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Abstract
Conformal prediction is a widely used method
to quantify the uncertainty of a classifier under
the assumption of exchangeability (e.g., IID data).
We generalize conformal prediction to the Hid-
den Markov Model (HMM) framework where the
assumption of exchangeability is not valid. The
key idea of the proposed method is to partition
the non-exchangeable Markovian data from the
HMM into exchangeable blocks by exploiting the
de Finetti’s Theorem for Markov Chains discov-
ered by Diaconis and Freedman (1980). The per-
mutations of the exchangeable blocks are viewed
as randomizations of the observed Markovian data
from the HMM. The proposed method provably
retains all desirable theoretical guarantees offered
by the classical conformal prediction framework
in both exchangeable and Markovian settings. In
particular, while the lack of exchangeability in-
troduced by Markovian samples constitutes a vi-
olation of a crucial assumption for classical con-
formal prediction, the proposed method views it
as an advantage that can be exploited to improve
the performance further. Detailed numerical and
empirical results that complement the theoretical
conclusions are provided to illustrate the practical
feasibility of the proposed method.

1. Introduction
This paper extends the conformal prediction framework
proposed in (Vovk et al., 2005) to the Hidden Markov Model
(HMM) framework in a manner that provably preserves all
its desirable theoretical guarantees. In particular, we focus
on the following problem.
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Problem of quantifying the uncertainty of an unknown
HMM: Let {Xt}t≥1 be a Markov chain taking values in
the space X = {1, 2, . . . , n} that is observed only through
the memoryless observations {Yt}t≥1 taking values in the
space Y = {1, 2, . . . ,m}. The transition and observation
probability matrices given by,

Pij = P{Xt+1 = j|Xt = i}, i, j ∈ X
Bij = P{Yt = j|Xt = i}, i ∈ X , j ∈ Y,

(1)

are unknown and they are sampled from an unknown distri-
bution µ. Given a fully observed sequence {(Xt, Yt)}Tt=1,
a sequence of observations {Yt}T+T1

t=T+1 and a miscoverage
level α ∈ [0, 1], our aim is to construct a set of sequences
C1−α ⊆ X T1 such that,

P
{
{Xt}T+T1

t=T+1 ∈ C1−α

}
≥ 1− α. (2)

Currently available solution and its limitations: The
conformal prediction framework presented in (Vovk et al.,
2005) provides an elegant solution to the above problem for
the special case where the sequence of states {Xt}T+T1

t=1 is
exchangeable.1 More specifically, conformal prediction (re-
viewed in Sec. 2.1) exploits exchangeability of the distri-
bution to permute the data and construct confidence sets.
However, the conformal prediction framework is not directly
applicable to our problem since Markov processes are not
generally exchangeable. A general solution to the above
problem that provably achieves the coverage guarantee (2)
is not currently available to the best of our knowledge.

Main contributions: We generalize the original confor-
mal prediction framework proposed in (Vovk et al., 2005)
to the non-exchangeable Markovian setting in a principled
manner that provably preserves all theoretical guarantees
offered by the original framework. The key idea behind
the proposed method is to view the process {(Xt, Yt)}T+T1

t=1

as a mixture of Markov chains with respect to the mix-
ing measure µ from which the parameters are sampled and

1A sequence of random variables X1, X2, . . . is exchange-
able, if for any finite permutation π : {1, . . . , T} → {1, . . . , T},
P{X1 = x1, X2 = x2, . . . , XT = xT } = P{Xπ(1) =
x1, Xπ(2) = x2, . . . , Xπ(T ) = xT } i.e., the joint probability
distribution is invariant under finite permutations.
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then use a block-wise permutation scheme under which a
mixture of Markov chains is exchangeable. The proposed
block-wise permutation method is inspired by the notion
of partial exchangeability and the de Finetti’s Theorem for
Markov chains presented in (Diaconis & Freedman, 1980).
The proposed method can be used as a wrapper for any
algorithm based on the HMM framework (filtering, predic-
tion, smoothing) and yields the coverage guarantee (2) for
any finite length of the time series. The performance of
the proposed method is illustrated with detailed numerical
experiments as well as empirical results based on multiple
real-world datasets.

Motivation: A solution to the above problem is useful in
high-stakes settings where the hidden underlying states of a
Markov process need to be inferred to a given confidence
level using only the noisy measurements and a past calibra-
tion (i.e., training) sequence. Examples of such high-stakes
settings include inferring life-threatening health events via
noisy wearable sensors used for home-based monitoring
of patients considered in (Uddin, 2019; Forkan & Khalil,
2017), predicting vehicle movements in automated navi-
gation systems considered in (Yuan et al., 2018), human
safety systems in hazardous work environments considered
in (Petković et al., 2019; Rashid & Behzadan, 2018), and
predicting movements in the stock market for making in-
vestment decisions considered in (Hassan & Nath, 2005).
Further examples of application settings are discussed in
(Gupta et al., 2016; Batu et al., 2004).

2. Preliminaries and Related Work
In this section, we discuss results from the literature that are
closely related to our work. In particular, we briefly review
the original conformal prediction framework for exchange-
able processes proposed in (Vovk et al., 2005) and some of
its recent extensions.

2.1. Conformal Prediction for Exchangeable Data

The classical conformal prediction framework proposed in
(Vovk et al., 2005) applies to exchangeable data. In par-
ticular, conformal prediction has been widely utilized to
quantify the uncertainty of classifiers that deal with inde-
pendently and identically distributed (IID) processes. Let us
first briefly review how the classical conformal prediction
works in the exchangeable setting.2

Conformal prediction algorithm proposed in (Vovk et al.,
2005): Assume that we are given an exchangeable (e.g., IID)
sequence {(Xt, Yt)}Tt=1. For the next observation YT+1, we
aim to generate a set C1−α which contains the unknown un-

2We refer the reader to (Shafer & Vovk, 2008; Angelopoulos
et al., 2023) for detailed tutorial introductions to the classical
conformal prediction framework.

derlying state XT+1 with a confidence 1 − α. In other
words, we are considering the main problem stated in Sec. 1
when the process is exchangeable and T1 = 1. In order
to implement conformal prediction, we first need to iden-
tify a conformity score function σ : X × Y → R which
quantifies the agreement between the state X ∈ X and the
observation Y ∈ Y: larger σ(X,Y ) indicates disagreement
while smaller σ(X,Y ) indicates agreement. The conformity
score function σ(·, ·) could be based on a given pre-trained
classifier (e.g., 1 − σ(X,Y ) could be the Xth element of
the softmax output of a neural network for observation Y ),
or it can also be based on any classifier derived from the cal-
ibration sequence {(Xt, Yt)}Tt=1. Next, at time t = T + 1,
assume XT+1 = i and calculate

q̂(i) =
1

T + 1

T+1∑
t=1

1 (σ (Xt, Yt) ≤ σ (XT+1, YT+1)) (3)

which is the quantile of σ (i, YT+1) among the conformity
scores of the observation sequence {(Xt, Yt)}Tt=1 together
with (i, YT+1). After calculating q̂(i) for each state i ∈ X ,
the confidence set for the unknown state XT+1 correspond-
ing to the observation YT+1 is constructed as,

C1−α = {i ∈ X : (T + 1)q̂(i) ≤ ⌈(1− α) (T + 1)⌉} .
(4)

In other words, each state i ∈ X for which the conformity
score σ (i, YT+1) is within the smallest ⌈(1− α) (T + 1)⌉
among the {σ(Xt, Yt)}Tt=1 are included in the set C1−α.
The constructed confidence set C1−α is guaranteed to con-
tain the true unknown underlying state XT+1 with probabil-
ity 1− α i.e.,

P {XT+1 ∈ C1−α} ≥ 1− α. (5)

The role of exchangeability in conformal prediction: The
confidence bound (5) is guaranteed to be satisfied by the clas-
sical conformal prediction framework due to the exchange-
ability of the sequence {(Xt, Yt)}T+1

t=1 . To understand this,
observe that,

P {XT+1 ∈ C1−α} = P
{
q̂ (XT+1) ≤

⌈(1− α) (T + 1)⌉
T + 1

}
= P

{ T+1∑
t=1

1 (σ (Xt, Yt) ≤ σ (XT+1, YT+1))

≤ ⌈(1− α) (T + 1)⌉
}

(6)

which follow from (3), (4). Thus, P {XT+1 ∈ C1−α} is
equal to the probability that the rank of σ(XT+1, YT+1)
(among σ(Xt, Yt), t = 1, 2, . . . , T ) is less than or equal to
⌈(1− α) (T + 1)⌉. Due to the exchangeability of the se-
quence {(Xt, Yt)}T+1

t=1 , the rank of σ(XT+1, YT+1) could
be any integer from 1 to T + 1 with equal probability, im-
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plying that, for k = 1 . . . , T + 1,

P

{
T+1∑
t=1

1 (σ (Xt, Yt) ≤ σ (XT+1, YT+1)) ≤ k

}
=

k

T + 1
.

(7)
Then (7) and (6) yield the coverage guarantee in (5).

Therefore, exchangeability is the crucial assumption in the
classical conformal prediction framework. As such, the clas-
sical conformal prediction framework does not guarantee
the desired coverage (5) in non-exchangeable settings such
as the HMM setting that we are dealing with.

2.2. Relaxing the Assumption of Exchangeability in
Conformal Prediction

Several works in the literature aimed to generalize the classi-
cal conformal prediction framework summarized in Sec. 2.1
to non-exchangeable settings. We briefly discuss some of
those works that are most relevant to our work below.3

Our work is in particular motivated by the approach pre-
sented in (Chernozhukov et al., 2018) that proposed a
method to extend the conformal prediction framework to
time series data via a randomization method which accounts
for potential temporal dependencies in the data. The key
idea is to construct an algebraic group of block-wise per-
mutations (instead of the element-wise permutations used
in classical conformal prediction) such that each permuta-
tion in that group is likely to preserve the potential tempo-
ral dependencies. Extending the work in (Chernozhukov
et al., 2018) further, (Xu & Xie, 2021) proposed to derive
prediction intervals using an ensemble of bootstrapped esti-
mators to avoid having to split data into blocks. However,
when exchangeability assumption fails, the approaches pre-
sented in (Chernozhukov et al., 2018; Xu & Xie, 2021) are
only approximately valid (i.e., not guaranteed to satisfy the
bound (2)). In contrast, the aim of our work is to devise a
method that is guaranteed to satisfy the bound (2) in any
unknown HMM. In particular, the approach we present is
based on constructing a block-wise permutation (which ex-
ploits the de Finetti’s theorem for Markov chains reviewed in
Sec. 3.1) that adapts to the observed sequence {(Xt, Yt)}Tt=1

in a manner that guarantees the exact exchangeability of the
blocks. As a consequence, the method that we propose is
exactly valid in the sense that it is guaranteed to achieve the
bound (2).

In another direction, (Cherubin & Nouretdinov, 2016;
Stankeviciute et al., 2021) proposed to apply the classical
conformal prediction algorithm as a solution when multiple
independent calibration sequences are available. However,

3We refer the reader to (Fontana et al., 2023) for a comprehen-
sive review of more versions of the classical conformal prediction
framework.

our problem (stated in Sec. 1) assumes that only one real-
ized sequence is available and since a Markov chain is not
exchangeable in general, the classical conformal prediction
framework is not applicable to our setting.

Making conformal prediction robust to changes in the un-
derlying distributions has also received significant attention
in the literature that focuses on generalizing conformal pre-
diction. When the distributions of calibration states and
test states are both exchangeable but different from each
other, (Tibshirani et al., 2019) proposed an approach based
on re-weighting the calibration data with a likelihood ratio
(of test and training distributions). (Cauchois et al., 2020;
Gibbs & Candes, 2021; Barber et al., 2022) proposed meth-
ods for even more general settings such as arbitrary number
of changes in both the state and observation distributions,
etc. In contrast to (Tibshirani et al., 2019; Cauchois et al.,
2020; Gibbs & Candes, 2021; Barber et al., 2022), our aim
is to extend the conformal prediction framework specifically
to HMMs with exact validity (instead of approximate va-
lidity) for any sequence length. Additionally, our approach
is based on finding exchangeable blocks in the Markovian
data whereas (Tibshirani et al., 2019; Cauchois et al., 2020;
Gibbs & Candes, 2021; Barber et al., 2022) utilize meth-
ods such as online updates to reflect the difference between
empirically achieved confidence and target confidence, non-
uniformly weighting calibration data, etc.

3. Quantifying the Uncertainty in Hidden
Markov Models via Conformal Prediction

In this section, we first review the notions of mixtures of
Markov chains and partial exchangeability. We then exploit
a characterization of partial exchangeability in terms of mix-
tures of Markov chains presented in (Diaconis & Freedman,
1980) to extend the classical conformal prediction frame-
work to Hidden Markov Models in a manner that provably
preserves all its key theoretical guarantees.

3.1. Mixtures of Markov Chains and Partial
Exchangeability

This subsection provides a brief review of the main result of
(Diaconis & Freedman, 1980) which characterizes a mixture
of Markov chains as a partially exchangeable process.

Formally, a process X1, X2, . . . is a mixture of Markov
chains, if there exists a probability measure µ on the space
of all n × n stochastic matrices P (for the state space
X = {1, 2, . . . , n}) such that,

P {Xt = xt for 1 ≤ t ≤ T} =

∫
P

T−1∏
t=1

Pxtxt+1
µ (dP )

(8)
for any sequence of states x1, x2, . . . , xT ∈ X . (Di-
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aconis & Freedman, 1980) characterized a mixture of
Markov chains of the form (8) using a concept called
partial exchangeability which is defined as follows. A
distribution P is partially exchangeable, if for any pair
of finite sequences x1, x2, . . . , xT and x′

1, x
′
2, . . . , x

′
T

that start at the same state (i.e., x1 = x′
1) and un-

dergo the same number of transitions from i to j
for all i, j ∈ X (i.e.,

∑T−1
t=1 1(xt = i, xt+1 = j) =∑T−1

t=1 1(x
′
t = i, x′

t+1 = j)), we have,

P {Xt = xt for 1 ≤ t ≤ T} = P {Xt = x′
t for 1 ≤ t ≤ T} .

(9)
In other words, a distribution is partially exchangeable if it
assigns the same probability to all finite sequences that start
at the same state and undergo the same number of transitions
from one state to another. For example,

P {X1 = 1, X1 = 1, X2 = 5, X3 = 1, X4 = 1, X5 = 7}
= P {X1 = 1, X1 = 1, X2 = 1, X3 = 5, X4 = 1, X5 = 7}

is a necessary condition for partial exchangeability since the
two sequences 115117 and 111517 both start at the same
state (i.e., 1) and undergo the same number of transitions
from one state to another (i.e., twice from 1 to 1, once from
1 to 5, once from 5 to 1, and once from 1 to 7). The main
result of (Diaconis & Freedman, 1980) stated below says
that partial exchangeability of the distribution is a char-
acterization of a mixture of Markov chains (for recurrent
processes).

Theorem 3.1 (adapted from (Diaconis & Freedman, 1980)).
Suppose X1, X2, . . . is a recurrent process taking values in
the finite state space X = {1, 2, . . . , n} i.e.,

P {Xt = i for infinitely many t |X1 = i} = 1 (10)

for all i ∈ X . Then, X1, X2, . . . is a mixture of Markov
chains in the sense of (8) if and only if it is partially ex-
changeable in the sense of (9).

Theorem 3.1 generalizes the well-known de Finetti’s the-
orem which states that a sequence of random variables is
exchangeable if and only if their joint distribution is a mix-
ture of IID random variables. Thus, Theorem 3.1 is referred
to as the de Finetti’s theorem for Markov chains.

To see how Theorem 3.1 is applicable to the problem of
quantifying the uncertainty of an unknown HMM (stated
in Sec. 1), let us first consider a fully observed recurrent
Markov chain (instead of an HMM) whose transition proba-
bility matrix is unknown and is assumed to be sampled from
some prior distribution µ. Thus, an observed sequence is a
mixture of Markov chains in the sense of (8) with respect
to the prior distribution µ, and Theorem 3.1 implies that
the observed sequence is partially exchangeable. Due to
the partial exchangeability, we can permute the elements of

the observed sequence in a manner that preserves the initial
state and the number of transitions between all pairs of states
and then view the permuted sequences as randomizations of
the observed sequence since they have the same joint prob-
ability. To construct such a group of permutations, let us
define an i−block as a finite string of states that begins with
the state i ∈ X and contains no further i′s. For example, the
sequence of states 7521781663513421 can be partitioned
into 1−blocks as follows,

752 178 16635 1342 1, (11)

where the blocks indicated in bold red font are the 1−blocks.
Note that permuting the i−blocks changes neither the initial
state nor the number of transitions from u to v for any
u, v ∈ X . Also, the recurrence condition (10) implies that
the i−blocks are almost surely well-defined for any i ∈ X .
Thus, i−blocks are exchangeable and sequences obtained
by permuting the i−blocks have the same probability as the
observed sequence. Consequently, we can randomize the
single observed sequence by permuting the exchangeable
i−blocks while still preserving the temporal dependencies.

Therefore, although an observed sequence of a Markov
chain with unknown parameters is not exchangeable in gen-
eral, the set of i−blocks (for any fixed i ∈ X ) of that
sequence is always exchangeable. As we will see next,
this observation of the exchangeability of the i−blocks of
a Markov chain can be exploited to extend the conformal
prediction framework to the HMM setting.

3.2. Conformal Prediction for a Hidden Markov Model
with Unknown Parameters

The following well-known lemma allows us to extend the
previously outlined randomization method for a Markov
chain based on Theorem 3.1 to the HMM setting (which is
the context that we are dealing with in the main problem
stated in Sec. 1).
Lemma 3.2. If X1, X2, . . . is a Markov chain and
Y1, Y2, . . . are its discrete memoryless observations, then
the augmented process (X1, Y1), (X2, Y2), . . . is also a
Markov chain.

According to Lemma 3.2, the augmented process
(X1, Y1), (X2, Y2), . . . is a Markov chain for any HMM.
When the parameters of the HMM (i.e., transition proba-
bility matrix P and observation probability matrix B) are
unknown, the augmented process (X1, Y1), (X2, Y2), . . .
can be viewed as a mixture of Markov chains. Then, we
define an (i, j)−block as a finite string of augmented states
that begins with the state i and observation j and contains no
more instances where Xt = i, Yt = j. Since the augmented
process is a mixture of Markov processes, it is partially
exchangeable according to Theorem 3.1. Therefore, we
can randomize the augmented process by permuting the
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(i, j)−blocks while preserving the temporal dependencies
by exploiting Theorem 3.1. This approach is formalized in
Algorithm 1, and the theoretical guarantees that it offers and
more details on practical implementation are discussed in
the next two subsections.

Algorithm 1 Conformal Prediction for Hidden Markov
Models
Input: Calibration data {(Xt, Yt)}Tt=1, Test observations

{Yt}T+T1

t=T+1, Miscoverage level α ∈ (0, 1)

Output: A set of sequences C1−α ⊆ X T1

for x = (xT+1, . . . , xT+T1
) ∈ X T1 do

Step 1: Let XT+1 = xT+1, . . . , XT+T1
= xT+T1

Step 2: Using {(Xt, Yt)}T+T1
t=1 , estimate the transition

probability matrix P and the observation probability
matrix B as:

P̂ij =

∑T+T1−1
t=1 1 (Xt = i ∧Xt+1 = j)∑T+T1−1

t=1 1 (Xt = i)

B̂ij =

∑T+T1

t=1 1 (Xt = i ∧ Yt = j)∑T+T1

t=1 1 (Xt = i)

(12)

Step 3: Find all (i, j)-blocks of {(Xt, Yt)}T+T1
t=1 where

XT+T1 = i and YT+T1 = j. Let d be the number of
(i, j)-blocks.

Step 4: Let Π be any permutation group of degree d.
for π ∈ Π do

Let {(X(π)
t , Y

(π)
t )}T+T1

t=1 be the sequence where
(i, j)−blocks obtained in Step 3 are permuted ac-
cording to π ∈ Π and calculate,

S (π) =

1−

∑T1

k=1 PP̂ ,B̂

(
X

(π)
T+k

∣∣∣∣X(π)
T ;Y

(π)
T+1, . . . , Y

(π)
T+k

)
T1

(13)

via an HMM filter recursion (see Appendix A).
end

Step 5: Calculate,

q̂(x) =
1

|Π|
∑
π∈Π

1 (S (π) ≥ S (I)) , (14)

where I is the identity permutation.
end

return C1−α =
{
x ∈ X T1 : q̂(x) > α

}

For each possible candidate sequence x =
(xT+1, . . . , xT+T1) ∈ X T1 , five steps are followed. In the
first step, an augmented sequence {(Xt, Yt)}t=T+T1

t=1 is gen-
erated by assuming XT+1 = xT+1, . . . , XT+T1

= xT+T1
.

In the step 2, the augmented sequence {(Xt, Yt)}t=T+T1
t=1

is used to estimate the transition probability matrix and
the observation probability matrix. Step 3 partitions the
augmented sequence into exchangeable (i, j)-blocks. In
Step 4, the permutations of the (i, j)-blocks obtained by
applying the set of permutations Π are viewed as random-
izations of the augmented sequence {(Xt, Yt)}t=T+T1

t=1

according to Theorem 3.1. For each permutation
π ∈ Π, a conformity score S (π) is calculated using the
block-wise permuted sequence {(X(π)

t , Y
(π)
t )}t=T+T1

t=1 .
The conformity score S(π) is based on the val-

ues PP̂ ,B̂

(
X

(π)
T+k

∣∣∣∣X(π)
T ;Y

(π)
T+1, . . . , Y

(π)
T+k

)
, k =

1, . . . , T1, where PP̂ ,B̂

(
X

(π)
T+k

∣∣∣∣X(π)
T ;Y

(π)
T+1, . . . , Y

(π)
T+k

)
can be interpreted as the conditional probability that the
underlying state of an HMM at time T + k being X

(π)
T+k

given that the state at time T is X(π)
T , observations at time

instants T + 1, . . . , T + k are Y
(π)
T+1, . . . , Y

(π)
T+k, transition

probability matrix is P̂ and observation probability matrix

is B̂. Hence, PP̂ ,B̂

(
X

(π)
T+k

∣∣∣∣X(π)
T ;Y

(π)
T+1, . . . , Y

(π)
T+k

)
,

k = 1, . . . , T1 can be calculated recursively using the
HMM filtering algorithm (given in Appendix A). For
each candidate sequence x = (xT+1, . . . , xT+T1) ∈ X T1 ,
the fraction of permutations for which the conformity
score exceeds the conformity score of the unpermuted
sequence is denoted as q̂(x). Finally, the confidence set
C1−α is constructed by including all candidate sequences
x = (xT+1, . . . , xT+T1

) ∈ X T1 for which q̂(x) is larger
than the miscoverage level α.

3.3. Theoretical Analysis of the Algorithm 1

The following result establishes the exact validity of the
Algorithm 1.
Theorem 3.3 (exact validity of Algorithm 1). Consider the
Algorithm 1. If the joint distribution of {(Xt, Yt)}T+T1

t=1 is
a mixture of Markov Chains in the sense of (8), then the
output C1−α satisfies

1− α ≤ P
{
{Xt}T+T1

t=T+1 ∈ C1−α

}
≤ 1− α+

1

|Π̃|
, (15)

where Π̃ is the permutation group (in Step 4) when the
candidate sequence is the true sequence of hidden states.

The complete proof of Theorem 3.3 is given in Ap-
pendix B and its key idea is to invoke the exchangeability of
(i, j)−blocks as outlined in Sec. 3.2. To intuitively under-
stand the proof, let us consider the case where the candidate
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sequence x in Algorithm 1 is the true hidden sequence.
Then, {q̂(x) > α} is the desired event where the true hid-
den sequence x is included in the constructed confidence set
C1−α. According to (14), the event {q̂(x) > α} is the same
as the event where the conformity score of the unpermuted
augmented sequence S(I) ranks at or below ⌈(1− α)|Π̃|⌉
among all conformity scores S(π), π ∈ Π̃ sorted in the as-
cending order (where Π̃ is the permutation group in Step 4
when the candidate sequence x is the true sequence of hid-
den states). Since the (i, j)−blocks created in Step 3 are
exchangeable when x is the true hidden sequence, S(I) is
equally likely to take any rank among 1, 2, . . . , |Π̃|. There-
fore, we have P({q̂(x) > α}) = ⌈(1−α)|Π̃|⌉

|Π̃| and (15) fol-

lows by noting that 1−α ≤ ⌈(1−α)|Π̃|⌉
|Π̃| ≤ 1−α+ 1

|Π̃| . The
lower bound in (15) implies that the Algorithm 1 yields the
confidence guarantee (2) that we wanted to achieve i.e., the
set C1−α contains the true state sequence {Xt}T+T1

t=T+1 with
a probability greater than 1 − α. The upper bound in
(15) implies that for sequences containing large number of
(i, j)−blocks, P

{
{Xt}T+T1

t=T+1 ∈ C1−α

}
is approximately

equal to 1− α. Hence, as the calibration sequence length T
increases, the set C1−α will become smaller to contain only
enough candidate sequences for achieving the 1− α cover-
age.

3.4. Practical Considerations and Alternative
Implementations of Algorithm 1

Let us briefly discuss some practical aspects of implement-
ing Algorithm 1 and additional settings where it could be
utilized.

Computational complexity of Algorithm 1: Computing
each of the T1 summands in (13) in Step 4 using an HMM
filter (given in Appendix A) needs O(|X |2) computations.
Thus, for each candidate sequence, Algorithm 1 requires
O(|Π|T1 |X |2) computations, where |Π| is the number of
permutations of (i, j)−blocks (i.e., the cardinality of the
permutation group), T1 is the length of the sequence to be
predicted and |X | is the cardinality of the state space.

Alternative choices for the group of permutations Π: In
general, the group of permutations Π could even be the set
of all permutations of the (i, j)-blocks. However, letting Π
be the set of all possible permutations is computationally
expensive and might be unnecessary in most practical cases
since the conformity score that we use in Step 4 is dependent
only on the last T1 + 1 elements of the permuted sequence.
Consequently, most permutations may result in the same
conformity score. As such, considering a subgroup of per-
mutations which includes the permutations corresponding
to all possible variations of the last T1 + 1 elements is com-
putationally more efficient. Such an approach is used in our
numerical experiments in Sec. 4.

Alternative choices for the conformity score
function: The conformity score S(·) for
each permuted sequence calculated in Step 4 is

based on PP̂ ,B̂

(
X

(π)
T+k

∣∣∣∣X(π)
T ;Y

(π)
T+1, . . . , Y

(π)
T+k

)
,

k = 1, . . . , T1 that can be recursively calculated
using an HMM filter. Alternatively, one could use

PP̂ ,B̂

(
X

(π)
T+k

∣∣∣∣X(π)
T ;Y

(π)
T+1, . . . , Y

(π)
T+T1

)
, k = 1, . . . , T1,

which are the smoothed probabilities that can be recursively
calculated using an HMM smoother. In particular, HMM
smoothing calculates the likelihood of the state X

(π)
T+k

conditional on all observations from t = T + 1 to
t = T + T1 whereas HMM filtering conditions only on the
past observations from t = T + 1 to t = T + k. Compared
to HMM filtering, HMM smoothing is computationally
more expensive due to the use of forward-backward
algorithm and it is also non-causal due to the conditioning
on both past and future observations.4 However, HMM
smoothing may produce smaller confidence sets in cases
where the observations are more informative and the number
of available observations T1 is relatively large. Going
even further, the smoothed joint likelihoods of the form

PP̂ ,B̂

(
X

(π)
T+k, . . . , X

(π)
T+k+m

∣∣∣∣X(π)
T ;Y

(π)
T+1, . . . , Y

(π)
T+T1

)
,

k = 1, . . . , T1 − m (where m < T1) can also be used.
Conformity scores based on such joint likelihoods will
better capture the sequential correlations among the hidden
states, and thus lead to smaller confidence sets when the
states are highly Markovian.

Quantifying the uncertainty of a pre-trained predictor:
If we are given a pre-trained predictor (e.g., previously ob-
tained estimates of the transition probability matrix P and
observation probability matrix B from a different dataset, or
a neural network based predictor), Step 2 can be omitted and
the likelihoods in Step 4 can be calculated using the given
pre-trained predictor. In this setting, Algorithm 1 can be
used to calibrate the given predictor to a desired confidence
level 1− α and then quantify its uncertainty via the cardi-
nality of confidence sets. For example, after calibrating to a
miscoverage level α = 0.2 (i.e., confidence level 0.8), if a
given pre-trained black-box predictor generates confidence
sets that are relatively large (e.g., E {|C1−α|} ≈ |X T1 |),
then we can infer that the given predictor is not suitable for
high stakes prediction tasks. On the other hand, if the given
pre-trained predictor generates confidence sets that are rela-
tively small (e.g., E {|C1−α|} ≪ |X T1 |), then it is suitable
for high-stakes prediction tasks. Hence, Algorithm 1 can be
adapted to manage the risk of utilizing black-box pre-trained
predictors in high-stakes prediction tasks.

4See (Krishnamurthy, 2016) for a detailed exposition of HMM
filtering and smoothing.
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4. Numerical Experiments and Empirical
Results

This section provides numerical experiments and empirical
results that verify and complement the theoretical results
in order to highlight the practical applicability of the Algo-
rithm 1.

4.1. Numerical Experiments

Simulation setup: We use an HMM with the state space
X = {0, 1}, observation space Y = {0, 1}, initialized at
time t = 1 with X1 chosen uniformly from X . The pa-
rameterized transition probability matrix P and observation
probability matrix B of the HMM are,

P =

[
p 1− p

1− p p

]
B =

[
b 1− b

1− b b

]
, (16)

where p ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and b ∈ {0.5, 0.75, 0.9}.
These parameter configurations cover several important sce-
narios. In particular, setting petting p = 0.5 leads to IID
states whereas p = 0.1, 0.9 leads to a strongly Markov
process (with states X1, X2, . . . being heavily correlated).
Setting b = 0.5 leads to meaningless observations (i.e., the
observation Yt and the underlying state Xt are statistically
independent at any time instant t) and b = 0.9 leads to
relatively more accurate observations (i.e., 0.9 probability
for the event Yt = Xt). We consider three calibration se-
quence lengths T ∈ {50, 100, 200} and three lengths of
the sequence to be predicted T1 ∈ {1, 2, 3}. The miscov-
erage level is set to α = 0.2 (i.e., desired confidence level
is 80%). The permutation group Π (in Step 4 of Algo-
rithm 1) is chosen so that for any d number of (i, j)−blocks,
each π ∈ Π corresponds to one of the d!/(d − T1 − 1)!
unique ways to arrange the last T1 + 1 (i, j)−blocks.5 Al-
gorithm 1 is then used to generate the 80% confidence
set C0.8 for (XT+1, . . . , XT+T1) ⊂ X T1 . The proba-
bility of the confidence set containing the true sequence
P{(XT+1, . . . , XT+T1

) ∈ C0.8} (i.e., the empirical cov-
erage) and the expected cardinality of the confidence set
E{|C0.8|} are empirically estimated using a Monte-Carlo
average over 500 independent iterations of this process. The
empirical coverage and the empirically estimated expected
cardinality of the prediction sets (scaled by the largest possi-
ble cardinality

∣∣X T1
∣∣) obtained using this simulation setup

are shown in Fig. 1. Additional numerical results obtained
using a simulation setup with 3 states and 3 observations

5The rationale for choosing T1 + 1 here is as follows. This
choice of Π would include all possible permutations of the
(i, j)−blocks that constitute unique permutations of the last T1+1
elements. Since our choice of the conformity score S(·) given in
(13) depends only on the last T1 + 1 elements of the permuted
sequence, the permutation group Π constructed in this manner
would yield all the unique conformity score values that can be
obtained by permuting the (i, j)−blocks.
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Figure 1. The coverage P{(XT+1, . . . , XT+T1) ∈ C0.8} (green
lines) and the scaled expected cardinality of prediction sets
E{|C1−α|}

|XT1 | (purple lines) of Algorithm 1 estimated via the simula-
tion setup discussed in Sec. 4.1. The numerical results show that
the Algorithm 1 yields the coverage guarantee promised by Theo-
rem 3.3 under both exchangeable (i.e., p = 0.5) and Markovian
(i.e., p ̸= 0.5) settings. In particular, the proposed Algorithm 1
is able to exploit the low aleatoric uncertainty in the strongly
Markovian regime (i.e., p ≫ 0.5 and p ≪ 0.5) to make the confi-
dence sets smaller whereas the classical conformal prediction is
not applicable to strongly Markovian processes due to the lack of
exchangeability. Therefore, Algorithm 1 successfully exploits the
de Finetti’s Theorem for Markov Chains (Theorem 3.1) to over-
come the barrier of lack of exchangeability and helps unleash the
powerful potential of the conformal prediction framework in the
Markovian setting.

are given in Appendix C.

Insights from the numerical results: Fig. 1 yields insights
that complement the Theorem 3.3 (which established the
exact validity of the Algorithm 1) as we discuss below.

Empirical validity of the Algorithm 1: Fig. 1 shows that
the empirical coverage (indicated by green lines) is approxi-
mately equal to (above 0.78) or exceeds the desired cover-
age (1− α = 0.8) in almost all considered parameter con-
figurations. In particular, the empirical coverage remains
above 0.78 when the states are strongly Markovian with low
aleatoric uncertainty (i.e., p ≫ 0.5 and p ≪ 0.5) as well as
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Table 1. Empirical results obtained by evaluating Algorithm 1 on four real-world datasets
Dataset Description Iterations (time

period used for
testing)

Number of
States |X |

Calibration
Sequence
Length T

Empirical
Coverage (for
1− α = 0.8)

Scaled Predic-
tion Set Size

Electricity Consumption in Delhi 170 (6 months) 5 300 0.81 0.25
Electricity Consumption in Punjab 170 (6 months) 5 300 0.8 0.28
Household Energy Consumption 53 (2 months) 7 300 0.78 0.22
SP500 Index 20 (1 month) 2 100 0.8 0.65

when the states are IID (i.e., p = 0.5). In contrast, the clas-
sical conformal prediction guarantees the desired coverage
only in the IID setting (i.e., p = 0.5), and it is not applicable
to the Markovian regime (i.e., p ̸= 0.5) due to the lack of
exchangeability. The only parameter configuration where
the empirical coverage drops below the desired coverage (to
approximately 0.7) is when T1 = 1, p = 0.1, b = 0.5. The
reason behind this observation could be that the available
set of candidate sequences to choose from is only 2 when
T1 = 1, and this low resolution in the candidate sequences
amplifies effects of the meaningless observations (b = 0.5)
and the variance stemming from estimating a transition prob-
ability matrix with p = 0.1. In all other combinations of
parameters p, b, T1 and T , the empirical coverage is approx-
imately equal or larger than the desired coverage. Hence,
the numerical experiments confirm that the coverage guar-
antee given in Theorem 3.3 is in fact achieved in practice
in both exchangeable and Markovian settings. Fig. 2 (in
Appendix C) obtained using a larger state space further
supports these conclusions.

Cardinality of the prediction sets: Fig. 1 shows that the
scaled expected prediction set size E{|C1−α|}

|XT1 | (indicated by
purple lines) is smaller compared to the desired coverage
1 − α in each considered case (except when b = p = 0.5
where the prediction set size needs to be 0.8 as there is no
information in the state transitions or observations). Stated
differently, Algorithm 1 yields smaller confidence sets com-
pared to randomly choosing 1− α fraction of all possible
candidate sequences X T1 . In particular, Fig. 1 shows that
even with meaningless observations (i.e., b = 0.5), Algo-
rithm 1 achieves a 0.8 confidence with a scaled prediction
set size smaller than 0.8 by exploiting the information in
the state transitions (when p ̸= 0.5). The average prediction
set size further decreases as the accuracy of observations
and the length of the calibration sequence T increase. Fig. 2
(in Appendix C) also shows how the confidence sets remain
relatively smaller even with a larger state space.

Performance difference between exchangeable and HMM
settings: Fig. 1 shows that the Algorithm 1 achieves the
desired coverage in both IID (p = 0.5) and HMM settings
(p ̸= 0.5). However, performance of the Algorithm 1 is
better in the HMM setting in terms of the prediction set

size i.e., E{|C1−α|}
|XT1 | is smaller for the HMM setting compared

to the IID setting. This is due to the fact that the Markovian
structure of the states is exploited by the HMM filter to make
the confidence sets smaller. Therefore, the proposed method
views the low aleatoric uncertainty in Markovian regime as
an advantage that can be exploited to make the confidence
sets smaller whereas it is a violation of a crucial assumption
for classical conformal prediction. For example, when b =
0.5 (i.e., meaningless observations) the only way for any
algorithm to achieve the desired confidence 1 − α = 0.8
in the IID setting is to randomly choose 0.8 fraction of all
possible candidate sequences. In the HMM setting with p =
0.9, the same confidence is achieved with approximately
0.4 fraction of all possible candidate sequences (e.g., in
the case T = 200, T1 = 3). Remarkably, Algorithm 1
is not explicitly aware whether the states are Markovian
or the measurements are accurate in order to ensure the
desired coverage. That information is only available via the
T−length calibration sequence given as an input.

To summarize, the numerical results verify and comple-
ment the Theorem 3.3 which established the validity of
the Algorithm 1. In particular, numerical results show that
empirical coverage is approximately equal to the desired
coverage (with the difference attributed to the randomness in
the Monte Carlo averaging) in both HMM and exchangeable
settings. Further, the prediction sets are relatively smaller in
the HMM setting compared to exchangeable setting. Thus,
by exploiting the de Finetti’s Theorem for Markov Chains,
the proposed Algorithm 1 overcomes the barrier of lack of
exchangeability in Markovian settings and views it as an
advantage instead of a violation of an assumption.

4.2. Empirical Results Using Real-World Datasets

To illustrate the practical applicability of Algorithm 1 in
real-world settings, this section presents empirical results
obtained by applying Algorithm 1 to the four publicly avail-
able real world datasets listed in Table 1: daily electricity
consumption in two Indian states (Delhi, Punjab) (Khanna
& Mundhra, 2020), daily energy consumption of an apart-
ment in San Jose (Gopinadhan, 2020) and daily values of
the SP500 stock market index (Yahoo Finance, 2023).
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Experimental setup: For the first three datasets in Table 1,
the continuous valued energy consumption data is converted
to discrete states based on how many standard deviations
away each value is from the average value (over all time
steps). This yielded state space cardinalities 5, 5 and 7 for
the first three datasets. For the last dataset (SP500 index), the
binary state indicates whether the index finished with a gain
or a loss for each day. Then, Algorithm 1 was used to obtain
one step ahead prediction sets (i.e., T1 = 1) by viewing
the current state as the measurement for the next state. The
empirical coverage and average prediction set size for each
dataset are shown in Table 1. A time-series visualization
of the true state with the predicted set of states and more
details on the datasets are given in Fig. 3 in Appendix D.

Insights from the empirical results: Table 1 shows that
the empirical coverage for each dataset is approximately
equal to the desired coverage. For the first three datasets
(energy related applications), the scaled prediction set size
indicates that the 0.8 confidence is achieved with a smaller
(0.22 to 0.28) scaled confidence set size. In other words, a
high coverage can be achieved through a smaller confidence
set due to the strongly Markovian nature of energy con-
sumption. For the last dataset (SP500 index), achieving the
desired confidence of 0.8 needs a scaled prediction set size
of 0.65, indicating that one cannot confidently predict the
state of SP500 assuming only a simple Markov model. Thus,
the empirical results verify the validity of Theorem 3.3 in
real-world settings and illustrate how Algorithm 1 is useful
for uncertainty quantification in an HMM framework.

5. Discussion and Conclusion
This paper presented a generalized conformal prediction
algorithm for the Hidden Markov Model framework. In par-
ticular, given a sequence of states and their corresponding
noisy observations (for time t = 1, . . . , T ) from a Hidden
Markov Model (HMM), our aim is to generate a 1 − α
confidence set for the hidden state sequence corresponding
to new observations (from time t = T + 1, . . . , T + T1).
When the underlying process is exchangeable (e.g., IID),
conformal prediction algorithm (proposed in (Vovk et al.,
2005)) can be used to generate the 1 − α confidence set.
However, as Markov processes in general are not exchange-
able, the classical conformal prediction cannot be applied
in Markovian frameworks. As a solution, the algorithm
proposed in this paper exploits the de Finetti’s Theorem
for Markov chains (presented in (Diaconis & Freedman,
1980)) to partition the data from the HMM into blocks that
are guaranteed to be exchangeable. The permutations of
the constructed blocks are viewed as randomizations of the
observed sequence from the HMM. The resulting algorithm
provably yields the desired 1−α coverage guarantee in both
the exchangeable setting and the HMM setting. In particular,

the proposed algorithm utilizes the lack of exchangeability
in Markov processes to make the confidence sets smaller
compared to the exchangeable setting. Further, only one
(finite length) sample path from the HMM is needed as
calibration (i.e., training) data and no prior knowledge of
the parameters of the underlying HMM (i.e., transition and
observation probabilities) is assumed. As such, the gener-
alized algorithm proposed in this paper helps unleash the
powerful potential of the conformal prediction framework in
Markovian settings without any trade off in the confidence
guarantees.
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A. HMM Filtering Algorithm
The HMM filter subroutine used in Step 4 of the Algorithm 1 (for each permutation π ∈ Π) is as follows.

Algorithm 2 HMM Filter Subroutine in Algorithm 1

Input: Estimated transition probability matrix P̂ , estimated observation probability matrix B̂, the state X
(π)
T at time T and

the last T1 elements of the permuted sequence {(X(π)
t , Y

(π)
t )}T+T1

t=1

for k = 1, . . . , T1 do

Calculate pT+k =
B̂YT+k

P̂ ′pT+k−1

1T B̂YT+k
P̂ ′pT+k−1

, where B̂i denotes a diagonal matrix with column-i of B̂ as its diagonal, pT+k

is an n−dimensional probability vector with pT+k(i) = PP̂ ,B̂

(
X

(π)
T+k = i

∣∣∣∣X(π)
T ;Y

(π)
T+1, . . . , Y

(π)
T+k

)
and P̂ ′ denotes

the transpose of P̂ .
end

return PP̂ ,B̂

(
X

(π)
T+k

∣∣∣∣X(π)
T ;Y

(π)
T+1, . . . , Y

(π)
T+k

)
, k = 1, . . . , T1

Note that the inputs to the HMM filter are dependent only on the last T1 + 1 elements of the permuted sequence. Hence, it
suffices to use a permutation group Π containing permutations of the (i, j)−blocks corresponding to all possible ways to
arrange the last T1 + 1 elements.

B. Proof of Theorem 3.3 (Exact validity of Algorithm 1)

Note that the true sequence {Xt}T+T1

t=T+1 will not be included in the confidence set C1−α if and only if
q̂ (XT+1, . . . , XT+T1

) ≤ α i.e.,

{
{Xt}T+T1

t=T+1 /∈ C1−α

}
= {q̂ (XT+1, . . . , XT+T1) ≤ α} (17)

We therefore focus on the event {q̂ (XT+1, . . . , XT+T1) ≤ α}. Next, let

S(1)
(
{(Xt, Yt)}T+T1

t=1

)
< S(2)

(
{(Xt, Yt)}T+T1

t=1

)
< · · · < S(|Π|)

(
{(Xt, Yt)}T+T1

t=1

)
denote the conformity scores S(π) = S

(
{(X(π)

t , Y
(π)
t )}T+T1

t=1

)
, π ∈ Π calculated in the Step 4 of Algorithm 1 sorted in

the ascending order i.e., they are the sorted conformity scores of all sequences obtained by applying the transformations
π ∈ Π to the original sequence,

{(Xt, Yt)}T+T1
t=1 = {(X(I)

t , Y
(I)
t )}T+T1

t=1 ,

where I ∈ Π is the identity transformation. Note that Π is an algebraic group, implying that,

S(j)
(
{(Xt, Yt)}T+T1

t=1

)
= S(j)

(
{(X(π)

t , Y
(π)
t )}T+T1

t=1

)
,∀π ∈ Π, j = 1, 2, . . . , |Π|, (18)

i.e., the sorted conformity scores will be the same irrespective of which transformation is considered the original one.

Then, from (14) we get,

{q̂ (XT+1, . . . , XT+T1
) ≤ α} =

{
S
(
{(Xt, Yt)}T+T1

t=1

)
> S(⌈|Π|(1−α)⌉)

(
{(Xt, Yt)}T+T1

t=1

)}
.
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Therefore, we have,

P {q̂ (XT+1, . . . , XT+T1
) ≤ α} = E {1 {q̂ (XT+1, . . . , XT+T1

) ≤ α}}

= E
{
1
{
S
(
{(Xt, Yt)}T+T1

t=1

)
> S(⌈|Π|(1−α)⌉)

(
{(Xt, Yt)}T+T1

t=1

)}}
= E

{
1

|Π|
∑
π∈Π

1
(
S
(
{(X(π)

t , Y
(π)
t )}T+T1

t=1

)
> S(⌈|Π|(1−α)⌉)

(
{(X(π)

t , Y
(π)
t )}T+T1

t=1

))}
(Since {(Xt, Yt)}T+T1

t=1 is a mixture of Markov chains, it is partially exchangeable according to Theorem 3.1.

The partial exchangeability of {(Xt, Yt)}T+T1
t=1 implies that {(X(π)

t , Y
(π)
t )}T+T1

t=1
d
= {(Xt, Yt)}T+T1

t=1 ,∀π ∈ Π.)

= E

{
1

|Π|
∑
π∈Π

1
(
S
(
{(X(π)

t , Y
(π)
t )}T+T1

t=1

)
> S(⌈|Π|(1−α)⌉)

(
{(Xt, Yt)}T+T1

t=1

))}
(from (18))

=
|Π| − ⌈|Π| (1− α)⌉

|Π|
≤ α

=⇒ P
{
{Xt}T+T1

t=T+1 ∈ C1−α

}
= P {q̂ (XT+1, . . . , XT+T1

) > α} > 1− α

which yields the lower bound in Theorem 3.3. The upper bound follows by noting that α− 1
|Π| ≤

|Π|−⌈|Π|(1−α)⌉
|Π| ≤ α. This

completes the proof.

C. Additional Numerical Results
Simulation setup for the case where the number of states |X | = 3: The second setup uses the transition probability
matrix P and the parameterized observation probability matrix B,

P2 =

0.1 0.6 0.3
0.3 0.1 0.6
0.6 0.3 0.1

 B2 =

 b 1−b
2

1−b
2

1−b
2 b 1−b

2
1−b
2

1−b
2 b

 , (19)

where b ∈
{

1
3 , 0.6, 0.9

}
. Analogous to simulation setup in Sec. 4.1, setting b = 1

3 leads to meaningless observations and
b = 0.9 leads to more accurate measurements. We consider T = 60, 90, 120, 150, 180 for the length of the calibration
sequence and the length of the sequence to be predicted is set to T1 = 3. The other steps are the same as outlined in the
simulation setup in Sec. 4.1. The same experiment is then performed for the IID case (i.e., each element in the transition
probability matrix P2 is set to 1

3 ). The empirical coverage and the empirically estimated expected cardinality of the prediction
sets (scaled by the largest possible cardinality

∣∣X T1
∣∣) obtained using this simulation setup are shown in Fig. 2.

Insights from the numerical results for the case where the number of states |X | = 3: Fig. 2 yields insights that
complement and support the Theorem 3.1 (which established the validity of the Algorithm 1) and the numerical results
provided in Sec. 4.1 as discussed below.

Empirical validity of the Algorithm 1: Fig. 2 shows that the empirical coverage (indicated by green lines) is very close
(within ±0.03 range) to the desired coverage (1− α = 0.8) in both the HMM setting and the exchangeable (IID) setting for
all considered parameter values. Hence, the empirical results confirm that the validity of the Algorithm 1 established in
Theorem 3.3 is in fact achieved in practice in both exchangeable and Markovian settings.

Cardinality of the prediction sets: Fig. 2(a) shows that the scaled expected prediction set size E{|C1−α|}
|XT1 | (indicated by

purple lines) is smaller compared to the desired coverage 1− α in each considered case. Stated differently, Algorithm 1
yields smaller confidence sets compared to randomly choosing 1− α fraction of all possible candidate sequences X T1 . In
particular, Fig. 2(a) shows that even with meaningless observations (i.e. b = 1/3), Algorithm 1 achieves a 0.8 confidence
with approximately 0.6 fraction of all candidate sequences. The average prediction set size further decreases as the accuracy
of the observations and the length of the calibration sequence T increase. For example, when b = 0.9 and T = 180,
Algorithm 1 achieves the 0.8 confidence with approximately only 0.15 fraction of all possible candidate sequences.
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Figure 2. The empirically estimated coverage P{(XT+1, . . . , XT+T1) ∈ C0.8} (green lines) and the scaled expected cardinality of the

prediction sets
E{|C1−α|}

|XT1 | (purple lines) for two cases: Fig. 2(a) for transition probability matrix P given in (19) and Fig. 2(b) for the

IID case (i.e., each element of the transition probability matrix P is equal to 1
3

). The length of the sequence to be predicted is T1 = 3
and different markers indicate different values of the parameter b of the observation probability matrix B in (19) where larger values
of b correspond to more accurate observations. The desired coverage is 1 − α = 0.8. The coverage and the expected cardinality of
the prediction set for each parameter configuration were estimated using a Monte-Carlo average over 500 iterations as discussed in
Sec. 4. Fig. 2(a) indicates that the empirical coverage (green line) is within ±0.03 margins of the desired coverage (1− α = 0.8) for
each considered parameter configuration in the HMM setting. Hence the numerical results agree with the validity of the Algorithm 1
established in Theorem 3.3 for HMM models. Fig. 2(b) shows that the proposed algorithm yields the desired coverage in the exchangeable
(IID) setting as well. Thus, the numerical results confirm that the proposed algorithm produces valid confidence sets in both HMM and
exchangeable settings.

Performance difference between exchangeable and HMM settings: As discussed earlier, Algorithm 1 achieves the desired
coverage in both IID (exchangeable) and HMM settings. However, performance of the Algorithm 1 is better in the HMM
setting in terms of the prediction set size i.e., E{|C1−α|}

|XT1 | is smaller for the HMM setting compared to the IID setting. This
is due to the fact that the Markovian structure of the states is exploited by the HMM filter to make the confidence sets
smaller. For example, when b = 1/3 (i.e., meaningless observations) the only way for any algorithm to achieve the desired
confidence 1 − α = 0.8 in the IID setting is to randomly choose 0.8 fraction of all possible candidate sequences. In the
HMM setting, the same confidence is achieved with approximately 0.6 fraction of all possible candidate sequences. Further,
Algorithm 1 is not explicitly aware of whether the states are Markovian or the measurements are accurate. This information
is only available via the T−length calibration sequence given as an input.

To summarize, the supplementary numerical results (Fig. 2) verify that the coverage guarantee (for Algorithm 1) provided
by Theorem 3.3 is in fact valid in practice. In addition, Fig. 2 also illustrates that the insights obtained using the numerical
experiments for the binary state space (Fig. 1) extend to larger state spaces.
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D. Supplementary Details on the Empirical Results
Details on the four datasets used to obtain empirical results (summarized in Table 1)

Electricity Consumption in Delhi and Punjab: These two datasets were obtained from the publicly available reposi-
tory (Khanna & Mundhra, 2020). It contains a time series for a period of 17 months beginning from 2-Jan-2019 till 23-May-
2020 and has been scraped from the weekly energy reports of Power System Operation Corporation Limited (POSOCO).
In experiments in Sec. 4.2, we set T = 300 and T1 = 1 (i.e., predicting the state energy consumption next day). The
predictions were carried out for last 6 months (170 days) in each of the two datasets.

Household Energy Consumption: This dataset was obtained from the publicly available repository (Gopinadhan, 2020).
It contains household energy consumption of an apartment unit in San Jose for approximately a year. The data has
been collected using the smart meters of the energy company. In experiments in Sec. 4.2, we set T = 300 and T1 = 1
(i.e., predicting the energy consumption of the apartment on the next day). The predictions were carried out for last 2 months
(53 days) in the dataset.

SP500 Index: This dataset was obtained from the Yahoo Finance (Yahoo Finance, 2023) on 19-Jan-2023. We set T = 100
(1 month) and T1 = 1 (i.e., predicting whether the index will incur a loss or a gain on the next day). The predictions were
carried out for last month (20 business days) in the dataset.

In addition to Table 1 which summarizes the empirical results, Fig. 3 presents a time series visualization of the predicted set
of states C1−α together with the true state Xt for each of the above four datasets.
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Figure 3. A time series visualization of the true state (blue) and the predicted set of states for each dataset in Table 1 used to obtain the
empirical results in Sec. 4.2. For each dataset, the empirical coverage is approximately equal to the desired coverage 0.8. For predicting
energy consumption (first three datasets in Table 1), the scaled average prediction set size is also smaller than 0.28. Hence, an 80%
coverage is obtained with less than 28% of the states, indicating that the uncertainty is low. To obtain the same coverage when predicting
the SP500 index (daily gain or loss), 65% of the states has been needed, indicating that the uncertainty is high. Thus, the proposed
algorithm yields the desired performance in practice and helps deal with uncertainty in sequential prediction tasks.
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