sampled from the undis-
counted stationary distribution pπ0 and the t-step stationary
transition kernel pπt respectively. As follows from the er-
godic theorem (Norris & Norris, 1998), conditional probabil-
ity of visiting state st given starting in state s0 with action a00
approaches the undiscounted stationary distribution pπ0 ex-
ponentially fast as t grows limt→∞ p(st|s0, a10) = pπ0 (st).
Therefore, Covt ≥ Covt+1, as well as limt→∞ Covt = 0.
Equation 4 shows the well-known result that increasing the
trajectory length T decreases V. This result contextualizes
the success of parallel SPG (Mnih et al., 2016). Unfortu-
nately, the form above assumes single action per state.

3.1. Variance Decomposition

To quantify variance reduction stemming from many ac-
tion samples, we decompose V into sub-components. We
include derivations in Appendix A.1.
Lemma 3.1. Given ergodic MDP, SPG with N action sam-
ples per state and T states, V can be decomposed into:

Var
s,a

[
Υ
]
= Var

s

[
Ῡ
]
+

1

N
E
s
Var
a

[
Υ
]

Cov
s,a

[
Υ,Υt

]
= Cov

s,a

[
Υ̂, Υ̂t

]
+

1

N
E
s
Cov
s,a

[
Υ,Υt

] (5)

Combining Lemma 3.1 with Equation 4 yields an expression
for decomposed SPG variance, where we group components
according to dependence on N :

T V = Var
s

[
Υ̂
]
+ 2

T−1∑
t=1

T − t

T
Cov
s,a

[
Υ̂, Υ̂t

]
︸ ︷︷ ︸

Marginalized policy variance

+
1

N
E
s

(
Var
a

[
Υ
]
+ 2

T−1∑
t=1

T − t

T
Cov
s,a

[
Υ,Υt

])
︸ ︷︷ ︸

Policy-dependent variance

(6)

3

On Many-Actions Policy Gradient

Table 1. Decomposed trace of variance-covariance matrix divided by the number of parameters. The components were estimated by
marginalizing Q-values, with Equation 3 and Lemma 3.1 using 125000 non-baselined interactions. The last two columns record the
best performance during 500k environment steps (average performance shown in the brackets). The performance of SPG variants was
measured during 500k training steps with additional action samples drawn from the environment. With most variance depending on the
policy, MA often yields better performance than single-action agents with extended trajectories. We detail the setting in Appendix B.

VARIANCE COMPONENT PERFORMANCE

TASK MARGINALIZED POLICY POLICY-DEPENDENT (T, N) = (1024, 2) (T, N) = (2048, 1)

BALL CATCH 0.026 (3%) 0.819 (97%) 905 (708) 920 (715)

CART SWINGUP 0.006 (1%) 5.736 (99%) 837 (670) 801 (669)

CHEETAH RUN 0.006 (1%) 1.615 (99%) 208 (131) 204 (126)

FINGER SPIN 0.026 (18%) 0.122 (82%) 304 (187) 281 (179)

REACHER EASY 2.269 (39%) 3.565 (61%) 428 (262) 776 (488)

WALKER WALK 0.081 (1%) 11.786 (99%) 509 (315) 465 (287)

Given N = 1, the variance simplifies to a single-action
case. The statement shows that SPG variance can be de-
composed into: marginalized policy variance, which stems
from the underlying Markov chain and is decreased only by
trajectory length (T); and policy-dependent variance, which
indeed is reduced by both sampling more actions per state
(N) and increasing trajectory length (T). Table 1 shows es-
timated variance components and performance of two SPG
estimators (T = 1024;N = 2 and T = 2048;N = 1) for
6 Deepmind Control Suite (DMC) environments. In partic-
ular, the table shows that with Q-values marginalized, the
policy is responsible for around 90% of SPG variance in
tested environments.

3.2. Measuring Variance Reduction

We proceed with the analytical analysis of the variance
reduction stemming from increasing N and T .

Lemma 3.2. Given ergodic MDP, SPG with N action sam-
ples per state and T states, variance reduction stemming
from increasing N by 1 (denoted as ∆N) and variance re-
duction stemming from increasing the trajectory length to
T + δT with δ ∈ (0,∞) (denoted as ∆T) are equal to:

∆N

αN
= E

s

(
Var
a

[
Υ
]
+ 2

T−1∑
t=1

T − t

T
Cov
s,a

[
Υ,Υt

])
∆T

αT
= Var

s,a

[
Υ
]
+ 2

T−1∑
t=1

(T − t

T
− t

T + δT

)
Cov
s,a

[
Υ,Υt

]
αN =

−1
T (N2 +N)

and αT =
−δ

T + δT
(7)

Derivation of Lemma 3.2 is detailed in Appendix A.2.
Lemma 3.2 shows the diminishing variance reduction stem-
ming from increasing N by 1 or T by δT . Incorporating δ

captures the notion of relative costs of increasing N and T .
If δ = 1, then the cost of increasing N by 1 (sampling one
more action per state in trajectory) is equal to doubling the
trajectory length. Now, it follows that many-actions yield
better variance reduction than increasing trajectory length
only if ∆N ≤ ∆T for given values of N , T , and δ.
Theorem 3.3. Given ergodic MDP, SPG with N action
samples per T states, variance reduction stemming from in-
creasing N by 1 is bigger than variance reduction stemming
from increasing T by δT for δ = 1 and N = 1 when:

T−1∑
t=1

t

T
Cov
s,a

[
Υ,Υt

]
≥ Var

s

[
Υ̂
]
+ 2

T−1∑
t=1

T − t

T
Cov
s,a

[
Υ̂, Υ̂t

]
(8)

For derivation with N ≥ 1 and δ ∈ (0,∞) see Equation 14
in Appendix A.3. The theorem represents a condition under
which optimal to switch from regular SPG (MA-SPG with
N = 1) to MA-SPG with N = 2. Surprisingly, the optimal-
ity condition for δ = 1 and N = 1 is dependent solely on the
covariance structure of the data. As follows from Theorem
3.3, MA is optimal when the weighted sum of MDP covari-
ances exceeds the variance of the Markov Chain underlying
the MDP. As follows, MA is most effective in problems
where action-dependent covariance constitutes a sizeable
portion of the total SPG variance (ie. problems where future
outcomes largely depend on actions taken in the past and
consequently,∇θJ(st+k, at+k) largely depends upon at).
Corollary 3.4. Given ergodic MDP, SPG with N action
samples per state and T states, the SPG variance reduction
from increasing ∆N = 1 is bigger than SPG variance
reduction from ∆T = δT when:

Var
s

[
Υ̂
]

E
s
Var
a

[
Υ
] ≤ 1− δN

δ(N2 +N)
(9)

4

On Many-Actions Policy Gradient

The corollary above is a specific case of Theorem 3.3. By
assuming a contextual bandit problem, the covariances are
equal to zero and the optimality condition is vastly simpli-
fied. As follows from the definition of variance, the LHS
of Equation 9 is greater or equal to 0. However, the RHS
becomes negative when δN > 1. Since N ≥ 1, it fol-
lows that MA is never optimal for bandits if δ ≥ 1 (ie. the
cost of acquiring an additional action sample is equal to or
greater than the cost of acquiring an additional state sam-
ple). Whereas the efficiency of MA for contextual bandits
is restricted, Theorem 3.3 shows that MA can be a prefer-
able strategy for gradient estimation in MDPs. We leave
researching the optimality condition for setting with sam-
pled Q-values or deterministic policy gradients for future
work.

4. Model-Based Many-Actions SPG
Given a fixed amount of interactions with the environment,
our theoretical analysis is related to two notions in on-policy
SPG algorithms: achieving better quality gradients through
MA via Q-network (QMA) (Asadi et al., 2017; Petit et al.,
2019; Ciosek & Whiteson, 2020); and achieving better qual-
ity gradients through simulating additional transitions via
dynamics model in model-based SPG (MB-SPG) (Janner
et al., 2019). Building on theoretical insights, we propose
Model-Based Many-Actions (MBMA), an approach that
bridges the two themes described above. MBMA lever-
ages a learned dynamics model in the context of MA-SPG.
As such, MBMA allows for MA estimation by calculat-
ing Q-values of additional action samples by simulating
a critic-bootstrapped trajectory within a dynamics model,
consisting of transition and reward networks (Ha & Schmid-
huber, 2018; Hafner et al., 2019; Kaiser et al., 2019; Gelada
et al., 2019; Schrittwieser et al., 2020) which we explain in
Appendix E. MBMA can be used in conjunction with any
on-policy SPG algorithm.

4.1. MBMA and MA-SPG

In contrast to existing implementations of MA-SPG, MBMA
does not require Q-network for MA estimation. Using a
Q-network to approximate additional action samples yields
bias. Whereas the bias can theoretically be reduced to zero,
the conditions required for such bias annihilation are unreal-
istic (Petit et al., 2019). Q-network learns a non-stationary
target (Van Hasselt et al., 2016) that is dependent on the cur-
rent policy. Furthermore, generating informative samples
for multiple actions is challenging given single-action su-
pervision. This results in unstable training when Q-network
is used to bootstrap the policy gradient (Mnih et al., 2015;
Van Hasselt et al., 2016; Gu et al., 2017; Haarnoja et al.,
2018). The advantage of MBMA when compared to QMA
is that both reward and transition networks learn stationary

targets throughout training, thus offering better convergence
properties and lower bias. Such bias reduction comes at
the cost of additional computation. Whereas QMA approxi-
mates Q-values within a single forward calculation, MBMA
sequentially unrolls the dynamics model for a fixed amount
of steps.

4.2. MBMA and MB-SPG

From the perspective of model-based on-policy SPG,
MBMA builds upon on-policy Model-Based Policy Op-
timization (MPBO) (Janner et al., 2019) but introduces
the distinction between two roles for simulated transitions:
whereas MBPO calculates gradient at simulated states, we
propose to use information from the dynamics model by
backpropagating from real states with simulated actions (i.e.
simulating Q-values of those actions). As such, we define
MBMA as an idea that we do not calculate gradients at sim-
ulated states, but instead use the dynamics model to refine
the SPG estimator through MA variance reduction. Not
calculating gradients at simulated states greatly affects the
resulting SPG bias. When backpropagating SPG through
simulated states, SPG is biased by two approximates: the Q-
value of simulated action; and log-probability calculated at
the output of the transition network. The accumulated error
of state prediction anchors the gradient on log probabilities
which should be associated with different states. MBPO
tries to reduce the detrimental effect of compounded dy-
namics bias by simulating short-horizon trajectories starting
from real states. In contrast to that, by calculating gradi-
ents at real states, MBMA biases the SPG only through
its Q-value approximates, allowing it to omit the effects of
biased log probabilities. Such perspective is supported by
Lipschitz continuity analysis of approximate MDP models
(Asadi et al., 2018; Gelada et al., 2019). We investigate bias
stemming from strategies employed by QMA, MBMA, and
MBPO in the table below. In light of the above arguments
and our theoretical analysis, we hypothesize that using the
dynamics model for MA estimation might yield a more
favorable bias-variance tradeoff as compared to using the
dynamics model to sample additional states given a fixed
simulation budget.

Table 2. SPG per-parameter bias associated with action (MA) and
state (MS) sample simulation. Q and Q̂ denote the true Q-value
and approximate Q-value of a given state-action pair respectively;
s∗ denotes the output of the transition model; and K denotes the
Lipschitz norm of fs = ∇ log π(a|s). For MS the bias is an upper
bound. We include extended calculations in Appendix A.4.

∇J(s, a)−∇Ĵ(s, a)
MA = fs(Q− Q̂)

MS ≤ fs(Q− Q̂) +
√

(K(s− ŝ))2 + f2
s (Q

2 −Q)

5

On Many-Actions Policy Gradient

5. Experiments
5.1. Experimental Setting

We investigate the effect of bias-variance on the perfor-
mance of on-policy SPG agents. We compare 4 algorithms
implemented with a PPO policy: standard PPO; QMA;
MBPO and MBMA. To isolate the effect of bias-variance
on agents performance, we implement identical agents that
differ only on two dimensions: which samples are simulated
(ie. no simulation (PPO), state sample simulation (MBPO),
action sample simulation (QMA and MBMA)); and how
samples are simulated (ie. Q-network (QMA) as opposed
to dynamics model (MBPO and MBMA)) ceteris paribus.
We deliberately use the simulated samples only in SPG esti-
mation. As such, the differences in performance stem solely
from the bias-variance of specific SPG estimators and the re-
sulting gradient quality. Such an experimental setup reflects
the two questions posed in the Introduction:

1. By comparing MBPO-PPO and MBMA-PPO we com-
pare variance reduction of many-actions (MBMA) as
opposed to extending the trajectory length (MBPO)
in the MB-SPG context and validate our theoretical
contribution

2. By comparing QMA-PPO and MBMA-PPO we ob-
serve the bias accumulation resulting from simulating
action with Q-network (QMA) as opposed to dynamics
models (MBMA)

3. By comparing the bias-free high-variance method
(PPO) to biased low-variance methods (QMA, MBPO,
and MBMA) we investigate how various levels of bias-
variance translate to on-policy SPG performance

Note, that we consider on-policy SPG setting. As such,
we pair MBPO with an on-policy PPO agent, as opposed
to an off-policy SAC agent considered in the original im-
plementation. Algorithm 1 shows the implementation of
MBMA and MBPO used in the experiments. Note that
the algorithms differ only in the execution of line 8: for
MBPO the simulated transitions are single X-step trajec-
tories starting from real states (i.e. representing sampling
new states); and for MBMA the simulated transitions are X
single-steps starting from each on-policy state (i.e. repre-
senting sampling new actions at visited states). Below we
describe the algorithms used in our experiments and discuss
their bias-variance structure.

PPO Proximal Policy Optimization (PPO) (Schulman
et al., 2017) is a model-free on-policy SPG algorithm that
leverages multiple actor-critic updates on a single batch of
on-policy data. PPO uses a trust-region type of objective
that prevents the policy to diverge too much between up-
dates. We use PPO as the single-action agent that performs

unbiased policy updates. The algorithm does not reduce the
SPG variance beyond using the baseline. As such, we expect
PPO variance to be the highest across the tested algorithms.

Algorithm 1 MBPO / MBMA with PPO policy

1: Input: batch size T , number of simulated samples X
2: Collect T on-policy transitions
3: Compute λ returns
4: Add T transitions to experience buffer
5: for i = 1 to (Epochs * Minibatches) do
6: Update dynamics model on buffer data
7: end for
8: Simulate T ∗X new transitions
9: Compute λ returns for simulated transitions

10: for i = 1 to (Epochs * Minibatches) do
11: Update policy on T*(X+1) transitions
12: Update value on T transitions
13: end for

MBMA PPO that leverages the dynamics model to sam-
ple additional actions. The algorithm uses simple MLP
transition and reward networks that are trained using MSE
loss before performing actor updates. Similarly to QMA,
the algorithm performs biased policy updates, with the bias
stemming only from the dynamics model Q-value approx-
imation error. Since the dynamics model rollouts depend
on the sampled actions, the Q-value approximation has a
non-zero variance.

QMA PPO that uses an auxiliary Q-network to sample
additional actions for every visited state(Asadi et al., 2017;
Petit et al., 2019; Ciosek & Whiteson, 2020). To stabilize the
training, we implement QMA-PPO using two Q-networks
and choose the smaller prediction for a given state-action
pair (Van Hasselt et al., 2016; Haarnoja et al., 2018). Q-
networks are trained using MSE loss using TD(λ) as targets,
which we found to be performing better on average than
expected SARSA proposed in the literature (Petit et al.,
2019; Ciosek & Whiteson, 2020). The updates performed
by QMA are biased, as they depend on the output of a biased
Q-network. Q-network determinism reduces the absolute
variance beyond the reduction stemming from many-actions.

MBPO PPO that leverages dynamics model to perform
finite horizon rollouts branching from the on-policy data
(Janner et al., 2019). MBPO allows estimating SPG using
a mix of real and simulated states (ie. extend the trajectory
length). As such, the algorithm leverages the most com-
mon paradigm in model-based SPG - using the dynamics
model to generate trajectories (Hafner et al., 2019; Kaiser
et al., 2019). Similarly to MBMA, transition and reward net-
works are trained using MSE loss. Using dynamics model-
generated trajectories for SPG updates biases the gradient

6

On Many-Actions Policy Gradient

(a) Aggregate performance metrics

(b) Performance, bias and variance

Figure 2. Agent performance, bias and variance on DMC-14 (15 seeds, 95% bootstrapped C.I.). We observe that MBMA generates less
bias than other methods for comparable variance reduction effects. Because agents differ only in bias-variance of their policy gradient
(ceteris paribus), the performance differences stem solely from the beneficial bias-variance structure of the MBMA approach. Furthermore,
we observe that the average bias gain of QMA overwhelms its variance reduction translating to worse performance than other algorithms.

in two ways. Firstly, similarly to QMA and MBMA, there is
bias stemming from Q-value approximation. Secondly, con-
trary to MA methods, SPG is calculated at states simulated
by the model. Due to the extended trajectory, the gradient
updates have reduced variance.

We base our implementations on the PPO codebase provided
by CleanRL (Huang et al., 2022b) and hyperparameters op-
timized for PPO Huang et al. (2022a). To accommodate
more complex tasks, we increase the number of parameters
in actor and critic networks across all tasks. Furthermore,
we do not use advantage normalization: it has no grounding
in SPG theory and can impact the variance structure of the
problem at hand; but it can also adversely impact learning
in certain environments (Andrychowicz et al., 2021). All
algorithms use the same number of parameters in the actor
and critic networks, which are updated the same number of
times. QMA, MBPO, and MBMA use an equal number of
additional samples (which are tuned for best performance of
baselines, see Appendix D): for QMA and MBMA we use
additional 8 actions per state; for MBPO we sample rollout
of 8 states per state (which results in extending the trajec-
tory 9-fold) and TD(λ) for value estimation. We anneal the
number of additional samples until 15% step of the training
for all methods. Whereas learning dynamics models from
images is known to work (Hafner et al., 2019; Schrittwieser
et al., 2020), it is known to offer performance benefits over
model-free counterparts stemming from backpropagation of
additional non-sparse loss functions (Jaderberg et al., 2016;

Schwarzer et al., 2020; Yarats et al., 2021b). To mitigate
such benefits for algorithms using dynamics models, we use
proprioceptive representations given by the environment,
with transition and reward networks working on such rep-
resentations. Similarly, neither MBPO nor MBMA uses an
ensemble of dynamics models (Buckman et al., 2018; Kuru-
tach et al., 2018; Janner et al., 2019). Note, that using the
same number of simulated samples for all methods yields
different computational costs for each method. Calculat-
ing Q-value with a dynamics model requires unrolling the
model for multiple steps (forward pushes) before bootstrap-
ping it with the critic. In contrast, QMA calculates them in
a single step. Relative compute time measurements, hyper-
parameters, and used netwokrk architectures are detailed in
Appendix B.

5.2. Agent Performance, Bias, and Variance

We compare the performance of agents on 14 DMC tasks
(Tassa et al., 2018) of varying difficulty for 1M environ-
ments steps and 15 seeds. During this training, we measure
agent performance, as well as bias and variance of policy
gradients. Furthermore, to measure algorithms performance
in longer training regimes, we record agent performance
on 4 difficult DMC tasks (quadruped walk; quadruped run;
humanoid stand; and humanoid walk) for 3M and 6M en-
vironment steps respectively. We record robust statistics
(Agarwal et al., 2021) for all runs. We provide detailed

7

On Many-Actions Policy Gradient

Table 3. IQM PPO normalized performance, bias gain (ie. the amount of bias gained as compared to PPO), and variance reduction (ie. the
amount of variance reduced as compared to PPO) of the tested approaches. We bold the best-in-class result. 15 seeds.

PPO NORMALIZED SCORE BIAS GAIN VARIANCE REDUCTION

TASK MBMA MBPO QMA MBMA MBPO QMA MBMA MBPO QMA
ACROBOT SWINGUP 1.16 1.11 0.61 8.09 8.71 10.6 13.0 13.9 13.2
BALL CATCH 1.03 1.02 0.98 5.10 5.94 12.4 28.7 30.5 28.9
CART SWINGUP 1.08 1.06 1.02 3.23 3.48 9.04 14.2 14.3 11.1
CART 2-POLES 2.05 1.33 1.09 6.38 6.80 10.1 19.0 20.3 10.3
CART 3-POLES 0.98 1.26 1.15 7.88 7.67 11.0 15.4 13.1 10.9
CHEETAH RUN 1.82 1.74 0.77 11.4 12.0 21.3 38.6 39.5 26.0
FINGER SPIN 0.87 0.79 0.88 4.49 4.88 9.58 14.0 3.81 10.5
FINGER TURN 1.02 0.99 0.88 3.45 4.05 10.1 23.0 18.1 20.2
POINT EASY 1.01 1.00 0.76 1.36 1.50 3.91 11.2 11.9 11.3
REACHER EASY 1.03 1.04 0.68 3.94 4.64 10.2 22.3 22.8 21.7
REACHER HARD 1.39 1.40 0.75 5.29 6.20 11.7 20.7 21.7 18.6
WALKER STAND 1.03 1.02 0.96 9.70 11.5 19.2 29.8 26.6 18.9
WALKER WALK 1.76 1.46 1.01 11.5 12.7 16.2 37.2 35.5 17.5
WALKER RUN 1.67 1.19 1.05 11.3 12.2 15.8 36.7 37.5 17.5

results, methodology for calculating bias and variance, and
further experimental details in Appendix B.

We find that MBMA performs better in 14 out of 18 DMC
tasks, while MBPO and PPO have better performance in 3
and 1 environments respectively. However, the performance
differences are within the margin of statistical error for some
cases. Note that we use hyperparameters tuned wrt. PPO
and MBPO. We observe greater performance gaps benefiting
MBMA for different hyperparameter settings (see Appendix
D, where we compare the performance for different numbers
of simulated samples and various simulation horizons).

Table 4. IQM on four complex DMC tasks (8 seeds, 1 std of the
mean). 3M and 6M steps for quadruped and humanoid tasks
respectively.

PPO MBMA MBPO

QUAD WALK 667± 31 677± 30 590± 43

QUAD RUN 455± 18 468± 6 460± 20

HUM STAND 189± 8 214± 2 203± 31

HUM WALK 178± 14 210± 8 198± 16

In line with theory, we find that MBMA produces consis-
tently less bias than other methods while offering greater
or comparable variance reduction. On average, MBMA
measures the lowest bias and lowest variance. Furthermore,
we find that QMA produces smaller gradients than other
methods given the same data. This points towards the low
variation of the Q-network output and subsequent gradient
cancellation. We find that QMA has the highest relative
bias despite the MA approach. We find this unsurprising,

since as noted in earlier sections, Q-networks pursue a more
difficult target than dynamics models. Furthermore, even
though QMA has the lowest absolute variance (due to no
stochasticity in Q-value estimation), its smallest expected
gradient size leads to a greater impact on its variance and
thus has the highest relative variance amongst methods.

6. Related Work
6.1. Many-Actions SPG

The idea of sampling many actions per state was proposed
in an unfinished preprint1 by Sutton et al. (2001). Later,
the topic was expanded upon by several authors. TRPO
(Schulman et al., 2015a) ’vine procedure’ uses multiple
without-replacement action samples per state generated via
environment rewinding. The without-replacement PG esti-
mator was further refined by using the without-replacement
samples as a free baseline (Kool et al., 2019b;a). MAC
(Asadi et al., 2017) calculates the inner integral of SPG ex-
actly (ie. sample the entire action space for given states) us-
ing Q-network, with the scheme applicable only to discrete
action spaces and tested on simple environments. Similarly,
Petit et al. (2019) propose to estimate the inner integral with
a quadrature of N samples given by a Q-network. The au-
thors also derive the basic theoretical properties of MA SPG.
Besides expanding on the theoretical framework, Ciosek &
Whiteson (2020) propose an off-policy algorithm that, given
a Gaussian actor and quadratic critic, can compute the inner
integral analytically.

1http://incompleteideas.net/papers/SSM-unpublished.pdf

8

On Many-Actions Policy Gradient

6.2. Model-Based RL

ME-TRPO (Kurutach et al., 2018) leverages an ensemble
of environment models to increase the sample efficiency of
TRPO. WM (Ha & Schmidhuber, 2018) uses environment
interactions to learn the dynamics model, with the policy
learning done via evolutionary strategies inside the dynam-
ics model. Similarly, SimPLe (Kaiser et al., 2019) learns
the policy by simulating states via the dynamics model.
Dreamer (Hafner et al., 2019; 2020) refines the latent dy-
namics model learning by proposing a sophisticated joint
learning scheme for recurrent transition and discrete state
representation models, but the policy learning is still done
by simulating states inside the dynamics model starting
from sampled off-policy transitions. Notably, Dreamer was
shown to solve notoriously hard Humanoid task (Yarats
et al., 2021a). Differentiable dynamics models allow for
direct gradient optimization of the policy as an alternative to
traditional SPG. Methods like MAAC (Clavera et al., 2019)
and DDPPO (Li et al., 2022) explore policy optimization
via backpropagating through the dynamics model. MuZero
(Schrittwieser et al., 2020) leverages the dynamics model to
perform a Monte-Carlo tree search inside the latent model.
Perhaps the closest to the proposed approach is MBVE
(Feinberg et al., 2018). There, an off-policy DPG agent
uses the dynamics model to estimate n-step Q-values and
thus refine the approximation. However, our analysis is
restricted to model-based on-policy SPG and we leave the
analysis of MBMA in the context of off-policy agents and
backpropagating through dynamics model for future work.

7. Conclusions
In this paper, we analyzed the variance of the SPG estimator
mathematically. We showed that it can be disaggregated into
sub-components dependent on policy stochasticity, as well
as the components which are dependent solely on the struc-
ture of the Markov process underlying the policy-embedded
MDP. By optimizing such components with respect to the
number of state and action samples, we derived an optimal-
ity condition that shows when MA is a preferable strategy
as compared to traditional, single-action SPG. We used the
result to show the difficult conditions MA has to meet to
be an optimal choice for the case of contextual bandit prob-
lems. We hope that those theoretical results will reinvigorate
research into MA estimation in the context of RL.

Furthermore, we discussed the bias-variance trade-off in-
duced by using Q-network and dynamics models to simulate
action or state samples. We showed that the bias associated
with simulating additional states is of more complex form
than the bias associated with simulating actions while of-
fering similar variance reduction benefits. We measured
the relative bias and variance of policy gradients calculated
via each method and found the measurements in line with

theoretical predictions, showing the analytical importance
of bias and variance of SPG. We hope that those results will
impact the domain of model-based on-policy SPG, where
leveraging the dynamics model for trajectory simulation is
the dominating approach for stochastic policy gradient.

Finally, we proposed an MBMA module - an approach
that leverages dynamics models for MA estimation at the
cost of additional computations. We evaluated its perfor-
mance against QMA, MBPO, and PPO on-policy base-
lines. Our experiments showed that it compares favor-
ably in terms of both sample efficiency and final perfor-
mance in most of the tested environments. We release
the code used for experiments under the following ad-
dress https://github.com/naumix/On-Many-Actions-Policy-
Gradient.

8. Limitations
The main limitation of our theoretical analysis is its de-
pendence on the Markov chain Central Limit Theorem, as
such its results hold only if the underlying Markov chain
is ergodic. Furthermore, it is conducted in the context of
on-policy SPG and its conclusions are applicable only to
such settings. Following the theoretical analysis, our experi-
ments tested only on-policy SPG algorithms. We consider
expanding MA analysis to off-policy setting an interesting
avenue for future research.

9. Acknowledgements
We would like to thank Witold Bednorz, Piotr Miłoś, and
Łukasz Kuciński for valuable discussions and notes. Marek
Cygan is cofinanced by National Centre for Research and
Development as a part of EU supported Smart Growth Oper-
ational Programme 2014-2020 (POIR.01.01.01-00-0392/17-
00). The experiments were performed using the Entropy
cluster funded by NVIDIA, Intel, the Polish National Sci-
ence Center grant UMO-2017/26/E/ST6/00622, and ERC
Starting Grant TOTAL.

References
Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C.,

and Bellemare, M. Deep reinforcement learning at the
edge of the statistical precipice. Advances in neural in-
formation processing systems, 34:29304–29320, 2021.

Andrychowicz, M., Raichuk, A., Stańczyk, P., Orsini, M.,
Girgin, S., Marinier, R., Hussenot, L., Geist, M., Pietquin,
O., Michalski, M., et al. What matters in on-policy re-
inforcement learning? a large-scale empirical study. In
ICLR 2021-Ninth International Conference on Learning
Representations, 2021.

9

https://github.com/naumix/On-Many-Actions-Policy-Gradient
https://github.com/naumix/On-Many-Actions-Policy-Gradient

On Many-Actions Policy Gradient

Asadi, K., Allen, C., Roderick, M., Mohamed, A.-r.,
Konidaris, G., Littman, M., and Amazon, B. U. Mean
actor critic. stat, 1050:1, 2017.

Asadi, K., Misra, D., and Littman, M. Lipschitz continuity
in model-based reinforcement learning. In International
Conference on Machine Learning, pp. 264–273. PMLR,
2018.

Baxter, J. and Bartlett, P. L. Infinite-horizon policy-gradient
estimation. Journal of Artificial Intelligence Research,
15:319–350, 2001.

Bratley, P., Fox, B. L., and Schrage, L. E. A guide to
simulation. Springer Science & Business Media, 2011.

Brooks, S., Gelman, A., Jones, G., and Meng, X.-L. Hand-
book of markov chain monte carlo. CRC press, 2011.

Buckman, J., Hafner, D., Tucker, G., Brevdo, E., and Lee, H.
Sample-efficient reinforcement learning with stochastic
ensemble value expansion. Advances in neural informa-
tion processing systems, 31, 2018.

Ciosek, K. and Whiteson, S. Expected policy gradients for
reinforcement learning. Journal of Machine Learning
Research, 21(2020), 2020.

Clavera, I., Fu, Y., and Abbeel, P. Model-augmented actor-
critic: Backpropagating through paths. In International
Conference on Learning Representations, 2019.

Feinberg, V., Wan, A., Stoica, I., Jordan, M. I., Gonzalez,
J. E., and Levine, S. Model-based value estimation for ef-
ficient model-free reinforcement learning. arXiv preprint
arXiv:1803.00101, 2018.

Gelada, C., Kumar, S., Buckman, J., Nachum, O., and Belle-
mare, M. G. Deepmdp: Learning continuous latent space
models for representation learning. In International Con-
ference on Machine Learning, pp. 2170–2179. PMLR,
2019.

Gu, S., Lillicrap, T., Ghahramani, Z., Turner, R. E., and
Levine, S. Q-prop: Sample-efficient policy gradient with
an off-policy critic. In International Conference on Learn-
ing Representations (ICLR 2017), 2017.

Ha, D. and Schmidhuber, J. Recurrent world models facil-
itate policy evolution. Advances in neural information
processing systems, 31, 2018.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream
to control: Learning behaviors by latent imagination. In
International Conference on Learning Representations,
2019.

Hafner, D., Lillicrap, T. P., Norouzi, M., and Ba, J. Mas-
tering atari with discrete world models. In International
Conference on Learning Representations, 2020.

Huang, S., Dossa, R. F. J., Raffin, A., Kan-
ervisto, A., and Wang, W. The 37 implemen-
tation details of proximal policy optimization.
In ICLR Blog Track, 2022a. URL https:
//iclr-blog-track.github.io/2022/
03/25/ppo-implementation-details/.
https://iclr-blog-track.github.io/2022/03/25/ppo-
implementation-details/.

Huang, S., Dossa, R. F. J., Ye, C., Braga, J., Chakraborty,
D., Mehta, K., and Araújo, J. G. Cleanrl: High-quality
single-file implementations of deep reinforcement learn-
ing algorithms. Journal of Machine Learning Research,
23(274):1–18, 2022b.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T.,
Leibo, J. Z., Silver, D., and Kavukcuoglu, K. Reinforce-
ment learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397, 2016.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to trust
your model: Model-based policy optimization. Advances
in Neural Information Processing Systems, 32, 2019.

Jones, G. L. On the markov chain central limit theorem.
Probability surveys, 1:299–320, 2004.

Kaiser, Ł., Babaeizadeh, M., Miłos, P., Osiński, B., Camp-
bell, R. H., Czechowski, K., Erhan, D., Finn, C., Koza-
kowski, P., Levine, S., et al. Model based reinforcement
learning for atari. In International Conference on Learn-
ing Representations, 2019.

Konda, V. and Tsitsiklis, J. Actor-critic algorithms. Ad-
vances in neural information processing systems, 12,
1999.

Kool, W., van Hoof, H., and Welling, M. Buy 4 reinforce
samples, get a baseline for free! Arxiv, 2019a.

Kool, W., van Hoof, H., and Welling, M. Estimating gradi-
ents for discrete random variables by sampling without
replacement. In International Conference on Learning
Representations, 2019b.

Kurutach, T., Clavera, I., Duan, Y., Tamar, A., and Abbeel,
P. Model-ensemble trust-region policy optimization. In
International Conference on Learning Representations,
2018.

10

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

On Many-Actions Policy Gradient

Li, C., Wang, Y., Chen, W., Liu, Y., Ma, Z.-M., and Liu,
T.-Y. Gradient information matters in policy optimization
by back-propagating through model. In International
Conference on Learning Representations, 2022.

Metropolis, N. and Ulam, S. The monte carlo method.
Journal of the American statistical association, 44(247):
335–341, 1949.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
International conference on machine learning, pp. 1928–
1937. PMLR, 2016.

Norris, J. R. and Norris, J. R. Markov chains. Cambridge
university press, 1998.

Nota, C. and Thomas, P. S. Is the policy gradient a gradient?
In Proceedings of the 19th International Conference on
Autonomous Agents and MultiAgent Systems, pp. 939–
947, 2020.

Peters, J. and Schaal, S. Policy gradient methods for
robotics. In 2006 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 2219–2225. IEEE,
2006.

Petit, B., Amdahl-Culleton, L., Liu, Y., Smith, J., and Bacon,
P.-L. All-action policy gradient methods: A numerical
integration approach. NeurIPS 2019 Optimization Foun-
dations of Reinforcement Learning Workshop, 2019.

Puterman, M. L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

Ross, S. M., Kelly, J. J., Sullivan, R. J., Perry, W. J., Mercer,
D., Davis, R. M., Washburn, T. D., Sager, E. V., Boyce,
J. B., and Bristow, V. L. Stochastic processes, volume 2.
Wiley New York, 1996.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):
604–609, 2020.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
conference on machine learning, pp. 1889–1897. PMLR,
2015a.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel,
P. High-dimensional continuous control using generalized
advantage estimation. arXiv preprint arXiv:1506.02438,
2015b.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Schwarzer, M., Anand, A., Goel, R., Hjelm, R. D., Courville,
A., and Bachman, P. Data-efficient reinforcement learn-
ing with self-predictive representations. In International
Conference on Learning Representations, 2020.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y.
Policy gradient methods for reinforcement learning with
function approximation. Advances in neural information
processing systems, 12, 1999.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D.
d. L., Budden, D., Abdolmaleki, A., Merel, J., Lefrancq,
A., et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Tucker, G., Bhupatiraju, S., Gu, S., Turner, R., Ghahra-
mani, Z., and Levine, S. The mirage of action-dependent
baselines in reinforcement learning. In International con-
ference on machine learning, pp. 5015–5024. PMLR,
2018.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In Proceedings of
the AAAI conference on artificial intelligence, volume 30,
2016.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8(3):229–256, 1992.

Wu, S., Shi, L., Wang, J., and Tian, G. Understanding
policy gradient algorithms: A sensitivity-based approach.
In International Conference on Machine Learning, pp.
24131–24149. PMLR, 2022.

Yarats, D., Fergus, R., Lazaric, A., and Pinto, L. Master-
ing visual continuous control: Improved data-augmented
reinforcement learning. In International Conference on
Learning Representations, 2021a.

Yarats, D., Zhang, A., Kostrikov, I., Amos, B., Pineau, J.,
and Fergus, R. Improving sample efficiency in model-
free reinforcement learning from images. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 35, pp. 10674–10681, 2021b.

11

On Many-Actions Policy Gradient

A. Derivations - Variance
First, we augment the notation to encompass many action samples:

Υt
s,an = ∇J(st, ant), Υt

s,a = ∇J(st, at) and Υt
s = E

a∼π
Υt

s,a

For convenience, throughout the Appendix we will assume finite state and action spaces. However, the same reasoning
works for continuous spaces.

A.1. Derivation of Lemma 3.1

Following the MA-SPG definition outlined in Equation 3, Vars,a∼pπ
0 ,π

[
Υs,a

]
is equal to:

Var
s,a∼pπ

0 ,π

[
Υs,a

]
=

∑
s

pπ0 (s)

N∏
n=1

∑
an

π(an|s)
(
Υs,a1

N
+ ...+

Υs,aN

N

)2

−
(
E ∇J

)2

=
N

N2

∑
s

pπ0 (s)
∑
a

π(a|s) (Υs,a)
2 +

2

N2

(
N

2

) ∑
s

pπ0 (s)

(∑
a

π(a|s) Υs,a

)2

−
(
E ∇J

)2

=
1

N
E

s∼pπ
0

E
a∼π

(Υs,a)
2 +

N − 1

N
E

s∼pπ
0

(Υs)
2 −

(
E∇J

)2

=
1

N
E

s∼pπ
0

E
a∼π

(Υs,a)
2 +

N − 1

N
E

s∼pπ
0

(Υs)
2 −

(
E∇J

)2

=
1

N
E

s∼pπ
0

E
a∼π

(Υs,a)
2 +

N − 1

N
E

s∼pπ
0

(Υs)
2 −

(
E∇J

)2

=
1

N

(
E

s∼pπ
0

E
a∼π

(Υs,a)
2 − E

s∼pπ
0

(Υs)
2

)
+ E

s∼pπ
0

(Υs)
2 −

(
E ∇J

)2

= Var
s∼pπ

0

[
Υs

]
+

1

N
E

s∼pπ
0

Var
a∼π

[
Υs,a

]
= Var

s0∼pπ
0

[
E

a0∼π
∇θJ(s0, a0)

]
+

1

N
E

s0∼pπ
0

Var
a0∼π

[
∇J(s0, a0)

]

(10)

The above result for N = 1 is reported in (Petit et al., 2019), noting it as stemming from the law of total variance. However,
we could not find the proof in the existing literature. Below, pπt (st|s0, a10) denotes the t step transition kernel conditioned on
s0 and a10 (ie. the first sampled action in s0).

E
[
Υs,aΥ

t
s,a

]
=

=
∑
s0

pπ0 (s0)

N∏
n=1

∑
an
0

π(an0 |s0)
∑
st

pπt (st|s0, a10)
N∏

m=1

∑
am
t

π(amt |st)
(
Υs,a1

N
+ ...+

Υs,aN

N

) (
Υt

s,a1

N
+ ...+

Υt
s,aN

N

)

=
∑
s0

pπ0 (s0)

N∏
n=1

∑
an
0

π(an0 |s0)
∑
st

pπt (st|s0, a10)
N∏

m=1

∑
am
t

π(amt |st)
(N∑

i=1

N∑
j=1

Υs,ai

N

Υt
s,aj

N

)

Therefore:

12

On Many-Actions Policy Gradient

E
[
Υs,aΥ

t
s,a

]
= =

1

N

∑
s0

pπ0 (s0)
∑
a1
0

π(a10) Υs,a1
0

N∏
n=2

∑
an
0

π(an0 |s0)
∑
st

pπt (st|s0, a10)
∑
at

π(at|st) Υt
s,a

+
N − 1

N

∑
s0

pπ0 (s0)
∑
a2
0

π(a20) Υs,a2
0

∑
a1
0

π(a10|s0)
∑
st

pπt (st|s0, a10)
∑
at

π(at|st) Υt
s,a

=
1

N

∑
s0

pπ0 (s0)
∑
a1
0

π(a10) Υs,a1
0

∑
st

pπt (st|s0, a10) Υt
s

+
N − 1

N

∑
s0

pπ0 (s0) Υs

∑
a1
0

π(a10|s0)
∑
st

pπt (st|s0, a10) Υt
s

Thus, the tth covariance of MA is equal to:

Cov
st,at∼pπ

t ,π

[
Υs,a,Υ

t
s,a

]
=

=
1

N

∑
s0

pπ0 (s0)
∑
a0

π(a0) Υs,a

∑
st

pπt (st|s0, a0) Υt
s

+
N − 1

N

∑
s0

pπ0 (s0) Υs

∑
a0

π(a0|s0)
∑
st

pπt (st|s0, a0) Υt
s

−
(∑

s0

pπ0 (s0)
∑
a0

π(a0) Υs,a

)(∑
st

pπt (st)
∑
at

π(at) Υ
t
s,a

)
=

1

N

∑
s0

pπ0 (s0)
∑
a0

π(a0) Υs,a

∑
st

pπt (st|s0, a0) Υt
s

+
N − 1

N

∑
s0

pπ0 (s0) Υs

∑
a0

π(a0|s0)
∑
st

pπt (st|s0, a0) Υt
s −

(
E

a∼π
Υs,a

)(
E

a∼π
Υt

s,a

)
=

1

N
E

s0∼pπ
0

(∑
a0

π(a0) Υ
0
s,a

∑
st

pπt (st|s0, a0) Υt
s −Υ0

s

∑
a0

π(a0|s0)
∑
st

pπt (st|s0, a0) Υt
s

)
+

(∑
s0

pπ0 (s0) Υ
0
s

∑
a0

π(a0|s0)
∑
st

pπt (st|s0, a0) Υt
s −

(
E

a∼π
Υs,a

)(
E

a∼π
Υt

s,a

))
= Cov

st,at∼pπ
t ,π

[
Υs,Υ

t
s

]
+

1

N
E

s0∼pπ
0

Cov
st,at∼pπ

t ,π

[
Υs,a,Υ

t
s,a

]
= Cov

st,at∼pπ
t ,π

[
E

a0∼π
∇θJ(s0, a0), E

a0∼π
∇θJ(st, at)

]
+

1

N
E

s0∼pπ
0

Cov
st,at∼pπ

t ,π

[
∇J(s0, a0),∇J(st, at)

]

(11)

Combining Equations 10 and 11 concludes derivation of Lemma 3.1.

A.2. Derivation of Lemma 3.2

Since N is defined to be a natural number, we calculate the variance reduction effect stemming from increasing N via the
forward difference operator:

∆N = V(N + 1)−V(N)

We also use the shorthand notation:

13

On Many-Actions Policy Gradient

αt
e = Cov

st,at∼pπ
t ,π

[
Υs,Υ

t
s

]
, αt = Cov

st,at∼pπ
t ,π|s0

[
Υs,a,Υ

t
s,a

]
and Ct = Cov

st,at∼pπ
t ,π

[
Υs,a,Υ

t
s,a

]
= αt

e +
1

N
E

s∼pπ
0

αt

Thus:

V =
1

T

(
Var

s0∼pπ
0

[
Υs

]
+ 2

T−1∑
t=1

T − t

T
αt
e +

1

N
E

s0∼pπ
0

(
Var
a∼π

[
Υ0

s,a

]
+ 2

T−1∑
t=1

T − t

T
αt
))

We proceed with the calculation of the forward difference:

∆N =
1

T

(
Var
s∼pπ

0

[
Υs

]
+ 2

T−1∑
t=1

T − t

T
αt
e +

1

N + 1
E

s∼pπ
0

(
Var
a∼π

[
Υs,a

]
+ 2

T−1∑
t=1

T − t

T
αt
))

− 1

T

(
Var
s∼pπ

0

[
Υs

]
+ 2

T−1∑
t=1

T − t

T
αt
e +

1

N
E

s∼pπ
0

(
Var
a∼π

[Υs,a] + 2

T−1∑
t=1

T − t

T
αt
))

=
1

T (N + 1)
E

s∼pπ
0

(
Var
a∼π

[
Υs,a

]
+ 2

T−1∑
t=1

T − t

T
αt

)

− 1

T N
E

s∼pπ
0

(
Var
a∼π

[
Υs,a

]
+ 2

T−1∑
t=1

T − t

T
αt

)

=
−1

T (N2 +N)
E

s∼pπ
0

(
Var
a∼π

[
Υs,a

]
+ 2

T−1∑
t=1

T − t

T
αt

)

=
−1

T (N2 +N)
E

s∼pπ
0

(
Var
a∼π

[
Υs,a

]
+ 2

T−1∑
t=1

T − t

T
Cov

st,at∼pπ
t ,π|s0

[
Υ0

s,a,Υ
t
s,a

])

=
−1

T (N2 +N)
E

s0∼pπ
0

(
Var
a∼π

[
∇J(s0, a0)

]
+ 2

T−1∑
t=1

T − t

T
Cov

st,at∼pπ
t ,π|s0

[
∇J(s0, a0),∇J(st, at)

])

(12)

Similarly, we calculate ∆T :

∆T =
1

T + δT
Var

s,a∼pπ
0 ,π

[Υs,a] + 2

T+δT−1∑
t=1

T + δT − t

(T + δT)2
Ct − 1

T
Var

s,a∼pπ
0 ,π

[
Υs,a

]
− 2

T−1∑
t=1

T − t

T 2
Ct

=
−δT

T + δT
Var

s,a∼pπ
0 ,π

[
Υs,a

]
+ 2

T−1∑
t=1

(
T + δT − t

(T + δT)2
− T − t

T 2

)
Ct + 2

T+δT−1∑
k=T

T − t

(T + δT)2
Ct

=
−δ

T + δT

(
Var

s,a∼pπ
0 ,π

[Υs,a] + 2

T−1∑
t=1

(T − t

T
− t

T + δT

)
Ct − 2

δ

T+δT−1∑
k=T

T + δT − k

T + δT
Ck

)

Now, we assume that the trajectory length guarantees reaching a regenerative state, and thus
∑T+δT−1

k=T
T+δT−k
T+δT Ck = 0 :

∆T =
−δ

T + δT

(
Var

s,a∼pπ
0 ,π

[Υs,a] + 2

T−1∑
t=1

(T − t

T
− t

T + δT

)
Ct

)

=
−δ

T + δT

(
Var

s,a∼pπ
0 ,π

[Υs,a] + 2

T−1∑
t=1

(T − t

T
− t

T + δT

)
Cov

st,at∼pπ
t ,π

[
Υ0

s,a,Υ
t
s,a

]) (13)

14

On Many-Actions Policy Gradient

Combining Equations 12 and 13 concludes derivation of Lemma 3.2.

A.3. Derivation of Theorem 3.3

We start the derivation by stating that MA-SPG is advantageous in terms of variance reduction as compared to increased
trajectory length SPG when −∆N ≥ −∆T . As such:

1 + δ

δ(N2 +N)
E

s∼pπ
0

(
Var
a∼π

[
Υs,a

]
+ 2

T−1∑
t=1

T − t

T
αt

)
≥ Var

s,a∼pπ
0 ,π

[
Υs,a

]
+ 2

T−1∑
t=1

(T − t

T
− t

T + δT

)
Ct

We use Equations 10 and 11 to expand the RHS:

Var
s,a∼pπ

0 ,π

[
Υs,a

]
+ 2

T−1∑
t=1

(T − t

T
− t

T + δT

)
Ct =

= Var
s∼pπ

0

[Υs] +
1

N
E

s∼pπ
0

Var
a∼π

[
Υs,a

]
+ 2

T−1∑
t=1

(T − t

T
− t

T + δT

) (
αt
e +

1

N
αt
)

We move all terms dependent on the policy to the LHS:

1− δN

δ(N2 +N)
E

s∼pπ
0

Var
a∼π

[
Υs,a

]
+ 2

T−1∑
t=1

((1 + δ − δN − δ2N)T − (1− 2δN − δ2N)t

(δT + δ2T)(N2 +N)

)
αt ≥

Var
s∼pπ

0

[Υs] + 2

T−1∑
t=1

(T − t

T
− t

T + δT

)
αt
e

(14)

Now, in order to recover the Corollary 9, we assume a contextual bandit setup (ie. pπ(s′|s) = pπ(s′)). Then:

1− δN

δ(N2 +N)
E

s∼pπ
0

Var
a∼π

[Υs,a] ≥ Var
s∼pπ

0

[Υs]

Which is equivalent to:

Var
s∼pπ

0

[Υs]

E
s∼pπ

0

Var
a∼π

[Υs,a]
≤ 1− δN

δ(N2 +N)

We proceed with the derivation for the MDP setup, where pπ(s′|s) ̸= pπ(s′). We write N = 1, which implies that we start
in the regular single-action SPG setup. Furthermore, we assume δ = 1, which according to the setup implies equal cost of
sampling additional action and state samples. Thus, Equation 14 simplifies to:

15

On Many-Actions Policy Gradient

T−1∑
t=1

t

T
αt ≥ Var

s∼pπ
0

[
Υs

]
+

T−1∑
t=1

2T − 3t

T
αt
e

≡
T−1∑
t=1

t

T
αt ≥ Var

s∼pπ
0

[
Υs

]
+ 2

T−1∑
t=1

T − t

T
αt
e −

T−1∑
t=1

t

T
αt
e

≡
T−1∑
t=1

t

T

(
αt + αt

e

)
≥ Var

s∼pπ
0

[
Υs

]
+ 2

T−1∑
t=1

T − t

T
αt
e

≡
T−1∑
t=1

t

T
Ct ≥ Var

s∼pπ
0

[
Υs

]
+ 2

T−1∑
t=1

T − t

T
αt
e

≡
T−1∑
t=1

t

T
Cov

st,at∼pπ
t ,π

[
Υs,a,Υ

t
s,a

]
≥ Var

s∼pπ
0

[
Υs

]
+ 2

T−1∑
t=1

T − t

T
Cov

st,at∼pπ
t ,π

[
Υs,Υ

t
s

]
≡

T−1∑
t=1

t

T
Cov

st,at∼pπ
t ,π

[
Υs,a,Υ

t
s,a

]
≥ Var

s∼pπ
0

[
Υs

]
+ 2

T−1∑
t=1

T − t

T
Cov

st,at∼pπ
t ,π

[
Υs,Υ

t
s

]

(15)

Which concludes the derivation of Theorem 3.3.

A.4. Derivations - Bias

First, we calculate the bias associated with MA (ie. MBMA and QMA), which stems from approximated state-action
Q-value. We denote the approximated Q-value as Q̂π(s, a) and write:

biasMA = ∇J(s, a)−∇Ĵ(s, a)
= ∇ log π(a|s) Qπ(s, a)−∇ log π(a|s) Q̂π(s, a)

= ∇ log π(a|s)
(
Qπ(s, a)− Q̂π(s, a)

) (16)

Furthermore, we calculate the bias associated with using dynamics models to simulate state samples. Firstly, we denote
the result of a n-step transition via the dynamics model as s∗, such that the absolute difference between true transition and
dynamics model transition is equal to |s− s∗|. Furthermore, we denote the Lipschitz norm of∇ log π(a|s) as K. As such, it
follows that:

|∇ log π(a|s)−∇ log π(a|s∗)| ≤ K|s− s∗|

We write the bias:

biasMS = ∇J(s, a)−∇Ĵ(s, a)
= ∇ log π(a|s) Qπ(s, a)−∇ log π(a|s∗) Q̂π(s∗, a)

=
(
∇ log π(a|s)−∇ log π(a|s∗)

)
Q̂π(s∗, a) +∇ log π(a|s)

(
Qπ(s, a)− Q̂π(s∗, a)

)
We use the Lipschitz continuity:

∣∣∣∣biasMS −∇ log π(a|s)
(
Qπ(s, a)− Q̂π(s∗, a)

)
Q̂π(s∗, a)

∣∣∣∣ ≤ K|s− s∗|

Where we assume that Q̂π(s∗, a) ̸= 0. Squaring both sides leads to the solution:

16

On Many-Actions Policy Gradient

biasMS ≥ ∇ log π(a|s)
(
Qπ(s, a)− Q̂π(s, a)

)
−

√
∇ log π(a|s)2

(
Qπ(s, a)2 −Qπ(s, a)

)
+

(
K(s− s∗)

)2
And:

biasMS ≤ ∇ log π(a|s)
(
Qπ(s, a)− Q̂π(s, a)

)
+

√
∇ log π(a|s)2

(
Qπ(s, a)2 −Qπ(s, a)

)
+

(
K(s− s∗)

)2 (17)

Which concludes the derivation.

B. Experimental Details
B.1. Setting

Figure 1 We use the OpenAI gym CartPole environment. We define solving the environment as reaching an average of
190 rewards during 25 evaluations. We perform policy evaluations every 50 environment steps. If the trajectory length is
shorter than environment termination we bootstrap the Q-value with critic. To sample more actions per state we perform
environment rewinding. Similarly to regular actions, the Q-values of additional action samples are bootstrapped via critic
when reaching the trajectory length. Note that CartPole environment has only two actions, as such there is minimal variance
associated with the policy. We smoothen the results with Savitsky-Golay filter and use 45 random seeds.

Table 1 We use a subset of environments from DM Control Suite. We marginalize Q-values by performing 100 rollouts
for every state-action pair. We get 125000 on-policy states, with one additional action per state. We use Equation 3 and
Lemma 3.1 to isolate the variance components. Note that Q-value marginalization is required by Lemma 3.1. Note that if
Q-values are stochastic, we observe more variance reduction stemming from sampling additional actions than expected.
The performance of agents was measured during 500000 environment steps, with an average performance recorded in 122
different episodes. Additional action sample is drawn from the environments (via environment rewinding). To reduce the
compute load used in the experiment, the performance is measured without Q-value marginalization. We use 10 random
seeds.

Table 3 To measure performance we first average across random seeds and take the maximum. We normalize by dividing
each seed by maximum best performing PPO seed. To measure bias and variance, we record 125 gradient estimates for
every method during 10 points in training for 15 random seeds. Each of 125 gradient estimates is calculated using a batch
size of 2500 states. The gradients are always calculated wrt. the same policy. To this end, there is one agent gathering the
data and serving as the policy for all methods. The recorded gradients stemming from all methods are never applied to
the actor network (ie. using one agent per random seed). We denote ∗ as the tested method and P as the total number of
parameters in the model. We calculate relative bias with the following equation:

Bias∗ =
1

P

P∑
p

|∇J∗
p −∇JAC

p |
|∇J∗

p |

Where∇J∗
p and∇JAC

p denote the gradient wrt. pth parameter calculated via the tested method and actor-critic respectively
(averaged over 125 gradient examples). As such, at each testing point, we calculate the absolute difference between the
’oracle’ AC gradient (which is unbiased) and the respective method average. Furthermore, we calculate relative variance via:

Var∗ =
1

P

P∑
p

Var
τ

[
∇J∗

p

]
(∇J∗

p)
2

Where Varτ
[
∇J∗

p

]
denotes the pth unit of the diagonal of variance-covariance matrix calculated over 125 gradient examples.

Dividing bias and variance by the size of the gradient allows us to inspect the relative size (ie. if the gradient is small then
bias and variance might also be small, but big in comparison to the gradient that we are looking for).

17

On Many-Actions Policy Gradient

B.2. Hyperparameters

Below, we provide a detailed list of hyperparameter settings used to generate results presented in Table 3.

HYPERPARAMETER PPO QMA MBMA MBPO
ACTION REPEAT 4 4 4 4

ACTOR OPTIMIZER ADAM ADAM ADAM ADAM
CRITIC OPTIMIZER ADAM ADAM ADAM ADAM

DYNAMICS OPTIMIZER — — ADAM ADAM
Q-NET OPTIMIZER — ADAM — —

ACTOR LEARNING RATE 3e− 4 3e− 4 3e− 4 3e− 4
CRITIC LEARNING RATE 3e− 4 3e− 4 3e− 4 3e− 4

DYNAMICS LEARNING RATE — — 3e− 4 3e− 4
Q-NET LEARNING RATE — 3e− 4 — —

ACTOR OPTIMIZER EPSILON 1e− 5 1e− 5 1e− 5 1e− 5
CRITIC OPTIMIZER EPSILON 1e− 5 1e− 5 1e− 5 1e− 5

DYNAMICS OPTIMIZER EPSILON — — 1e− 5 1e− 5
Q-NET OPTIMIZER EPSILON — 1e− 5 — —
ACTOR HIDDEN LAYER SIZE 512 512 512 512
CRITIC HIDDEN LAYER SIZE 1024 1024 1024 1024

DYNAMICS HIDDEN LAYER SIZE — — 1024 1024
Q-NETWORK HIDDEN LAYER SIZE — 1024 — —

λ 0.95 0.95 0.95 0.95
DISCOUNT RATE 0.99 0.99 0.99 0.99
BATCH SIZE (T) 2048 2048 2048 2048
MINIBATCH SIZE 64 64 64 64

PPO EPOCHS 10 10 10 10
DYNAMICS BUFFER SIZE — — 25000 25000
DYNAMICS BATCH SIZE — — 128 128

NUMBER OF SIMULATED ACTIONS PER STATE (T*) — 8 8 —
NUMBER OF SIMULATED STATES PER STATE (N) — — — 8

SIMULATION HORIZON — — 12 12
CLIP COEFFICIENT 0.2 0.2 0.2 0.2

MAXIMUM GRADIENT NORM 0.5 0.5 0.5 0.5
VALUE COEFFICIENT 0.5 0.5 0.5 0.5

QUADRUPED AND HUMANOID

BATCH SIZE (T) 4096 NA 4096 4096
MINIBATCH SIZE 128 NA 128 128

DYNAMICS BUFFER SIZE — NA 2000000 2000000
DYNAMICS BATCH SIZE — NA 256 256

B.3. Computational Costs

Below, we report the relative computational costs associated with each SPG update type. Note, that code optimization and
parallelization would increase the relative performance of QMA and MBMA.

NUMBER OF ACTIONS PPO QMA MBMA
4 1.00 1.22 1.59
8 1.00 1.62 2.31

16 1.00 2.07 3.60

18

On Many-Actions Policy Gradient

B.4. Unnormalized Results

We provide a table of unnormalized results for the performance experiment:

TASK PPO MBMA MBPO QMA

ACRO SWINGUP 47± 10 (32± 7) 59± 6 (40± 6) 56± 8 (31± 7) 34± 10 (17± 7)

BALL CATCH 948± 8 (831± 20) 974± 3 (898± 8) 969± 2 (888± 8) 934± 5 (770± 30)

CART SWINGUP 736± 46 (617± 46) 828± 16 (707± 44) 825± 13 (702± 38) 802± 2 (677± 18)

CART 2-POLE 308± 16 (253± 8) 575± 52 (388± 27) 435± 48 (317± 22) 315± 22 (248± 12)

CART 3-POLE 229± 15 (199± 10) 229± 14 (202± 10) 261± 6 (221± 9) 262± 5 (211± 4)

CHEETAH RUN 283± 12 (185± 10) 507± 14 (316± 14) 473± 17 (284± 14) 201± 8 (135± 7)

FINGER SPIN 391± 21 (280± 14) 350± 14 (266± 12) 305± 16 (248± 14) 359± 15 (245± 12)

FINGER TURN 396± 67 (213± 54) 368± 59 (206± 52) 318± 73 (184± 51) 296± 75 (176± 50)

POINT EASY 895± 6 (839± 13) 910± 5 (866± 7) 909± 6 (867± 7) 467± 97 (106± 50)

REACHER EASY 885± 44 (649± 66) 968± 2 (815± 39) 854± 71 (729± 74) 472± 27 (316± 72)

REACHER HARD 601± 103 (385± 78) 767± 96 (606± 84) 892± 61 (722± 61) 488± 53 (361± 47)

WALKER STAND 914± 22 (737± 24) 955± 5 (839± 22) 944± 8 (815± 29) 854± 20 (654± 21)

WALKER WALK 514± 14 (377± 14) 892± 9 (686± 18) 720± 19 (576± 19) 500± 17 (340± 14)

WALKER RUN 203± 7 (152± 5) 331± 13 (251± 9) 233± 12 (190± 11) 208± 7 (141± 4)

And for the bias-variance experiment:

RELATIVE BIAS RELATIVE VARIANCE

TASK MBMA MBPO QMA AC MBMA MBPO QMA

ACRO SWINGUP 8.25± 0.3 8.66± 0.3 10.5± 0.5 44.3± 1.5 31.6± 1.1 30.8± 1.0 27.3± 1.1

BALL CATCH 5.28± 0.3 6.04± 0.3 12.1± 0.8 48.7± 1.4 20.0± 0.9 18.0± 0.7 18.8± 1.1

CART SWINGUP 3.16± 0.3 3.46± 0.3 8.89± 1.1 21.2± 1.5 8.08± 0.6 7.84± 0.6 11.1± 1.1

CART 2-POLE 6.32± 0.4 6.79± 0.5 10.6± 0.7 39.8± 1.8 21.6± 1.6 20.5± 1.6 29.8± 1.4

CART 3-POLE 7.48± 0.7 7.29± 0.6 11.0± 0.7 43.0± 2.7 27.7± 2.7 29.6± 2.8 32.4± 2.3

CHEETAH RUN 11.5± 0.4 12.0± 0.4 21.4± 0.8 77.1± 2.5 39.0± 1.1 37.7± 1.1 52.9± 1.7

FINGER SPIN 4.50± 0.3 4.91± 0.4 9.60± 0.4 38.8± 1.1 24.2± 1.3 33.6± 2.0 28.2± 0.9

FINGER TURN 3.55± 0.4 3.94± 0.4 11.3± 0.8 51.0± 2.8 25.4± 1.8 30.9± 2.7 30.4± 2.1

POINT EASY 1.33± 0.1 1.49± 0.1 3.57± 0.6 15.8± 1.4 4.40± 0.4 3.84± 0.3 4.08± 0.5

REACHER EASY 4.07± 0.2 4.85± 0.3 10.3± 1.0 36.2± 1.8 14.3± 0.7 13.8± 0.7 15.6± 1.4

REACHER HARD 5.70± 0.3 6.58± 0.4 13.0± 0.7 41.6± 1.4 21.1± 1.2 20.0± 1.1 23.1± 1.4

WALKER STAND 9.77± 0.4 11.4± 0.5 18.8± 0.8 71.2± 2.0 39.9± 1.2 43.0± 1.4 51.5± 2.1

WALKER WALK 11.1± 0.4 12.3± 0.4 16.6± 0.8 76.7± 1.8 40.7± 1.2 42.0± 1.2 59.4± 1.1

WALKER RUN 11.1± 0.4 12.1± 0.4 15.7± 0.8 77.9± 1.8 41.3± 1.3 40.7± 1.0 59.5± 1.6

19

On Many-Actions Policy Gradient

C. Learning Curves

(a) acrobot swingup (b) ball catch (c) cartpole swingup

(d) cartpole 2-poles (e) cartpole 3-poles (f) cheetah run

(g) finger spin (h) finger turn easy (i) point-mass easy

(j) reacher easy (k) reacher hard (l) walker stand

(m) walker walk (n) walker run (o) legend

Figure 3. Learning curves corresponding to results from Table 3. The shaded region denotes one standard deviation of the mean. 15 seeds.

20

On Many-Actions Policy Gradient

D. Ablations
We investigate the performance of MBMA and MBPO for different N and T (amount of simulated samples and simulation
horizon). We record the average final performance during training of 500k steps. First, we investigate the effects of N . The
table below shows the mean performance for 5 DMC tasks and various amount of simulated data (10 seeds):

METHOD N = 8 N = 16 N = 32 N = 64
QMA 551 390 303 227

MBPO 636 624 570 594
MBMA 683 641 679 707

As the table below shows, MBMA is much more robust to the amount of simulated data. Furthermore, we investigate
the effects of different simulation horizons. The table below shows the mean performance for 5 DMC tasks and various
simulation lengths (10 seeds):

METHOD H = 12 H = 24 H = 48
MBPO 636 592 542
MBMA 683 604 551

We find that MBMA is more robust to hyperparameter settings than MBPO. As discussed in the main body of the paper, this
most likely stems from the more favorable bias variance structure of MBMA.

E. MBMA Implementation Details
We implement MBMA on top of PPO implementation (Schulman et al., 2017) taken from CleanRL repository (Huang et al.,
2022b). Besides actor and critic networks which are standard for PPO, MBMA uses a dynamics model. Following Janner
et al. (2019), we implement a simplistic dynamics model consisting of reward and transition models working directly on
proprioceptive state representations.

Reward model inputs concatenated state-action and outputs scalar value per state-action. It is trained using MSE loss
function with real reward used as a target.

Transition model inputs concatenated state-action and outputs a state vector per state-action pair. It is trained using MSE
loss function with future state used as a target.

Critic inputs state and outputs scalar value per state. It is trained using MSE loss function with discounted sum of rollout
rewards (ie. Monte Carlo) used as a target.

Actor inputs state and outputs means of a Gaussian distribution. It is trained using PPO clipped objective using a mix of
real on-policy data (generated exactly as a regular implementation of PPO would) and simulated on-policy data (which
consists of Q-values of additional actions sampled at real on-policy states). The simulated Q-values are calculated by
unrolling the dynamics model for some number of steps (”simulation horizon” hyperparameter) and bootstrapping it with
future state value given by the critic.

21

