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Abstract

Recent data-driven approaches based on machine
learning aim to directly solve a downstream fore-
casting or projection task by learning a data-
driven functional mapping using deep neural net-
works. However, these networks are trained using
curated and homogeneous climate datasets for spe-
cific spatiotemporal tasks, and thus lack the gener-
ality of currently used computationally intensive
physics-informed numerical models for weather
and climate modeling. We develop and demon-
strate ClimaX, a flexible and generalizable deep
learning model for weather and climate science
that can be trained using heterogeneous datasets
spanning different variables, spatio-temporal cov-
erage, and physical groundings. ClimaX extends
the Transformer architecture with novel encod-
ing and aggregation blocks that allow effective
use of available compute and data while main-
taining general utility. ClimaX is pretrained with
a self-supervised learning objective on climate
datasets derived from CMIP6. The pretrained Cli-
maX can then be fine-tuned to address a breadth
of climate and weather tasks, including those
that involve atmospheric variables and spatio-
temporal scales unseen during pretraining. Com-
pared to existing data-driven baselines, we show
that this generality in ClimaX results in supe-
rior performance on benchmarks for weather fore-
casting and climate projections, even when pre-
trained at lower resolutions and compute bud-
gets. Our source code is available at https:
//github.com/microsoft/ClimaX.
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1. Introduction
Modeling weather and climate is an omnipresent challenge
for science and society. With rising concerns around ex-
treme weather events and climate change, there is a growing
need for both improved weather forecasts for disaster miti-
gation and climate projections for long-term policy making
and adaptation efforts (Masson-Delmotte et al., 2021). Cur-
rently, numerical methods for global modeling of weather
and climate are parameterized via various general circula-
tion models (GCM) (Lynch, 2008). GCMs represent system
of differential equations relating the flow of energy and mat-
ter in the atmosphere, land, and ocean that can be integrated
over time to obtain forecasts for relevant atmospheric vari-
ables (Lynch, 2008; Bauer et al., 2015). While extremely
useful in practice, GCMs also suffer from many challenges,
such as accurately representing physical processes and ini-
tial conditions at fine resolutions, as well as technological
challenges in large-scale data assimilation and computa-
tional simulations (Bauer et al., 2020). These factors limit
their use in many scenarios, especially in simulating atmo-
spheric variables quickly at very short time scales (e.g., a
few hours) or accurately at long time scales (e.g., beyond
5-7 days) (Zhang et al., 2019).

In contrast, there has been a steady rise in data-driven ap-
proaches for forecasting of atmospheric variables, especially
for meteorological applications (Grover et al., 2015; Dueben
& Bauer, 2018; Weber et al., 2020; Scher & Messori, 2019;
Scher, 2018; Kashinath et al., 2021; Schultz et al., 2021;
Reichstein et al., 2019; Huntingford et al., 2019; Schnei-
der et al., 2017). The key idea here is to train deep neural
networks to predict the target atmospheric variables using
decades of historical global datasets, such as the ERA-5
reanalysis dataset (Hersbach et al., 2020). Unlike GCMs,
these networks are not explicitly grounded in physics, and
lack general-purpose utility for Earth system sciences as
they are trained for a specific predictive modeling task. Yet,
with growing compute and datasets, there is emerging evi-
dence that these models can achieve accuracies competitive
with state-of-the-art numerical models in many scenarios,
such as nowcasting of precipitation (Ravuri et al., 2021;
Sønderby et al., 2020) and medium-range forecasting of
variables like temperature, wind and humidity (Weyn et al.,
2020; Rasp & Thuerey, 2021; Keisler, 2022; Pathak et al.,
2022; Bi et al., 2022; Lam et al., 2022). While these trends
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Figure 1. ClimaX is built as a foundation model for any weather and climate modeling task. On the weather front, these tasks include
standard forecasting tasks for various lead-time horizons at various resolutions, both globally or regionally. On the climate front, making
long term projections and obtaining downscaling results from lower resolution model outputs are standard tasks.

are encouraging, there remain concerns regarding the gen-
erality of such data-driven methods to diverse real-world
scenarios, such as forecasting of extreme weather events and
longer-term climate projections, especially under limited
spatiotemporal supervision and computational budgets.

Variants of the aforementioned challenges apply broadly
throughout machine learning (ML). In disciplines such as
natural language processing and computer vision, it is well
acknowledged that ML models trained to solve a single task
using supervised learning are label-hungry during training
and brittle when deployed outside their training distribu-
tion (Taori et al., 2020). Recent works have shown that it is
possible to mitigate the supervision bottleneck by pretrain-
ing (Devlin et al., 2018; He et al., 2022) large unsupervised
“foundation” models (Bommasani et al., 2021) on huge pas-
sive datasets, such as text and images scraped from the
internet (Ramesh et al., 2022; Brown et al., 2020; Liu et al.,
2021; Reed et al., 2022b). Post pretraining, there are many
ways to finetune the same model on arbitrary target task(s)
with little to none (i.e., zero-shot) additional supervision.
Besides low target supervision, these models also generalize
better to shifts outside their training distribution (Hendrycks
et al., 2020; Zhang et al., 2022), improving their reliability.

Inspired by the above successes, this work studies the ques-
tion: how do we design and train a foundation model for
weather and climate that can be efficiently adapted for
general-purpose tasks concerning the Earth’s atmosphere?
We propose ClimaX, a foundation model for weather and
climate. For pretraining any foundation model, the key
recipe is to train a deep architecture on a large dataset using
an unsupervised objective. For example, many foundation
models for language and vision train large transformers on
Internet-scale datasets using generative modeling. While
conceptually simple, this scaling recipe is riddled with chal-
lenges for weather and climate domains, that we discuss
below and propose to resolve with ClimaX.

First, it is unclear what constitutes an Internet-scale pas-

sive dataset for pretraining ClimaX. The size of historical
weather and climate datasets at any given time is fixed and
increases at an almost constant rate everyday, as it corre-
sponds to processed sensor measurements of naturally oc-
curring phenomena. Our first key proposal is to go beyond
these datasets to explicitly utilize physics-informed climate
simulation models. Many such models are in use today, for
example, the CMIP6 collection (Eyring et al., 2016) of cli-
mate modeling simulations consists of runs of ∼100 distinct
climate models from 49 different groups. We show that the
heterogeneity in these simulation datasets serves as a source
of rich and plentiful data for pretraining ClimaX.

Second, we need a model architecture that can aptly embrace
the heterogeneity of the above climate datasets. Climate
data is highly multimodal, as observations typically corre-
spond to many different, unbounded variables with varying
datatypes (e.g., pressure, temperature, humidity). Moreover,
many observational datasets are irregular in the sense that
they differ in their spatiotemporal coverage and might cor-
respond to different subsets of atmospheric variables. We
resolve the above challenges in ClimaX by repurposing the
vision transformer (Dosovitskiy et al., 2020; Vaswani et al.,
2017). In contrast to earlier work where the input data is
represented as an image with different atmospheric vari-
ables treated as the channels thereof (Pathak et al., 2022; Bi
et al., 2022), we treat them as separate modalities to enable
more flexible training even with irregular datasets. This
has the side-effect of drastically increasing the sequence
length, which we resolve via a cross-attention style channel
aggregation scheme prior to the self-attention layers.

Third and last, we need a pretraining objective that can learn
complex relationships between the atmospheric variables
and permit effective finetuning for downstream tasks. Given
the spatiotemporal nature of climate data, we propose a
randomized forecasting objective for pretraining ClimaX.
Here, the model learns to forecast an arbitrary set of input
variables at an arbitrary time in the future. While simple
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Figure 2. Variable tokenization tokenizes each variable independently, and variable aggregation reduces the sequence length by V .

and intuitive, we show that such objective aids finetuning
to novel tasks and timescales even beyond the pretraining
window, such as sub-seasonal to seasonal cumulative predic-
tion, climate projection, and climate downscaling. Figure 1
shows the list of tasks considered in this work.

Empirically, we demonstrate that a single pretrained model
can be finetuned for many tasks (e.g., multi-scale weather
forecasting, climate projections, downscaling) under a
range of operating conditions involving different spatiotem-
poral resolutions, geographical regions, and target pre-
diction variables, including those unseen during training.
Notably, our benchmark results are state-of-the-art on
ClimateBench (Watson-Parris et al., 2022) and competi-
tive with the operational Integrated Forecasting System
(IFS) (Wedi et al., 2015) on WeatherBench (Rasp et al.,
2020), even when our model is trained on moderate resolu-
tions using only a maximum of 80 NVIDIA V100 GPUs.
Model inference works with a single NVIDIA V100 GPU.

2. Approach
Given the availability of large scale data sources, together
with shared physics and geology between various weather
and climate tasks, we aim to build a generalizable deep learn-
ing foundation model. The model needs to be able to input
heterogeneous datasets of different variables, and provide
spatio-temporal coverage based on physical groundings. We,
therefore, first take a closer look at input representations,
and next design a model to cope with their heterogeneity -
local, global, and across variables.

2.1. Input representation

We are interested in gridded prediction tasks, in which the
model takes an input of shape V × H × W and predicts
an output of shape V ′ ×H ′ ×W ′. V refers to the number
of input variables, which can be weather conditions such
as geopotential and temperature, or climate forcing factors
such as CO2 and SO2. H and W refer to the spatial res-
olution of the input data, which depends on how densely
we grid the globe. This general representation captures
a broad variety of downstream tasks in Earth systems sci-
ence. Similarly, V ′, H ′,W ′ refer to the variables and spatial
resolution of the predicted outputs. We mainly work with
two spatial resolutions: 5.625◦ (32 × 64 grid points) and

1.40625◦ (128× 256 grid points). Semantically, a H ×W
map can represent the entire globe or a specific region.

2.2. Model architecture

We aim to design a foundation model that we can pretrain
on heterogeneous data sources and then finetune to solve
various downstream weather and climate tasks. From Sec-
tion 2.1, one could think of the tasks as image-to-image
translation problems with V input channels and V ′ output
channels. This makes any image architecture a natural fit,
such as UNet (Ronneberger et al., 2015), ResNet (He et al.,
2016), or Vision Transformers (ViT) (Dosovitskiy et al.,
2020). However, the settings of climate and weather tasks
are much broader, where we may want to make predictions
for regional or even spatially incomplete data, forecast un-
seen climate variables, or finetune the model on data at
different resolutions from pretraining. Current CNN-based
architectures are not applicable in these scenarios, as they re-
quire the input to be perfectly gridded, contain a fixed set of
variables, and have a fixed spatial resolution. Transformers-
based architectures, on the other hand, provide much better
flexibility by treating the image-like data as a set of tokens.
Therefore, we build ClimaX architecture upon Vision Trans-
formers (ViT) (Dosovitskiy et al., 2020), and propose two
major architectural changes, namely variable tokenization
and variable aggregation to further improve the flexibility
and generality, which we describe next.

Variable tokenization. Given an input of shape V ×
H × W , ViT tokenizes the input into a sequence of
(H/p)× (W/p) = h×w patches, with each patch having a
size of V × p2, where p is the patch size. This tokenization
scheme works well for image data, as V is always the RGB
channels, which is the same for all datasets. However, this
is not true for climate and weather data, where the number
of physical variables can vary between different datasets.
For example, in the CMIP6 project (Eyring et al., 2016),
each dataset contains simulated data of a different climate
model, and thus has a different set of underlying variables.
Therefore, we propose variable tokenization, a novel tok-
enization scheme that tokenizes each variable in the input
separately. Specifically, each input variable as a spatial map
of shape H × W is tokenized into a sequence of h × w
patches, which results in V ×h×w patches in total. Finally,
each input patch of size p2 is linearly embedded to a vector
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Figure 3. Pretraining phase of ClimaX. Variables are encoded using variable-separate tokenization, and subsequently aggregated using
variable aggregation. Together with position embedding and lead time embedding those are fed to the ViT backbone.

of dimension D, where D is the chosen embedding size.
The output of the variable tokenization module therefore
has a dimension of V × h×w×D. Figure 2 illustrates our
proposed tokenization scheme.

Variable aggregation. While variable tokenization allows
ClimaX to learn from datasets with varying numbers of in-
put variables, it has two inherent problems. First, it results
in a sequence of length V × h×w which increases linearly
with the number of variables. Since we use attention to
model the sequence, the memory complexity scales quadrat-
ically with the number of variables. This is computationally
expensive, as we can have up to 48 input variables in our
experiments. Moreover, because we tokenize each variable
separately, the input sequence will contain tokens of differ-
ent variables with very different physical groundings, which
can create difficulties for the attention layers to learn from.
We therefore propose variable aggregation to solve the two
mentioned challenges. For each spatial position in the h×w
map, we perform a cross-attention operation, in which the
query is a learnable vector, and the keys and values are the
V embedding vectors of V variables at that position. The
cross-attention module outputs a single vector for each spa-
tial position, thus reducing the sequence length to h × w,
significantly lowering the computational cost. Moreover,
the sequence now contains unified tokens with universal
semantics, creating an easier task for the attention layers.
Figure 2 shows our proposed variable aggregation.

Transformer. Post variable aggregation, we seek a se-
quence model for generating the output tokens. While
in principle, one could use any sequence model, we pro-
pose to extend a standard Vision Transformer (ViT). More-
over, since the standard ViT treats image modeling as pure
sequence-to-sequence problems, it can perform tasks that
some other variations cannot (Liu et al., 2021; 2022), such
as learning from spatially incomplete data, where the input

does not necessarily form a complete grid. This is useful
in the regional forecasting task we consider in Section 3.1.
In the experiments, we report results with 8 attention lay-
ers, an embedding size of 1024, and a hidden dimension of
1024 × 4. After the attention layers, we employ a 2-layer
MLP prediction head that takes a token and outputs a vector
of size V ′ × p2, for more details see Appendix C.

2.3. Datasets

Pretraining datasets. We believe that CMIP6’s diversity
and scale presents an attractive opportunity for pretraining
large-scale foundation models. However, handling the in-
consistent set of variables across different data sources can
be a challenge. In this work we only use a subset of vari-
ables from five different data sources (MPI-ESM, TaiESM,
AWI-ESM, HAMMOZ, CMCC) containing global projec-
tions of climate scenarios from 1850 to 2015 with the time
delta of 6 hours as described in Table 8. Due to variable
original resolution, we choose to simplify our data-loading
by regridding them to commonly used resolutions (Rasp
et al., 2020; Rasp & Thuerey, 2021) of 5.625◦ (32× 64 grid
points) and 1.40625◦ (128× 256 grid points)1.

Finetuning and evaluation datasets. For various weather
related downstream tasks, we use the ERA5 reanalysis data
as described in Appendix E.2. For climate projections tasks,
we evaluate Climax on ClimateBench (Watson-Parris et al.,
2022), a recent climate projection benchmark.

2.4. Training

Pretraining. We pretrain ClimaX on CMIP6 data to predict
future weather conditions given the current conditions. That
is, given the weather snapshot Xt of shape V × H × W

1Regridding was done using the xesmf Python pack-
age (Zhuang, 2018) using bilinear interpolation.
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Figure 4. Global forecasting performance on ERA5 at 1.40625◦.

at a particular time t, ClimaX learns to predict the future
weather scenario Xt+∆t of the same shape at lead time ∆t.
To obtain a pretrained model that is generally applicable
to various temporal forecasting tasks, we randomize the
lead time from 6 hours to 168 hours (i.e., 1 week) during
pretraining. We add the lead time embedding to the tokens to
inform the model of how long it is forecasting into the future.
The lead time embedding module is a single-layer MLP that
maps a scalar to an embedded vector. Figure 3 depicts the
forward pass of ClimaX. For an input Xt, we sample a
lead time ∆t ∼ U [6, 168] and get the corresponding ground
truth Xt+∆t. Input variables are tokenized separately using
variable tokenization, and are subsequently aggregated at
each spatial location, resulting in a sequence of h×w unified
tokens. We add the tokens with the lead time embedding
and positional embedding before feeding the sequence to
the ViT backbone. The output of the last attention layer
is fed to a prediction head, which transforms the sequence
back to the original shape of V ×H ×W .

We employ the latitude-weighted mean squared error (Rasp
et al., 2020) as our objective function, detailed in Ap-
pendix D.1.1. The latitude weighting term accounts for
the non-uniformity in areas when we grid the round globe.
Grid cells toward the equator have larger areas than the cells
near the pole, and thus should be assigned more weights.

Finetuning. ClimaX has four learnable components: the
token embedding layers, the variable aggregation module,
the attention blocks, and the prediction head. We evaluate
the performance of ClimaX on various downstream tasks,
which we categorize into two finetuning scenarios: one
in which the downstream variables belong to the set of
pretraining variables, and the other with variables unseen

during pretraining. In the first case, we finetune the entire
model, and in the latter, we replace the embedding layers
and the prediction head with newly initialized networks,
and either finetune or freeze the other two components. We
present more details of each downstream task in Section 3.

3. Experiments
We finetune ClimaX on a diverse set of downstream tasks
to evaluate its performance and generality. We categorize
the tasks into forecasting, climate projection, and climate
downscaling, aiming to answer the following questions:

• How does ClimaX perform on global forecasting com-
pared to the current state-of-the-art NWP system?

• Can we finetune ClimaX to make forecasts for a spe-
cific region or at different temporal horizons?

• How well does ClimaX perform on climate tasks that
are completely different from pretraining?

In addition to the main experiments, we analyze the scaling
property of ClimaX, i.e., how the performance of ClimaX
improves with increasing data size, model capacity, and
data resolution. Finally, we perform comprehensive ablation
studies to understand the trade-off between computation and
performance when finetuning ClimaX.

Neural baselines. In global forecasting, we compare Cli-
maX with IFS (Wedi et al., 2015), the current gold standard
in weather forecasting. In tasks we do not have a baseline,
we compare with two CNN based baselines UNet (Ron-
neberger et al., 2015) and ResNet (He et al., 2016) with spe-
cific architecture details borrowed from (Gupta & Brandstet-
ter, 2022; Rasp et al., 2020), as described in Appendix C.2.
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3.1. Forecasting

Global forecasting. Given global weather conditions
Xt at a particular time t, we want to forecast the weather
at a future time Xt+∆t, in which ∆t is the lead time. The
input variables include 6 atmospheric variables at 7 vertical
levels, 3 surface variables, and 3 constant fields, resulting in
48 input variables in total. The details of the variables are
in Table 9. We evaluate ClimaX on predicting four target
variables: geopotential at 500hPa (Z500), the temperature at
850hPa (T850), the temperature at 2 meters from the ground
(T2m), and zonal wind speed at 10 meters from the ground
(U10). Z500 and T850 are the two standard verification
variables for most medium-range NWP models and are often
used for benchmarking in previous deep learning works,
while the two surface variables, T2m and U10, are relevant
to human activities. We consider seven lead times: 6 hours,
{1, 3, 5, 7} days, 2 weeks, and 1 month, spanning a range
from nowcasting to short and medium-range forecasting.
We consider predicting each target variable at each lead time
a separate task, and finetune a separate model for each task.
We discuss alternative finetuning protocols in Section F.3.

We compare ClimaX to the Integrated Forecasting System
(IFS), the current gold standard in weather forecasting, and
the two CNN baselines on the ERA5 dataset at both 5.625◦

and 1.40625◦ resolutions. Following (Rasp et al., 2020), we
split the data into three sets, in which the training data is
from 1979 to 2015, the validation data is in 2016, and the
test data is in 2017 and 2018. We finetune ClimaX and train
the other deep learning baselines using the latitude-weighted
MSE loss in Equation (1). We perform early stopping on the
validation loss for all deep learning models, and evaluate
the best checkpoint on the test set. For IFS, we down-
load the predictions from the TIGGE archive (Bougeault
et al., 2010) for the year 20182. We compare all methods
on latitude-weighted root mean squared error (RMSE) and
latitude-weighted anomaly correlation coefficient (ACC),
two commonly used metrics in previous works. The for-
mulations of the two metrics are in Appendix F.1. Lower
RMSE and higher ACC indicates better performance.

2We were not able to download IFS predictions for 2017 due
to some server issues.

Figures 4 and 10 show the performance of ClimaX and the
baselines at 5.625◦ and 1.40625◦, respectively. At low res-
olution, IFS outperforms ClimaX on 6-hour to 5-day predic-
tion tasks. On longer horizons, however, ClimaX performs
comparably to or slightly better than IFS, especially on 14-
day prediction. At higher resolution, the performance of Cli-
maX closely matches that of IFS even for short horizons, and
is superior in forecasting at 7 days and beyond. The trends
are similar for both RMSE and ACC. The two CNN base-
lines perform similarly and achieve reasonable performance,
but lag behind ClimaX and IFS on all tasks. We include
other additional task-specific baselines (Pathak et al., 2022;
Bi et al., 2022; Lam et al., 2022) in Appendix F.4. These
baselines are trained on higher-resolution ERA5 (0.25◦) so
are not directly comparable.

Regional forecasting. We next evaluate ClimaX on re-
gional forecasting of relevant variables in North America,
where the task is to forecast the future weather in North
America given the current weather condition in the same
region. We create a new dataset from the ERA5 data at
1.40625◦ that has the same set of variables but just focuses
on the North America region. We call this dataset ERA5-NA
and present details of how to construct it in Appendix E.2.
Training, validation, and test splits are done similarly to Sec-
tion 3.1. Since the task has not been considered in previous
works, we compare ClimaX with the two CNN baselines
ResNet and UNet, and the scratch-trained version of Cli-
maX, which we refer to as Cli-ViT. In addition, we finetune
two ClimaX models, in which one was pretrained on CMIP6
at 1.40625◦, and the other was pretrained on 5.625◦ data.
To finetune the low-resolution model on higher-resolution
data, we follow the common practice of interpolating the
positional embedding (Dosovitskiy et al., 2020; Touvron
et al., 2021). We denote this model as ClimaX-pos-interp.
We evaluate all methods on predicting Z500, T2m, and T850
at lead times of 3, 5, and 7 days. Latitude-weighted RMSE
is used as the evaluation metric. Figure 5 compares the
performance of ClimaX and the baselines. ClimaX is the
best performing method among different target variables
and lead times. Interestingly, even though pretrained on
data at a lower resolution, ClimaX-pos-interp achieves the
second best performance in predicting Z500 and T850, and
only underperforms ResNet in predicting T2m at 3-day lead

6



ClimaX: A foundation model for weather and climate

Table 1. RMSE of ClimaX and baselines on 5.625◦ ERA5-S2S
prediction tasks. See also Table 10 in Appendix.

T850 T2m U10

Weeks 3-4 Weeks 5-6 Weeks 3-4 Weeks 5-6 Weeks 3-4 Weeks 5-6

ResNet 2.12 2.13 1.88 2.16 1.91 1.94
UNet 1.91 1.95 1.67 1.79 1.85 1.90
Cli-ViT 1.96 1.96 1.79 1.90 1.83 1.92
ClimaX 1.89 1.92 1.66 1.70 1.81 1.86

time. This result shows that ClimaX can gain strong perfor-
mance on tasks that have different spatial coverage or even
different spatial resolution from pretraining.

Sub-seasonal to seasonal prediction. Sub-seasonal to
seasonal (S2S) prediction is the task of forecasting at a time
range between 2 weeks and 2 months (Vitart & Robertson,
2018), which bridges the gap between weather forecasting
and climate projection. Compared to the other two well-
established tasks, S2S prediction has received much less
attention, despite having a significant socioeconomic value
in disaster mitigation efforts. To the best of our knowl-
edge, S2S prediction has not been considered in previous
deep learning works. Here, following the S2S competition
(https://s2s-ai-challenge.github.io/), we aim to predict the bi-
weekly average statistics of weeks 3-4 and weeks 5-6, which
correspond to lead times of 2 weeks and 4 weeks, respec-
tively. We construct ERA5-S2S, a new dataset from 5.625◦

ERA5 that has the same input variables, but the output vari-
ables are averaged from the lead time to 2 weeks ahead
into the future. We compare ClimaX with ResNet, UNet,
and Cli-ViT on the S2S prediction of four target variables:
T850, T2m, U10, and V10. Table 1 compares the RMSE of
ClimaX and the baselines. ClimaX achieves the lowest error
for all variables, and the performance gap with the best base-
line UNet is larger at increasing lead times. ClimaX also
has significant performance gains over its scratch-trained
counterpart Cli-ViT, showing the effectiveness of our pre-
training procedure in capturing features that are generally
useful for various temporal prediction tasks.

3.2. Climate projection

To further test the generality of ClimaX, we evaluate our
model on ClimateBench (Watson-Parris et al., 2022), a
recently introduced climate projection benchmark. The
aim of ClimateBench is to predict the annual mean global
distributions of surface temperature, diurnal temperature
range, precipitation, and the 90th percentile of precipita-
tion, given four anthropogenic forcing factors: carbon diox-
ide (CO2), sulfur dioxide (SO2), black carbon (BC), and
methane (CH4). This is not a temporal modeling task, as we
do not predict the future given the past. Instead, we answer
questions like what will be the annual mean temperature for
a specified CO2 level? In particular, note that input variables
and the task itself are completely different from pretraining.

As the input and output variables are unseen during pre-
training, we replace the pretrained embedding layers and
prediction heads with newly initialized networks, while
keeping the attention layers and the variable aggregation
module. We consider two finetuning protocols, in which
we either freeze3 (ClimaXfrozen) or finetune (ClimaX) the
attention layers. The details of the finetuning pipeline are
in Appendix D.2.4. We compare ClimaX with ClimaXfrozen,
Cli-ViT, and the best baseline from ClimateBench. Fol-
lowing (Watson-Parris et al., 2022), we use the standard
mean squared error (Equation (1) without the weighting
term) as the loss function. We evaluate all methods on
RMSE, NRMSEs (Spatial), NRMSEg (Global), and Total
= NRMSEs + 5 × NRMSEg (Watson-Parris et al., 2022),
see Table 2. Details of the metrics are in Appendix F.1.
ClimaXfrozen and ClimaX perform best in predicting two
temperature-related variables, demonstrating that pretrained
attention layers can serve as a strong feature extractor in
seemingly unrelated tasks. Since downstream data is scarce
(ClimateBench has only 754 data points), further finetuning
the attention layer can lead to overfitting and thus slightly
hurt the performance. In two precipitation-related tasks,
ClimaXfrozen slightly underperforms ClimateBench baseline
in terms of NRMSEs and NRMSEg, but outperforms on
RMSE. We hypothesize that this was because ClimaX did
not observe the precipitation variable during pretraining,
which has very different behaviors from other variables.

3.3. Climate model downscaling

Climate models are often run at coarse grids due to their
high computational cost. Although these predictions are
useful in understanding large-scale climate trends, they do
not provide sufficient detail to analyze regional and local
phenomena. Downscaling aims to obtain higher-resolution
projections and reduce biases from the outputs of these mod-
els. To evaluate the applicability of ClimaX to the task of cli-
mate model downscaling, we construct a new dataset based
on CMIP6 and ERA5 data sources for coarse inputs and
higher resolution targets. Specifically, we use all MPI-ESM,
a dataset from CMIP6, and its variables listed in Table 8
at 5.625◦ as input, and train separate models to downscale
to each ERA5 target variable at 1.40625◦. We compare
ClimaX with Cli-ViT and the two CNN baselines, UNet and
ResNet, as most recent deep downscaling methods (Vandal
et al., 2017; Rodrigues et al., 2018; Höhlein et al., 2020;
Vandal et al., 2019; Liu et al., 2020) are based on convolu-
tion. We were not able to compare with YNet (Liu et al.,
2020), the current best method on deep downscaling as we
did not have access to high-resolution auxiliary data such as
elevation and topographical information. For all methods,
we first bilinearly interpolate the input to match the reso-

3We finetune the LayerNorm in ClimaXfrozen, as suggested
by Lu et al. (2022).
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Table 2. Performance of ClimaX and the baselines on ClimateBench. Spatial and Global denote the normalized root mean squared error
NRMSEs and the NRMSE of the global mean NRMSEg , respectively. Total is a weighted combination of Spatial and Global.

Surface temperature Diurnal temperature range Precipitation 90th percentile precipitation

Spatial Global Total RMSE Spatial Global Total RMSE Spatial Global Total RMSE Spatial Global Total RMSE

ClimateBench-NN (reproduced) 0.123 0.080 0.524 0.404 7.465 1.233 13.632 0.150 2.349 0.151 3.104 0.553 3.108 0.282 4.517 1.594
ClimateBench-NN (paper) 0.107 0.044 0.327 N/A 9.917 1.372 16.778 N/A 2.128 0.209 3.175 N/A 2.610 0.346 4.339 N/A
Cli-ViT 0.086 0.044 0.305 0.362 6.997 1.759 15.792 0.146 2.224 0.241 3.430 0.550 2.800 0.329 4.447 1.579
ClimaX 0.086 0.043 0.300 0.362 7.148 0.961 11.952 0.147 2.360 0.206 3.390 0.554 2.739 0.332 4.397 1.575
ClimaXfrozen 0.085 0.043 0.297 0.360 6.688 0.810 10.739 0.144 2.193 0.183 3.110 0.549 2.681 0.342 4.389 1.572

Table 3. Performance of ClimaX and the baselines on downscaling from MPI-ESM (5.625◦) to ERA5 (1.40625◦).
Z500 T850 T2m

RMSE Pearson Mean bias RMSE Pearson Mean bias RMSE Pearson Mean bias

ResNet 825.75 0.96 −108.54 3.60 0.96 0.19 2.89 0.98 0.14
UNet 858.35 0.95 35.10 3.66 0.96 −0.34 2.95 0.98 0.16
Cli-ViT 811.61 0.96 −54.32 3.58 0.97 −0.29 2.80 0.99 −0.06
ClimaX 807.43 0.96 2.70 3.49 0.97 −0.11 2.79 0.99 −0.06

lution of the desired output before feeding it to the model.
We evaluate all methods on RMSE, Pearson correlation, and
Mean bias, which were commonly used in existing deep
downscaling works (Vandal et al., 2017; Liu et al., 2020).
Details of the metrics are in Appendix F.1.

Table 3 (and Table 11 in Appendix) compares ClimaX and
the baselines quantitatively. ClimaX achieves the lowest
RMSE and a mean bias closest to 0 for all three target vari-
ables, and performs similarly to the baselines in terms of
Pearson correlation. During pretraining ClimaX has success-
fully captured the spatial structure of weather data, which
helps in downstream tasks like downscaling. Figure 19 in
Appendix visualizes the downscaled predictions of ClimaX
for the three target variables. The input is at a much lower
resolution and contains a lot of bias compared to the ground
truth. While the prediction is missing some fine details, it
has successfully captured the general structure of the ERA5
data and removed input biases.

3.4. Scaling laws analysis

Transformers have shown favorable scaling properties for
language (Kaplan et al., 2020; Hoffmann et al., 2022), vision
(Zhai et al., 2022), or even multi-modal tasks (Henighan
et al., 2020; Hendricks et al., 2021; Reed et al., 2022b). That
is, their performance improves with respect to data size and
model capacity given sufficient compute. In this section,
we study the scaling laws of ClimaX. Figure 6 presents the
performance of ClimaX as a function of data size and model
capacity. The x-axis is the pretraining data size measured
in Gigabytes, and corresponding to 1 to 5 CMIP6 datasets.
The y-axis shows the RMSE of ClimaX on the 3-day fore-
casting task, comparing four ClimaX models of different
size by varying the embedding dimension from 128 to 1024.
All experiments are conducted on the 5.625◦ data. RMSE
values of the two biggest models decreases consistently as

we increase the data and model size, highlighting the ability
of ClimaX to learn from diverse and heterogeneous data
sources. For the two smaller models increasing data size
does not gain much improvement, and can sometimes event
hurt performance. These results show that larger models not
only perform better by simply pretraining on more data, but
are also more data efficient.

In addition to data size and model capacity, data resolution
is another important scaling dimension in the context of
weather and climate. In many vision tasks such as classi-
fication, understanding the general, high-level structure of
the image is sufficient to make accurate predictions. How-
ever, to model the underlying complex physical processes
that govern weather and climate, it is important to capture
fine-grained details. High-resolution data contains finer
details and local processes of weather conditions that are
not present in the low-resolution data, and thus provides
stronger signals for training deep learning models. Figure 7
compares the performance of ClimaX pretrained and fine-
tuned on 5.625◦ and 1.40625◦ data on global forecasting.
Except for T2m at 1 day and 3 days lead times, ClimaX
(1.40625◦) consistently achieves lower RMSE and higher
ACC than the low-resolution model. We note that for the
high-resolution data we have to use a larger patch size (4
compared to 2 for low-resolution data) due to lack of mem-
ory issue. We can further improve the performance of Cli-
maX on the 1.40625◦ data by reducing the patch size, as the
model is able to capture better details.

4. Discussion and Future Work
The scaling of datasets, model architectures, and compu-
tation has resulted in a transformative impact in various
subdisciplines of artificial intelligence, from natural lan-
guage processing to computer vision, as well as scientific
applications. In particular, it has led to the emergence of
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Figure 6. ClimaX scaling performance with respect to model capacity. The RSME on ERA5 3-day forecasting is shown for different
variables as a function of the number of CMIP6 5.625◦ data seen during pre-training. Curves indicate different model sizes.
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Figure 7. Scaling performance with respect to data resolution. ClimaX (1.40625◦) achieves consistently better performance.

general-purpose foundation models that are trained on large
datasets and compute clusters, and can be efficiently adapted
to a variety of downstream tasks, both in terms of compute
and data supervision. ClimaX represents a pioneering effort
to enable such broad scaling and generality in data-driven
models for weather and climate that goes beyond limita-
tions of both traditional numerical modeling and existing
data-driven forecasting methods. Unlike ClimaX, numerical
models scale only in terms of computation and not in terms
of dataset size, whereas existing data-driven models are
typically limited to specific tasks and lack general-purpose
applicability across a wide range of tasks.

In addition to traditional considerations in language and
vision, foundation models like ClimaX open up new oppor-
tunities for scaling through the use of simulation datasets
and grid resolutions. To simplify our approach, we chose to
use pretraining datasets that include standard variables that
have been benchmarked in previous research on data-driven
forecasting (Rasp et al., 2020; Pathak et al., 2022). Addi-
tionally, we avoided datasets that simulate future scenarios
under different forcings to prevent any potential leakage for
the climate projection task. Future research could explore
incorporating both observational and simulated datasets that
include a wider range of climate variables, higher spatiotem-
poral resolutions, and even extend into future scenarios.
Further, we showed that resolution plays a crucial role in
scaling of ClimaX. Due to our compute restrictions, we

trained ClimaX on low to moderate resolutions. Never-
theless, our empirical trends suggest that scaling to higher
resolutions (0.25◦) is likely to lead to even better results. Fu-
ture scaling efforts can benefit from better sequence model-
ing architectures, especially those designed for multimodal
spatiotemporal inputs. As we saw in ClimaX, the number
of channels for climate datasets is much larger than those
in standard multimodal settings (e.g., audio-video, vision-
language). Moreover, in practice, there is also a significant
range of resolutions across different climate datasets. This
heterogeneity drastically increases the raw length of input
sequences for standard architectures such as ViT. In the
future, we believe that investigating single multi-scale ar-
chitectures (e.g., Fan et al. (2021)) can potentially aid in
scaling to such diverse multi-resolution and multi-modal
datasets by learning to infer features relevant to atmospheric
phenomena at increasing spatial resolutions.

In conclusion, we believe that the generality of our approach
has potential applications beyond the tasks considered in this
work. It would be interesting to explore the generalization
of a pretrained ClimaX backbone to other Earth systems sci-
ence tasks, such as predicting extreme weather events (Mi-
ralles et al., 2019; Sillmann et al., 2017) and assessing an-
thropogenic contributions to climate change (Rosenzweig
et al., 2008; Höök & Tang, 2013), as well as broader do-
mains that are closely tied to weather and climate conditions,
such as agriculture, demography, and actuarial sciences.
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A. Ethical statement
Large scale neural network surrogates for weather and climate modeling are destined to play an important role in the
modeling of many related phenomena we experience on a daily basis. Therefore, developing even better models might
enable us to achieve shortcuts or even better alternatives for computationally expensive simulations. Consequently, such
models might help to advance various fields of weather and climate research. Examples related to this paper are nowcasting,
predictions of extreme events, more reliable climate projections, and many more. On the plus side, new and better models
might potentially be directly or indirectly related to reducing the carbon footprint, providing better anticipation of natural
disasters, or better understanding of our earth. On the downside, relying purely on simulations always requires rigorous
cross-checks and monitoring, especially when we “learn to simulate”, or when we predict into the unknown as we do for
climate projections.

B. Detailed Background and Related Work
Current weather and climate models in use today rely extensively on numerical methods and computational simulations to
predict and understand the Earth’s weather and climate systems. These tasks include various numerical weather prediction
(NWP) systems which use computer simulations to make short-term forecasts of weather conditions as well as climate
models which use similar techniques to simulate and predict the long-term changes in the Earth’s climate. Most notably, at
the core of both weather and climate models lie the same set of primitive equations.

For climate modeling, earth system models (ESM) (Hurrell et al., 2013), or “coupled models”, that couple together
simulations which govern the atmosphere, cryosphere, land, and ocean processes are considered the state-of-the-art.
Primarily these simulations are based on general circulation models (GCMs) (Satoh, 2004; Lynch, 2008; Adopted, 2014;
Masson-Delmotte et al., 2021) which date back to the works of Phillips (1956); Lorenz (1967) solving Navier-Stokes
equations on a rotation sphere to model fluid circulation. These models are often used to perform various factor sensitivity
studies to examine how the changes in certain forcing factors like greenhouse gas concentrations can affect the global or
regional climate and help in climate projections to help understand future conditions.

Numerical Weather Prediction (NWP) models share many components of GCMs, especially the atmospheric compo-
nents (Bauer et al., 2015; Lynch, 2008; Kalnay, 2003). However, incorporating data assimilation (Law et al., 2015; Grover,
2022) which involves combining observations and various measurements of the atmosphere and oceans together with these
numerical models is important for accurate forecasts and simulations. Another significant distinction between weather and
climate models is the framing of the solution for underlying equations: initial value problem for weather, while boundary
value problem for climate (Bauer et al., 2015). Different difficulty levels of these solution approaches results in the fact
where climate models tend to be global often at coarser spatio-temporal resolutions while weather models can range from
global to local and regional models of very high spatio-temporal resolutions (Warner, 2010).

Despite their noted success, including the recent 2021 Nobel Prize in Physics (Ravishankara et al., 2022), there is considerable
debate around the limitations of general circulation models (GCMs), particularly structural errors across models and the
fact that current GCMs are designed to reproduce observed climate (Balaji et al., 2022). The climate science community
has been aware of these challenges which resulted in the creation of Coupled Model Intercomparison Project (CMIP) as a
standardized protocol for evaluating and comparing the performance of different climate models (Meehl et al., 2000). As we
will see in the following sections, not only has CMIP been playing a crucial role in the advancement of our understanding of
climate change and its potential impacts, its evaluation procedure has resulted in enormous quantity of data making modern
deep learning based approaches quite attractive for many tasks. Notably, encoding this knowledge into a “foundation”
machine learning model with much faster inference and data assimilation capabilities can pave the way for a much wider
impact.

B.1. Data sources

Unlike data in computer vision or natural language processing, weather and climate data is not solely based on sensed
data, instead incorporates information from a diverse range of sources. For example, reanalysis weather data blends
meteorological observations with past short-range weather forecasts via data assimilation (Bauer et al., 2015). The data
measurements themselves are highly heterogeneous, representing various physical variables with different data types (e.g.
pressure, temperature, humidity) that are recorded at different, relatively sparse, spatial locations at different temporal
frequencies. These measurements can be integrated together with known physics inform the design of climate simulations,
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which again produce data with different variables at different scales. From a machine learning perspective, the plethora
of available data thus spans multiple axes: from direct weather measurements at land, sea, or atmosphere, over multiple
decades of re-analyzed weather data at different spatial scales, to physics-informed climate projections for various scenarios.
Most notably, the data shares the same set of primitive equations, but with fairly different characteristics. Below we describe
two of the most commonly used data sources for weather and climate modeling.

B.1.1. CMIP6

The Coupled Model Intercomparison Project (CMIP) (Meehl et al., 2000) is an international effort across different individual
climate modeling groups to come together to compare and evaluate their global climate models. While the main goal of
CMIP is to improve the understanding of Earth’s climate system and improve the accuracy of its simulations, the recent data
from their experimental runs is easily accessible on the CMIP6 (Eyring et al., 2016) archive. In CMIP6, where “6” refers to
the most recent phase of the project, 49 groups are involved with their experiments covering wide range of climate variables
including temperature, precipitation, sea level and others from hundreds of models. This results in global projections of
various climate scenarios from as early as 1850 onwards, all following similar governing equations, but with different
forcings, e.g., greenhouse gas emissions that affect the climate.

B.1.2. ERA5

The ERA5 reanalysis archive (Hersbach et al., 2018; 2020) of the European Center for Medium-Range Weather Forecasting
(ECMWF) is the predominant data source for learning and benchmarking weather forecasting systems. Once completed,
the ERA5 reanalysis is set to embody a detailed record of the global atmosphere, land surface and ocean waves from 1950
onwards. The currently available ERA5 reanalysis data combines the state of the art forecasting model called Integrated
Forecasting System (IFS) (Wedi et al., 2015) of ECMWF with available observations to provide the best guess of the state
of the atmosphere, ocean-wave and land-surface quantities at any point in time. In its raw form, the available reanalyzed
data is huge: 40 years, from 1979 to 2018, on a 0.25◦ × 0.25◦ global latitude-longitude grid of the Earth’s sphere, at hourly
intervals with different climate variables at 37 different altitude levels plus the Earth’s surface. The grid overall contains
721× 1440 grid points for latitude and longitude, respectively. The altitude levels are presented as pressure levels.

B.2. Tasks

Given the scale of data availability, increasing compute requirements of current numerical methods despite it being difficult
to incorporate real observational data into them, machine learning is increasingly finding applications in many of the tasks
related to weather and climate modeling. When it comes to weather, the main task of interest is forecasting the future values
of key weather variables. These tasks can take the following forms depending on temporal and spatial horizons of interest:

• Global forecasting tasks that range from a few hours (i.e., nowcasting) to days and weeks in lead time (i.e., short and
medium range forecasting). Often these tasks are evaluated on the ERA5 reanalysis dataset (see Appendix B.1.2) with
Operational IFS (Wedi et al., 2015) of the European Center for Medium-Range Weather Forecasting (ECMWF) being the
current state-of-the-art NWP baselines.

• Regional forecasting tasks which could range from weather forecasting in continental North America or Europe to
individual state, county or city.

• Sub-seasonal to seasonal prediction (S2S) (Vitart & Robertson, 2018; Vitart et al., 2022) which is the task of forecasting
the weather with lead times between 2 weeks and 2 months. S2S bridges the gap between weather forecasting and
seasonal climate prediction, and is critical to disaster mitigation. Often at such long horizons, predicting instantaneous
values of key weather variables can be a difficult task and therefore the focus is often on averaged value of key weather
variables over a certain time horizon, e.g. weekly average precipitation.

Whereas deep learning approaches for regional or S2S tasks are scarce, most of the recent and concurrent work focuses
on global forecasting tasks. Rasp & Thuerey (2021) were the first to use pretraining on climate simulations to achieve
good data-driven medium-range weather prediction with a ResNet (He et al., 2016), Weyn et al. (2020) used CNNs on
a cubed sphere for global weather prediction, Weyn et al. (2021) forecast weather sub-seasonally with a large ensemble
of deep-learning weather prediction models, Keisler (2022) applied a graph neural network based approach to weather
forecasting, Ravuri et al. (2021) use deep generative models of radar for precipitation nowcasting, Arcomano et al. (2020)
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build a reservoir computing-based, low-resolution, global prediction model, and MetNet (Sønderby et al., 2020) takes as
input radar and satellite data to forecast probabilistic precipitation maps. These approaches are complemented by general
machine learning models for fluid dynamics (Li et al., 2020; Kochkov et al., 2021; Lu et al., 2021; Brandstetter et al.,
2022a;b). Finally, recent state-of-the-art neural weather models such as FourCastNet (Pathak et al., 2022), Pangu-weather (Bi
et al., 2022), or GraphCast (Lam et al., 2022), which also perform global forecasting tasks, use the highest resolution 0.25◦

ERA5 data, and are optimized on the respective hardware resources.

On the other hand, climate tasks have to deal with much longer time horizons. Possible categories of tasks where machine
learning can help include climate projection and climate model downscaling:

• Climate projection is the task of generating estimates of climate change under different future socio-economic scenarios.
Usually, this takes the form of figuring out the response of the climate system to different forcing factors such as
greenhouse gases and aerosol emissions. Climate projection is a crucial task in understanding and preparing for the
potential impacts of climate change.

While the application of machine learning in this field is still in its early stages, recent efforts have been made to
standardize evaluation in this domain. One example of this is ClimateBench (Watson-Parris et al., 2022), which is a
benchmark dataset drawing on CMIP6 to provide an evaluation framework for machine learning models that aim to
improve the accuracy of climate projections. This benchmark aims to provide a consistent and reliable evaluation method
for various machine learning models that are applied to climate projections.

• A more popular application of ideas in machine learning is towards downscaling of climate model. Global climate
models typically have a coarse spatial resolution, which means that they can only provide a rough estimate of climate
conditions at a local or regional scale. Moreover, the simulations often reflect systematic biases that deviate from trends
in the observation data. The aim of climate model downscaling is to create locally accurate climate information from
global climate projections by relating those to observed local climatological conditions. This process improves the spatial
and temporal resolution of the data, making it more suitable for use in local and regional analyses. Downscaling methods
can be dived into dynamic approaches that relate outputs of global climate models with those of regional climate models,
and statistical approaches that infer the desired transformations using data-driven approaches (Wilby & Wigley, 1997).
Dynamic approaches are physically consistent, but can be slow and have large biases, whereas statistical approaches need
large amounts of data to learn expressive mappings that are hold for target output scenarios.

Similar to weather forecasting, deep learning has emerged as appealing alternative in climate science as well. Recent
approaches comprise surrogate models to emulate climate projections (Weber et al., 2020; Scher & Messori, 2019; Scher,
2018; Beusch et al., 2020; Mansfield et al., 2020), extract contextual cues from existing datasets or simulations (Reichstein
et al., 2019; Huntingford et al., 2019; Schneider et al., 2017), and perform climate model downscaling (Sachindra et al.,
2018; Vandal et al., 2017; Baño-Medina et al., 2020). Climate model downscaling usually inputs low-resolution reanalysis
data and local orographic information to obtain high-resolution local information. Many recent approaches are based on
convolutional architectures (Höhlein et al., 2020; Vaughan et al., 2021; Markou et al., 2022).

B.3. Foundation models

Bommasani et al. (2021) gave the term “foundation models” to the emerging paradigm of training scalable deep learning
models on broad data via self-supervision which could then be adapted (often via finetuning) to a wide range of downstream
tasks. Current notable examples include BERT (Devlin et al., 2018), GPT (Brown et al., 2020) and PaLM (Chowdhery et al.,
2022), in language, CLIP (Radford et al., 2021), Florence (Yuan et al., 2021), BEiT (Wang et al., 2022) for vision-language.
Outside applications on data crawled from web, this paradigm has also started finding success in various scientific domains
like protein design (Verkuil et al., 2022). Key significance of such models has been identified as emergence with respect to
model capabilities and homogenization with respect to methodologies for different tasks, domains, and modalities, enabled
by the principles of transfer learning (Thrun & Pratt, 2012) at scale. While a foundation model itself should be considered
incomplete, it can provide a common basis from which various task-specific models can be derived. Current research at the
intersection of weather and climate science and ML has largely focused on designing separate models for every task of
interest despite potential availability of fairly diverse large scale data with shared underlying physics and geology across
these tasks. A few recent works have proposed pretraining techniques for satellite imagery and remote sensing (Yuan & Lin,
2020; Cong et al., 2022; Reed et al., 2022a) but they have so far not been applied to multi-sensory data and variables in
weather and climate.
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C. Model
This section presents the implementation details and hyperparameters of ClimaX and the two CNN baselines UNet and
ResNet.

C.1. ClimaX

C.1.1. IMPLEMENTATION DETAILS

ClimaX receives a tensor of shape V ×H ×W and outputs a tensor of shape V ′ ×H ×W , where the number of input and
output variables V and V ′ can vary between different datasets4. To do that, we assume a set V that contains all possible
variables we could encounter during pretraining and finetuning. Each variable in V has a separate token embedding layer.

The variable tokenization module tokenizes the input to a sequence of V × h × w tokens, with each token being a
vector of size p2. After that, for each token, we extract the corresponding embedding layer that transforms the token to
a vector of dimension D. Each embedding layer is a single convolution layer with in channels = 1, out channels =
D, kernel size = p, stride = p. This results in a tensor of shape V × h× w ×D.

To differentiate between tokens of different input variables, we add the sequence with a variable positional embedding,
which is a tensor of shape |V| ×D. For each input variable, we extract the corresponding variable positional embedding
to add to its tokens. After that, all tokens go through the variable aggregation module, which outputs a tensor of shape
h× w ×D.

The tokens are then fed to the attention layers, which output a tensor of the same shape h× w ×D. The prediction head
takes each token of dimension D and maps it to a vector of dimension |V| × p2, and the output is reshaped to |V| ×H ×W .
Finally, we extract predictions of V ′ target variables and compute the loss.

C.1.2. HYPERPARAMETERS

Table 4. Default hyperparameters of ClimaX

Hyperparameter Meaning Value

V Default variables All ERA5 variables in Table 9
|V| Number of default variables 48

p Patch size
2 for 5.625◦

4 for 1.40625◦

D Embedding dimension 1024
Depth Number of ViT blocks 8
# heads Number of attention heads 16

MLP ratio
Determine the hidden dimension of
the MLP layer in a ViT block 4

Prediction depth Number of layers of the prediction head 2
Hidden dimension Hidden dimension of the prediction head 1024
Drop path For stochastic depth (Huang et al., 2016) 0.1
Dropout Dropout rate 0.1

C.2. CNN Baselines

C.2.1. RESNET HYPERPARAMETERS

We use the following hyperparameters for ResNet in all of our experiments.

4The spatial resolution H ×W can also vary. In that case, we employ the common practice of interpolating the positional embedding,
and everything else remains the same (Dosovitskiy et al., 2020; Touvron et al., 2021).
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Table 5. Default hyperparameters of ResNet

Hyperparameter Meaning Value

Padding size Padding size of each convolution layer 1
Kernel size Kernel size of each convolution layer 3
Stride Stride of each convolution layer 1
Hidden dimension Number of output channels of each residual block 128
Residual blocks Number of residual blocks 28
Dropout Dropout rate 0.1

C.2.2. UNET HYPERPARAMETERS

We borrow our UNet implementation from PDEArena (Gupta & Brandstetter, 2022). We use the following hyperparameters
for UNet in all of our experiments.

Table 6. Default hyperparameters of UNet

Hyperparameter Meaning Value

Padding size Padding size of each convolution layer 1
Kernel size Kernel size of each convolution layer 3
Stride Stride of each convolution layer 1

Channel multiplications
Determine the number of output channels
for Down and Up blocks [1, 2, 2, 4]

Blocks Number of blocks 2
Use attention If use attention in Down and Up blocks False
Dropout Dropout rate 0.1

C.2.3. OTHER IMPLEMENTATION DETAILS

Following the implementation of ResNet in Rasp et al. (2020); Rasp & Thuerey (2021); Ernst (2021), we found the following
details important for the performance of both CNN baselines:

• Use Batch normalization

• Use Leakyrelu with a slope of 0.3 as the activation function

• Postnorm instead of Prenorm

• Use periodic convolutions in the longitude direction but not the latitude direction.

• Use a kernel size of 7 in the first CNN layer.

D. Training details
Data normalization We normalized all inputs during pre-training as well as fine-tuning. For each variable, at each
pressure level (for atmospheric variables), we compute the mean and standard deviation to normalize them to zero mean and
unit variance. We de-normalize the predictions to get back to the original range before computing evaluation metrics.

Software and hardware stack We use PyTorch (Paszke et al., 2019), timm (Wightman, 2019), numpy (Harris et al.,
2020) and xarray (Hoyer & Hamman, 2017) to manage our data and model training. We used 32GB NVIDIA V100
devices for training. For pretraining we distribute the batch across 80 V100s on AzureML. We leverage fp16 floating point
precision in our model.
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D.1. Pretraining

D.1.1. OBJECTIVE

We use the loss function in Equation (1) for pretraining. Given the prediction X̃t+∆t and the ground truth Xt+∆t, the loss is
computed as:

L =
1

V ×H ×W

V∑
v=1

H∑
i=1

W∑
j=1

L(i)(X̃v,i,j
t+∆t −Xv,i,j

t+∆t)
2, (1)

in which L(i) is the latitude weighting factor:

L(i) =
cos(lat(i))

1
H

∑H
i′=1 cos(lat(i′))

, (2)

where lat(i) is the latitude of the corresponding ith row of the grid.

D.1.2. OPTIMIZATION

We used the AdamW optimizer (Kingma & Ba, 2014; Loshchilov & Hutter, 2017) with parameters (β1 = 0.9, β2 = 0.95).
We used weight decay of 1e− 5 for all parameters except for the positional embedding. We used a learning rate of 5e− 4,
with a linear warmup schedule for 10000 steps (5 epochs), followed by a cosine-annealing schedule for 190000 steps (95
epochs).

D.2. Finetuning

D.2.1. OBJECTIVE

We use lat-weighted MSE in Equation (1) for finetuning ClimaX in temporal forecasting and downscaling tasks. In
ClimateBench, we finetune using standard MSE without the weighting term, as this led to better results and was suggested
by (Watson-Parris et al., 2022).

D.2.2. OPTIMIZATION

For all tasks, we used AdamW with parameters (β1 = 0.9, β2 = 0.999). We used weight decay of 1e− 5 for all parameters
except for the positional embedding. We used a linear warmup schedule for 10000 steps (5 epochs), followed by a
cosine-annealing schedule for 90000 steps (45 epochs). The learning rate for each task is as follows:

Table 7. Learning rate for finetuning ClimaX in different downstream tasks

Task Learning rate

Weather forecasting 5e− 7
Climate projection 5e− 4
Climate downscaling 5e− 5

We used a small learning rate for weather forecasting as the task resembles pretraining. For downscaling, we used a larger
learning rate, as the nature of the task is different from pretraining, even though the input variables are similar. In climate
projection, we needed to initialize new weights for the embedding layers and prediction heads, and thus used a similar
learning rate to training from scratch.

D.2.3. FINETUNING CLIMAX FOR REGIONAL FORECASTING

Figure 8 illustrates the finetuning process of ClimaX on this task, where the only difference from global forecasting is the
input now only contains tokens that belong to North America.

D.2.4. FINETUNING CLIMAX FOR CLIMATE PROJECTION

Figure 9 illustrates the finetuning pipeline of ClimaX for ClimateBench. We introduce two components to the pipeline
in Figure 3. We use a history of the preceding ten years of the forcing factors to make predictions for a particular year,
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Figure 8. Finetuning setup for Regional Forecasting in North America.

creating an input of shape T × V × H × W . Each time slice of the input goes through variable tokenization, variable
aggregation, and the attention layers as usual, which output a feature tensor of shape T × h × w × D, where D is the
embedding size. The feature tensor then goes through a global average pooling layer, reducing the dimension to T ×D.
Finally, the 10-year history is aggregated using a cross-attention layer before being fed to the prediction head, which linearly
transforms the D-dimensional feature vector to a H ×W map. The history aggregation and the global pooling modules
are the two additions to the original ClimaX architecture. These architectural designs are inspired by the neural network
baseline in (Watson-Parris et al., 2022).
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Figure 9. Finetuning pipeline for ClimateBench. A different set of input and output variables requires different embedding layers and
prediction heads. Attention layers can be frozen or finetuned.

E. Datasets
E.1. CMIP6-ClimaX

We created CMIP6-ClimaX for pretraining ClimaX, which consists of 5 datasets from the CMIP6 project. We downloaded
the datasets from the official CMIP6 search interface at https://esgf-data.dkrz.de/search/cmip6-dkrz/. These datasets share
the following attributes:

• Experiment ID: historical
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• Table ID: 6hrPlevPt, i.e., 6-hourly data on pressure levels.

• Variant label: r1i1p1f1. The variant label distinguishes among closely related simulations by a single model, in which
“r” specifies the initial condition, “i” specifies the observational dataset and initialization method used for determining
the initial condition, “p” specifies the perturbed physics version of the model, and “f” specifies the forcing index.

All datasets have a temporal coverage from 1850 to 2015 and a temporal resolution of 6 hours. We chose these datasets as
they contain similar climate variables at similar vertical levels to ERA5. We note that there are more than 5 datasets from
CMIP6 that suit our selection criteria, but we were not able to download others due to some issues on the data servers. We
regridded these datasets to 5.625◦ and 1.40625◦ using the xesmf Python package (Zhuang, 2018) using bilinear interpolation.
We provide a detailed description of these 5 data sources and the available variables we used to construct CMIP6-ClimaX in
Table 8.

Table 8. Resolution and variables of CMIP6-ClimaX dataset used for pretraining. Static represents variables don’t depend on time, Single
represents surface variables, and Atmospheric represents time-varying atmospheric properties at the chosen altitudes.

Data Source Original resolution Variables

Type Abbrev. Levels

MPI 100km

Single t2m
Single u10
Single v10
Atmospheric z 50, 250, 500, 600, 700, 850, 925
Atmospheric u 50, 250, 500, 600, 700, 850, 925
Atmospheric v 50, 250, 500, 600, 700, 850, 925
Atmospheric t 50, 250, 500, 600, 700, 850, 925
Atmospheric q 50, 250, 500, 600, 700, 850, 925

Tai 100km

Single t2m
Atmospheric z 250, 500, 600, 700, 850, 925
Atmospheric u 250, 500, 850
Atmospheric v 250, 500, 850
Atmospheric t 250, 500, 850
Atmopheric q 250, 500, 600, 700, 850, 925

AWI 250km

Single t2m
Single u10
Single v10
Atmospheric z 50, 250, 500, 600, 700, 850, 925
Atmospheric u 50, 250, 500, 600, 700, 850, 925
Atmospheric v 50, 250, 500, 600, 700, 850, 925
Atmospheric t 50, 250, 500, 600, 700, 850, 925
Atmospheric q 50, 250, 500, 600, 700, 850, 925

HAMMOZ 250km

Single t2m
Single u10
Single v10
Atmospheric z 50, 250, 500, 600, 700, 850, 925
Atmospheric u 50, 250, 500, 600, 700, 850, 925
Atmospheric v 50, 250, 500, 600, 700, 850, 925
Atmospheric t 50, 250, 500, 600, 700, 850, 925
Atmospheric q 50, 250, 500, 600, 700, 850, 925

CMCC 100km

Atmospheric z 50, 250, 500, 600, 700, 850, 925
Atmospheric u 50, 250, 500, 600, 700, 850, 925
Atmospheric v 50, 250, 500, 600, 700, 850, 925
Atmospheric t 250, 500, 850
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We note that AWI and HAMMOZ are not the best data sources for higher resolution 1.40625◦ training, because their original
resolution at 250 km is lower than 1.40625◦, which is about 156 km. We wanted to use other higher-resolution datasets but
were not able to download them. We believe pretraining on other high-resolution datasets would lead to better performance.

E.2. ERA5

We use the preprocessed version of ERA5 from WeatherBench (Rasp et al., 2020) for finetuning ClimaX. WeatherBench
was created as a standard benchmark data and evaluation framework for comparing data-driven weather forecasting
models. WeatherBench regridded the original ERA5 at 0.25◦ to three lower resolutions: 5.625◦, 2.8125◦, and 1.40625◦.
See https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation for more details
of the raw ERA5 data. Table 9 summarizes the variables we use for finetuning ClimaX.

Table 9. ECMWF variables used in our ERA5 dataset. Static represents variables don’t depend on time, Single represents surface variables,
and Atmospheric represents time-varying atmospheric properties at the chosen altitudes.

Type Variable name Abbrev. ECMWF ID Levels

Static Land-sea mask LSM 172
Static Orography

Single 2 metre temperature T2m 167
Single 10 metre U wind component U10 165
Single 10 metre V wind component V10 166

Atmospheric Geopotential Z 129 50, 250, 500, 600, 700, 850, 925
Atmospheric U wind component U 131 50, 250, 500, 600, 700, 850, 925
Atmospheric V wind component V 132 50, 250, 500, 600, 700, 850, 925
Atmospheric Temperature T 130 50, 250, 500, 600, 700, 850, 925
Atmospheric Specific humidity Q 133 50, 250, 500, 600, 700, 850, 925
Atmospheric Relative humidity R 157 50, 250, 500, 600, 700, 850, 925

E.2.1. ERA5-NA

We constructed ERA5-NA from ERA5 to evaluate ClimaX and the baselines on regional forecasting. ERA-NA
has the same set of variables as in Table 9, but only contains data that belongs to the North America region.
To do this, we first identified the latitude and longitude range to form a rectangular area that encapsulates North
America, using the standard CORDEX domains https://cordex.org/wp-content/uploads/2012/11/
CORDEX-domain-description_231015.pdf. For each data sample, we then extracted the spatial positions that
fall into this range, forming in ERA5-NA.

E.2.2. ERA-S2S

We built ERA5-S2S from ERA5 to serve as a benchmark dataset for sub-seasonal to seasonal prediction. ERA5-S2S consists
of two sub-datasets, whose the goals are to predict the biweekly average statistics of target variables in weeks 3 and 4, and
weeks 5 and 6, respectively. The input includes all variables in Table 9, while the output variables are are averaged over two
weeks, starting from the start of week 3 (5) and to the end of week 4 (6).

E.3. ClimateBench

We refer to Watson-Parris et al. (2022) for complete details of ClimateBench.

F. Quantitative evaluation
F.1. Metrics

This section presents all evaluation metrics we use in Section 3. For all metrics, we denote X̃ and X as the prediction and
ground truth, which have a shape of N × H × W , where N is the number of forecasts, or the number of test samples,
H ×W is the spatial resolution. L(i) is the latitude weighting term to account for the non-uniformity in areas of the grid
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cells. We have removed the time notation for simplicity.

F.1.1. WEATHER FORECASTING METRICS

Root mean square error (RMSE)

RMSE =
1

N

N∑
k=1

Ã
1

H ×W

H∑
i=1

W∑
j=1

L(i)(X̃k,i,j −Xk,i,j)2. (3)

Anomaly correlation coefficient (ACC) Anomaly correlation coefficient (ACC) is the spatial correlation between
prediction anomalies X̃

′
relative to climatology and ground truth anomalies X

′
relative to climatology:

ACC =

∑
k,i,j L(i)X̃

′

k,i,jX
′

k,i,j»∑
k,i,j L(i)X̃

′2
k,i,j

∑
k,i,j L(i)X

′2
k,i,j

, (4)

X̃
′
= X̃

′
− C,X

′
= X

′
− C, (5)

in which climatology C is the temporal mean of the ground truth data over the entire test set C = 1
N

∑
k X .

F.1.2. CLIMATE PROJECTION METRICS

Normalized spatial root mean square error (NRMSEs) Normalized spatial root mean square error (NRMSEs) measures
the spatial discrepancy between the temporal mean of the prediction and the temporal mean of the ground truth:

NRMSEs =

Õ∞(
1

N

N∑
k=1

X̃ − 1

N

N∑
k=1

X

)2
∫¡

1

N

N∑
k=1

⟨X⟩ , (6)

in which ⟨A⟩ is the global mean of A:

⟨A⟩ = 1

H ×W

H∑
i=1

W∑
j=1

L(i)Ai,j (7)

Normalized global root mean square error (NRMSEg) Normalized global root mean square error (NRMSEg) measures
the discrepancy between the global mean of the prediction and the global mean of the ground truth:

NRMSEg =

Ã
1

N

N∑
k=1

Ä
⟨X̃⟩ − ⟨X⟩

ä2¡ 1

N

N∑
k=1

⟨X⟩ . (8)

Total normalized root mean square error (TRMSE) Total normalized root mean square error (TRMSE) is the weighted
sum of NRMSEs and NRMSEg:

TRMSE = NRMSEs + α · NRMSEg, (9)

where α is chosen to be 5 as suggested by Watson-Parris et al. (2022).

F.1.3. CLIMATE DOWNSCALING METRICS

Root mean square error (RMSE) This is the same as Equation (3).

Mean bias Mean bias measures the difference between the spatial mean of the prediction and the spatial mean of the
ground truth. A positive mean bias shows an overestimation, while a negative mean bias shows an underestimation of the
mean value.

Mean bias =
1

N ×H ×W

N∑
k=1

H∑
i=1

W∑
j=1

X̃ − 1

N ×H ×W

N∑
k=1

H∑
i=1

W∑
j=1

X (10)
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Pearson coefficient Pearson coefficient measures the correlation between the prediction and the ground truth. We first
flatten the prediction and ground truth, and compute the metric as follows:

ρX̃,X =
cov(X̃,X)

σX̃σX
(11)

F.2. Extended results

F.2.1. GLOBAL FORECASTING

0

200

400

600

800

1000

R
M

S
E

lo
w

er
is

be
tte

r
Z500 [m2/s2]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T2m [K]

0

1

2

3

4

T850 [K]

0

1

2

3

4

5

U10 [m/s]

1 3 5 7 10 14 30

0.4

0.6

0.8

1.0

A
C

C

hi
gh

er
is

be
tte

r

1 3 5 7 10 14 30

0.4

0.6

0.8

1.0

1 3 5 7 10 14 30

0.4

0.6

0.8

1.0

1 3 5 7 10 14 30

0.2

0.4

0.6

0.8

1.0

Leadtime [days]
ClimaX (5.625°) IFS (5.625°) ResNet (5.625°) UNet (5.625°)

Figure 10. Performance on global forecasting on ERA5 at 5.625◦.

F.2.2. S2S PREDICTIONS

Table 10. RMSE of ClimaX and baselines on 5.625◦ ERA5-S2S prediction tasks.

T850 T2m U10 V10

Weeks 3-4 Weeks 5-6 Weeks 3-4 Weeks 5-6 Weeks 3-4 Weeks 5-6 Weeks 3-4 Weeks 5-6

ResNet 2.12 2.13 1.88 2.16 1.91 1.94 1.52 1.59
UNet 1.91 1.95 1.67 1.79 1.85 1.90 1.52 1.57
Cli-ViT 1.96 1.96 1.79 1.90 1.83 1.92 1.51 1.56
ClimaX 1.89 1.92 1.66 1.70 1.81 1.86 1.50 1.54

F.2.3. CLIMATE MODEL DOWNSCALING

Table 11. Performance of ClimaX and the baselines on downscaling from MPI-ESM (5.625◦) to ERA5 (1.40625◦).
Z500 T850 T2m U10 V10

RMSE Pearson Mean bias RMSE Pearson Mean bias RMSE Pearson Mean bias RMSE Pearson Mean bias RMSE Pearson Mean bias

ResNet 825.75 0.96 −108.54 3.60 0.96 0.19 2.89 0.98 0.14 4.05 0.65 0.06 4.11 0.45 0.09
UNet 858.35 0.95 35.10 3.66 0.96 −0.34 2.95 0.98 0.16 4.09 0.64 −0.06 4.13 0.44 0.08
Cli-ViT 811.61 0.96 −54.32 3.58 0.97 −0.29 2.80 0.99 −0.06 4.01 0.66 −0.08 4.07 0.47 0.01
ClimaX 807.43 0.96 2.70 3.49 0.97 −0.11 2.79 0.99 −0.06 3.99 0.66 0.04 4.06 0.47 −0.02
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Figure 11. Performance of ClimaX and its variations on weather forecasting. ClimaX-cont is a lead-time-conditioned model that we
finetune to make predictions at 6 hours to 7 days. ClimaX-iter forecasts at a 6-hour lead time and rolls out the predictions to forecast at
longer horizons. ClimaX-all-vars predicts the future conditions of all variables in the input at particular lead-times.

F.3. Ablation studies

In the main forecasting results, we finetune a separate ClimaX model for each target variable at each lead time, as we found
this protocol led to the best performance. However, this can be computationally expensive, as finetuning cost scales linearly
with respect to the number of target variables and lead times. In this section, we consider different finetuning alternatives to
investigate the trade-off between computation and performance.

F.3.1. SHOULD WE FINETUNE CLIMAX FOR EACH VARIABLE SEPARATELY OR ALL AT ONCE?

Instead of finetuning ClimaX for each target variable separately, we could alternatively finetune once to predict all variables
in the input simultaneously, which we denote as ClimaX-all-vars. Figure 11 shows that ClimaX-all-vars achieves comparable
performance to ClimaX in most of the tasks and only underperforms for forecasting T2m. This suggests that with a limited
budget, one can finetune ClimaX to predict all target variables at the same time without losing much performance.

F.3.2. SHOULD WE DO ITERATIVE FORECAST OR DIRECT FORECAST?

To avoid finetuning a different model for each lead time, we can finetune ClimaX to make predictions at a short horizon such
as 6 hours, and roll out the predictions during inference to make forecasts at longer horizons. We call this model ClimaX-iter,
where iter stands for iterative prediction (Rasp et al., 2020). We note that in order to roll out more than one step, ClimaX-iter
must predict for all input variables, or in other words. This provides the benefit of finetuning a single model that can predict
for any target variable at any lead time. Figure 11 shows that ClimaX-iter works reasonably well up to 1-day prediction, but
the performance degrades significantly at longer lead times. This is not surprising, because ClimaX-iter is not finetuned
to predict multiple steps into the future, leading to quick error accumulation. One can employ a multi-step objective for
finetuning as in Pathak et al. (2022) to achieve better results.

F.3.3. CAN WE FINETUNE CLIMAX TO WORK FOR ALL LEAD TIMES?

Another way to avoid finetuning for each lead time separately is to finetune a lead-time-conditioned model. Specifically,
during finetuning, we randomize the lead time from 6 hours to 7 days, resembling the pretraining setting. Note that unlike
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ClimaX-iter, we still have to finetune a separate model for each target variable. We call this model ClimaX-cont, wherein
cont stands for continuous, a standard term used in previous works (Rasp et al., 2020). Figure 11 shows that ClimaX-cont
performs competitively on 6-hour to 7-day forecasting, but fails to extrapolate to 2 weeks and 1 month lead times that are
unseen during training. One can also randomize the lead time from 6 hours to 1 month, but that means the model sees much
fewer data points for each target lead time, potentially hurting the performance.

The cost for finetuning each set of weights is a constant C, which is about 15 hours on an 8 × V100s. Among different
finetuning protocols, ClimaX is the most expensive, whose total cost is C ×#variables×#lead times, scaling linearly
with the number of target variables and lead times. Following ClimaX are ClimaX-all-vars and ClimaX-cont, whose total
costs are C ×#lead times and C ×#variables, respectively. Finally, ClimaX-iter is the cheapest finetuning protocol,
where we only have to finetune a single model that works for all target variables and at all lead times. The performance is
proportional to the computational cost, as ClimaX is the best performing model, while ClimaX-iter is the worst.

F.4. Results summary

Table 12 and 13 summarize the global forecasting results of ClimaX and the baselines for all target variables and at all lead
times. In addition to IFS and the two CNN-based baselines in the main text, we include FourCastNet (Pathak et al., 2022),
PanguWeather (Bi et al., 2022), and GraphCast (Lam et al., 2022) for comprehensiveness. We want to emphasize that the
results obtained by these methods are not comparable with ClimaX, as they were trained on ERA5 at 0.25◦, a much higher
resolution compared to 5.625◦ and 1.40625◦ data used to train ClimaX. In Section 3.4, we had a discussion on how the
performance of ClimaX scales favorably with respect to data resolution. We hope this summary will provide future works
with an easier comparison with existing baselines.

In spite of being trained on much lower resolutions, ClimaX outperforms FourCastNet in forecasting Z500, T850, and U10
at lead times from 3 days and beyond, in terms of both RMSE and ACC. For T2m, ClimaX achieves better results at horizons
longer than 3 days. PanguWeather performs better than ClimaX on most of the tasks, but the gap between the two methods
shrinks and becomes negligible as the lead time increases. ClimaX even outperforms PanguWeather in predicting U10 at 7
days lead times. This is because ClimaX is finetuned to perform direct prediction, which mitigates error accumulation for
long horizon prediction. GraphCast achieves the lowest RMSE among all methods, but performs worse in terms of ACC
compared to ClimaX and PanguWeather.
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Table 12. RMSE on global forecasting for different target variables at different lead times. Lower is better.

VARIABLE
LEAD TIME ClimaX FCNa PWb GCc HRES IFS ResNet UNet

[hr.] 5.625◦ 1.40625◦ 0.25◦ 0.25◦ 0.25◦ 0.1 5.625◦ 1.40625◦ 5.625◦ 5.625◦

Z500 6 62.73 49.67 37.52 15.40 16.46 24.66 26.93 26.96 47.00 53.66
[m2/s2] 24 96.19 72.76 81.31 42.23 38.77 45.90 51.01 50.96 86.60 132.65

72 244.08 201.00 251.96 133.12 125.78 146.37 152.15 152.20 305.22 458.84
120 440.40 392.00 483.44 295.63 271.65 316.79 331.45 331.38 614.20 721.83
168 599.43 566.00 680.00 504.90 466.53 535.93 549.01 548.96 806.59 819.39
336 790.26 788.43 nan nan nan nan 1011.72 1011.56 835.55 866.40
720 815.25 817.52 nan nan nan nan nan nan 858.98 880.34

T2m 6 0.95 1.11 0.72 0.59 0.50 0.35 0.97 0.97 0.76 0.77
[K] 24 1.10 1.19 0.95 0.72 0.62 0.66 1.02 1.02 0.91 1.11

72 1.43 1.47 1.38 1.05 0.94 1.06 1.30 1.30 1.70 1.91
120 1.83 1.83 1.99 1.53 1.36 1.52 1.72 1.71 2.22 2.49
168 2.18 2.17 2.54 2.06 1.88 2.06 2.24 2.23 2.66 2.66
336 2.61 2.67 nan nan nan nan 3.31 3.30 2.86 2.79
720 2.67 2.74 nan nan nan nan nan nan 2.86 2.81

T850 6 0.88 0.84 0.52 0.42 0.28 0.33 0.69 0.69 0.70 0.80
[K] 24 1.11 1.02 0.81 0.72 0.58 0.70 0.87 0.87 1.26 1.25

72 1.59 1.46 1.55 1.13 1.02 1.27 1.34 1.34 1.90 2.39
120 2.23 2.08 2.47 1.78 1.63 1.96 2.01 2.01 2.86 3.23
168 2.77 2.66 3.30 2.60 2.41 2.78 2.82 2.82 3.51 3.50
336 3.40 3.41 nan nan nan nan 4.43 4.43 3.65 3.65
720 3.47 3.49 nan nan nan nan nan nan 3.69 3.73

U10 6 1.08 1.04 0.55 0.46 0.37 0.58 0.80 0.79 0.86 1.02
[m/s] 24 1.41 1.31 0.99 0.90 0.80 1.15 1.11 1.11 1.27 1.68

72 2.18 2.02 2.24 1.60 1.47 1.98 1.92 1.92 2.78 3.17
120 2.94 2.79 3.41 2.52 2.36 2.95 2.89 2.89 3.63 3.93
168 3.43 3.35 4.18 3.46 3.25 3.87 3.81 3.81 4.15 4.08
336 3.91 3.92 nan nan nan nan 5.24 5.23 4.23 4.16
720 3.96 3.97 nan nan nan nan nan nan 4.29 4.22

a FourCastNet (Pathak et al., 2022)
b PanguWeather (Bi et al., 2022)
c GraphCast (Lam et al., 2022)
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Table 13. ACC on global forecasting for different target variables at different lead times. Higher is better.

VARIABLE
LEAD TIME ClimaX FCNa PWb GCc HRES IFS ResNet UNet

[hr.] 5.625◦ 1.40625◦ 0.25◦ 0.25◦ 0.25◦ 0.1 5.625◦ 1.40625◦ 5.625◦ 5.625◦

Z500 6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
24 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
72 0.97 0.98 0.97 0.99 0.99 0.98 0.99 0.99 0.95 0.89
120 0.90 0.92 0.89 0.96 0.94 0.92 0.95 0.95 0.79 0.69
168 0.80 0.82 0.76 0.87 0.83 0.78 0.87 0.87 0.57 0.57
336 0.59 0.59 nan nan nan nan 0.55 0.55 0.53 0.51
720 0.55 0.55 nan nan nan nan nan nan 0.49 0.49

T2m 6 0.98 0.98 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99
24 0.98 0.97 0.98 0.99 0.98 0.98 0.99 0.99 0.98 0.98
72 0.96 0.96 0.96 0.98 0.95 0.94 0.98 0.98 0.94 0.93
120 0.94 0.94 0.92 0.95 0.90 0.88 0.96 0.96 0.90 0.88
168 0.91 0.91 0.87 0.92 0.81 0.77 0.93 0.93 0.86 0.86
336 0.86 0.85 nan nan nan nan 0.85 0.85 0.83 0.84
720 0.85 0.84 nan nan nan nan nan nan 0.83 0.83

T850 6 0.98 0.99 0.99 1.00 1.00 0.99 0.99 0.99 0.99 0.99
24 0.98 0.98 0.98 0.99 0.99 0.98 0.99 0.99 0.97 0.97
72 0.95 0.96 0.95 0.98 0.96 0.93 0.97 0.97 0.92 0.88
120 0.89 0.91 0.87 0.94 0.89 0.84 0.93 0.94 0.82 0.75
168 0.82 0.84 0.77 0.87 0.75 0.68 0.87 0.87 0.68 0.69
336 0.71 0.71 nan nan nan nan 0.68 0.69 0.66 0.66
720 0.69 0.68 nan nan nan nan nan nan 0.64 0.64

U10 6 0.97 0.97 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.97
24 0.94 0.95 0.97 0.97 0.98 0.96 0.97 0.97 0.95 0.91
72 0.85 0.87 0.85 0.92 0.93 0.88 0.89 0.89 0.74 0.65
120 0.70 0.74 0.64 0.80 0.82 0.74 0.76 0.76 0.52 0.37
168 0.56 0.59 0.45 0.63 0.64 0.55 0.58 0.58 0.28 0.28
336 0.33 0.32 nan nan nan nan 0.21 0.21 0.19 0.22
720 0.29 0.28 nan nan nan nan nan nan 0.17 0.21

a FourCastNet (Pathak et al., 2022)
b PanguWeather (Bi et al., 2022)
c GraphCast (Lam et al., 2022)
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G. Qualitative evaluation
We qualitatively evaluate the performance of CliMax on global forecasting tasks for all target variables and at all lead times.
In each figure, the first column is the initial condition of the target variable, which serves as the input, the second column is
the ground truth of the target variable at a particular lead time, the third column is the prediction of ClimaX, and the last
column is the bias, which is the difference between the prediction and the ground truth.

G.1. Nowcasting
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Figure 12. Example forecasts from ClimaX at 6-hour lead time compared to ground truth ERA5.
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G.2. Short and medium-range weather forecasting
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Figure 13. Example forecasts from ClimaX at 1-day lead time compared to ground truth ERA5.
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Figure 14. Example forecasts from ClimaX at 3-day lead time compared to ground truth ERA5.
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Figure 15. Example forecasts from ClimaX at 5-day lead time compared to ground truth ERA5.
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Figure 16. Example forecasts from ClimaX at 7-day lead time compared to ground truth ERA5.
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G.3. Longer horizon instantaneous forecasting
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Figure 17. Example forecasts from ClimaX at 2-week lead time compared to ground truth ERA5.
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Figure 18. Example forecasts from ClimaX at 1-month lead time compared to ground truth ERA5.

G.4. Climate model downscaling
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Figure 19. Example visualizations of downscaled prediction of key variables by ClimaX.
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