
Geometric Autoencoders – What You See is What You Decode

Philipp Nazari 1 Sebastian Damrich 1 2 Fred A. Hamprecht 1

Abstract
Visualization is a crucial step in exploratory data
analysis. One possible approach is to train an
autoencoder with low-dimensional latent space.
Large network depth and width can help unfold-
ing the data. However, such expressive networks
can achieve low reconstruction error even when
the latent representation is distorted. To avoid
such misleading visualizations, we propose first a
differential geometric perspective on the decoder,
leading to insightful diagnostics for an embed-
ding’s distortion, and second a new regularizer
mitigating such distortion. Our “Geometric Au-
toencoder” avoids stretching the embedding spu-
riously, so that the visualization captures the data
structure more faithfully. It also flags areas where
little distortion could not be achieved, thus guard-
ing against misinterpretation.

1. Introduction
The acquisition of larger and more complex datasets – with
a dimensionality of a few thousand, for example in bio-
informatics (Zheng et al., 2017; Zilionis et al., 2019; Packer
et al., 2019) – has boosted the development of recent ma-
chine learning algorithms. While such high dimensionality
allows for encoding an increasing amount of information, it
also makes human interpretation more difficult. A common
method for exploring high-dimensional datasets is two- or
three-dimensional visualization.

Today’s state-of-the-art algorithms for dimensionality re-
duction are UMAP (McInnes et al., 2018; Damrich & Ham-
precht, 2021) and t-SNE (van der Maaten & Hinton, 2008;
van der Maaten, 2014; Kobak & Berens, 2019). Both UMAP
and t-SNE tend to preserve local structure, which gives them

1HCI/IWR at University of Heidelberg, 69120 Heidelberg,
Germany 2University of Tübingen, 72074 Tübingen, Germany.
Correspondence to: Philipp Nazari <philipp.nazari@gmail.com>,
Sebastian Damrich <sebastian.damrich@uni-tuebingen.de>, Fred
Hamprecht <fred.hamprecht@iwr.uni-heidelberg.de>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

great unfolding power, at the expense of rendering global
structure faithfully (see Figure 1a).

In contrast to standard UMAP and t-SNE, autoen-
coders (Hinton & Salakhutdinov, 2006) find representations
that afford approximate reconstruction of the original, high-
dimensional dataset. They also allow the embedding of
additional measurements after training. If the autoencoder
is linear, it reduces to PCA (Pearson, 1901; Kramer, 1991;
Plaut, 2018), see also Appendix B.1. Non-linear autoen-
coders have much greater representational power. In Fig-
ure 1a we show that autoencoders can produce meaningful
maps of the globe where PCA (projecting New Zealand onto
Italy) and t-SNE (distorting land mass beyond recognition)
both fail.

While non-linearity enables autoencoders to unfold the data,
it can also hinder the interpretability of an autoencoder’s
latent representation. Powerful encoders can introduce dis-
tortions that equally powerful decoders can resolve, leaving
the reconstruction loss unaffected. The result is a mislead-
ing embedding with near perfect reconstruction, subverting
the idea that a 2D latent space forces only the most salient
features to be visualized. In deep networks this defect can
be amplified to the point that even a simple dataset, such
as the Earth dataset (see Appendix D.1) in Figure 1a, can
become hardly recognizable. In the vanilla autoencoder’s
embedding, South and North America each seem to be big-
ger than Eurasia and Africa combined. Nevertheless, the
autoencoder achieves low reconstruction loss, because the
decoder contracts the Americas while expanding the rest of
the world, so that the reconstruction accurately reflects the
continents’ actual sizes.

We take an intuitive geometric approach to different methods
of measuring how encoder and decoder introduce distortion
in the embedding, which assist the practitioner in under-
standing a given embedding. To make sure that what we see
in the embedding is closer to what the decoder reconstructs,
and thus to the structure of the dataset, we propose taming
the decoder’s geometric properties by constructing a regular-
izer that pushes the decoder towards being area-preserving.
This approach is similar to the one in Lee et al. (2022) which
encourages the decoder to be a scaled isometry – a more
restrictive property than area-preservation.

The decoder maps the low-dimensional latent space to the

1

Geometric Autoencoders – What You See is What You Decode

(a) Autoencoders are useful
Embeddings

Vanilla AE Geometric AE t-SNE PCA

Diagnostics

Vanilla AE Geometric AE Vanilla AE Geometric AE

(b) Geometric vs. Vanilla Autoencoder
MNIST FashionMNIST Zilionis PBMC CElegans

G
eo

m
et

ri
c

A
E

V
an

ill
a

A
E

(c) Geometric vs. UMAP Autoencoder

Embedding Indicatrices Determinant

G
eo

m
et

ri
c

A
E

U
M

A
P

A
E

Figure 1. Panel (a) provides an example for the usefulness of autoencoders for visualization. While autoencoders are able to unravel
the Earth dataset, t-SNE disregards global structure, and PCA projects Eurasia onto Australia. The geometric autoencoder ensures that
the relative sizes of the continents are much better preserved than by the vanilla autoencoder. We use diagnostics, indicatrices and a
determinant plot, to demonstrate that our geometric autoencoder’s embedding is more faithful, contracting more homogeneously. Panel (b)
shows how our geometric regularizer improves upon a vanilla autoencoder on a number of datasets. Panel (c) compares our geometric
autoencoder with a UMAP autoencoder on the PBMC dataset. The diagnostics show that the UMAP decoder expands much more
inhomogeneously than our proposed method, distorting the relative cluster sizes.

high-dimensional output space. If, for example, we consider
a two-dimensional latent space and a three-dimensional am-
bient space, the autoencoder learns to place a curved surface
into R3 which, in a suitable measure, best approximates
the higher dimensional dataset. Intuitively, one can visual-
ize the decoder’s task as fitting a surface into output-space,
stretching it arbitrarily. While some stretching might be nec-
essary to approximate the dataset well, excessive stretching
introduces unnecessary distortions in latent space. Loosely
speaking, the geometric regularizer makes the surface resist
stretching intrinsically.

We propose visualizing the decoder’s expansion, which
we can think of as the surface’s stretching, by a heatmap
of the generalized Jacobian determinant (closely related
to the “Riemannian Volumeform” (Lee, 2000) and to the
work of Chen et al. (2018)) and by indicatrices (Laskowski,
1989; Brun & Knutsson, 2009). While the generalized
Jacobian determinant measures the decoder’s undirected
contraction, indicatrices additionally show its anisotropy.
Their size and elongation enable the practitioner to more
faithfully interpret any autoencoder, see Figures 1a, c. We
further endow latent-space with a pullback metric which

allows us to measure and mitigate the decoder’s variance in
contraction.

To sum up, we propose diagnostic tools for visualiz-
ing local distortion of two-dimensional autoencoders and
construct a geometric regularizer reducing those distor-
tions, leading to a more faithful embedding. We pro-
vide the code as an open-source package for PyTorch. It
can be found at https://github.com/hci-unihd/
GeometricAutoencoder.

2. Preliminaries
2.1. Problem Setting

Throughout this work, we assume that there is a dataset
X living in some high-dimensional Euclidean space Rn.
We view an autoencoder as a concatenation of two func-
tions Rn E−→ Rl D−→ Rn, where E is the encoder, D the
decoder and l < n is the dimensionality of latent space.
Both decoder and encoder are realized as (deep) neural net-
works, which are jointly trained to minimize the ℓ2 loss
between the dataset and its reconstruction. Under some

2

https://github.com/hci-unihd/GeometricAutoencoder
https://github.com/hci-unihd/GeometricAutoencoder

Geometric Autoencoders – What You See is What You Decode

mild assumptions (Section 7), the decoder’s image defines
an l-dimensional manifold M (the “reconstruction mani-
fold”) living in Rn with an atlas consisting of only a single
chart, the decoder’s inverse D−1 : M → Rl. The encoder
E : Rn → Rl can be seen as placing an input point onto
the codomain of the chart. The decoder thus defines the
manifold on which the autoencoder can place reconstruc-
tions. The encoder specifies the position on the manifold by
outputting the position on the global chart. During training,
updating the decoder changes the reconstruction manifold,
while updating the encoder changes the position on the chart
and thus on the manifold.

If an autoencoder was trained to optimal reconstruction loss,
it would essentially project data points orthogonally to the
reconstruction manifold, see Appendix E.1. Even in this
case, the encoder could still locally stretch and contract the
embedding as long as the decoder undoes these distortions.
A priori, this is not visible in the embedding space. For
example, the vanilla autoencoder’s embedding of the Earth
dataset in Figure 1a disproportionally expands the Ameri-
cas. Despite this visual distortion, the reconstruction loss is
half that of the geometric autoencoder. This is only possi-
ble if the decoder contracts the enlarged embedding of the
Americas again. We will present a way of measuring such
avoidable contraction and ultimately mitigating it as much
as possible.

It is known from multivariate calculus that the Jaco-
bian determinant of a continuously differentiable function
f : Rn → Rn at a point p ∈ Rn measures how f transforms
an infinitesimal volume centered at p. In order to develop
the concept of a Jacobian determinant for the decoder, which
in general acts between spaces of different dimensionality,
we first generalize the ordinary case to smooth immersions
F : M → N , smooth maps with injective differential every-
where, between manifolds. This requires some machinery
which we introduce in the following paragraph.

2.2. A Note on Differential Geometry

In this section we introduce basic concepts from differential
geometry. For a detailed treatment, see Lee (2018; 2000).

One of the core concepts from differential geometry is that
of a (smooth) manifold, a space that locally looks like Eu-
clidean Space; it can be covered by open sets U , each of
which is homeomorphic to an open subset of Rn. Such a
homeomorphism is called a chart. Furthermore, we require
the transition maps between charts to be diffeomorphisms.
The directions of a manifold M at a point p ∈ M are cap-
tured by the tangent space TpM at p, which can be thought
of as the best linear approximation of the manifold.
A smooth map f : M → N between two manifolds can
be linearly approximated around each point p ∈ M . This
approximation is called the differential of f at p, denoted by

dpf , and maps from the tangent space corresponding to p
to that of its image, dpf : TpM → Tf(p)N . In coordinates,
it is given by the Jacobian matrix JpF of F at p.
Distances and angles at a point p of a Riemannian manifold
are determined by the metric tensor, a bilinear, positive def-
inite map acting on the tangent space at p. The Euclidean
metric tensor ge is given by the Euclidean inner product.

2.3. The Generalized Jacobian Determinant

In this section we generalize the concept of a Jacobian
determinant to smooth immersions F : M → N between
manifolds of dimension m and n, from which the ordinary
case emerges as a special case.

Assume (N, g) to be a Riemannian manifold, then F in-
duces a volume form on F (M) in the following way:

Proposition 2.1. Assume F is a diffeomorphism onto its
image and M is oriented. Then there exists a volume form
ωg on F (M), the Riemannian volume form, which in the
smooth oriented coordinates x1, ..., xl induced by F is given

by ωg =

√
det
[
(JpF)

t
JpF

]
dx1 ∧ ... ∧ dxl.

Proof. Use Proposition 15.6 and 15.31 in Lee (2000).

The square-root factor of the Riemannian volume form
shows how volumes are changed locally by F , and can
thus be seen as a generalization of the Jacobian determinant.
We call its square the generalized Jacobian determinant,
which captures information about the distortion of angles
and directed stretching. This gives rise to the “pullback
metric“, which we introduce in the next paragraph.

2.4. The Pullback Metric

In order to faithfully interpret the latent space of an autoen-
coder, it is crucial to know how angles and distances would
appear after decoding. This can be achieved by equipping
latent space with a metric tensor that measures angles and
distances as they would be mapped to the output manifold.
The resulting metric tensor on latent space is the pullback
metric (Lee, 2000). See Figure 2a for an illustration.

To construct the pullback metric tensor, we endow ambient
space with the Euclidean metric ge, making it a Riemannian
Manifold (Rn, ge). An immersion F : Rl → Rn, which we
will later choose to be the decoder D, induces a pullback
metric F ∗ge on its domain in the following way: Given a
point p ∈ Rl and two tangent vectors v, w ∈ TpRl, their
inner product in the pullback metric is defined as the inner
product of their images under the decoder’s differential,

F ∗gep(v, w) := geF (p)(dpFv, dpFw), (1)

where dpF : TpRl → TF (p)Rn is the differential of F at p.

3

Geometric Autoencoders – What You See is What You Decode

In coordinates, this pullback metric takes a very simple
form, just depending on the Jacobian of F :

Proposition 2.2 (Pullback Metric in Coordinates). The pull-
back of ge under F at p ∈ Rl is in coordinates given by

⟨·, ·⟩p := F ∗gep = (JpF)
t
JpF ∈ Rl,l, (2)

where JpF ∈ Rn×l is the Jacobian matrix of F at p.

Proof. See Appendix B.2.

Equation (2) indicates the connection between the pullback
metric and the generalized Jacobian determinant introduced
in Section 2.3. Indeed, the pullback metric measures lengths
in latent space as lengths along the immersed manifold.

2.5. Indicatrices

While the generalized Jacobian determinant provides infor-
mation about the decoder’s undirected contraction, it does
not tell us anything about its isotropy or directed contrac-
tion. Therefore, we propose visualizing the pullback metric
tensor fields using “indicatrices“ (Laskowski, 1989; Brun &
Knutsson, 2009). Consider a smooth immersion F between
two manifolds M and N , as in the setting of Section 2.3.

Definition 2.3 (Indicatrix). An indicatrix at a point p ∈ M
is the unit sphere in the pullback metric induced by F at p.

Since the differential linearly approximates F at p, we may
think of an indicatrix as consisting of those points around p
which F approximately maps to a unit sphere around F (p).
An indicatrix centered at p thus tells us which directions
are squeezed and which are expanded. It makes distortions
originating from the function F visible. A set of indicatrices,
distributed over the dataset, allows to identify regions which
are contracted or expanded as well as the direction of the
stretching. See Figure 2b for a visual explanation.

2.6. Application to Autoencoders

For the geometric autoencoder, we equip the decoder’s im-
age with the restriction of the Euclidean metric ge, which
we then pull back using the decoder D. In particular, all
the above applies to the special case where F = D is the
decoder. For limitations of our method, see Section 7.

3. Geometric Autoencoders
Unregularized autoencoders tend to contract the embedding
inhomogeneously. In this section, we discuss diagnostics
for this distortion, as well as a regularizer mitigating the
variance in contraction. See Figure 1 for an overview.

3.1. Diagnostics

3.1.1. GENERALIZED JACOBIAN DETERMINANT

To prevent misinterpreting an embedding due to inhomoge-
neous contraction of the decoder, we propose highlighting
areas in latent space based on the generalized Jacobian de-
terminant, which we plot as a heat map on the embedding
as opposed to the background shading in Chen et al. (2018).
This helps interpreting embeddings more faithfully: In Fig-
ure 1a, the determinant plot reveals that the heavily clustered
data lies in an area which the decoder expands. Thus, one
can infer that Europe, Russia and Africa combined are not
actually smaller than each of the two Americas.

3.1.2. INDICATRICES

Given a decoder D : Rl → Rn, we approximate the indica-
trix at p ∈ Rl by the convex hull of the family of vectors
vi/
√
⟨vi, vi⟩p, where the vi are sampled uniformly from the

Euclidean unit circle at p. As a visualization technique, we
plot for a given point p in latent space the convex hull of the
vectors vi as a patch around p. See Figure 2b for an example.
The points p are chosen as a regular grid in the convex hull
of the embedding. The inhomogeneity of the embedding is
reflected in the indicatrices. The variance of the decoder’s
undirected contraction is indicated by the variance of the
indicatrices’ volumes. For example, in Figure 1a the vanilla
decoder’s indicatrices on Europe are smaller than those on
North America (Figure 1a). The decoder’s directed contrac-
tion is encoded by the shape of a single indicatrix; for the
vanilla decoder’s in Figure 1a most of them are elongated
towards Europe, indicating that the decoder has to contract
in that direction in order to reconstruct the dataset. A locally
isotropic decoder, for example the one of PCA, has round
indicatrices (Figure S3, column 4).

3.2. Regularization

We discussed above how the generalized Jacobian deter-
minant measures the local contraction and expansion of a
decoder. A faithful embedding avoids any stretching un-
necessary for reconstruction. Therefore, it is natural to
regularize the decoder to have uniform generalized Jacobian
determinant. To achieve that, we calculate the generalized
Jacobian determinant at every embedding point in the em-
bedding of a minibatch B and calculate the variance of their
logarithm. This defines our regularizer Ldet,

Ldet = Varx∼U(B)

[
log
(
det
(
JE(x)D

)t
JE(x)D

)]
. (3)

The total loss amounts to L → Lrec + αLdet, where α is a
hyperparameter controlling the importance of the regularizer
compared to the usual reconstruction loss Lrec, typically the
mean squared error. In Appendix D.5 we explain why gradi-
ents resulting from the regularizer are propagated through

4

Geometric Autoencoders – What You See is What You Decode

(a) Pullback Metric (Concept) (b) Indicatrices (Concept)

Figure 2. Panel (a) illustrates the pullback metric along a smooth map F : R2 → R3. Given a point p ∈ R2 and two vectors u and v from
the tangent space at p (purple), their product in the pullback metric is defined as the product of their images under F ’s differential dpF
(on the right). While v and w are not orthonormal in the euclidean metric, they are orthonormal in the pullback metric, since their images
are. Panel (b) illustrates indicatrices. Consider a map F : R2 → R2, (x, y) 7→ (x2, y2) which distorts a regular grid as displayed. The
shape of the indicatrices makes this distortion visible in the input space.

both the encoder and the decoder.

Computing the variance of logarithms ensures that the au-
toencoder cannot minimize the secondary objective by glob-
ally expanding the embedding:

Lemma 3.1 (Scale Invariance of the Regularizer). If the
decoder scales with a factor β ∈ R\{0}, the objective Ldet

stays invariant.

Proof. See Appendix B.3.

4. Related Work
Since the invention of autoencoders (Rumelhart et al., 1986)
and their application to visualization, see e.g. Hinton &
Salakhutdinov (2006), numerous regularizations have been
proposed to avoid over-fitting.

Two popular strategies are contractive autoencoders (Rifai
et al., 2011) and denoising autoencoders (Vincent et al.,
2010). Both are geared towards classification, rather than
visualization, as they aim to produce locally constant em-
beddings. Sparse autoencoders (Ng et al., 2011; Makhzani
& Frey, 2014) are regularized to have sparse hidden acti-
vations instead of compressing to a bottleneck dimension,
making them unsuitable for visualization as well. Therefore,
we omitted these three classical regularized autoencoders
from our quantitative evaluation.

Variational autoencoders (Kingma & Welling, 2014; 2019)
are tailored towards generating samples from a prespecified
prior distribution in latent space, typically a Gaussian. As a
result, the embeddings are usually densely packed together
to allow smooth interpolation. This is not ideal for visual-
ization, especially of clustered datasets. Ghosh et al. (2020)
suggest to replace the variational framework with various
deterministic regularizers. However, none of them directly
address the geometric properties of the embedding. Further-
more, Ghosh et al. (2020) do not consider visualization.

More similar to our method are topological autoen-
coders (Moor et al., 2020). Effectively, they encourage
the encoder to preserve the minimum spanning tree of the
dataset. Recently, Trofimov et al. (2023) proposed to regu-
larize autoencoders based on a more refined method for com-
paring the topology between point clouds. Instead of regular-
izing the topology of the embedding, our proposed method
addresses the geometry. Other works in this area have tried
to turn the decoder into an isometry, a map that preserves
pairwise distances on a local scale. The Markov-Lipschitz
autoencoder (Li et al., 2020) directly regularizes local dis-
tances and across several layers of the network. Isometric
autoencoders (Gropp et al., 2020) try to achieve isometry of
the decoder instead by preserving the norm of Monte-Carlo
sampled unit vectors in latent space under multiplication
with the decoder’s Jacobian. The work of Chen et al. (2020)
regularizes the pullback metric tensor directly via a Frobe-
nius norm, but their coordinate-dependent measure has a
bias for decoders with Jacobian of small norm (Lee et al.,
2022). Instead, Lee et al. (2022) propose a different regu-
larization of the pullback metric that induces the decoder
to become a scaled isometry. Our approach aligns closely
with that of Lee et al. (2022), but is less restrictive and
only encourages the decoder to become area-preserving, see
Appendix C.

Other regularized autoencoders include neighborhood recon-
structing autoencoders (Lee et al., 2021) that try to recon-
struct neighborhoods of data points by local approximation
of the decoder. The geometry regularized autoencoders
of Duque et al. (2022) regularize the latent layer to stay
close to a previously computed embedding, e.g., a neigh-
bor embedding with UMAP. Our method does not employ
neighborhood relations, but only uses the reconstruction of
individual point and our geometric regularizer. The recently
proposed geometrically regularized autoencoder of Jang
et al. (2023) extends denoising and contractive autoencoders

5

Geometric Autoencoders – What You See is What You Decode

to the setting where the data and possibly the latent space are
known, non-Euclidean Riemannian manifolds. Crucial for
visualization, we only consider 2D Euclidean latent spaces.
While not explored here, our work readily applies to a gen-
eral Riemannian data space by pulling back its metric tensor
to latent space.

Improving the structure of latent space activations in the
supervised setting is an active area of research, too (Zhao
et al., 2018; Scott et al., 2021).

The most popular non-parametric dimensionality reduc-
tion algorithms are the neighbor embedding methods
t-SNE (van der Maaten & Hinton, 2008; Kobak & Berens,
2019; van der Maaten, 2014) and UMAP (McInnes et al.,
2018). Their relation is discussed in Damrich et al. (2023).
Both t-SNE and UMAP usually do not include a decoder.
There is, however, a parametric implementation of UMAP,
which can be implemented as an autoencoder with UMAP
loss on the embedding (Sainburg et al., 2021). In this setup,
our diagnostics revealed that UMAP embeddings have sig-
nificant variance in local contraction and expansion, see
Figures S2 and S3.

We use indicatrices for visualizing the pullback metric.
These are related to Tissot indicatrices (Laskowski, 1989),
commonly used to visualize distortions in world maps, and
Tensor Glyphs (Brun & Knutsson, 2009). Both of those
methods are more complicated than ours which is more in
line with the equidistance-lines and -plots in Chen et al.
(2018); Lee et al. (2022). We recommend plotting indicatri-
ces across the entire embedding instead of only at isolated
points. Magnification factor plots have been put forward
in Chen et al. (2018) though we suggest restricting them to
embedding points. This is meaningful, since judging the
area-distortion is most relevant in regions that contain data.

5. Experiments
5.1. Experimental Setup

Datasets Besides the classical image datasets MNIST (Le-
Cun et al., 1998) and FashionMNIST (Xiao et al., 2017),
we use the three single-cell datasets Zilionis (Zilionis et al.,
2019), PBMC (Zheng et al., 2017) and CElegans (Packer
et al., 2019). For illustration only, we generate an Earth
dataset consisting of points randomly sampled from the unit
sphere S2 ⊂ R3, wherever there would be landmass on
earth. More information can be found in Appendix D.1.

Baselines We use UMAP (McInnes et al., 2018),
t-SNE (van der Maaten & Hinton, 2008) and PCA (Pear-
son, 1901) as baselines, as well as a vanilla autoencoder, an
autoencoder with UMAP side-loss (Sainburg et al., 2021)
and the topological autoencoder (Moor et al., 2020). For
the former non-parametric models as well as for the UMAP

autoencoder’s side loss, we use the default parameters. For
the topological autoencoder, we weigh the topological loss
for all datasets by λ = 0.5, recommended by Moor et al.
(2020) for the MNIST dataset.

Architecture and Training Encoder and decoder of all the
autoencoder models have four layers of width 100, with
ELU (Clevert et al., 2015) activations. This architecture is
very similar to the standard architecture of Sainburg et al.
(2021), and differs from it only by an additional layer as
well as in the activation function. See Appendix D.2 for
more information about our training procedure. For the
proposed geometric autoencoder, we found α = 0.1 to be a
good weight for the geometric loss term.

5.2. Evaluation

Qualitative Evaluation We evaluate the geometric autoen-
coder as well as suitable baselines using indicatrices and the
generalized Jacobian determinant. For the latter we create a
heatmap plot of the logarithm of the generalized Jacobian
determinant in units of their mean, and subtract 1 from the
result in order to center the scale. All values outside of the
5% quantiles are collapsed to the extreme values inside the
quantiles. Our results are shown in Figures 3, S2, S3.

Quantitative Evaluation We evaluate all models’ embed-
dings with metrics from Moor et al. (2020) and Kobak &
Berens (2019). Our local metrics are kNN, Trust and KL0 .1 .
The kNN metric calculates the kNN recall from embedding
to input. Trust is a metric based on the k nearest neighbor
rankings, and KL0 .1 measures the Kullback-Leibler diver-
gence based on density estimates in input- and latent-space
with length-scale 0.1. Our global metrics are KL100 , Stress,
and Spear. The KL100 metric considers a density estimate
on a more global scale. The Stress metric is the loss of mul-
tidimensional scaling, and Spear calculates the Spearman
coefficient between distances in input and embedding. For a
more detailed discussion of the metrics, see Appendix D.4.

We train on and visualize all data, and evaluate the metrics
on a 10% random subset for speed reasons. To aggregate
results of different metrics and datasets, we rank the models
for each metric and average over all datasets. Averaging
these aggregated ranks over all metrics gives our final metric
⟨Rank⟩. The results can be found in Tables 1 and S5.

6. Results
Qualitative Results In the following paragraphs we evalu-
ate the performance of the autoencoders based on our pro-
posed diagnostics, as well as the embeddings themselves.
We computed them for all datasets considered, see Fig-
ures S1–S3. In the main paper, we illustrate our findings
with the MNIST dataset for which we depict the embed-
dings, determinant heat maps and indicatrices in Figure 3.

6

Geometric Autoencoders – What You See is What You Decode

Geom AE Vanilla AE Topo AE UMAP AE PCA t-SNE UMAP

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l)

(m) (n) (o) (p) (q)

Figure 3. Comparing different embedding methods on MNIST. From left to right we consider the geometric, the vanilla, the topological
autoencoder, and the UMAP autoencoder followed by PCA, t-SNE, and UMAP. From top to bottom we show the embedding, the
indicatrices and the generalized Jacobian determinant. We show our diagnostics only for those methods with a decoder.

The geometric autoencoder produces balanced embeddings
for all the datasets considered, see first column of Figure S1.
Its class separation is better than that of the vanilla autoen-
coder and PCA, slightly better than that of the topological
autoencoder, but worse than t-SNE’s and UMAP’s.

While the geometric autoencoder produces visually pleas-
ing embeddings, its true strength becomes apparent when
combining it with the information obtained from our diag-
nostics, the determinant heatmap and the indicatrices. As
we regularize the autoencoder by the generalized Jacobian
determinant, it is reassuring to see that this determinant in-
deed varies very little for the final embedding, see Figure 3m
and the first column of Figure S2. Visually, the determinant
heatmap looks as uniform as that of PCA, which has con-
stant generalized Jacobian determinant. As a result, we can
trust the relative sizes in the geometric autoencoders’ plots.

The determinant heatmaps on the vanilla autoeocoders’ plots
(Figure S2, column 2) are striking and allow us to under-
stand the corresponding embeddings much better. Those
embeddings have an extremely crowded area and a few data
points or classes which take up most of the embedding space
in common. For instance, it appears that the embedding of
the digit 2 (pink) in Figure 3b takes up roughly as much
space as the rest of the embedding. This observation is simi-
lar to the distorted continent sizes in Figure 1a. Consulting
the determinant heatmap prevents from false conclusions:

The decoder massively expands the cluttered region and con-
tracts those clusters that take up most of the embedding area.
This means that the data embedded into the cluttered area
takes up much more space than appears in the embedding
and conversely, the embedding of the digit 2 in Figure 3b do
not actually take up much more space than the other classes.
Indeed, in the embedding of the geometric autoencoder,
which does not distort relative sizes, the different classes of
MNIST are depicted roughly equisized.

Both the topological autoencoder and the UMAP autoen-
coder show more variation in local contraction and repulsion
than the geometric autoencoder, see Figure S2 columns 3
and 4. For the topological autoencoder, we see that the typi-
cally densely packed center of the embedding gets expanded
by the decoder. A more spread-out layout would improve
the faithfulness of the embedding. For the UMAP autoen-
coder, it is generally the boundary of clusters that appears
too contracted, indicating that the actual cluster separation
is exaggerated in the UMAP plot. Similarly, the indicatrices
show that the whitespace gets contracted by the decoder.

The information encoded in the indicatrices refines the in-
terpretation of the various embeddings further. For the geo-
metric autoencoder, indicatrices have mostly the same area,
reflecting the uniform determinant heatmaps (column 1 of
Figure S3). Even though not regularized for this explicitly,
they are also more circular than for other methods. This

7

Geometric Autoencoders – What You See is What You Decode

Table 1. Quantitative evaluation of our method. We rank each method for a given metric and calculate the mean over all datasets. The
⟨RANK⟩ is the average over metrics. Bold and underlined indicates first, bold second place.

LOCAL GLOBAL

KL0.1 KNN TRUST STRESS KL100 SPEAR ⟨RANK⟩
GEOM AE (OURS) 2.6 3.4 2.2 3.4 2.2 3.4 2.9
VANILLA AE 5.4 5.4 4.4 6.2 4.8 5.0 5.2
TOPO AE 2.8 4.8 4.2 4.8 2.2 1.8 3.4
UMAP AE 4.4 1.6 1.8 2.6 6.0 5.0 3.6
UMAP 5.2 3.4 4.0 1.6 5.6 4.2 4.0
t-SNE 4.0 2.4 4.4 6.8 3.8 7.0 4.7
PCA 3.6 7.0 7.0 2.6 3.4 1.6 4.2

demonstrates that the geometric autoencoder does little di-
rected stretching, leading to a recognizable world map of the
Earth dataset (Figure 1a). We measured the mean 2-norm
condition number on the MNIST dataset for the pullback
metric and found that our method, after PCA, has the most
isotropic indicatrices (see Table S1). Analyzing the posi-
tions where an indicatrix is elongated helps us to correctly
understand our embeddings. On MNIST, the indicatrix in
the long protrusion of the embedding of the digit 0 (blue) in
Figure 3a is elongated in the same direction as the protru-
sion. This implies that the protrusion should not be as long
in the real data as depicted in the embedding.

The indicatrices for the vanilla autoencoder help us under-
stand its embedding better: Not only is the pink class in Fig-
ure 3b depicted deceitfully large, but, in particular, stretched
too much horizontally. Similarly, the embedding of the
digit 7 (red) is stretched vertically. Jointly, the indicatrices
seem to point towards the most densely packed region of
the vanilla autoencoder embeddings for all datasets (see Fig-
ure S3 column 2). Investigating further, we noticed that this
dense region is typically close to the origin in embedding
space. We found that at the beginning of training all embed-
ding points are clustered tightly around the origin due the
initialization of the network. During training, some classes
separate by “expanding away” from the origin, while others
stay near the origin. This explains the typical “star-shape”
of vanilla autoencoder embeddings. We include a video of
the training of a vanilla autoencoder on MNIST illustrating
this process in the GitHub repository. Overall, our diagnos-
tics enabled us to unravel the peculiar appearance of vanilla
autoencoder plots.

The indicatrices for PCA are perfect circles, since the de-
coder of PCA consists of a pair of orthonormal vectors.
Thus, PCA scores perfectly in our diagnostics, but produces
embeddings with the least structure. This shows that a
certain level non-linearity is necessary for salient feature
extraction.

Spotting artefacts in the data is a major use-case of data vi-
sualization. Indeed, the embedding of the initial version of

the PBMC dataset revealed suspiciously regular structures
in the data, which turned out to be a preprocessing artefact,
compare Figures S6c, d. The geometric autoencoder high-
lights this artefact particularly well (Figure S6e). UMAP,
for example, disguises it completely.

Our geometric autoencoder visualizes semantic information
even on a finer level than digit class in MNIST. For instance,
it separates digits 2 with straight lower stroke from those
with curved lower strokes. The vanilla autoencoder fails to
depict such subtle structure successfully. See Appendix E.4
for more details.

Quantitative Results Our quantitative results are reported
in Tables 1 and S5. We find that the geometric regular-
izer influences the reconstruction loss slightly less than the
topological autoencoder (see Table S5). It furthermore has
competitive reconstruction loss compared to the vanilla au-
toencoder, which shows that our regularizer does not lead
to a major impairment of the reconstruction. The geometric
autoencoder beats the vanilla baseline in all metrics except
for the reconstruction loss. It furthermore achieves top rank
in the KLσ metrics in both the local and more global setting,
striking a good compromise between the preservation of
local and global structure. Overall, the geometric autoen-
coder balances the demands of the different metrics best as
it achieves top aggregated rank. Its closest competitors are
the topological autoencoder and the UMAP autoencoder, un-
derlining the power of autoencoders for visualization when
properly regularized.

7. Limitations
For the image of the decoder D to be a manifold with a sin-
gle chart, we require D to be a smooth embedding. Choos-
ing ELU activations ensures that the decoder is continuously
differentiable. Since our regularizer penalizes the Jacobian
for having zero determinant, the inverse function theorem
gives us locally continuously differentiable invertibility. Not
fulfilling these assumptions rigorously impedes neither our
regularization nor our visualization. We could just not call

8

Geometric Autoencoders – What You See is What You Decode

the decoder’s image a manifold.

When defining the pullback metric, we additionally need
to assume that the decoder is an immersion. If this was
not the case and the differential failed to be injective at an
embedding point p, then the metric tensor at p would not
be positive definite. Our diagnostics would detect this in
the form of an infinitely flat indicatrix at p. However, our
regularization loss would become infinite, hence mitigating
the problem in practice.

8. Discussion and Conclusion
Low-dimensional visualization is key for understanding
high-dimensional datasets. An embedding should capture
the most salient features, while representing the dataset faith-
fully. Thus, our contribution consists of two components.
We provide insightful diagnostics that allow identifying dis-
tortions in an embedding, as well as a novel regularizer
mitigating them. The resulting embedding is more faithful
when it comes to relative sizes and shapes.

Our geometric regularizer is fairly simple: It minimizes how
much local expansion varies. On a range of datasets, in-
cluding image and single-cell data, we used our diagnostics
to show that the geometric autoencoder produces visual-
izations with homogeneous expansion leading to a good
resolution in all parts of the embedding.

We furthermore showed that the parametric version of
UMAP, when combined with an autoencoder, creates clus-
tered and separated embeddings by contracting the dataset
rather inhomogeneously, especially at the border of clusters.

Future Work Equipping latent space with a metric allows
for a variety of geometric diagnostics of the decoder differ-
ent from our proposed indicatrices and the generalized Jaco-
bian determinant. For example, it allows us to measure the
decoder’s curvature or to perform parallel transport, which
is a way of moving coordinate systems “parallel” along a
curved manifold. We imagine sampling an orthogonal coor-
dinate system at an arbitrary point in latent space and then
parallel transporting it along geodesics. The result would be
a “curved” grid on the latent space that captures the intrin-
sic geometry of the high-dimensional dataset. We believe
that such a latitude-longitude-like grid would be highly in-
formative, and hope to overcome the numerical challenges
encountered with existing parallel transport implementa-
tions (Guigui & Pennec, 2022; Miolane et al., 2020).

Acknowledgements This work is supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy EXC 2181/1
- 390900948 (the Heidelberg STRUCTURES Excellence
Cluster) as well as by “Informatics for Life”, funded by the
Klaus Tschira Foundation.

References
Böhm, J. N., Berens, P., and Kobak, D. Unsupervised Visu-

alization of Image Datasets using Contrastive Learning.
In International Conference on Learning Representations,
2023.

Brun, A. and Knutsson, H. Tensor Glyph Warping: Visualiz-
ing Metric Tensor Fields using Riemannian Exponential
Maps. In Visualization and Processing of Tensor Fields,
pp. 139–160. Springer, 2009.

Chazal, F., Cohen-Steiner, D., and Mérigot, Q. Geomet-
ric Inference for Probability Measures. Foundations of
Computational Mathematics, 11(6):733–751, 2011.

Chen, N., Klushyn, A., Kurle, R., et al. Metrics for Deep
Generative Models. In International Conference on Arti-
ficial Intelligence and Statistics, pp. 1540–1550. PMLR,
2018.

Chen, N., Klushyn, A., Ferroni, F., et al. Learning
Flat Latent Manifolds with VAEs. arXiv preprint
arXiv:2002.04881, 2020.

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. Fast and
Accurate Deep Network Learning by Exponential Linear
Units (ELUs). arXiv preprint arXiv:1511.07289, 2015.

Damrich, S. and Hamprecht, F. A. On UMAP’s True Loss
Function. In Advances in Neural Information Processing
Systems, volume 34, pp. 5798–5809, 2021.

Damrich, S., Böhm, J. N., Hamprecht, F. A., et al. Con-
trastive learning unifies t-SNE and UMAP. In Interna-
tional Conference on Learning Representations, 2023.

Duque, A. F., Morin, S., Wolf, G., et al. Geometry Reg-
ularized Autoencoders. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022.

Ghosh, P., Sajjadi, M. S. M., Vergari, A., et al. From
variational to deterministic autoencoders. In In-
ternational Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=S1g7tpEYDS.

Gropp, A., Atzmon, M., and Lipman, Y. Isometric Autoen-
coders. arXiv preprint arXiv:2006.09289, 2020.

Guigui, N. and Pennec, X. Numerical Accuracy of Lad-
der Schemes for Parallel Transport on Manifolds. Foun-
dations of Computational Mathematics, 22(3):757–790,
2022.

Hinton, G. E. and Salakhutdinov, R. R. Reducing the Di-
mensionality of Data with Neural Networks. Science, 313
(5786):504–507, 2006.

9

https://openreview.net/forum?id=S1g7tpEYDS
https://openreview.net/forum?id=S1g7tpEYDS

Geometric Autoencoders – What You See is What You Decode

Jang, C., Lee, Y., Noh, Y.-K., et al. Geometrically regu-
larized autoencoders for non-Euclidean data. In Interna-
tional Conference on Learning Representations, 2023.

Kingma, D. P. and Ba, J. Adam: A Method for Stochastic
Optimization. In International Conference on Learning
Representations, pp. 1–15, 2015.

Kingma, D. P. and Welling, M. Auto-Encoding Variational
Bayes. In International Conference on Learning Repre-
sentations, 2014.

Kingma, D. P. and Welling, M. An Introduction to Varia-
tional Autoencoders. Foundations and Trends in Machine
Learning, 2019.

Kobak, D. and Berens, P. The art of using t-SNE for single-
cell transcriptomics. Nature Communications, 10(1):1–
14, 2019.

Kobak, D., Linderman, G., Steinerberger, S., et al. Heavy-
tailed kernels reveal a finer cluster structure in t-SNE
visualisations. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pp.
124–139. Springer, 2020.

Kramer, M. A. Nonlinear Principal Component Analysis
using Autoassociative Neural Networks. AIChE journal,
37(2):233–243, 1991.

Laskowski, P. H. The Traditional and Modern Look at
Tissot’s Indicatrix. The American Cartographer, 16(2):
123–133, 1989.

LeCun, Y., Bottou, L., Bengio, Y., et al. Gradient-based
learning applied to document recognition. IEEE, 86(11):
2278–2324, 1998.

Lee, J. M. Introduction to Smooth Manifolds. Springer, 2nd
edition, 2000.

Lee, J. M. Introduction to Riemannian Manifolds, volume 2.
Springer, 2018.

Lee, Y., Kwon, H., and Park, F. Neighborhood Recon-
structing Autoencoders. Advances in Neural Information
Processing Systems, 34:536–546, 2021.

Lee, Y., Yoon, S., Son, M., et al. Regularized Autoencoders
for Isometric Representation Learning. In International
Conference on Learning Representations, 2022.

Li, S. Z., Zang, Z., and Wu, L. Markov-Lipschitz Deep
Learning. arXiv preprint arXiv:2006.08256, 2020.

Makhzani, A. and Frey, B. k-Sparse Autoencoders. In
International Conference on Learning Representations,
2014.

McInnes, L., Healy, J., and Melville, J. Umap: Uniform
manifold approximation and projection for dimension
reduction. arXiv preprint arXiv:1802.03426, 2018.

Miolane, N., Guigui, N., Le Brigant, A., et al. Geomstats:
A Python Package for Riemannian Geometry in Machine
Learning. Journal of Machine Learning Research, 21
(223):1–9, 2020.

Moor, M., Horn, M., Rieck, B., et al. Topological Au-
toencoders. In International Conference on Machine
Learning, pp. 7045–7054. PMLR, 2020.

Narayan, A., Berger, B., and Cho, H. Assessing single-
cell transcriptomic variability through density-preserving
data visualization. Nature Biotechnology, 39(6):765–774,
2021.

Ng, A. et al. Sparse Autoencoder. CS294A Lecture notes,
72(2011):1–19, 2011.

Packer, J. S., Zhu, Q., Huynh, C., et al. A lineage-resolved
molecular atlas of C. elegans embryogenesis at single-cell
resolution. Science, 365(6459):eaax1971, 2019.

Pearson, K. Liii. on lines and planes of closest fit to systems
of points in space. The London, Edinburgh, and Dublin
philosophical magazine and journal of science, 2(11):
559–572, 1901.

Plaut, E. From Principal Subspaces to Principal Com-
ponents with Linear Autoencoders. arXiv preprint
arXiv:1804.10253, 2018.

Rifai, S., Vincent, P., Muller, X., et al. Contractive Auto-
Encoders: Explicit Invariance during Feature Extraction.
In 28th International Conference on Machine Learning,
pp. 833–840, 2011.

Rumelhart, D., Hinton, G., and Williams, R. Learning
internal representations by error propagation. Parallel
distributed processing, 1:318–363, 1986.

Sainburg, T., McInnes, L., and Gentner, T. Q. Parametric
UMAP embeddings for representation and semisuper-
vised learning. Neural Computation, 33(11):2881–2907,
2021.

Scott, T. R., Gallagher, A. C., and Mozer, M. C. Von Mises-
Fisher loss: An Exploration of Embedding Geometries
for Supervised Learning. In IEEE/CVF International
Conference on Computer Vision, pp. 10612–10622, 2021.

Trofimov, I., Cherniavskii, D., Tulchinskii, E., et al. Learn-
ing Topology-Preserving Data Representations. In Inter-
national Conference on Learning Representations, 2023.

10

Geometric Autoencoders – What You See is What You Decode

van der Maaten, L. Accelerating t-SNE using Tree-Based
Algorithms. The Journal of Machine Learning Research,
15(1):3221–3245, 2014.

van der Maaten, L. and Hinton, G. Visualizing Data using
t-SNE. Journal of Machine Learning Research, 9(11),
2008.

Venna, J. and Kaski, S. Visualizing Gene Interaction Graphs
with Local Multidimensional Scaling. In The European
Symposium on Artificial Neural Networks, 2006.

Vincent, P., Larochelle, H., Lajoie, I., et al. Stacked Denois-
ing Autoencoders: Learning Useful Representations in a
Deep Network with a Local Denoising Criterion. Journal
of Machine Learning Research, 11(12), 2010.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-MNIST: a
Novel Image Dataset for Benchmarking Machine Learn-
ing Algorithms. arXiv preprint arXiv:1708.07747, 2017.

Zhao, Y., Zhao, D., Wan, S., et al. Softmax Supervision
with Isotropic Normalization, 2018. preprint.

Zheng, G. X., Terry, J. M., Belgrader, P., et al. Massively
parallel digital transcriptional profiling of single cells.
Nature Communications, 8(1):1–12, 2017.

Zilionis, R., Engblom, C., Christina, P., et al. Single-Cell
Transcriptomics of Human and Mouse Lung Cancers Re-
veals Conserved Myeloid Populations across Individuals
and Species. Immunity, 50(5):1317–1334, 2019.

11

Geometric Autoencoders – What You See is What You Decode

A. Extended Figures
In Figures S1, S2 and S3 we show the embeddings, determinant heatmap plots and indicatrices for all the datasets and
models considered. In Figure S5 we show the labels of all datasets.

Geom AE Vanilla AE Topo AE UMAP AE PCA t-SNE UMAP

M
N

IS
T

Fa
sh

io
nM

N
IS

T
Z

ili
on

is
PB

M
C

C
E

le
ga

ns

Figure S1. Embeddings of all datasets created with all models.

12

Geometric Autoencoders – What You See is What You Decode

Geom AE Vanilla AE Topo AE UMAP AE PCA

M
N

IS
T

Fa
sh

io
nM

N
IS

T
Z

ili
on

is
PB

M
C

C
E

le
ga

ns

Figure S2. Determinant diagnostic for all suitable models on all datasets.

13

Geometric Autoencoders – What You See is What You Decode

Geom AE Vanilla AE Topo AE UMAP AE PCA

M
N

IS
T

Fa
sh

io
nM

N
IS

T
Z

ili
on

is
PB

M
C

C
E

le
ga

ns

Figure S3. Indicatrix diagnostics for all suitable models on all datasets.

MNIST FashionMNIST

V
an

ill
a

A
E

G
eo

m
A

E

Figure S4. Convolutional autoencoders trained and evaluated on MNIST and FashionMNIST.

14

Geometric Autoencoders – What You See is What You Decode

(a) MNIST (b) FashionMNIST

(c) Zilionis (d) Earth

(e) CElegans

(f) PBMC

Figure S5. Datasets with labels. Embeddings created with geometric autoencoder.

15

Geometric Autoencoders – What You See is What You Decode

B. Theorems and Proofs
B.1. PCA and Linear Autoencoders

We show that PCA can be understood as emerging as an
edge case from autoencoders, placing it into the same family
of dimensionality reduction techniques. The proof up to the
consideration of weight decay can in this or a similar form
also be found in Kramer (1991); Plaut (2018). We repeat
the complete argument here for the reader.

Theorem B.1. Let X be a zero-centered dataset whose
first l singular values are strictly larger than the l + 1-st.
Further, denote by S the set of autoencoders that have linear
encoder and decoder without biases, bottleneck dimension
l and achieve optimal reconstruction loss on X . Then an
autoencoder (E,D) ∈ S learns PCA (up to a rotation or
reflection) if and only if it also achieves minimal weight
decay loss among the autoencoders in S.

Proof. Let E ∈ Rl×n be the linear encoder, D ∈ Rn×l

the linear decoder. Furthermore, let W ∈ Rl×n be the PCA
solution, i.e., the matrix whose l rows are the first l principal
components. By assumption about X’s singular values, the
set of the first l principal components and thus the subspace
V ′ ⊂ Rn that they span are unique.

Let X ∈ Rn,m be the data matrix and set
W = {W ′ ∈ Rl,n | W ′ has orthonormal rows}. Then the
PCA objective (up to rotation and reflection) can be written
as

W ∈ argmin
W ′∈W

∥X −W ′TW ′X∥22. (4)

The autoencoder objective is given by

E,D = argmin
E′∈Rl,n,D′∈Rn,l

∥X −D′E′X∥22. (5)

We want to argue that modulo a multiplication by an invert-
ible matrix in latent space, the two objectives defined in
Equations (4) and (5) agree.

Claim: The possible autoencoder solutions are precisely
those matrices of the form (E,D) = (AW,WTA−1) for
an A ∈ GL(l,R).

Proof: First, we want to show that the PCA solution mini-
mizes the autoencoder objective. If we can show this, one
implication follows trivially. Note that the image of DE is
an l-dimensional subspace V of the vector space Rn, so that
the autoencoder objective in Equation (5) comes down to
mapping the dataset into V ⊂ Rn while minimizing the ℓ2
distance between a data point and its image. In the Hilbert
space Rn, the minimality condition implies that such a map
must be given by an orthogonal projection, independent of
the subspace we project onto. In other words, let B ∈ Rl,n

be a matrix whose rows are an orthonormal basis of V . Then
the orthogonal projection Rn → V is given by v 7→ BTBv.
By the minimality criterion, we have DE = BTB. As B is

feasible for the PCA objective, the PCA solution also solves
the autoencoder objective.

Second, we have to show that every autoencoder solution
(E,D) is of the form (E,D) = (AW,WTA−1) for an
A ∈ GL(l,R). The orthogonal projection to V ′, the space
given by the first l principal components, is given by WTW .
By our argument above and the uniqueness of V ′, the matrix
DE must equal WTW . Since W has orthogonal rows, it
is surjective and thus D and WT must have the same row
space. In other words, there is some A ∈ GL(l,R) such
that D = WTA−1. Orthogonality of the rows of W implies
WWT = I . Multiplying DE = WTW by W from the left
yields

A−1E = WWTA−1E = W (DE) = W (WTW) (6)
= W. (7)

#

In the following, we find further restrictions on the matrix
A resulting from weight decay on E and D.

Claim: If E and D have minimal Frobenius norm among
all (E,D) ∈ {(AW,WTA−1)|A ∈ GL(l,R)}, then the
additional matrix A is a rotation or reflection.

Proof: First recall that for a real matrix M ∈ Rm,n, the
Frobenius norm is ∥M∥2F = tr(MM t). Consequently the
Frobenius-Norm is invariant under multiplication by an or-
thogonal matrix. Second, recall that the only freedom E
and D have lies in the additional invertible matrix A. Per-
forming an SVD of A, we obtain A = U tΣV where U and
V are l× l orthogonal and Σ = (σ1, σ2, ..., σl−1, σl) is l× l
diagonal with σi ̸= 0. This allows to evaluate the Frobenius
norm of the decoder D as

∥D∥F = ∥WTA−1∥F
= ∥WTV TΣ−1U∥F
= ∥Σ−1∥F ,

(8)

where we used that U , V and W all have orthonormal rows.
Analogously, we obtain

∥E∥F = ∥Σ∥F . (9)

This shows that

lossweight decay = ∥D∥2F + ∥E∥2F
= ∥Σ−1∥2F + ∥Σ∥2F
=
∑
i

σ2
i + σ−2

i ,

(10)

which is minimal if and only if

σi = ±1. (11)

16

Geometric Autoencoders – What You See is What You Decode

Consequently, weight decay restricts the autoencoders de-
gree of freedom to a matrix of the form

A = U t diag(±1)V ∈ O(l), (12)

which is orthogonal since U , diag(±1) and V are so. #

This shows that the autoencoder differs from PCA only by
a rotation and/or reflection, which completes the proof.

We believe that Theorem B.1 closely applies in practice,
where autoencoders are typically trained to minimize a
weighted sum of reconstruction and weight decay loss, as
long as the weight of the regularizer is reasonably small.

B.2. Pullback Metric in Coordinates

The pullback of the Euclidean metric under the decoder D
takes a very simple form in coordinates:
Theorem B.2 (Pullback Metric in Coordinates). Given a
point p ∈ Rl, the pullback metric at p in coordinates is

⟨·, ·⟩p := D∗gep = (JpD)
t
JpD ∈ R2,2, (13)

where JpD is the Jacobian of the decoder at p.
Proof. After choosing coordinates on Rl and Rn, the differ-
ential of D at p becomes the Jacobian matrix which we de-
note by JpD, and the inner product in latent space (Rl, D∗g)
is given by

⟨v, w⟩p := D∗gp(v, w) = dpD(v)tdpD(w) (14)

= (JpDv)
t
JpDw = vt

(
JpD

tJpD
)
w. (15)

B.3. Properties of the Determinant Regularization
Objective

In this subsection, we prove properties of our secondary
objective defined in Equation (3), in particular its minimum
and some of its invariances.

Theorem B.3.

1. Ldet(D) ≥ 0

2. Ldet(D) = 0 if and only if for all x, x′ ∈ X we have
det((JE(x)D)tJE(x)D) = det((JE(x′)D)tJE(x′)D).

3. If D and D̃ are two decoders and there is some
c > 0 such that for all x ∈ X we have
det((JE(x)D)tJE(x)D) = cdet((JE(x)D̃)tJE(x)D̃),
then Ldet(D) = Ldet(D̃).

4. Let F : Rl → Rl be a scaled area–preserving dif-
feomorphism, so that det(JzF) is a constant in z.
Then the autoencoder (E,D) and the map given by
(F−1 ◦E,D ◦F) have the same output, the same recon-
struction loss, and the same geometric regularizer value
Ldet(D) = Ldet(D ◦ F).

Proof.

1. Variances are non-negative.

2. The “if” part is clear since the variance of a constant is
zero. The “only if” part follows since all data samples have
equal probability mass in each batch and batches are also
collected uniformly from the whole dataset.

3. Analogous to 4.

4. Since the applications of F and F−1 cancel, the outputs
and reconstruction losses agree.

Let d = det(JzF) be the determinant of F ’s Jacobian. For
x ∈ X , we have

JF−1(E(x))(D ◦ F) = JE(x)(D)JF−1(E(x))(F) (16)

and so

det
(
JF−1(E(x))(D ◦ F)tJF−1(E(x))(D ◦ F)

)
(17)

= d2 det
(
JE(x)(D)tJE(x)(D)

)
. (18)

Thus, the value of the regularizer remains unchanged

Ldet(D ◦ F) (19)

= Var
x∼U(B)

(
log
(
det
(
JF−1(E(x))(D ◦ F)t (20)

JF−1(E(x))(D ◦ F)
)))

(21)

= Var
x∼U(B)

(
log
(
d2 det(JE(x)(D)tJE(x)(D))

))
(22)

= Var
x∼U(B)

(
log(det(JE(x)(D)tJE(x)(D))) (23)

+ 2 log(d)
)

(24)

= Var
x∼U(B)

(
log(det(JE(x)(D)tJE(x)(D)))

)
(25)

= Ldet(D). (26)

The first two parts of Theorem B.3 show that our regular-
izer becomes minimal exactly when the decoder is area-
preserving at the embedding points. The second two parts
describe invariances of our regularizer. Our regularizer is
insensitive to area-preserving changes of the decoder, or
equivalently, of the embedding. This implies scale invari-
ance, a useful property for visualization:

Corollary B.4 (Scale Invariance). Let the first layer of the
decoder scale by a factor of β ∈ R \ {0}, and the embed-
ding by β−1. Not only does this fix the primary objective
(the reconstruction loss), but also our secondary geometric
objective.

Proof. This is a special case of Theorem B.3 in which F
is the multiplication with β.

17

Geometric Autoencoders – What You See is What You Decode

In particular, our regularizer does not favor decoders with Ja-
cobian of small norm, in contrast to the regularizer of Chen
et al. (2020), see (Lee et al., 2022).

C. Relation to Lee et al. (2022)
Lee et al. (2022) describe a hierarchy of geometry-
preserving mappings consisting, from strongest geometry-
preservation to weakest, of isometries, scaled isometries,
conformal maps and area-preserving maps. Their proposed
regularizers tackle the case of scaled isometries and they
explicitly refrain from exploring area-preserving maps.

In turn, our regularizer promotes area-preservation. We
will first explain how the functional form of our regularizer
differs from that of Lee et al. (2022) and then discuss how
our regularizer achieves a similar goal as that of Lee et al.
(2022) in practice.

Denote the determinant of the pullback metric at point z
by d(z) := det((JzD)tJzD) and by λ1(z), . . . , λl(z) the
eigenvalues of the pullback metric at z. In slight abbuse of
notation, we will write z ∼ U(B) when we mean z = E(x)
and x being sampled uniformly from the batch x ∼ U(B).

Rewriting our regularizer from Equation (3), we get

Ldet (27)
= Var

z∼U(B)
[log (d(z))] (28)

= E
z∼U(B)

[(
log(d(z))− E

z′∼U(B)
log(d(z′))

)2
]

(29)

= E
z∼U(B)

[(
l∑

i=1

log(λi(z)) (30)

− E
z′∼U(B)

l∑
j=1

log(λj(z
′))

)2]
(31)

Lee et al. (2022)’s regularizer requires the choice of a prob-
ability distribution P on latent space, a map h : R → [0,∞)
with h(1) = 0 and h′(λ) = 0 if and only if λ = 1 and
finally a symmetric map S : Rl → R with

S(αλ1, . . . , αλl) = αS(λ1, . . . , λl) (32)
S(1, . . . , 1) = 1. (33)

Given P, h and S, the regularizer is

LLee(P, h, S) = (34)

E
z∼P

(
l∑

i=1

h

(
λi(z)

Ez′∼PS(λ1(z′), . . . , λl(z′))

))
(35)

The following admissible choices yield the closest match to

Table S1. The pullback metric’s 2-norm condition number acts
as a measure for the decoder’s isotropy. We evaluate it on the
intersection between a regular grid of 100 × 100 points and the
embedding’s convex hull. The results are for the MNIST dataset
and we report average and standard deviation over five different
initializations. The last two rows refer to the convolutional autoen-
coders described in Section E.2.

MODEL MEAN CONDITION NUMBER

GEOM AE (OURS) 2.5± 1.1
VANILLA AE 100.0± 900.0
TOPO AE 10.1± 22.1
UMAP AE 3.6± 3.1
PCA 1.0± 0.0

CONV VANILLA AE 14.6± 13.8
CONV GEOMAE (OURS) 2.5± 1.2

our regularizer:

P to be given by z = E(x), x ∼ U(B) (36)

h(λ) = log(λ)2 (37)

S(λ1, . . . , λl) =
1

l

l∑
i=1

λi (38)

While they are not the main choices employed by Lee et al.
(2022)), they yield the regularizer

LLee = Ez∼U(B)

[
l∑

i=1

(
log(λi(z)) (39)

− log

(
1

l

l∑
j=1

Ez′∼U(B)λi(z
′)

))2]
(40)

Comparing Equations (31) and (40), the difference between
our regularizer and Lee et al. (2022)’s amounts to a different
ordering of taking expectation, logarithm, sum and square.

Practically, this means that our method promotes only scaled
area-preservation instead of a scaled isometry, see Theo-
rem B.3. While we only regularize towards scaled area-
preservation, we observe qualitatively in Figure S3 that it
also seems to favor isotropic decoders. Lee et al. (2022)
propose the pullback metric determinant’s 2-norm condi-
tion number as a measure for the decoder’s isotropy. It is
equivalent to the ratio of the length of the indicatrices’ main
axes; an isotropic decoder would have a condition number
of one. We calculate the condition number on a regular,
sufficiently dense grid in latent space intersected with the
datasets convex hull for MNIST. The result is shown in
Table S1. Indeed, the geometric autoencoder is the most
isotropic, and the vanilla autoencoder the least (note the
huge standard deviation).

18

Geometric Autoencoders – What You See is What You Decode

D. Datasets, Metrics, Training
D.1. Datasets

We evaluate the models using the image datasets
MNIST (LeCun et al., 1998) and FashionMNIST (Xiao
et al., 2017), both of which we normalize to the unit interval
as proposed by Moor et al. (2020), as well as the single-cell
datasets Zilionis (Zilionis et al., 2019), CElegans (Packer
et al., 2019) and PBMC (Zheng et al., 2017).

The single-cell datasets where obtained from http://cb.
csail.mit.edu/cb/densvis/datasets/, where
they are already preprocessed (Narayan et al., 2021).
On Zilionis, we additionally normalize each feature
to have a mean of zero and a standard deviation of
one. This is necessary since two features dominated
the dataset, as indicated by the PCA embedding of the
non-normalized dataset (see Figure S6a, b). Our analy-
sis furthermore revealed an artefact in the preprocessed
PBMC data, see Figure S6c. We downloaded the original
data from https://support.10xgenomics.com/
single-cell-gene-expression/datasets and
preprocessed the dataset following the procedure in Kobak
et al. (2020): First, we selected the 1000 most variable
genes. Then, we normalized the library sizes to the median
library size in the dataset. Next, we log-transformed with
log2(x+ 1), and finally applied PCA to reduce that dataset
to 50 dimensions. This second version of the PBMC dataset
did not show the artefact anymore, see Figure S6d.

We created the Earth dataset using the python package
“mpl toolkits”. It consists of 100 000 points randomly sam-
pled from the S2, wherever there is landmass on earth, ex-
cluding Antarctica. Every point is labeled by the continent
to which it belongs. Furthermore, in the python package we
used, Europe and Russia have the same label. The labelled
datasets can be found in Figure S5.

D.2. Training

All of the autoencoders except for the UMAP autoencoder
are optimized using ADAM (Kingma & Ba, 2015), and
trained using a batch size of 125, learning rate 10−3 and a
weight decay of 10−5. For the UMAP autoencoder, we used
the standard settings with an additional weight decay of
10−5. The vanilla, topological and geometric autoencoders
are trained for 100 epochs. For the UMAP autoencoder we
use the standard settings of the TensorFlow implementation,
which in particular trains for only one epoch. However, an
epoch of UMAP autoencoder is much longer than an epoch
of the other autoencoders. Usually, an epoch iterates once
over the entire dataset. The UMAP autoencoder iterates over
pairs of datapoints that are incident in the kNN graph. Addi-
tionally, this graph is upsampled to reflect a weighing of the
kNN graph. We measured the size of the resulting dataset.

Table S2. In the standard implementation of Parametric UMAP, the
number of training samples (# samples) varies from the datasets’
size (# dataset). This table provides an overview of how many
“actual epochs“ one “Parametric UMAP epoch“ corresponds to.

DATASET # DATASET # SAMPLES EPOCHS

MNIST 70 000 182 278 632 2600
FASHIONMNIST 70 000 191 104 176 2800
PBMC 68 551 191 021 188 2800
CELEGANS 86 024 236 600 132 2800
ZILIONIS 48 969 142807948 3000

Table S3. Training runtimes on MNIST, averaged over five random
initializations. Including one standard-deviation.

MODEL TIME [MIN]

GEOM AE 39.00± 1.00
VANILLA AE 24.40± 0.40
TOPO AE 82.10± 2.10
UMAP AE2 108.40± 4.9
PCA 00.20± 0.01
t-SNE 05.70± 0.50
UMAP 03.51± 0.03

For MNIST experiment, we found it to be more than 2600
times larger than the normal MNIST dataset. Therefore, a
single epoch of UMAP autoencoder corresponds to even
more than 100 epochs, which we use for the other autoen-
coder models. An overview for all datasets can be found in
Table S2.

D.3. Implementation

The vanilla and the geometric autoencoder were imple-
mented by us in PyTorch. In data loading, training schedule
and quantitative evaluation we follow the PyTorch imple-
mentation of the topological autoencoder1, as referenced in
Moor et al. (2020). For the differential geometry involved,
we use the Geomstats package (Miolane et al., 2020).

We plot the indicatrices on a regular grid in latent space,
intersected with the convex hull of the dataset. We further-
more scale them globally such that the elongated ones do
not cover each other too heavily. This is justified because
we only care about the relative size of the indicatrices, not
their absolute size.

Table S3 summarizes the training runtimes on MNIST, aver-
aged over five random initializations.

Figure S7 shows the geometric loss curve for the vanilla
autoencoder, the topological autoencoder and the geometric

1https://github.com/BorgwardtLab/topological-autoencoders
2Even though we train with the default batch size of 1000, the

speed test uses 125 for consistency.

19

http://cb.csail.mit.edu/cb/densvis/datasets/
http://cb.csail.mit.edu/cb/densvis/datasets/
https://support.10xgenomics.com/single-cell-gene-expression/datasets
https://support.10xgenomics.com/single-cell-gene-expression/datasets

Geometric Autoencoders – What You See is What You Decode

(a) (b) (c) (d)

Geom AE Vanilla AE Topo AE UMAP AE PCA t-SNE UMAP

(e)

Figure S6. First row: Our changes in the preprocessing of the Zilionis and the PBMC dataset. Panel (a) shows the PCA embedding
of the original preprocessed Zilionis data, which is dominated by two features. Normalizing each feature yields the PCA in Panel (b).
Panel (c) shows the geometric autoencoder’s embedding of the original preprocessed PBMC dataset, with artefacts originating from the
preprocessing. Redoing the preprocessing ourselves yields the Geometric autoencoder embedding in Panel (d). Second row: In Panel (e)
we show how different models spot the artefacts in preprocessed PBMC differently well. While the geometric autoencoder exposes the
regular structure, UMAP, Topo AE, PCA, and the vanilla autoencoder disguise it almost completely.

Figure S7. The geometric loss curves for the autoencoder models.

autoencoder, averaged over 4 random initialization. The
geometric loss of the geometric autoencoder is roughly three
orders of magnitude smaller than that of the vanilla and
the topological autoencoder. It furthermore decreases with
training, as opposed to the geometric loss of the topological
autoencoder. We do not show the graph for the UMAP
autoencoder, since it comes pre-implemented in TensorFlow,
and our geometric loss is implemented in PyTorch. To
compute diagnostics of the final model, we transferred the
trained network weights from TensorFlow to PyTorch.

We use the automatic differentiation abilities of PyTorch,
namely the function jacrev in the functorch library, for effi-
ciently calculating the decoders pullback metric (see Algo-
rithm 1). Since we are using ELU activations, the decoder
D : R2 → Rn is differentiable everywhere, and thus has a

Algorithm 1 Calculating the Generalized Jacobian Deter-
minant

from functorch import jacrev
import torch

J = jacrev(decoder)(batch of embeddings)
metric = J.T @ J
gen jac det = torch.det(metric)
return gen jac det

well defined Jacobian matrix JxD ∈ Rn×2 for all x ∈ R2.

D.4. Metrics

We evaluate each model on five random seeds. As men-
tioned in the main paper, we evaluate the embeddings with
metrics from Moor et al. (2020) and Kobak & Berens
(2019). Namely, there are the three local metrics KL0 .1 ,
kNN, Trust and the three global metrics Stress, KL100 ,
Spear.

• The kNN metric measures which ratio of nearest neigh-
bors in the the embedding are also nearest neighbors in
the original dataset (Kobak et al., 2020; Sainburg et al.,
2021).

• The Trust metric is a metric based on nearest neighbor
ranks (Venna & Kaski, 2006).

• The Stress metric coincides with the loss of multidimen-
sional scaling, and measures the sum of the squared

20

Geometric Autoencoders – What You See is What You Decode

differences of the distances between all pairs of em-
bedding points and the corresponding differences of all
pairs of input points (Moor et al., 2020).

• The Spear metric measures the Spearman correlation
between the distances between all pairs of embedding
and input points (Kobak & Berens, 2019).

• The KLσ metrics (σ = 0.1, 100) measure the Kullback-
Leibler divergence between a density estimate fX

σ of the
dataset X and the corresponding estimate fZ

σ of the em-
bedding Z. As a density estimate, we use the distance to
a measure density estimator (Chazal et al., 2011) defined
as fX

σ (x) =
∑

y∈X exp
(
−σ−1 ∥x−y∥2

2

maxy′,x′∈X ∥y′−x′∥2
2

)
,

where the parameter σ defines a length scale. Ideally,
the KLσ value is small, which means that the density
estimation in latent space is similar to the density esti-
mation of the actual dataset.

The metrics depending on the number of nearest neighbors
are averaged over a range of values from 10 to 200 in steps
of 10, as proposed by Moor et al. (2020).

D.5. The Geometric Loss

In this subsection we further investigate how the geometric
loss Ldet affects encoder and decoder.

In our implementation both encoder and decoder accumu-
late gradients during one step of backpropagation. This
may seem a bit counterintuitive, since at first glance the
secondary objective only depends on the decoders’ Jaco-
bian matrix, hence only on the decoder (see Equations (2)
and (3)). The reason for the encoder to accumulate gradi-
ents is that the the pullback metric tensor is also function
of latent space point at which it is evaluated. Evaluating it
at a given embedding, as we do in our geometric objective
(Equation (3)), gives us the set of pullback metric tensors
we use.

Consequently, the autoencoder can reduce the geometric
loss in two ways. First, it can change the decoder’s weights
in order to achieve more uniform contraction for a fixed
set of embedding points. Second, it can push around the
embedding into areas where the decoder contracts more
homogeneously. In practice, a geometric autoencoder will
pursue both approaches simultaneously.

A simple gradient stop layer could prevent the encoder from
receiving gradients from the geometric regularizer. We
consider this an interesting avenue for future work, but
believe that such a gradient stop layer might impede the
autoencoder’s ability to achieve homogeneous stretching of
the embedding by the decoder.

E. Additional Experiments and Insights
E.1. Autoencoders as Orthogonal Projectors

As described in Appendix B.1, a linear autoencoder reduces
to PCA. Viewed through the geometric lens, the linear de-
coder leads to a linear subspace as reconstruction manifold
M , while the encoder’s job is to place the reconstruction
of an input point onto this reconstruction manifold. When
trained with the usual mean squared error (MSE), the opti-
mal encoder for a given linear decoder projects each input
point orthogonally to the linear reconstruction manifold. To
see this, consider the sphere around an input point x through
some point z on M . If the vector z − x is not orthogonal to
the linear subspace M , the sphere intersects M and there
exists some y ∈ M inside the sphere. So z does not yield
optimal mean squared error. Now, consider the general,
non-linear case. If for a given decoder and thus a given
reconstruction manifold (not necessarily a linear subspace
anymore), there exists a data point x and a point y ∈ M
such that any point z ∈ M is at least as far from x as y,
i.e., ∥x− y∥ ≤ ∥x− z∥ ∀z ∈ M , then the vector x− y is
orthogonal to any tangent vector at y by the same argument
as in the PCA case.

Note, however, that there are some subtleties in the non-
linear case. For instance, the encoder is limited by its ar-
chitecture. So it might not be able to express the function
that maps each input point in such a way to latent space that
their corresponding positions on the reconstruction mani-
fold are the desired orthogonal projections. Moreover, it
might not be possible to orthogonally project an input point
to the reconstruction manifold in the first place, e.g., if
x = (2, 0, ..., 0) and im(D) is the open unit ball in the first
l dimensions of Rn. Also, there might be multiple closest
points to a data point, e.g., if the data point is the center of a
sphere and M the sphere.

E.2. Flexibility of our Regularizer

We expect our regularizer to work for different kinds of
autoencoder models, as long as the decoder is differentiable
(at least almost everywhere). As an example, we present its
effect on convolutional autoencoders.

Application to Convolutional Autoencoders The proposed
regularizer as well as the diagnostic methods also work for
convolutional autoencoders. Adapting the architecture pro-
posed by Moor et al. (2020) to ensure a two-dimensional
latent space, we train convolutional autoencoders on the
image datasets MNIST and FashionMNIST. Indeed, the
geometric regularizer still ensures more homogeneous con-
traction (see Figure S4). The corresponding quantitative
comparisons can be found in Tables S1 and S6.

Pulling Back other Metrics In the main paper, we have
discussed how pulling back the Euclidean metric from out-

21

Geometric Autoencoders – What You See is What You Decode

put space yields a metric on latent space which respects the
geometry of the reconstruction manifold M .

The method we describe, however, is not limited to the Eu-
clidean metric. Rather, it is applicable if the output space
is equipped with a Riemannian metric g′ or a scalar prod-
uct. Let such a Riemannian metric g′ be represented by a
matrix A ∈ Rn,n. Then it follows directly from the proof
of Proposition 2.2, that the pullback D∗g′ is in coordinates
given by

D∗g′p = (JpD)
t
AD(p)JpD (41)

for any point p ∈ Rl. In the case of a general scalar product,
we can simply pullback the scalar product.

Note that for instance the ℓ1 distance on euclidean space is
not induced by a scalar product and hence not a Riemannian
metric. Nevertheless, it would be possible, albeit somewhat
inconsistent, to use the ℓ1 metric in the reconstruction loss,
but pull back the standard scalar product in Euclidean space.

Training with other Loss Functions Even though all the
autoencoders considered in this paper are trained with main
ℓ2 loss, our method is non-restrictive in the choice of loss
function. This is because the regularizer depends only on
the decoder’s architecture. In particular, geometric autoen-
coders can also be trained with ℓ1 or cross-entropy loss.

E.3. Effect on Downstream Applications

Since autoencoders are often part of a larger pipeline, a
possible question is how the geometric regularizer affects
downstream applications. While the focus of our work is
on visualization and representations for downstream tasks
typically have more than two dimensions, we did compare
the class separation in the two-dimensional vanilla and ge-
ometric embeddings. First, we cluster both the vanilla and
the geometric embedding with HDBSCAN as in Böhm et al.
(2023). We then evaluate these clusters against the existing
class labels by computing the adjusted Rand index. Looking
at Figure S1, we would expect our geometric autoencoder
to outperform the vanilla autoencoder, as it creates visually
better separated clusters. For HDBSCAN we use the sklearn
implementation with default parameters. Table S4 shows
that our method has a higher score on all datasets and thus
outperforms the vanilla model.

E.4. Semantic Information in MNIST embeddings

Comparing the vanilla and the geometric embeddings of
MNIST (Figures 3a,b), one can see that the geometric au-
toencoder creates two clusters for the digit 2 (pink). We
manually inspected these clusters and found that the lower
left cluster of the geometric embedding contains digits with
loop and curved lower stroke, the upper right cluster con-
tains digits without loop and curved lower stroke (samples
can be found in Figure S8). The vanilla autoencoder is also

Table S4. Adjusted Rand index of class labels after performing
an HDBSCAN clustering on the vanilla and the geometric em-
beddings with default parameters. Averaged over five random
initializations of the network. Bold indicates first place.

DATASET VANILLA SCORE GEOMETRIC SCORE

MNIST 0.21± 0.09 0.23± 0.15
FASHIONMNIST 0.18± 0.06 0.21± 0.07
PBMC 0.047± 0.012 0.074± 0.011
CELEGANS 0.036± 0.004 0.095± 0.010
ZILIONIS 0.47± 0.13 0.57± 0.14

able to pick up on this signal, but not as well as the geomet-
ric autoencoder, because one of the two clusters is in the
densely packed region of the vanilla autoencoder embedding
and thus barely visible. Hence, the geometric autoencoder
is able to pick up and display some semantic better that
the vanilla autoencoder. In Figure 3c, one can see that the
topological autoencoder also creates two clusters for the
digit 2. Investigating them more closely we find that they
too differentiate between more curly and more straight 2’s.
Similar to the vanilla autoencoder, the second cluster for
the topological autoencoder is in the dense region of the
embedding, so that it is hard to spot.
A similar phenomenon holds for the digit 5. The geometric
autoencoder differentiates between slanted digits in the left
cluster and straight digits in the right cluster. Again, so does
the vanilla autoencoder, but due to the heavy overlapping in
the contracted area we can only see one cluster.

22

Geometric Autoencoders – What You See is What You Decode

(a) Lower Cluster (b) Upper Cluster (c) Left Cluster (d) Right Cluster

Figure S8. Random ground-truth samples from the two clusters of each of the digit 2 and 5 in the geometric MNIST embedding (Figure 3a).
While the upper right cluster of the digit 2 contains mainly straight digits, the lower left cluster contains mostly ones with a loop. For the
digit 5, we observe that the digits corresponding to the left cluster are slanted, while the ones corresponding to the right cluster are not.

23

Geometric Autoencoders – What You See is What You Decode

Ta
bl

e
S5

.T
ab

le
un

de
rly

in
g

th
e

ag
gr

eg
at

ed
m

et
ric

s
of

Ta
bl

e
1.

A
dd

iti
on

al
ly

co
nt

ai
ns

th
e

re
co

ns
tru

ct
io

n
lo

ss
w

he
re

ve
re

xi
st

en
t(

M
SE

).
A

ve
ra

ge
d

ov
er

fiv
e

ru
ns

,b
ol

d+
un

de
rli

ne
d

in
di

ca
te

s
fir

st
,b

ol
d

se
co

nd
pl

ac
e.

T
he

ar
ro

w
s

po
in

tt
o

th
e

de
si

ra
bl

e
di

re
ct

io
n

of
ea

ch
m

et
ri

c.
C

on
vN

et
re

su
lts

ar
e

co
ns

id
er

ed
se

pa
ra

te
ly

,s
ee

A
pp

en
di

x
E

.2
an

d
Ta

bl
e

S6
.

L
O

C
A

L
G

L
O

B
A

L

D
A

TA
S

E
T

M
O

D
E

L
K
L
0
.1

(↓
)

K
N

N
(↑

)
T

R
U

S
T

(↑
)

S
T

R
E

S
S

(↓
)

K
L
1
0
0

(↓
)

S
P

E
A

R
(↑

)
M

S
E

(↓
)

G
E

O
M

A
E

(O
U

R
S
)

0.
16

9
±

0.
02

3
0.

35
6
±

0.
00

7
0.

93
8
±

0.
00

3
6.

2
±

1.
2

2.
2E

-0
7
±

3E
-0

8
0.

4
±

0.
02

0.
03

57
±

0.
00

03
V

A
N

IL
L

A
A

E
0.

13
3
±

0.
00

7
0.

32
2
±

0.
01

0.
93

±
0.

00
4

11
±

3
1.

8E
-0

7
±

2E
-0

8
0.

44
±

0.
05

0.
03

56
±

0.
00

07
T

O
P

O
A

E
0.

09
4
±

0.
00

3
0.

31
1
±

0.
00

5
0.

92
5
±

0.
00

2
8.

91
±

0.
05

9.
3E

-0
8
±

6E
-0

9
0.

64
±

0.
01

0.
03

70
1
±

8E
-0

5
M

N
IS

T
U

M
A

P
A

E
0.

18
±

0.
00

7
0.

41
04

±
0.

00
11

0.
94

83
±

0.
00

03
7.

3
±

0.
6

3.
1E

-0
7
±

2E
-0

8
0.

34
±

0.
02

0.
03

35
±

0.
00

03
U

M
A

P
0.

19
±

0.
00

2
0.

40
13

±
0.

00
03

0.
94

63
8
±

0.
00

05
1

4.
79

±
0.

03
4.

1E
-0

7
±

1E
-0

8
0.

33
77

±
0.

00
42

-
t

-S
N

E
0.

16
8
±

0.
03

1
0.

40
4
±

0.
00

3
0.

94
43

±
0.

00
05

39
.8

±
0.

1
2.

9E
-0

7
±

4E
-0

8
0.

3
±

0.
03

-
P

C
A

0.
16

27
64

02
±

2.
2E

-0
7

0.
11

79
55

±
1.

1E
-0

6
0.

74
56

81
5
±

5E
-0

7
6.

58
30

85
3
±

8E
-0

7
1.

63
62

74
E

-0
7
±

2E
-1

3
0.

52
46

47
5
±

7E
-0

7
0.

05
56

36
76

4
±

8E
-0

9

G
E

O
M

A
E

(O
U

R
S
)

0.
04

07
±

0.
00

52
0.

37
±

0.
03

0.
97

1
±

0.
00

3
7
±

1
9.

6E
-0

8
±

1.
1E

-0
8

0.
75

±
0.

03
0.

02
56

2
±

0.
00

01
3

V
A

N
IL

L
A

A
E

0.
06

9
±

0.
03

1
0.

34
±

0.
02

0.
96

66
±

0.
00

2
14

±
2

1.
6E

-0
7
±

1E
-0

7
0.

66
±

0.
12

0.
02

53
±

0.
00

03
T

O
P

O
A

E
0.

04
9
±

0.
01

0.
36

6
±

0.
00

3
0.

96
86

±
0.

00
07

3
9.

56
9
±

0.
08

1
1.

1E
-0

7
±

2E
-0

8
0.

82
±

0.
02

0.
02

61
±

0.
00

02
FA

S
H

IO
N

M
N

IS
T

U
M

A
P

A
E

0.
09

25
±

0.
00

73
0.

41
47

±
0.

00
72

0.
97

1
±

0.
00

3
10

.8
6
±

0.
51

5.
36

E
-0

7
±

3.
1E

-0
8

0.
59

5
±

0.
01

2
0.

02
58

±
0.

00
1

U
M

A
P

0.
09

47
±

0.
00

21
0.

42
2
±

0.
00

2
0.

97
1
±

0.
00

1
4.

41
6
±

0.
02

2
3.

01
E

-0
7
±

1E
-0

8
0.

60
3
±

0.
00

2
-

t
-S

N
E

0.
07

2
±

0.
00

4
0.

44
1
±

0.
00

2
0.

96
87

2
±

0.
00

06
39

±
0.

2
2.

5E
-0

7
±

1.
2E

-0
8

0.
56

±
0.

03
-

P
C

A
0.

05
20

10
26

7
±

8E
-0

9
0.

20
76

92
1
±

4E
-0

7
0.

91
67

83
96

±
5E

-0
8

4.
52

53
37

6
±

4E
-0

7
7.

08
42

61
E

-0
8
±

2E
-1

4
0.

88
16

95
65

±
1E

-0
8

0.
04

60
92

74
7
±

2E
-0

9

G
E

O
M

A
E

(O
U

R
S
)

0.
04

7
±

0.
00

9
0.

46
4
±

0.
01

0.
95

6
±

0.
00

2
17

.6
±

1.
2

1.
4E

-0
7
±

3.
1E

-0
8

0.
68

3
±

0.
09

1
0.

73
±

0.
02

V
A

N
IL

L
A

A
E

0.
09

±
0.

03
0.

42
±

0.
02

0.
94

3
±

0.
00

7
36

±
9

2.
8E

-0
7
±

1E
-0

7
0.

5
±

0.
1

0.
71

±
0.

02
T

O
P

O
A

E
0.

05
6
±

0.
00

4
0.

47
±

0.
00

7
0.

95
61

±
0.

00
13

19
.8

±
0.

3
1.

5E
-0

7
±

2E
-0

8
0.

72
±

0.
02

0.
72

4
±

0.
00

4
C

E
L

E
G

A
N

S
U

M
A

P
A

E
0.

06
7
±

0.
01

1
0.

50
6
±

0.
00

4
0.

96
3
±

0.
00

2
13

.2
7
±

0.
21

2E
-0

7
±

6E
-0

8
0.

55
4
±

0.
05

0.
67

51
±

0.
00

4
U

M
A

P
0.

05
8
±

0.
00

3
0.

48
53

±
0.

00
1

0.
94

6
±

0.
00

2
13

.3
5
±

0.
05

1.
6E

-0
7
±

8E
-0

9
0.

59
9
±

0.
01

-
t

-S
N

E
0.

05
7
±

0.
00

6
0.

46
97

±
0.

00
31

0.
93

±
0.

00
4

29
.8

±
0.

2
1.

81
E

-0
7
±

2.
3E

-0
8

0.
49

4
±

0.
02

-
P

C
A

0.
08

17
01

86
±

6E
-0

8
0.

16
19

76
02

±
2.

1E
-0

7
0.

81
43

10
7
±

3E
-0

7
14

.1
53

31
86

±
1E

-0
6

2.
50

10
11

E
-0

7
±

2E
-1

3
0.

64
26

98
4
±

2E
-0

7
2.

06
±

0

G
E

O
M

A
E

(O
U

R
S
)

0.
11

±
0.

01
3

0.
39

45
±

0.
00

72
0.

94
3
±

0.
00

2
17

±
2

2.
3E

-0
7
±

1E
-0

7
0.

71
±

0.
04

0.
33

8
±

0.
00

4
V

A
N

IL
L

A
A

E
0.

14
±

0.
01

0.
36

1
±

0.
00

8
0.

93
9
±

0.
00

3
24

±
8

2.
7E

-0
7
±

6E
-0

8
0.

64
±

0.
12

0.
33

32
±

0.
00

22
T

O
P

O
A

E
0.

12
4
±

0.
00

3
0.

35
3
±

0.
00

3
0.

92
4
±

0.
00

3
19

.3
2
±

0.
06

2.
81

E
-0

7
±

3.
1E

-0
8

0.
73

4
±

0.
02

1
0.

34
31

±
0.

00
04

Z
IL

IO
N

IS
U

M
A

P
A

E
0.

08
5
±

0.
01

0.
40

7
±

0.
00

2
0.

94
51

±
0.

00
12

10
.3

6
±

0.
07

3E
-0

7
±

1.
2E

-0
7

0.
72

±
0.

04
0.

33
2
±

0.
00

1
U

M
A

P
0.

09
9
±

0.
00

6
0.

38
7
±

0.
00

2
0.

93
71

7
±

0.
00

03
3

12
.4

8
±

0.
23

3E
-0

7
±

3E
-0

8
0.

74
±

0.
03

-
t

-S
N

E
0.

09
77

±
0.

00
51

0.
39

67
±

0.
00

41
0.

93
8
±

0.
00

2
27

.0
9
±

0.
11

2.
2E

-0
7
±

1.
2E

-0
8

0.
51

6
±

0.
05

-
P

C
A

0.
11

34
31

18
±

1E
-0

8
0.

21
75

08
7
±

3.
3E

-0
6

0.
86

53
37

76
±

1.
1E

-0
7

12
.2

61
87

98
±

3E
-0

7
2.

94
42

64
E

-0
7
±

3E
-1

3
0.

80
78

99
25

±
7E

-0
8

0.
59

14
78

04
±

2E
-0

8

G
E

O
M

A
E

(O
U

R
S
)

0.
01

63
±

0.
00

23
0.

24
35

±
0.

00
09

0.
90

84
±

0.
00

06
6.

4
±

0.
4

1.
1E

-0
7
±

2E
-0

8
0.

84
7
±

0.
01

1
0.

37
03

±
0.

00
11

V
A

N
IL

L
A

A
E

0.
06

53
±

0.
00

32
0.

22
1
±

0.
00

3
0.

90
2
±

0.
00

2
15

±
8

1.
98

E
-0

7
±

4.
3E

-0
8

0.
72

±
0.

09
0.

37
1
±

0.
00

2
T

O
P

O
A

E
0.

02
2
±

0.
00

2
0.

23
22

2
±

0.
00

09
2

0.
90

37
±

0.
00

07
7.

37
±

0.
06

7.
5E

-0
8
±

1E
-0

9
0.

87
1
±

0.
01

1
0.

37
31

±
0.

00
08

P
B

M
C

U
M

A
P

A
E

0.
02

6
±

0.
00

5
0.

23
82

±
0.

00
07

0.
90

17
4
±

0.
00

03
4.

1
±

0.
3

1.
7E

-0
7
±

7E
-0

8
0.

82
±

0.
01

0.
37

95
5
±

0.
00

08
1

U
M

A
P

0.
02

7
±

0.
00

4
0.

21
59

9
±

0.
00

05
1

0.
88

58
±

0.
00

03
3.

84
±

0.
12

1.
61

E
-0

7
±

6.
2E

-0
8

0.
84

±
0.

02
-

t
-S

N
E

0.
03

8
±

0.
00

2
0.

23
7
±

0.
00

1
0.

89
46

±
0.

00
11

24
.4

±
0.

09
1.

3E
-0

7
±

2E
-0

8
0.

67
4
±

0.
02

2
-

P
C

A
0.

01
22

70
42

2
±

3E
-0

9
0.

12
92

04
68

±
3E

-0
7

0.
82

43
53

67
±

1E
-0

7
4.

91
94

39
45

±
4.

1E
-0

7
1.

19
69

53
1E

-0
7
±

9E
-1

4
0.

91
10

83
69

±
2E

-0
8

0.
59

55
96

89
±

3E
-0

8

Ta
bl

e
S6

.Q
ua

nt
ita

tiv
e

co
m

pa
ri

so
n

of
a

co
nv

ol
ut

io
na

lv
an

ill
a

au
to

en
co

de
ra

nd
a

co
nv

ol
ut

io
na

lg
eo

m
et

ri
c

au
to

en
co

de
r.

A
ve

ra
ge

d
ov

er
fiv

e
ru

ns
,b

ol
d

in
di

ca
te

s
fir

st
pl

ac
e.

T
he

ar
ro

w
s

po
in

tt
o

th
e

de
si

ra
bl

e
di

re
ct

io
n

of
ea

ch
m

et
ri

c.
L

O
C

A
L

G
L

O
B

A
L

D
A

TA
S

E
T

M
O

D
E

L
K
L
0
.1

(↓
)

K
N

N
(↑

)
T

R
U

S
T

(↑
)

S
T

R
E

S
S

(↓
)

K
L
1
0
0

(↓
)

S
P

E
A

R
(↑

)
M

S
E

(↓
)

M
N

IS
T

C
O

N
V

G
E

O
M

A
E

0.
16

±
0.

01
0.

18
9
±

0.
00

5
0.

83
96

±
0.

00
9

4.
98

±
0.

32
1.

9E
-0

7
±

2E
-0

8
0.

52
±

0.
03

0.
04

67
±

0.
00

08
C

O
N

V
V

A
N

IL
L

A
0.

13
04

±
0.

00
43

0.
19

5
±

0.
00

5
0.

84
7
±

0.
00

5
6
±

2
1.

7E
-0

7
±

4E
-0

8
0.

57
±

0.
03

0.
04

56
±

0.
00

05

FA
S

H
IO

N
M

N
IS

T
C

O
N

V
G

E
O

M
A

E
(O

U
R

S
)

0.
05

1
±

0.
00

5
0.

28
3
±

0.
00

4
0.

95
1
±

0.
00

08
5.

27
±

0.
92

9.
7E

-0
8
±

1.
3E

-0
8

0.
82

±
0.

03
0.

03
22

±
0.

00
04

C
O

N
V

V
A

N
IL

L
A

0.
04

6
±

0.
00

6
0.

28
09

±
0.

00
21

0.
95

08
9
±

0.
00

05
3

14
.3

±
1.

1
1.

1E
-0

7
±

2E
-0

8
0.

85
±

0.
02

0.
03

12
±

0.
00

02

24

