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Abstract
We investigate the problem of stochastic, com-
binatorial multi-armed bandits where the learner
only has access to bandit feedback and the reward
function can be non-linear. We provide a general
framework for adapting discrete offline approxi-
mation algorithms into sublinear α-regret meth-
ods that only require bandit feedback, achieving
O
(
T

2
3 log(T )

1
3

)
expected cumulative α-regret

dependence on the horizon T . The framework
only requires the offline algorithms to be robust
to small errors in function evaluation. The adap-
tation procedure does not even require explicit
knowledge of the offline approximation algorithm
— the offline algorithm can be used as black box
subroutine. To demonstrate the utility of the pro-
posed framework, the proposed framework is ap-
plied to multiple problems in submodular maxi-
mization, adapting approximation algorithms for
cardinality and for knapsack constraints. The new
CMAB algorithms for knapsack constraints out-
perform a full-bandit method developed for the
adversarial setting in experiments with real-world
data.

1. Introduction
Many real world sequential decision problems can be mod-
eled using the framework of stochastic multi-armed ban-
dits (MAB), such as scheduling, assignment problems, ad-
campaigns, and product recommendations, among others.
The decision maker sequentially selects actions and receives
stochastic rewards from an unknown distribution. The goal
of the decision maker is to maximize the expected cumula-
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tive reward over a (possibly unknown) time horizon. Actions
result both in the immediate reward and, more importantly,
information about that action’s reward distribution. Such
problems result in a trade-off between trying actions the
agent is uncertain of (exploring) or only taking the action
that is empirically the best seen so far (exploiting).

In the classic MAB setting, the number of possible actions
is small relative to the time horizon, meaning each action
can be taken at least once, and there is no assumed relation-
ship between the reward distributions of different arms. The
combinatorial multi-armed bandit (CMAB) setting involves
a large but structured action space. For example, in product
recommendation problems, the decision maker may select
a subset of products (base arms) from among a large set.
There are several aspects that can affect the difficulty of
these problems. First, MAB methods are typically com-
pared against a learner with access to a value oracle of the
reward function (an offline problem). For some problems, it
is NP-hard for the baseline learner with value oracle access
to optimize. An example is if the expected/averaged reward
function is submodular and actions are subsets constrained
by cardinality. At best, for these problems, approxima-
tion algorithms may exist. Thus, unless the time horizon
is large (exponentially long in the number of base arms,
for instance), it would be more reasonable to compare the
CMAB agent against the performance of the approximation
algorithm for the related offline problem. Likewise, one
could apply state of the art methods for (unstructured) MAB
problems treating each subset as a separate arm, and obtain
Õ(T 1

2 ) dependence on the horizon T for the subsequent
regret bound. However, that dependence would only apply
for exponentially large T .

Feedback plays an important role in how challenging the
problem is. When the decision maker only observes a (nu-
merical) reward for the action taken, that is known as bandit
or full-bandit feedback. When the decision maker observes
additional information, such as contributions of each base
arm in the action, that is semi-bandit feedback. Semi-bandit
feedback greatly facilitates learning. Suppose for instance
that the reward function (on average) was monotone increas-
ing over the inclusion lattice and there was a cardinality
constraint of size k. The agent would know from the start
that no set of size smaller than k could be optimal (or could

1



A Framework for Adapting Offline Algorithms to Solve CMAB Problems with Bandit Feedback

even be the near-optimal solution the baseline learning us-
ing a value oracle would find). However, there would be(
n
k

)
sets of size k. For n = 100 and k = 10, the agent

would need a horizon T > 1012 to try each cardinality k set
even just once. If the reward function belongs to a certain
class, such as the class of submodular functions, then one
approach would be to use a greedy procedure based on base
arm values. With semi-bandit feedback, the agent could on
the one hand only take actions of cardinality k (putatively
optimal actions), gain the subsequent rewards, and yet also
observe samples of the base arms’ values to improve future
actions.

Bandit feedback is much more challenging, as only the joint
reward is observed. In general, for non-linear reward func-
tions, the individual values or marginal gains of base arms
can only be loosely bounded if actions only consist of maxi-
mal subsets. Thus, to estimate values or marginal gains of
base arms, the agent would need to deliberately spend time
sampling actions (such as smaller sets) that are known to be
sub-optimal in order to estimate their values to later better
select actions of cardinality k. Standard MAB methods like
UCB or TS based methods by design do not take actions
known to be sub-optimal. Thus, while such strategies could
be used when semi-bandit feedback is available, it is less
clear whether they can be effectively used when only bandit
feedback is available.

There are important applications where semi-bandit feed-
back may not be available, such as in influence maximiza-
tion and recommender systems. Influence maximization
models the problem of identifying a low-cost subset (seed
set) of nodes in a (known) social network that can influence
the maximum number of nodes in a network (Nguyen and
Zheng, 2013; Leskovec et al., 2007; Bian et al., 2020). Re-
cent research has generalized the problem to online settings
where the knowledge of the network and diffusion model
is not required (Wang et al., 2020; Perrault et al., 2020) but
extra feedback is assumed. However, for many networks
the user interactions and user accounts are private; only ag-
gregate feedback (such as the count of individuals using a
coupon code or going to a website) might be visible to the
decision maker.

In this work, we seek to address these challenges by propos-
ing a general framework for adapting offline approximation
algorithms into algorithms for stochastic CMAB problems
when only bandit feedback is available. We identify that a
single condition related to the robustness of the approxima-
tion algorithm to erroneous function evaluations is sufficient
to guarantee that a simple explore-then-commit (ETC) pro-
cedure accessing the approximation algorithm as a black
box results in a sublinear α-regret CMAB algorithm despite
having only bandit feedback available. The approximation
algorithm does not need to have any special structure (such

as an iterative greedy design). Importantly, no effort is
needed on behalf of the user in mapping steps in the offline
method into steps of the CMAB method.

We demonstrate the utility of this framework by assessing
the robustness of several approximation algorithms in the
submodular optimization literature (three approximation
algorithms designed for knapsack constraints and one de-
signed for cardinality constraints) which immediately result
in sublinear α-regret CMAB algorithms that only rely on
bandit-feedback, the first such algorithms for CMAB prob-
lems with submodular rewards and knapsack constraints.
We also show that despite the simplicity and universal de-
sign of the adaptation, the resulting CMAB algorithms work
well on budgeted influence maximization and song recom-
mendation problems using real world data.

The main contributions of this paper can be summarized as:
1. We provide a general framework for adapting discrete
offline approximation algorithms into sublinear α-regret
methods for stochastic CMAB problems where only ban-
dit feedback is available. The framework only requires the
offline algorithms to be robust to small errors in function
evaluation, a property important in its own right for offline
problems. The algorithms are not required to have a special
structure — instead they are used as black boxes. Our pro-
cedure has minimal storage and time-complexity overhead,
and achieves a regret bound with Õ(T 2

3 ) dependence on the
horizon T .

2. We illustrate the utility of the proposed framework by as-
sessing the robustness of several approximation algorithms
for (offline) constrained submodular optimization, a class
of reward functions lacking simplifying properties of linear
or Lipschitz reward functions. Specifically, we prove the ro-
bustness of approximation algorithms given in (Nemhauser
et al., 1978; Badanidiyuru and Vondrák, 2014; Sviridenko,
2004; Khuller et al., 1999; Yaroslavtsev et al., 2020) with
cardinality or knapsack constraints, and use the general
framework to give regret bounds for the stochastic CMAB.
In particular, we note that this paper gives the first regret
bounds for stochastic submodular CMAB with knapsack
constraints under bandit feedback.

3. We evaluate the performance of proposed framework
through the stochastic submodular CMAB with knapsack
constraints problem for two applications: Budgeted Influ-
ence Maximization, and Song Recommendation. The eval-
uation results demonstrate that the proposed approach sig-
nificantly outperforms a full-bandit method for a related
problem in the adversarial setting.

2. Related Work
We now briefly discuss only the most closely related works.
See the supplementary material for more discussion.
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Adversarial CMAB The closest related works are on ad-
versarial CMAB. In (Niazadeh et al., 2021), the authors pro-
pose a framework for transforming greedy α-approximation
algorithms for offline problems to online methods in an
adversarial bandit setting, for both semi-bandit (achiev-
ing Õ(T 1/2) α−regret) and full-bandit feedback (achieving
Õ(T 2/3) α−regret). Their framework requires the offline
approximation algorithm to have an iterative greedy struc-
ture (unlike ours), satisfy a robustness property (like ours),
and satisfy a property referred to as Blackwell reducibility
(unlike ours). In addition to these conditions, the adaptation
depends on the number of subproblems (greedy iterations)
which for some algorithms can be known ahead of time
(such as with cardinality constraints) but for other algo-
rithms can only be upper-bounded. (Our adaptation uses
the offline algorithm as a black box.) The authors check
those conditions and explicitly adapt several offline approxi-
mation algorithms. In this paper, we consider an approach
for converting offline approximation algorithm to online for
stochastic CMAB, while requiring less assumptions.

We also note that (Niazadeh et al., 2021) do not consider
submodular CMAB with knapsack constraints, and thus do
not verify whether any approximation algorithms for the of-
fline problem satisfy the required properties (of sub-problem
structure or robustness or Blackwell reducibility) to be trans-
formed, and this is an example we consider for our general
framework. Consequently, in our experiments for submodu-
lar CMAB with knapsack constraints in Section 7, we use
the algorithm in (Streeter and Golovin, 2008) designed for
a knapsack constraint (in expectation) as representative of
methods for the adversarial setting. Other related works for
adversarial stochastic CMAB are described in Appendix H.

Stochastic Submodular CMAB with Full Bandit Feed-
back Recently, (Nie et al., 2022) propose an algorithm
for stochastic MAB with submodular rewards, when there
is a cardinality constraint. Their algorithm is a specific
adaptation of an offline greedy method. In our work, we
propose a general framework that employs the offline algo-
rithm as a black box (and this result becomes a special case
of our approach). While there are multiple results for semi-
bandit feedback (see Appendix H.4), this paper considers
full bandit feedback.

3. Problem Statement
We consider sequential, combinatorial decision-making
problems over a finite time horizon T . Let Ω denote the
ground set of base elements (arms). Let n = |Ω| denote the
number of arms. Let D ⊆ 2Ω denote the subset of feasible
actions (subsets), for which we presume membership can
be efficiently evaluated. We will later consider applications
with cardinality and knapsack constraints, though our meth-

ods are not limited to those. We will use the terminologies
subset and action interchangeably throughout the paper.

At each time step t, the learner selects a feasible action
At ∈ D. After the subset At is selected, the learner re-
ceives reward ft(At). We assume the reward ft is stochastic,
bounded in [0, 1], and i.i.d. conditioned on a given subset.
Define the expected reward function as f(A) = E[ft(A)].

The goal of the learner is to maximize the cumulative reward∑T
t=1 ft(At). To measure the performance of the algorithm,

one common metric is to compare the learner to an agent
with access to a value oracle for f . However, if optimizing
f over D is NP-hard, such a comparison would not be
meaningful unless the horizon is exponentially large in the
problem parameters.

If there is a known approximation algorithm A with ap-
proximation ratio α ∈ (0, 1] for optimizing f over D, a
more natural alternative is to evaluate the performance of a
CMAB algorithm against what A could achieve. Thus, we
consider the the expected cumulative α-regretRα,T , which
is the difference between α times the cumulative reward of
the optimal subset’s expected value and the average received
reward, (we writeRT when α is understood from context)

E[RT ] = αTf(OPT)− E

[
T∑

t=1

ft(At)

]
, (1)

where OPT is the optimal solution, i.e., OPT ∈
argmaxA∈D f(A) and the expectations are over both the
random rewards and the sequence of actions.

4. Robustness of Offline Algorithms
In this section, we introduce a criterion for an offline approx-
imation algorithm’s sensitivity to (bounded) additive pertur-
bations to function evaluations. Investigating robustness of
approximation algorithms in offline settings is valuable in
its own right. Importantly, we will show that this property
alone is sufficient to guarantee that the offline algorithm can
be adapted to solve analogous combinatorial multi-armed
bandit (CMAB) problems with just bandit feedback and yet
achieve sub-linear regret. Furthermore, the CMAB adapta-
tion will not rely on any special structure of the algorithm
design, instead employing it as a black box.

Definition 4.1 ((α, δ)-Robust Approximation). An algo-
rithm A is an (α, δ)-robust approximation algorithm for the
combinatorial optimization problem of maximizing a func-
tion f : D → R over a finite domain D ⊆ 2Ω if its output
S∗ using a value oracle for f̂ satisfies the relation below
with the optimal solution OPT under f , provided that for
any ϵ > 0 that |f(S)− f̂(S)| < ϵ for all S ∈ D,

f(S∗) ≥ αf(OPT)− δϵ.
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Note that the perturbed f̂ is not required to be in the same
class as f (linear, quadratic, submodular, etc.). Thus, this
definition is a stronger notion of robustness than one limited
to f̂ in the same class that have bounded L∞ distance from
f .

For (unstructured) k armed bandit problems, one can view
the analogous offline algorithm with access to a value or-
acle for the elements as first evaluating each arm (D =
{{1}, {2}, . . . , {k}}), so N = k queries total, and then
evaluating argmax over the k values. That algorithm triv-
ially is a (1, 2)-robust approximation algorithm.

Remark 4.2. In (Niazadeh et al., 2021), there is a related def-
inition of robustness for offline approximation algorithms.
That definition and the subsequent offline-to-online adapta-
tion procedure is restricted to approximation algorithms with
an iterative greedy structure. The criterion Definition 4.1
we consider does not require the approximation algorithm
to have an iterative greedy structure.

To illustrate the utility of our proposed framework, in Sec-
tion 6 we will show that several approximation algorithms
from the constrained submodular maximization literature
are (α, δ)-robust, leading to new sublinear α-regret algo-
rithms for related stochastic CMAB problems with submod-
ular rewards.

5. C-ETC Algorithm: Offline to Stochastic
In this section, we present our proposed algorithm for
adapting offline approximation to algorithms for stochas-
tic CMAB, Combinatorial Explore-Then-Commit (C-ETC).
The pseudo-code is shown in Algorithm 1. The algorithm
takes an offline (α, δ) robust algorithm A with an upper
bound N on the number of oracle queries by A. In the ex-
ploration phase, when the offline algorithm queries the value
oracle for action A, C-ETC will play action A for m times,
where m is a constant chosen to minimizing regret. C-ETC
then computes the empirical mean f̄ of rewards for A and
feeds f̄ back to the offline algorithm A. In the exploitation
phase, C-ETC keeps playing the solution S output from
algorithm A. Thus, the CMAB procedure does not need
A to have any special structure. No careful construction is
needed for the CMAB procedure beyond running A. All
that is needed is checking robustness (Definition 4.1). Also,
there is no over-heard in terms of storage and per-round time
complexities— C-ETC is as efficient as the offline algorithm
A itself.

Now we analyze the α-regret for C-ETC (Algorithm 1).

Theorem 5.1. For the sequential decision making problem
defined in Section 2 and T ≥ 2

√
2N
δ , the expected cumula-

tive α-regret of C-ETC using an (α, δ)-robust approximation

algorithm as subroutine is at most O
(
δ

2
3N

1
3T

2
3 log(T )

1
3

)
,

Algorithm 1 Combinatorial Explore-then-Commit

Input: horizon T , set of base elements Ω, an offline
(α, δ)-robust algorithm A, and an upper-bound N on the
number of A’s queries to the value oracle

Initialize m←
⌈
δ2/3T 2/3 log(T )1/3

2N2/3

⌉
// Exploration Phase //
while A queries the value of some A ⊆ Ω do

For m times, play action A
Calculate the empirical mean f̄
Return f̄ to A

end while

// Exploitation Phase //
for remaining time do

Play action S output by algorithm A.
end for

where N upper-bounds the number of value oracle queries
made by the offline algorithm A.

The detailed proof is in the supplementary material. We
highlight some key steps.

We show that with high probability, the empirical means
of all actions taken during exploration phase will be within

rad =
√

log T
2m of their corresponding statistical means. As

is common in proofs for ETC methods, we refer to this
occurrence as the clean event E . Then, using an (α, δ)-
robust approximation algorithm as subroutine will guarantee
the quality of of the set S used in the exploitation phase of
Algorithm 1:

f(S) ≥ αf(OPT)− δ · rad. (2)

We then break up the expected cumulative α-regret condi-
tioned on the clean event E ,

E[R(T )|E ] =
N∑
i=1

m (αf(S∗)− E[f(St)])︸ ︷︷ ︸
exploration phase

+

T∑
t=TN+1

(αf(S∗)− E[f(S)])︸ ︷︷ ︸
exploitation phase

. (3)

Using the fact that the reward is bounded between [0, 1], we
have

E[R(T )|E ] ≤ Nm+ Tδrad.
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Optimizing over m then results in

E[R(T )|E ] = O
(
δ

2
3N

1
3T

2
3 log(T )

1
3

)
.

We then show that because the clean event E happens with
high probability, the expected cumulative regret E[R(T )] is
dominated by E[R(T )|E ], which concludes the proof.

Lower bounds: For the general setting we explore in this
paper, with stochastic (or even adversarial) combinatorial
MAB and only bandit feedback, it is unknown whether
Õ(T 1/2) expected cumulative α-regret is possible (ignoring
problem parameters like n). For special cases, such as
linear reward functions, Õ(T 1/2) is known to be achievable
even with bandit feedback. Even for the special case of
submodular reward functions and a cardinality constraint,
it remains an open question. (Niazadeh et al., 2021) obtain
Ω̃(T 2/3) lower bounds for the harder setting where feedback
is only available during “exploration” rounds chosen by the
agent, who incurs an associated penalty.
Remark 5.2. C-ETC uses knowledge of the horizon T to
optimize the number m of samples per action. When the
time horizon T is not known, we can use geometric doubling
trick to extend our result to an anytime algorithm. We refer
to the general detailed procedure in (Besson and Kaufmann,
2018). From Theorem 4 in (Besson and Kaufmann, 2018),
we can show that the regret bound conserves the original
T 2/3 log(T )1/3 dependence with only changes in constant
factors.

6. Applications on Submodular Maximization
In this section, we apply our general framework to stochas-
tic CMAB problems with monotone submodular rewards
where only bandit feedback is available. This application
results in the first sublinear α-regret CMAB algorithms for
knapsack constraints under bandit feedback. We begin with
a brief background, and analyze the robustness of offline
approximation algorithms, and then obtain problem inde-
pendent regret bounds.

6.1. Background and Definitions

Denote the marginal gain f(e|A) = f(A ∪ e)− f(A) and
the marginal density ρ(e|A) = f(A∪e)−f(A)

c(e) for any subset
A ⊆ Ω and element e ∈ Ω \A. A set function f : 2Ω → R
defined on a finite ground set Ω is said to be submodular
if it satisfies the diminishing return property: for all A ⊆
B ⊆ Ω, and e ∈ Ω \ B, it holds that f(e|A) ≥ f(e|B). A
set function is said to be monotonically non-decreasing if
f(A) ≤ f(B) for all A ⊆ B ⊆ Ω. Our aim is to find a set
S such that f(S) is maximized subject to some constraints.

For knapsack constraints, we assume that the cost function
c : Ω → R>0 is known and linear, so the cost of a subset

is be the sum of the costs of individual items: c(A) =∑
v∈A c(v). To simplify the presentation, we avoid the

cases of trivially large budgets B >
∑

v∈Ω c(v) and assume
all items have non-trivial costs 0 < c(v) ≤ B. A cardinality
constraint is a special case with unit costs.

In the following, we consider both types of those constraints:
cardinality and knapsack. Maximizing a monotone submod-
ular set function under a k-cardinality constraint is NP-hard
even with a value oracle (Nemhauser et al., 1978). The best
achievable approximation ratio with a polynomial time algo-
rithm is 1−1/e (Nemhauser et al., 1978) usingO(nk) oracle
calls. In Badanidiyuru and Vondrák (2014), 1 − 1/e − ϵ′

is achieved within O( n
ϵ′ log

n
ϵ′ ) time, where ϵ′ is a user se-

lected parameter to balance accuracy and time complexity.

Maximizing a monotone submodular set function under a
knapsack constraint is consequently also NP-hard (Khuller
et al., 1999). The best achievable approximation ratio with
a polynomial time algorithm is 1− 1/e (Sviridenko, 2004;
Khuller et al., 1999), but that requires O(n5) function eval-
uations, making it prohibitive for many applications. There
are other offline algorithms that achieve worse approxima-
tion ratios but are much more efficient. We adapt a 1

2 ap-
proximation algorithm (Yaroslavtsev et al., 2020) and a
1
2 (1− 1/e) approximation algorithm (Khuller et al., 1999),
both of which use O(n2) function evaluations. There is
another algorithm proposed recently in (Li et al., 2022), but
since it queries infeasible sets (i.e., it evaluates for some
subsets whose cost is above budget B), we do not consider
it (see Appendix H for more details).

6.2. Offline Approximation Algorithms – Robustness

For an overview of offline approximation algorithms for
submodular optimization, please refer Appendix B. We next
state our results on (α, δ)-robustness of the offline algo-
rithms considered. The assumption of complete/noiseless
access to a value oracle is often a strong assumption for real
world applications. Thus, even for offline applications, it is
worthwhile knowing how robust an algorithm is. So the fol-
lowing results are relevant even in the offline setting. For the
CMAB setting we consider, robustness is also a sufficient
property to guarantee a no-regret adaptation of the offline
algorithm. Detailed proofs are included in Appendix C in
the supplementary material.
Proposition 6.1 (Corollary 4.3 of Nie et al. (2022)).
GREEDY in (Nemhauser et al., 1978) is a (1− 1

e , 2k)-robust
approximation algorithm for submodular maximization un-
der a k-cardinality constraint.
Proposition 6.2. THRESHOLDGREEDY (Badanidiyuru and
Vondrák, 2014) is a (1− 1

e − ϵ′, 2(2− ϵ′)k)-robust approx-
imation algorithm for submodular maximization under a
k-cardinality constraint.
Proposition 6.3. PARTIALENUMERATION (Sviridenko,
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2004; Khuller et al., 1999) is a (1− 1
e , 4+2K̃+2β)-robust

approximation algorithm for submodular maximization un-
der a knapsack constraint.

Proposition 6.4. GREEDY+MAX (Yaroslavtsev et al., 2020)
is a ( 12 ,

1
2 + K̃ + 2β)-robust approximation algorithm for

submodular maximization problem under a knapsack con-
straint.

Proposition 6.5. GREEDY+ (Khuller et al., 1999) is a
( 12 (1 −

1
e ), 2 + K̃ + β)-robust approximation algorithm

for submodular maximization problem under a knapsack
constraint.

Remark 6.6. For the offline setting, GREEDY+MAX is su-
perior to GREEDY+, as it achieves a better α approximation
ratio with the same calls to the value oracle. However, their
(α, δ) pairs are incomparable, as for β > 1.5 (with β = 1
corresponding to a cardinality constraint), GREEDY+ has a
smaller δ (thus more robust) which affects exploration time
in their adaptations and in turn affects their regret.

To illustrate the robustness analysis, we highlight some key
steps for the proof of Proposition 6.4 for GREEDY+MAX.
Let o1 ∈ argmaxe:e∈OPT c(e) denote the most expen-
sive element in OPT. Inspired by the proof techniques in
(Yaroslavtsev et al., 2020), we consider the last item added
by the greedy solution (based on noisy evaluation) before
the cost of this solution exceeds B − c(o1). Let Gi de-
note the set selected by GREEDY that has cardinality i and
denote the constituent elements as Gi = {g1, · · · , gi}. De-
note Gℓ as the largest greedy sequence that consumes less
than B − c(o1) of the budget B, so c(Gℓ) ≤ B − c(o1) <
c(Gℓ+1). Let Si denote the augmented set at i-th iteration
and S denote the final output of the algorithm. Denote
f̂(e|S) := f̂(S ∪ e) − f̂(S) and ρ̂(e|S) := f̂(S∪e)−f̂(S)

c(e) .
We prove the following lemma.

Lemma 6.7 (GREEDY+MAX inequality). For i ∈
{0, 1, · · · , ℓ}, the following inequality holds:

f̂(Gi ∪ o1)+max{0, ρ̂(gi+1|Gi)}(B − c(o1))

≥ f(OPT)− (2K̃ − 1)ϵ.

For i = ℓ, Lemma 6.7 tells us that there can be two cases:

f̂(Gℓ ∪ o1) ≥
1

2
f(OPT)−

(
K̃ − 1

2
+ γ

)
ϵ, or

ρ̂(gℓ+1|Gℓ)(B − c(o1)) ≥
1

2
f(OPT)−

(
K̃ − 1

2
− γ

)
ϵ,

where γ will be selected later to minimize the additive error
δ coefficient.

If f̂(Gℓ ∪ o1) ≥ 1
2f(OPT) −

(
K̃ − 1

2 + γ
)
ϵ, then de-

note aℓ = argmaxe∈Ω\Gℓ
f̂(e|Gℓ), which is the element

selected to augment Gℓ. We have

f̂(Gℓ ∪ aℓ) ≥ f̂(Gℓ ∪ o1)

≥ 1

2
f(OPT)−

(
K̃ − 1

2
+ γ

)
ϵ. (4)

Then the final output of the algorithm S will satisfy

f(S) ≥ f̂(S)− ϵ

≥ f̂(Gℓ ∪ aℓ)− ϵ

≥ 1

2
f(OPT)−

(
K̃ +

1

2
+ γ

)
ϵ. (using (4))

If ρ̂(gℓ+1|Gℓ)(B − c(o1)) ≥ 1
2f(OPT) − (K̃ − 1

2 − γ)ϵ,
rearranging we have

ρ̂(gℓ+1|Gℓ) ≥
f(OPT)

2(B − c(o1))
−

(K̃ − 1
2 − γ)ϵ

B − c(o1)
. (5)

Moreover,

f̂(Gℓ) =

l−1∑
j=0

ρ̂(gj+1|Gj)c(gj+1)

≥
l−1∑
j=0

ρ̂(gℓ+1|Gj)c(gj+1) (6)

≥
l−1∑
j=0

(
ρ(gℓ+1|Gj)−

2ϵ

c(gℓ+1)

)
c(gj+1)

≥
l−1∑
j=0

(
ρ(gℓ+1|Gℓ)−

2ϵ

c(gℓ+1)

)
c(gj+1) (7)

=

(
ρ(gℓ+1|Gℓ)−

2ϵ

c(gℓ+1)

)
c(Gℓ)

≥
(
ρ̂(gℓ+1|Gℓ)−

4ϵ

c(gℓ+1)

)
c(Gℓ)

≥ ρ̂(gℓ+1|Gℓ)c(Gℓ)− 4βϵ, (8)

where (6) follows from the greedy selection rule, the (7)
follows from submodularity of f , and (8) follows from the
definition of β. We then have

f̂(Gℓ+1)

= f̂(Gℓ) + c(gℓ+1)ρ̂(gℓ+1|Gℓ)

≥
(
ρ̂(gℓ+1|Gℓ)c(Gℓ)− 4βϵ

)
+ c(gℓ+1)ρ̂(gℓ+1|Gℓ)

(9)

= ρ̂(gℓ+1|Gℓ)c(Gℓ+1)− 4βϵ

≥
1
2f(OPT)− (K̃ − 1

2 − γ)ϵ

B − c(o1)
c(Gℓ+1)− 4βϵ (10)

≥ 1

2
f(OPT)− (K̃ − 1

2
− γ)ϵ− 4βϵ (11)
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=
1

2
f(OPT)−

(
K̃ − 1

2
− γ + 4β

)
ϵ, (12)

where (9) follows from (8), (10) follows from (5), and (11)
follows from the chosen ℓ satisfies c(Gℓ+1) > B − c(o1).
Thus, the final output of the algorithm S will satisfy

f(S) ≥ f̂(S)− ϵ

≥ f̂(Gℓ+1)− ϵ

≥ 1

2
f(OPT)−

(
K̃ +

1

2
− γ + 4β

)
ϵ.

Finally, combining both cases and selecting γ = 2β com-
pletes the proof.

6.3. CMAB algorithms for Submodular Rewards with
Knapsack Constraints

Now that we have analyzed the robustness of several offline
algorithms, we can invoke Theorem 5.1 to bound the ex-
pected cumulative α regret for stochastic CMAB adaptations
that rely only on bandit feedback. We name the adapted al-
gorithms as C-ETC-N, C-ETC-B for cardinality constraint,
C-ETC-S C-ETC-K and C-ETC-Y for knapsack constraint,
respectively, based on which offline algorithm it is adapted
from (using the first author’s last name); which are in or-
der (Nemhauser et al., 1978; Badanidiyuru and Vondrák,
2014; Sviridenko, 2004; Khuller et al., 1999; Yaroslavtsev
et al., 2020). PARTIALENUMERATION was first proposed
and analyzed by Khuller et al. (1999) for maximum cover-
age problems and then analyzed by Sviridenko (2004) for
monotone submodular functions. To distinguish CMAB
adaptations of GREEDY+ and C-ETC-K, both proposed in
Khuller et al. (1999), we use C-ETC-S for the adaption of
PARTIALENUMERATION. The following corollaries hold
immediately from Propositions 6.1 to 6.5:
Corollary 6.8. For an online submodular maximization
under a cardinality constraint, the expected cumulative (1−
1/e)-regret of C-ETC-N is at most O

(
kn

1
3T

2
3 log(T )

1
3

)
for T ≥

√
2n.

Remark 6.9. This result improves upon the result from Nie
et al. (2022) by a factor of k

1
3 despite our use of a generic

framework.
Corollary 6.10. For an online submodular maximiza-
tion under a cardinality constraint, the expected cu-
mulative (1 − 1/e − ϵ′)-regret of C-ETC-B is at

most O
(
k

2
3n

1
3 (ϵ′)

1
3 (log n

ϵ′ )
1
3T

2
3 log(T )

1
3

)
for T ≥

√
2n

(2−ϵ′)ϵ′k log n
ϵ′ .

Corollary 6.11. For an online submodular maximiza-
tion under a knapsack constraint, the expected cu-
mulative (1 − 1/e)-regret of C-ETC-S is at most

O
(
β

2
3 K̃

1
3n

4
3T

2
3 log(T )

1
3

)
for T ≥

√
2K̃n4

2+K̃+β
.

Corollary 6.12. For an online submodular maximization
under a knapsack constraint, the expected cumulative 1

2 -

regret of C-ETC-Y is at most O
(
β

2
3 K̃

1
3n

1
3T

2
3 log(T )

1
3

)
for T ≥ 2

√
2K̃n

1
2+K̃+2β

.

Corollary 6.13. For an online submodular maximization un-
der a knapsack constraint, the expected cumulative 1

2 (1−
1
e )-

regret of C-ETC-K is at most O
(
β

2
3 K̃

1
3n

1
3T

2
3 log(T )

1
3

)
for T ≥ 2

√
2K̃n

2+K̃+β
.

Comparison with OGo: Streeter and Golovin (2008) pro-
posed and analyzed an algorithm for adversarial CMAB
with submodular rewards, full-bandit feedback, and under
a knapsack constraint (only the expected cost of the (ran-
domly selected) action was required to be under budget).
We discuss this in more detail in Appendix H, here only
highlighting a few key points. We also use this as a baseline
in our experiments in Section 7. The authors adapted a
simpler greedy algorithm than the one we adapt (Khuller
et al., 1999), using an ϵ-greedy exploration type framework.
We provide evidence in our experiments that their algo-
rithm requires large horizons to learn. The offline algorithm
they adapted achieves an approximation ratio (1− 1/e) for
budgets that exactly match the cost used up by the greedy
solution, but otherwise does not achieve a constant approxi-
mation (Khuller et al., 1999).

Storage and Per-Round Time Complexities: C-ETC-Y
and C-ETC-K have low storage complexity and per-round
time-complexity. During exploitation, only the indices of
at most K̃ base arms are needed in memory and does not
need any computation. During exploration, they just need
to update the empirical mean for the current action at time t,
which can be done in O(1) time. It additionally stores the
highest empirical density so far in the current iteration of the
greedy routine and its associated base arm (C-ETC-K needs
to store one more arm and C-ETC-Y an additional O(K̃)
storage is needed to store the augmented set). Thus, C-ETC-
Y and C-ETC-K have O(K̃) storage complexity and O(1)
per-round time complexity. For comparison, the algorithm
proposed by (Streeter and Golovin, 2008) for an averaged
knapsack constraint in the adversarial setting uses O(nK̃)
storage complexity and O(n) per-round time complexity.
Some comments on lower bound are given in Appendix E.

7. Experiments
In this section, we conduct experiments on real world data
with a Budgeted Influence Maximization (BIM). We also
conduct experiments on Song Recommendation (SR) in
Appendix I. Both of these are applications of stochastic
CMAB with submodular rewards under a knapsack con-
straint. There are three adaptions we considered in Section 6
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for knapsack constraint. Since the time complexity for PAR-
TIALENUMERATION is much larger than the other two of-
fline algorithms we consider, it will use at least T ≈ 108 for
C-ETC-S to finish exploration. For this reason, we do not
consider C-ETC-S in the experiments. To our knowledge,
our work is the first to consider these applications with only
bandit feedback available.

Baseline: The only other algorithm designed for combi-
natorial MAB with general submodular rewards, under a
knapsack constraint, and using full-bandit feedback is On-
line Greedy with opaque feedback model (OGo) proposed
by Streeter and Golovin (2008) for the adversarial setting.
However, OGo only satisfies the knapsack constraint in ex-
pectation, while our algorithms C-ETC-K ands C-ETC-Y
satisfies a strict constraint (i.e. every action At must be
under budget). See Appendix D for more details about OGo

and its implementation.

In Section 6, we used N = K̃n as an upper bound on the
number of function evaluations for both C-ETC-K and C-
ETC-Y, where n is the number of base arms and K̃ is an
upper bound of the cardinality of any feasible set. When the
time horizon T is small, it is possible that the exploration
phase will not finish due to the formula being optimized for
m (the number of plays for each action queried byA) uses a
loose bound on the exploitation time. When this is the case,
we select the largest m (closest to the formula) for which
we can guarantee that exploration will finish. For details,
see Appendix F.

We first conduct experiments for the application of budgeted
influence maximization (BIM) on a portion of the Facebook
network graph. BIM models the problem of identifying a
low-cost subset (seed set) of nodes in a (known) social net-
work that can influence the maximum number of nodes in a
network. While there are prior works proposing algorithms
for budgeted online influence maximization problems, the
state of the art (e.g., (Perrault et al., 2020)) presumes knowl-
edge of the diffusion model (such as independent cascade)
and, more importantly, extensive semi-bandit feedback on
individual diffusions, such as which specific nodes became
active or along which edges successful infections occurred,
in order to estimate diffusion parameters. For social net-
works with user privacy, this information is not available.

Data Set Description and Experiment Details: The Face-
book network dataset was introduced in (Leskovec and
Mcauley, 2012). To facilitate running multiple experiments
for different horizons, we used the community detection
method proposed by (Blondel et al., 2008) to detect a com-
munity with 354 nodes and 2853 edges. We further changed
the network to be directed by replacing every undirected
edge by two directed edge with opposite directions, yielding
a directed network with 5706 edges. The diffusion process

(a) (b)

(c) (d)

Figure 1: Plots for budgeted influence maximization (BIM) ex-
ample. (a) and (b) are comparison results for cumulative regret as
a function of time horizon T . (c) and (d) are the moving average
plot with window size 100 of instantaneous reward as a function
of t. The gray dashed lines in (a) and (b) represent y = aT 2/3 for
various values of a for visual reference. The gray dashed lines in
(c) and (d) represent expected rewards for the action chosen by an
offline greedy algorithm.

is simulated using the independent cascade model (Kempe
et al., 2003), where in each discrete step, an active node
(that was inactive at the previous time step) independently
attempts to infect each of its inactive neighbors. Following
existing work of Tang et al. (2015; 2018); Bian et al. (2020),
we set the probability of each edge (u, v) as 1/din(v), where
din(v) is the in-degree of node v. Moreover, we consider a
user u is more influential if the user has more out-degrees,
dout(u). In our experiment, we only consider influential
users to spend our budget more efficiently. We pick the
users with out-degrees that are above 95th percentile (18
users). Denote this set as I, then for a user u ∈ I, the cost
is defined as c(u) = 0.01dout(u) + 1, similar to (Wu et al.,
2022). For each time horizon that was used, we ran each
method ten times.

For this set of experiments, instead of cumulative 1
2 -regret,

which requires knowing OPT, we compare the cumulative
rewards achieved by C-ETC and OGo against Tf(Sgrd),
where Sgrd is the solution returned by the offline 1

2 -
approximation algorithm proposed by (Yaroslavtsev et al.,
2020). Tf(Sgrd) ≥ 1

2Tf(OPT), so Tf(Sgrd) is a more
challenging reference value.

Results and Discussion: Figures 1a and 1b show average
cumulative regret curves for C-ETC-K (in blue), C-ETC-
Y (in orange) and OGo (in green) for different horizon T
values when the budget constraint B is 6 and 8, respectively.
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For B = 8, the turning point is T = 21544. Standard
errors of means are presented as error bars, but might be too
small to be noticed. Figures 1c and 1d are the instantaneous
reward plots. In these plots, standard errors of means are
presented as shaded areas. The peaks at the very beginning
of exploration phase correspond to the time step that the
single person with highest influence is sampled.

C-ETC significantly outperforms OGo for all time horizons
and budget considered. To evaluate the gap between the
empirical performance and the theoretical guarantee, we
estimated the slope for both methods on log-log scale plots.
Over the horizons tested, OGo’s cumulative regret (averaged
over ten runs) has a growth rate of 0.98. The growth rates of
C-ETC-K for budgets 6 and 8 are 0.76 and 0.68, respectively.
The growth rates of C-ETC-Y for budgets 6 and 8 are 0.75
and 0.69, respectively. The slopes are close to the 2/3 ≈
0.67 theoretical guarantee, and notably, the performance for
larger B is better.

8. Conclusions and Future Directions
In this paper, we provide a general framework for adapting
discrete offline approximation algorithms for combinato-
rial optimization problems into sublinear α-regret methods
that only require bandit feedback. Through our proposed
framework, we achieve O

(
T

2
3 log(T )

1
3

)
expected cumu-

lative α-regret dependence on the horizon T . Importantly,
our approach only relies on the offline algorithms being
robust to small errors in function evaluation. The offline
algorithm can be treated as a black box subroutine, making
our framework easily applicable in practice. The results are
demonstrated on multiple problems in constrained submod-
ular optimization.

Our findings pave the way for further exploration and de-
velopment of algorithms for similar problems, opening up
new avenues for research in this area. Recently, (Fourati
et al., 2023) considered submodular maximization with ban-
dit feedback and non-monotone rewards. Exploring this
as a special case of framework will be considered as a
future work. Further, finding regret guarantees for non-
monotone submodular maximization subject to a knapsack
constraint with bandit feedback is open, where the result
with semi-bandit feedback has been studied in (Amanatidis
et al., 2020). Finally, exploring product ranking optimiza-
tion in online platforms and reserve price optimization in
auctions (considered in (Niazadeh et al., 2021) for adver-
sarial CMAB) as a special case of our framework will be
considered as future work.
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Reiffenhäuser, R. (2020). Fast adaptive non-monotone
submodular maximization subject to a knapsack con-
straint. Advances in neural information processing sys-
tems, 33:16903–16915.

Arora, S., Hazan, E., and Kale, S. (2012). The multiplicative
weights update method: a meta-algorithm and applica-
tions. Theory of Computing, 8(1):121–164.
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A. Proof for Regret of C-ETC
In this section, we prove Theorem 5.1 in Section 4 of the main paper. We restate the theorem: For the sequential decision
making problem defined in Section 2 and T ≥ 2

√
2N
δ , the expected cumulative α-regret of C-ETC using an (α, δ)-robust

approximation algorithm as subroutine is at most O
(
δ

2
3N

1
3T

2
3 log(T )

1
3

)
, where N upper-bounds the number of value

oracle queries made by the offline algorithm A.

A.1. Overview and Notations

We will separate the proof into two cases. The first case is for when the clean event E happens, which we will show in
Lemma A.3 happens with high probability. Under the clean event, using the fact that the offline algorithm is an (α, δ)-robust
approximation, C-ETC’s chosen set S for the exploitation phase will nonetheless be near-optimal. The second case is when
the complementary event happens, which occurs with low probability.

The proof structure analyzing a high-probability “clean event” where empirical estimates are sufficiently concentrated
around their means is analogous to that for the unstructured non-combinatorial setting (see for instance, Section 1.2 in
(Slivkins, 2019)). However, unlike the ETC procedure for non-combinatorial MAB problems, C-ETC makes sequences of
decisions during exploration. Furthermore, the combinatorial action space, non-linearity of the reward function, and lack of
extra feedback (like marginal gains) make the problem challenging. Even in the special setting of deterministic rewards, the
standard MAB problem becomes trivial (finding the largest of n base arms) while the problem we considered are NP-hard.

Recap that for any (feasible) action A, ft(A) denotes a (random) reward at time t for the agent taking that action, f(A)
denotes the expected value for action A. Let f̄t(A) denote the empirical mean of rewards received from playing action A up
to and including time t. In the following, we will drop the subscript t from the empirical mean, writing f̄(A) when it is clear
from context that action A has been played m times. Also, we use Ai, i ∈ {1, · · · , N} denotes the i-th action the algorithm
samples. We further denote Ti, i ∈ {1, . . . , N} as the time step when the sampling of the i-th action has been determined, or
Ai has been played m times. For notation consistency, we also denote T0 = 0 and TN+1 = T .

A.2. Probability of the Clean Event

Now we define events that are important in our analysis. Recall that for each action A being explored, the m rewards are i.i.d.
with mean f(A) and bounded in [0, 1]. Thus, we can bound the deviation of the (unbiased) empirical mean f̄(Ai) from the
expected value f(Ai) for each action played. Specifically, we can use a two-sided Hoeffding bound for bounded variables.
Remark A.1. For convenience, we assume the reward function bounded in [0, 1], but the result can be generalized to the
case where the deviation of the true reward and the expected reward has a light tailed distribution (e.g., sub-Gaussian).

Lemma A.2 (Hoeffding’s inequality). Let X1, · · · , Xn be independent random variables bounded in the interval [0, 1], and
let X̄ denote their empirical mean. Then we have for any ϵ > 0,

P
(∣∣X̄ − E[X̄]

∣∣ ≥ ϵ
)
≤ 2exp

(
−2nϵ2

)
. (13)

By C-ETC, each sampled action will be played the same number of times, denoted by m, so we consider bounding the
probabilities of equal-sized confidence radii rad :=

√
log(T )/2m for all the actions played during exploration.

We next analyze the probability of the event that the empirical means of all actions played during exploration are concentrated
around their statistical means within a radius rad. Denote the corresponding events for each action played having empirical
means concentrated around their respective statistical means as Ei,

Ei :=
⋂
{
∣∣f̄(Ai)− f(Ai)

∣∣ < rad}, i ∈ {1, · · · , N}. (14)

Define the clean event E to be the event that the empirical means of all actions played in the exploration phase are within
rad of their corresponding statistical means:

E := E1 ∩ · · · ∩ EN . (15)

Lemma A.3. The probability of the clean event E (15) satisfies:

P(E) ≥ 1− 2N

T
.
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Proof. Applying the Hoeffding bound Lemma A.2 to the empirical mean f̄(Ai) of m rewards for action Ai and choosing
ϵ = rad =

√
log(T )/2m gives

P(Ēi) = P
[∣∣f̄(Ai)− f(Ai)

∣∣ ≥ rad
]

≤ 2exp
(
−2mrad2

)
= 2exp (−2m(log(T )/2m))

= 2exp (− log(T ))

=
2

T
. (16)

Then, we can bound the probability of clean events

P(E) = P(E1 ∩ · · · ∩ EN )

= 1− P(Ē1 ∪ · · · ∪ ĒN ) (De Morgan’s Law)

≥ 1−
N∑
i=1

P(Ēi) (union bounds)

≥ 1− 2N

T
. (using (16))

A.3. Near Optimality of the final S (Exploitation Phase Action)

In Lemma A.3, we showed that the clean event E will happen with high probability. When the clean event E happens,
we have |f̄(A)− f(A)| ≤ rad for all evaluated action A. For an online algorithm (with output S) using an (α, δ)-robust
approximation as subroutine, we have

f(S) ≥ αf(OPT)− δ · rad. (17)

A.4. Final Regret

Now we are ready to show the regret of C-ETC (Theorem 5.1 in Section 4 of the main paper).

CASE 1: CLEAN EVENT E HAPPENS

In the first case we analyse the expected regret under the condition that the clean event E happens. In this section, all
expectations will be conditioned on E , but to simplify notation we will write E[·] instead of E[·|E ] in some cases.

First we can break up the expected α-regret conditioned on E into two parts, one for the first L exploration iterations, and
the second for the exploitation iteration. Although the number of actions taken per iteration and the number of iterations of
the greedy is not known a priori, we can upper bound the duration. Also recall that ft(At) is the random reward for taking

13
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action At, which itself is random, depending on empirical means of actions in earlier iterations.

E[R(T )|E ] = αTf(OPT)−
T∑

t=1

E[ft(At)]

= αTf(OPT)−
T∑

t=1

E[E[ft(At)|At]] (law of total expectation)

= αTf(OPT)−
T∑

t=1

E[f(At)] (f(·) defined as expected reward)

=

T∑
t=1

(αf(OPT)− E[f(At)]) (rearranging)

=

N∑
i=1

m (αf(OPT)− E[f(Ai)])︸ ︷︷ ︸
Exploration phase

+

T∑
t=TN+1

(αf(OPT)− E[f(At)])︸ ︷︷ ︸
Exploitation phase

=

N∑
i=1

m (αf(OPT)− E[f(Ai)]) +

T∑
t=TN+1

(αf(OPT)− E[f(S)]) . (18)

Case 1 (clean event): Bounding exploration regret: We will separately bound the regret incurred from the exploration
and exploitation. We begin with bounding regret from exploration,

N∑
i=1

m (αf(OPT)− E[f(Ai)])

≤
N∑
i=1

m (α− 0) (rewards are bounded in [0, 1])

≤ Nm. (19)

Case 1 (clean event): Bounding exploitation regret: We next bound the regret incurred during the exploitation iteration.
Since the set S used during exploitation is a random variable, we can take the expectation of (17) (conditioned on event E),
to bound the expected instantaneous regret for each time step of the exploitation iteration,

αf(OPT)− E[f(S)] ≤ δrad. (20)

Using a loose bound for the duration of the exploitation iteration, T − TL + 1 < T ,

T∑
t=TN+1

(αf(OPT)− E[f(S)]) ≤
T∑

t=TN+1

δrad (using (20))

≤ Tδrad. (21)

Case 1 (clean event): Bounding total regret: Then the expected cumulative regret (18) can be bounded as

E[R(T )|E ] =
N∑
i=1

m (αf(OPT)− E[f(Ai)]) +

T∑
t=TN+1

(αf(OPT)− E[f(S)]) (copying (18))

≤ Nm+ Tδrad (using (19), (21))

Plugging in the formula for the confidence radius rad =
√

log(T )/2m, we have

14
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E[R(T )|E ] ≤ Nm+ Tδ
√
log(T )/2m

We want to optimize m, the number of times each action is played. Denoting the regret bound (22) as a function of m

g(m) = Nm+ Tδ
√

log(T )/2m, (22)

then

g′(m) = N − 1

2
Tδ
√
log(T )/2m−3/2. (23)

Setting g′(m) = 0 and solving for m,

m∗ =
δ2/3T 2/3 log(T )1/3

2N2/3
. (24)

We next check the second derivative,

g′′(m) =
3

4
δT
√

log(T )/2m−5/2. (25)

For positive values of m, g′′(m) > 0, thus g(m) reaches a minimum at (24).

Since m is the number of times actions are played, we (trivially) need m ≥ 1 and m to be an integer. We choose

m† =

⌈
δ2/3T 2/3 log(T )1/3

2N2/3

⌉
. (26)

Since from (25) we have that g′′(m) > 0 for positive m, g(m∗) ≤ g(m†). For T ≥ 2
√
2N
δ , we have m∗ ≥ 1.

Plugging (26) back in to (22),

E[R(T )|E ] ≤ m†N + Tδ
√
log(T )/2m† ((22) with m† samples for each action)

= ⌈m∗⌉N + Tδ
√

log(T )/2⌈m∗⌉

≤ ⌈m∗⌉N + Tδ
√

log(T )/2m∗ (Since ⌈m∗⌉ ≥ m∗)

≤ 2m∗N + Tδ
√
log(T )/2m∗ (Since m∗ ≥ 1, ⌈m∗⌉ ≤ 2m∗)

= 2
δ2/3T 2/3 log(T )1/3

2N2/3
N

+ Tδ
√

log(T )/2

(
δ2/3T 2/3 log(T )1/3

2N2/3

)−1/2

(using (24))

= 3δ2/3N1/3T 2/3 log(T )1/3 (27)

= O
(
δ

2
3N

1
3T

2
3 log(T )

1
3

)
.

In conclusion, the expected α-regret of C-ETC using an (α, δ)-robust approximation as subroutine is upper bounded by (27)
if the clean event E happens.

CASE 2: CLEAN EVENT E DOES NOT HAPPEN

We next derive an upper bound for the expected α-regret for case that the event E does not happen. By Lemma A.3,

P(Ē) = 1− P(E) ≤ 2N

T
.

Since the reward function ft(·) is upper bounded by 1, the expected α-regret incurred under Ē for a horizon of T is at most
T ,

E[R(T )|Ē ] ≤ T. (28)
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PUTTING IT ALL TOGETHER

Combining Cases 1 and 2 we have,

E[R(T )] = E[R(T )|E ] · P(E) + E[R(T )|Ē ] · P(Ē) (Law of total expectation)

≤ 3δ2/3N1/3T 2/3 log(T )1/3 · 1 + T · 2N
T

(using (27), Lemma A.3, and (28))

= O
(
δ

2
3N

1
3T

2
3 log(T )

1
3

)
.

This concludes the proof.

B. Offline Approximation Algorithms – Overview
We give a brief overview of the offline approximation algorithms which we will analyze (α, δ) robustness for.

For a k-cardinality constraint, the greedy algorithm GREEDY proposed in Nemhauser et al. (1978) starts from an empty
set G ← ∅. Then it repeatedly add the element with highest marginal gain f(e|G) until the cardinality |G| reaches k.
THRESHOLDGREEDY, proposed in Badanidiyuru and Vondrák (2014), considers a sequence of decreasing thresholds:
{τ = d; τ ≥ ϵ′

n d; τ ← (1− ϵ′)τ} where d = maxe∈Ω f(e). Then starting from empty set G = ∅, the algorithm includes any
element e /∈ G such that f(e|G) ≥ τ whenever the cardinality is smaller than k. The algorithm then repeats using a lower
threshold. Badanidiyuru and Vondrák (2014) showed that THRESHOLDGREEDY can achieve 1− 1/e− ϵ′ approximation.

For a knapsack constraint, several algorithms run the following greedy subroutine, which we refer to as GREEDY (cardinality
is a special case of this routine with budget k and unit cost, so we keep the same name without confusion). Start with
empty set G← ∅. Repeatedly add the element e with the highest marginal density ρ(e|G) that fits into the budget. Let Gi

denote the set selected by GREEDY that has cardinality i and denote the constituent elements as Gi = {g1, · · · , gi}. Let L
denote the cardinality of the final greedy set (i.e. when no more elements remain that are under budget), so GL is output by
GREEDY. Note that L can only be bounded ahead of time—there could be maximal subsets (to which no other elements
could be added without violating the budget) of different cardinalities.

GREEDY can have an unbounded approximation ratio Khuller et al. (1999) for knapsack constraint. Khuller et al. (1999)
proposed GREEDY+, which outputs the better of the best individual element a∗ ∈ argmaxe∈Ω f(e) and the output of
GREEDY, argmaxS∈{GL,a∗} f(S). Khuller et al. (1999) proved that GREEDY+ achieves a 1

2 (1−
1
e ) approximation ratio.

Then, Sviridenko (2004); Khuller et al. (1999) proposed PARTIALENUMERATION. It first enumerate all sets with cardinality
up to three. For each enumerated triplets, it build the rest of the solution set greedily. Then it outputs the set with largest
value among all evaluated sets. They showed that PARTIALENUMERATION can achieve 1− 1/e approximation ratio.

Greedy+Max generalizes GREEDY+ by augmenting each set {Gi}Li=1 in the nested sequence produced by GREEDY with
another element. For 0 ≤ i ≤ L− 1, define G′

i ← Gi ∪ argmaxe∈Ω:c(Gi)+c(e)≤B f(Gi ∪ e). By construction, G′
0 = {a∗},

the best individual element. For i = L, G′
L ← GL. GREEDY+MAX then outputs the best set in the augmented sequence,

argmaxS∈{G′
0,...,G

′
L} f(S). (Yaroslavtsev et al., 2020) proposed GREEDY+MAX and proved it achieves an approximation

ratio of 1
2 .

A bound on the number of value oracle calls will be important in adapting offline methods. Denote β := B/cmin and K̃ :=
min{n, β} as an upper bound of the number of items in any feasible set. We note here that while PARTIALENUMERATION
uses O(K̃n4) function evaluations, both GREEDY+MAX and GREEDY+ use O(K̃n) oracle calls, same as GREEDY. We
use N = K̃n in the analysis for GREEDY+MAX and GREEDY+.

C. Proof for Robustness of Offline Algorithms
In this section, we prove the (α, δ) robustness of algorithms considered in Section 6 of the main paper.

C.1. Notation

We first review notations used in the analysis. Recall that we are only able to evaluate the surrogate function f̂ such
that |f̂(S) − f(S)| ≤ ϵ for any feasible set S and some ϵ > 0, we further denote f̂(e|S) = f̂(S ∪ e) − f̂(S) and
ρ̂(e|S) = f̂(S∪e)−f̂(S)

c(e) . Let Gi denote the set selected by basic GREEDY (based on surrogate function f̂ ) as described
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in Section 3 up until ith item and Gi = {g1, · · · , gi} in the order of each item is selected. Without loss of generality,
define G0 = ∅ and f(G0) = f̂(G0) = 0. Denote cmin = mine∈Ω c(e) be the item with lowest individual cost. Let
β = B/cmin and K̃ = min{n, β} being an upper bound of the number of items in any feasible set. Since all selected
actions should be feasible, for ease of notation, we omit denoting that condition throughout the proof. For example, we write
argmaxe∈Ω\A f(e|A) to simplify the notation of argmaxe:e∈Ω\A and A∪e∈D f(e|A). Let S be the set returned by modified
algorithms in corresponding context.

C.2. Robustness of Offline Methods for Submodular Maximization under Cardinality Constraint

C.2.1. GREEDY

We consider the original greedy algorithm GREEDY proposed in Nemhauser et al. (1978), which gives a (1 − 1
e )-

approximation guarantee for submodular maximization under a k-cardinality constraint. To restate Proposition 6.1 in
the main paper, GREEDY is a (1 − 1

e , 2k)-robust approximation algorithm for submodular maximization under a k-
cardinality constraint. The result follows from Corollary 4.3 of Nie et al. (2022), part of the regret analysis for a CMAB
adaptation of GREEDY.

C.2.2. THRESHOLDGREEDY

We then consider the threshold greedy algorithm THRESHOLDGREEDY proposed in Badanidiyuru and Vondrák (2014), which
gives a (1− 1

e−ϵ
′)-approximation guarantee for submodular maximization under a k-cardinality constraint, where ϵ′ is a user

specified parameter to balance accuracy and run time. Restating Proposition 6.2 in the main paper, THRESHOLDGREEDY is
a (1− 1

e − ϵ′, 2(2− ϵ′)k)-robust approximation algorithm for submodular maximization under a k-cardinality constraint.

Proof. From the assumption of the surrogate function f̂ we know

f(e|S)− 2ϵ ≤ f̂(e|S) ≤ f(e|S) + 2ϵ

for any e ∈ Ω \ S and S ⊆ Ω. Now assume the the next chosen element is a and the current partial solution is S. On one
hand, we have

f̂(a|S) ≥ w =⇒ f(a|S) ≥ w − 2ϵ, (29)

on the other hand, for every e ∈ OPT \ S,

f̂(e|S) ≤ w

1− ϵ′
=⇒ f(e|S) ≤ w

1− ϵ′
+ 2ϵ. (30)

Combining and manipulating (29) and (30) we have for any e ∈ OPT \ S:

f(a|S) + 2ϵ ≥ (f(e|S)− 2ϵ)(1− ϵ′) =⇒ f(a|S) ≥ (1− ϵ′)f(e|S)− 2(2− ϵ′)ϵ. (31)

Taking an average over all e ∈ OPT \ S,

f(a|S) ≥ 1− ϵ′

|OPT \ S|
∑

e∈OPT\S

f(e|S)− 2(2− ϵ′)ϵ

≥ 1− ϵ′

k

∑
e∈OPT\S

f(e|S)− 2(2− ϵ′)ϵ. (32)

Now consider after i ∈ [k − 1] steps, we get a partial solution Si = {a1, · · · , ai}. By (32), we have

f(ai+1|Si) ≥
1− ϵ′

k

∑
e∈OPT\S

f(e|Si)− 2(2− ϵ′)ϵ

≥ 1− ϵ′

k
f(OPT|Si)− 2(2− ϵ′)ϵ (submodularity)

≥ 1− ϵ′

k
(f(OPT)− f(Si))− 2(2− ϵ′)ϵ, (monotonicity)
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and hence for i ∈ [k − 1],

f(Si+1)− f(Si) = f(ai+1|Si) ≥
1− ϵ′

k
(f(OPT)− f(Si))− 2(2− ϵ′)ϵ. (33)

Using (33) as induction hypothesis, we then prove by induction (omitted) that for i ∈ [k − 1],

f(Si+1) ≥

[
1−

(
1− 1− ϵ′

k

)i+1
]
f(OPT)− 2(i+ 1)(2− ϵ′)ϵ,

and plugging in i = k − 1 we get

f(Sk) ≥

[
1−

(
1− 1− ϵ′

k

)k
]
f(OPT)− 2k(2− ϵ′)ϵ

≥ (1− e−(1−ϵ′))f(OPT)− 2k(2− ϵ′)ϵ

≥ (1− 1/e− ϵ′)f(OPT)− 2k(2− ϵ′)ϵ.

We finish the proof by observing that Sk is the output.

C.3. Proof for Robustness of GREEDY+MAX

In this section, we give a detailed proof for Proposition 6.4 in Section 6 of the main paper. Recall the statement is that
GREEDY+MAX is a ( 12 ,

1
2 + K̃ + 2β)-robust approximation algorithm for submodular maximization problem under a

knapsack constraint.

Let o1 ∈ argmaxe:e∈OPT c(e) denote the most expensive element in OPT. During the ith iteration of the greedy process,
having previously selected the set Gi−1 with i − 1 elements, it will select the element gi with highest marginal density
(based on surrogate function f̂ ) among feasible elements,

gi = argmax
e: e∈Ω\Gi−1

ρ̂(e|Gi−1). (34)

Inspired by the proof techniques in Yaroslavtsev et al. (2020), we consider the last item added by the greedy solution (based
the surrogate function f̂ ) before the cost of this solution exceeds B − c(o1). Denote Gℓ as the largest greedy sequence that
consumes less than B − c(o1) budgets, c(Gℓ) ≤ B − c(o1) < c(Gℓ+1). Let ai denote the element selected to augment with
the greedy solution Gi, i.e., ai = argmaxe∈Ω\Gi

f̂(e|Gi), and Si denote the augmented set at i-th iteration. Before proving
the theorem, we show Lemma 6.7 in Section 6 of the main paper, that for i ∈ {0, 1, · · · , ℓ}, the following inequality holds:

f̂(Gi ∪ o1) + max{0, ρ̂(gi+1|Gi)}(B − c(o1)) ≥ f(OPT)− (2K̃ − 1)ϵ.

Proof. Recall that from the definition of f̂ , we have |f̂(S)−f(S)| ≤ ϵ for any evaluated set S and some ϵ > 0. Consequently,
we have for any i ∈ {0, 1, · · · , ℓ},

|f̂(Gi)− f(Gi)| ≤ ϵ. (35)

Now we evaluate the set Gi ∪ o1.

• Case 1: If o1 has already been added, o1 ∈ Gi, then

|f̂(Gi ∪ o1)− f(Gi ∪ o1)| = |f̂(Gi)− f(Gi)| ≤ ϵ.

• Case 2: If o1 /∈ Gi, then f̂(Gi ∪ o1) is evaluated in iteration i+ 1. This iteration i+ 1 does exist1 because for any
i ∈ {0, 1, · · · , ℓ}, we only used less than B − c(o1) budget. For the remaining budget, at least o1 can still fit into the
budget so Gi ∪ o1 will be evaluated in iteration i+ 1. In this case, we still have

|f̂(Gi ∪ o1)− f(Gi ∪ o1)| ≤ ϵ.

1 For (α, δ) robustness alone, this point is not necessary due to the assumption of |f(S)− f̂(S)| ≤ ϵ for all S ⊆ Ω. For the regret
bound proof of our proposed C-ETC method in Appendix A.4, the “clean event” (corresponding to concentration of empirical mean of set
values around their statistical means) will only imply concentration for those actions taken and thus for which empirical estimates exist.

18



A Framework for Adapting Offline Algorithms to Solve CMAB Problems with Bandit Feedback

Combining these two cases, we have

|f̂(Gi ∪ o1)− f(Gi ∪ o1)| ≤ ϵ. (36)

Also, for any evaluated action in iteration i+ 1, namely the actions {Gi ∪ e|e ∈ Ω \Gi and c(e) + c(Gi) ≤ B}, we have

ρ(e|Gi) =
f(Gi ∪ e)− f(Gi)

c(e)

≤ f̂(Gi ∪ e)− f̂(Gi)

c(e)
+

2ϵ

c(e)

= ρ̂(e|Gi) +
2ϵ

c(e)
. (37)

Then we have

f(OPT) ≤ f(Gi ∪OPT) (Monotonicity of f )
≤ f(Gi ∪ o1) + f(OPT \ (Gi ∪ o1)|Gi ∪ o1)

≤ f(Gi ∪ o1) +
∑

e∈OPT\(Gi∪o1)

f(e|Gi ∪ o1) (Submodularity of f )

≤ f̂(Gi ∪ o1) + ϵ+
∑

e∈OPT\(Gi∪o1)

c(e)ρ(e|Gi ∪ o1). (38)

where (38) uses (36).

Since we picked iteration i such that c(Gi) ≤ B − c(o1), then all items in OPT \ (Gi ∪ o1) still fit, as o1 is the largest item
in OPT. Since the greedy algorithm always selects the item with the largest marginal density with respect to the surrogate
function f̂ , gi = argmaxe∈Ω\Gi

ρ̂(e|Gi), thus we have

ρ̂(gi+1|Gi) = max
e∈Ω\Gi

ρ̂(e|Gi) ≥ max
e∈Ω\(Gi∪o1)

ρ̂(e|Gi). (39)

Hence, continuing with (38),

f(OPT) ≤ f̂(Gi ∪ o1) + ϵ+

 ∑
e∈OPT\(Gi∪o1)

c(e)ρ(e|Gi ∪ o1)


≤ f̂(Gi ∪ o1) + ϵ+

∑
e∈OPT\(Gi∪o1)

c(e)ρ(e|Gi) (Submodularity)

≤ f̂(Gi ∪ o1) + ϵ+
∑

e∈OPT\(Gi∪o1)

c(e)

(
ρ̂(e|Gi) +

2ϵ

c(e)

)
(using (37))

≤ f̂(Gi ∪ o1) + ϵ+
∑

e∈OPT\(Gi∪o1)

(
c(e)ρ̂(e|Gi)

)
+ 2ϵ|OPT \ (Gi ∪ o1)|

≤ f̂(Gi ∪ o1) + ϵ+ ρ̂(gi+1|Gi)
∑

e∈OPT\(Gi∪o1)

(
c(e)

)
+ 2ϵ|OPT \ (Gi ∪ o1)| (Using (39))

≤ f̂(Gi ∪ o1) + ϵ+ ρ̂(gi+1|Gi)c(OPT \ (Gi ∪ o1)) + 2ϵ|OPT \ (Gi ∪ o1)|

≤ f̂(Gi ∪ o1) + ϵ+max{0, ρ̂(gi+1|Gi)}c(OPT \ (Gi ∪ o1)) + 2ϵ|OPT \ (Gi ∪ o1)|

≤ f̂(Gi ∪ o1) + ϵ+max{0, ρ̂(gi+1|Gi)}(gi+1|Gi)(B − c(o1)) + 2ϵ|OPT \ (Gi ∪ o1)|

≤ f̂(Gi ∪ o1) + max{0, ρ̂(gi+1|Gi)}(gi+1|Gi)(B − c(o1)) + (2K̃ − 1)ϵ.

Rearranging terms gives the desired result.
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Now we are ready to prove Proposition 6.4 (robustness of GREEDY+MAX algorithm). Applying Lemma 6.7 (GREEDY+MAX
inequality) for i = ℓ, and recalling that ℓ is chosen as the index of the last greedy set such that c(Gℓ) ≤ B−c(o1) < c(Gℓ+1),

f̂(Gℓ ∪ o1) + max{0, ρ̂(gℓ+1|Gℓ)}(B − c(o1)) ≥ f(OPT)− (2K̃ − 1)ϵ. (40)

From (40), we will next argue at least one of the terms in the left hand side must be large. We will consider cases for the
two terms being large. To minimize the worst-case additive error term from the cases, we will split the cases into whether
f̂(Gℓ ∪ o1) is larger than or equal to 1

2f(OPT)− (K̃ − 1
2 + γ)ϵ, or max{0, ρ̂(gℓ+1|Gℓ}(B − c(o1)) is larger than or equal

to 1
2f(OPT)− (K̃ − 1

2 − γ)ϵ, where γ will be selected later to minimize the additive error δ coefficient.

Case 1: If f̂(Gℓ ∪ o1) ≥ 1
2f(OPT) − (K̃ − 1

2 + γ)ϵ, recall that aℓ as the element selected to augment with the greedy
solution Gℓ, aℓ = argmaxe∈Ω\Gℓ

f̂(e|Gℓ), then

f̂(Gℓ ∪ aℓ) ≥ f̂(Gℓ ∪ o1)

≥ 1

2
f(OPT)−

(
K̃ − 1

2
+ γ

)
ϵ. (41)

The set S that the algorithm selects in the end will be the set with the highest mean (based on surrogate function f̂ ) among
all those evaluated (both sets in the greedy process and their augmentations). Also, its observed value f̂(Sℓ) is at most ϵ
above f(S). Thus

f(S) ≥ f̂(S)− ϵ

≥ f̂(Gℓ ∪ aℓ)− ϵ

≥ 1

2
f(OPT)−

(
K̃ +

1

2
+ γ

)
ϵ. (using (41))

Case 2(a): If max{0, ρ̂(gℓ+1|Gℓ)}(B − c(o1)) ≥ 1
2f(OPT)− (K̃ − 1

2 − γ)ϵ and ρ̂(gℓ+1|Gℓ) > 0, rearranging we have

ρ̂(gℓ+1|Gℓ) ≥
f(OPT)

2(B − c(o1))
−

(K̃ − 1
2 − γ)ϵ

B − c(o1)
. (42)

Then,

f̂(Gℓ) = f̂(Gℓ)− f̂(Gℓ−1) + f̂(Gℓ−1) + · · · − f̂(G1) + f̂(G1)− f̂(G0) (telescoping sum; G0 = ∅, f̂(G0) := 0)

=

l−1∑
j=1

f̂(gj+1|Gj) (Definition of f̂(·|·))

=

l−1∑
j=0

ρ̂(gj+1|Gj)c(gj+1) (Definition of ρ̂(·|·))

≥
l−1∑
j=0

ρ̂(gℓ+1|Gj)c(gj+1) (greedy choice of gj+1)

≥
l−1∑
j=0

(
ρ(gℓ+1|Gj)−

2ϵ

c(gℓ+1)

)
c(gj+1)

≥
l−1∑
j=0

(
ρ(gℓ+1|Gℓ)−

2ϵ

c(gℓ+1)

)
c(gj+1) (submodularity of f )

=

(
ρ(gℓ+1|Gℓ)−

2ϵ

c(gℓ+1)

)
c(Gℓ) (simplifying)

≥
(
ρ̂(gℓ+1|Gℓ)−

4ϵ

c(gℓ+1)

)
c(Gℓ)

≥ ρ̂(gℓ+1|Gℓ)c(Gℓ)− 4βϵ. (43)
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Recalling that ℓ is chosen as the index of the last greedy set that has a remaining budget as big as the cost of the heaviest
element in OPT, c(Gℓ) ≤ B − c(o1) < c(Gℓ+1),

f̂(Gℓ+1) = f̂(Gℓ ∪ gℓ+1)

= f̂(Gℓ) + c(gℓ+1)ρ̂(gℓ+1|Gℓ)

≥
(
ρ̂(gℓ+1|Gℓ)c(Gℓ)− 4βϵ

)
+ c(gℓ+1)ρ̂(gℓ+1|Gℓ) (from (43))

= ρ̂(gℓ+1|Gℓ)c(Gℓ+1)− 4βϵ (simplifying)

≥
1
2f(OPT)− (K̃ − 1

2 − γ)ϵ

B − c(o1)
c(Gℓ+1)− 4βϵ (case 2 condition)

≥ 1

2
f(OPT)− (K̃ − 1

2
− γ)ϵ− 4βϵ (ℓ chosen so that c(Gℓ+1) > B − c(o1))

=
1

2
f(OPT)−

(
K̃ − 1

2
− γ + 4β

)
ϵ. (44)

The set S that the algorithm selects at the end of the exploitation phase will be the set with the highest empirical mean
among all those explored (both sets in the greedy process and augmented sets). Thus its empirical mean is at most ϵ above
f(S).

f(S) ≥ f̂(S)− ϵ

≥ f̂(Gℓ+1)− ϵ

≥ 1

2
f(OPT)−

(
K̃ +

1

2
− γ + 4β

)
ϵ. (using (44))

Case 2(b): If max{0, ρ̂(gℓ+1|Gℓ)}(B − c(o1)) ≥ 1
2f(OPT)− (K̃ − 1

2 − γ)ϵ and ρ̂(gℓ+1|Gℓ) ≤ 0, then the set S that the
algorithm selects at the end satisfies

f(S) ≥ 0

≥ 1

2
f(OPT)− (K̃ − 1

2
− γ)ϵ (Case 2(b) condition)

≥ 1

2
f(OPT)− (K̃ − 1

2
− γ + 4β)ϵ.

Thus, combining cases 1 and 2, and selecting γ = 2β, the additive 1
2 -approximation error we get by the modified

Greedy+Max algorithm is at most ( 12 + K̃ + 2β)ϵ, which concludes the proof.

C.4. Proof for Robustness of GREEDY+

In this section, we prove Proposition 6.5 in Section 6 of the main paper. The following statements, Lemmas C.1,C.2 and C.4,
and their proofs are adapted from the proof of 1

2 (1−
1
e ) approximation ratio in the offline setting (Khuller et al., 1999) using

a value oracle. (Krause and Guestrin, 2005) adapted the proof of (Khuller et al., 1999) to an offline setting where the greedy
process relies on an exact oracle to evaluate individual element values and to compare the best individual element to the set
output by the greedy process, but use an inexact value oracle (within ϵ of the correct value) to evaluate marginal densities.

The main differences arise from (i) the algorithms of (Khuller et al., 1999; Krause and Guestrin, 2005) evaluate densities
before checking for feasibility,2 leading to different definitions of the augmented greedy sequence, necessitating us to use
more care to show analogous properties, (ii) exact value oracles for best individual elements and for selecting OPT are used
in (Khuller et al., 1999; Krause and Guestrin, 2005), simplifying work to conclude the final bound for the approximation
ratio α = 1

2 (1−
1
e ) and leading to a different δ.

2As noted in Footnote 1, concentration of estimates (i.e. the surrogate f̂ ) used by C-ETC in the bandit setting will only be for evaluated
subsets, which by restriction will all be feasible.
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Recall that Proposition 6.5 in Section 6 of the main paper states that GREEDY+ is a ( 12 (1 −
1
e ), 2 + K̃ + β)-robust

approximation algorithm for submodular maximization problem under a knapsack constraint.

We define Gi and gi the same as previous section. Recall that the greedy process (using a surrogate f̂ ) produces a nested
sequence of subsets ∅ = G0 ⊂ G1 ⊂ · · · ⊂ GL, where L denotes the cardinality of the set final output of the greedy process.
For the proof, we describe the greedy process as running for L+ 1 iterations, though on the final iteration no elements are
added.

For any action Gi−1 ∪ a evaluated in iteration i of the greedy process, its marginal gains are upper bounded by that of the
best subset based on surrogate function f̂ ,

f(Gi−1 ∪ a)− f(Gi−1)− 2ϵ

c(a)
≤ f̂(Gi−1 ∪ a)− f̂(Gi−1)

c(a)

≤ f̂(Gi−1 ∪ gi)− f̂(Gi−1)

c(gi)
(gi selected by greedy rule based on f̂ )

≤ f(Gi−1 ∪ gi)− f(Gi−1) + 2ϵ

c(gi)

=
f(Gi)− f(Gi−1) + 2ϵ

c(gi)
, (45)

where (45) just uses the definition of Gi ← Gi−1 ∪ gi. We will use (45) to lower bound the true marginal gains (i.e. in terms
of f ) achieved for each iteration of the greedy process.

Let ℓ ∈ {1, . . . , L + 1} denote the first iteration for which there was an element a′ ∈ Ω\Gℓ−1 whose cost exceeds the
remaining budget (c(a′) + c(Gℓ−1) > B) (thus subset Gℓ−1 ∪ a′ was not sampled), yet whose marginal density was higher
than the marginal density of the chosen element gℓ up to ±2ϵ normalized by the cost, specifically, for ℓ ≤ L,

f(Gℓ−1 ∪ a′)− f(Gℓ−1)− 2ϵ

c(a′)
>

f(Gℓ−1 ∪ aℓ)− f(Gℓ−1) + 2ϵ

c(ar)
. (46)

If there is no such iteration ℓ < L+ 1, then for ℓ = L+ 1, we take the element a′ maximizing the term on the left hand side
of (46),

a′ = argmax
a∈Ω\Gℓ−1

f(Gℓ−1 ∪ a)− f(Gℓ−1)− 2ϵ

c(a)
. (47)

Likewise, if there is more than one element satisfying (46) for some (earliest) iteration r, then we also take the maximizer
(47).

We define an “augmented” greedy sequence of length ℓ which matches the greedy sequence up to the set of cardinality ℓ,
where the element a′ is selected despite violating the budget,

{G̃0 = G0 = ∅, G̃1 = G1, . . . , G̃ℓ−1 = Gℓ−1, G̃ℓ = Gℓ−1 ∪ {a′}} (48)

and correspondingly enumerate the elements of G̃ℓ in the order they were selected,

{g̃1 = g1, . . . , g̃ℓ−1 = gℓ−1, g̃ℓ = g′}. (49)

We first prove the following lemma, bounding the marginal gains of the augmented greedy sequence {G̃0, . . . , G̃ℓ}.
Lemma C.1. For all i ∈ {1, 2, · · · , ℓ}, the following inequality holds:

f(G̃i)− f(G̃i−1) ≥
c(g̃i)

B

[
f(OPT)− f(G̃i−1)

]
− 2

(
1 +

K̃c(g̃i)

B

)
ϵ.
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Proof. Set any i ∈ {1, 2, · · · , ℓ}. Let {v1, v2, . · · · , vk} = OPT \ G̃i−1. Note that by construction (48), we have
G̃i−1 = Gi−1.

The difference f(OPT)− f(G̃i−1) can be bounded by the marginal gains of elements in the set difference,

f(OPT)− f(G̃i−1) ≤
k∑

j=1

[
f(G̃i−1 ∪ vj)− f(G̃i−1)

]
(Fact 1)

=

k∑
j=1

[
f(G̃i−1 ∪ vj)− f(G̃i−1)− 2ϵ+ 2ϵ

]

=

k∑
j=1

c(vj)
f(G̃i−1 ∪ vj)− f(G̃i−1)− 2ϵ

c(vj)
+ 2kϵ

≤
k∑

j=1

c(vj)
f(G̃i−1 ∪ g̃i)− f(G̃i−1) + 2ϵ

c(g̃i)
+ 2kϵ (50)

=
k∑

j=1

c(vj)
f(G̃i)− f(G̃i−1) + 2ϵ

c(g̃i)
+ 2kϵ (51)

where (50) holds by following. We consider four cases, depending on whether or not f̂(Gi−1 ∪ vj) was evaluated during
the iteration i.

• Case 1 (f̂(Gi−1 ∪ vj) was evaluated and i < ℓ): At iteration i (necessarily i ≤ L since no subsets were evaluated
in iteration L + 1) with current greedy set Gi−1, adding the element vj to the current greedy set was feasible,
c(vj) ≤ B − c(Gi−1). Then GREEDY+ would have evaluated f̂(Gi−1 ∪ vj). Since vj was not selected, the chosen
element gi = Gi\Gi−1 must have had a higher surrogate density f̂(Gi−1 ∪ vj) > f̂(Gi−1 ∪ gi), so for i < ℓ, for
which g̃i = gi by construction (49), (45) implies (50).

• Case 2 (f̂(Gi−1 ∪ vj) was evaluated and i = ℓ): By the reasoning in the previous case, for the item aℓ chosen at
iteration ℓ by the greedy process (due to feasibility and having the highest surrogate density), we still have the bound
(45) on true values, which coupled with our specific construction of g̃ℓ (46) means

f(G̃ℓ−1 ∪ vj)− f(G̃ℓ−1)− 2ϵ

c(vj)
≤ f(G̃ℓ−1 ∪ ar)− f(G̃ℓ−1) + 2ϵ

c(ar)
(by (45))

<
f(G̃ℓ−1 ∪ g̃r)− f(G̃ℓ−1)− 2ϵ

c(g̃r)
(by construction (46))

<
f(G̃ℓ−1 ∪ g̃r)− f(G̃ℓ−1) + 2ϵ

c(g̃r)
.

• Case 3 (f̂(Gi−1 ∪ vj) was not evaluated and i < ℓ): At iteration i < ℓ ≤ L+ 1 with the current greedy set Gi−1,
adding the element vj to the current greedy set was not feasible, c(vj) > B − c(Gi−1). By construction of the
augmented greedy sequence, only at iteration ℓ was there an infeasible element whose surrogate marginal density
satisfied the inequality (46). Thus, for iterations i < ℓ, Gi−1 = G̃i−1 and Gi = G̃i, so (50) holds.

• Case 4 (f̂(Gi−1 ∪ vj) was not evaluated and i = ℓ): For iteration i = ℓ, with current greedy set Gi−1, the augmented
greedy sequence construction implies (50). Namely, with i = ℓ,

f(G̃ℓ−1 ∪ vj)− f(G̃ℓ−1)− 2ϵ

c(vj)
<

f(G̃ℓ−1 ∪ g̃r)− f(G̃ℓ−1)− 2ϵ

c(g̃r)
(by (47))

<
f(G̃ℓ−1 ∪ g̃r)− f(G̃ℓ−1) + 2ϵ

c(g̃r)
.
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menaing (50) holds.

We now continue lower bounding f(OPT)− f(G̃i−1),

f(OPT)− f(G̃i−1) ≤

 k∑
j=1

c(vj)
f(G̃i)− f(G̃i−1) + 2ϵ

c(g̃i)

+ 2kϵ (copying (51))

=

 k∑
j=1

c(vj)

 f(G̃i)− f(G̃i−1) + 2ϵ

c(g̃i)
+ 2kϵ

≤ B
f(G̃i)− f(G̃i−1) + 2ϵ

c(g̃i)
+ 2kϵ (OPT is feasible, so

∑k
j=1 c(vj) ≤ B)

≤ B

c(g̃i)

[
f(G̃i)− f(G̃i−1)

]
+ 2

[
B

c(g̃i)
+ K̃

]
ϵ. (rearranging; k ≤ K̃)

Multiplying both sides by c(g̃i)
B and rearranging finishes the proof.

We unravel the recurrence in Lemma C.1 to lower bound f(G̃i).

Lemma C.2. For all i ∈ {1, 2, · · · , ℓ},

f(G̃i) ≥

1− i∏
j=1

(1− c(g̃j)

B
)

 f(OPT)− 2(β + K̃)ϵ.

Remark C.3. The steps to unravel the recurrence to obtain the first term (coefficient of f(OPT)) is the same as the proof for
the analogous result in the offline setting (Khuller et al., 1999). The second term (with ϵ) is due to working with marginal
densities of a surrogate function f̂ . The basic steps for working with that second term is the same as (Krause and Guestrin,
2005), though we use a looser bound β; in (Krause and Guestrin, 2005) we think there may be a mistake in applying the
induction step (with “c(Xi)” fixed for different i in the proof), though they were loosely bounded with β later on.

Proof. The proof will follow by induction. We first show the base case i = 1 using Lemma C.1.

f(G̃1) = f(G̃1)− f(G̃0) (f is normalized; G̃0 = ∅)

≥ c(g̃1)

B

[
f(OPT)− f(G̃0)

]
− 2

(
1 +

K̃c(g̃1)

B

)
ϵ (using Lemma C.1)

=

[
1−

(
1− c(g̃1)

B

)]
f(OPT)− 2

(
1 +

K̃c(g̃1)

B

)
ϵ (52)

where (52) follows from rearranging. For the second term in (52), using that

1 +
K̃c(g̃1)

B
≤ B

c(g̃1)

(
1 +

K̃c(g̃1)

B

)
(since B

c(g̃1)
≥ 1)

=
B

c(g̃1)
+ K̃

≤ B

cmin
+ K̃

= β + K̃, (53)
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then

f(G̃1) ≥
[
1−

(
1− c(g̃1)

B

)]
f(OPT)− 2

(
1 +

K̃c(g̃1)

B

)
ϵ (copying (52))

≥
[
1−

(
1− c(g̃1)

B

)]
f(OPT)− 2(β + K̃)ϵ. (using (53))

This completes the base case of i = 1.

We next consider i > 1. Unraveling the recurrence shown in Lemma C.1,

f(G̃i) = f(G̃i)− f(G̃i−1) + f(G̃i−1)

≥

[
c(g̃i)

B

(
f(OPT)− f(G̃i−1)

)
− 2

(
1 +

K̃c(g̃i)

B

)
ϵ

]
+ f(G̃i−1) (using Lemma C.1)

=

[
c(g̃i)

B

]
f(OPT)− 2

(
1 +

K̃c(g̃i)

B

)
ϵ+

[
1− c(g̃i)

B

]
f(G̃i−1) (rearranging)

=

[
1− (1− c(g̃i)

B
)

]
f(OPT)− 2

(
1 +

K̃c(g̃i)

B

)
ϵ

+

[
1− c(g̃i)

B

]
f(G̃i−1) (rearranging)

≥
[
1− (1− c(g̃i)

B
)

]
f(OPT)− 2

(
1 +

K̃c(g̃i)

B

)
ϵ

+

(
1− c(g̃i)

B

)1−
i−1∏
j=1

(1− c(g̃j)

B
)

 f(OPT)− 2(β + K̃)ϵ

 (induction step)

=

1− (1− c(g̃i)

B
) +

(
1− c(g̃i)

B

)1−
i−1∏
j=1

(1− c(g̃j)

B
)

 f(OPT)

− 2

(
1 +

K̃c(g̃i)

B
+

(
1− c(g̃i)

B

)
(β + K̃)

)
ϵ (rearranging)

=

1− i∏
j=1

(1− c(g̃j)

B
)

 f(OPT)

− 2

(
1 + β − β

c(g̃i)

B
+ K̃

)
ϵ. (54)

For the second term in (54), using that

β
c(g̃i)

B
=

B

cmin

c(g̃i)

B
(def. of β)

=
c(g̃i)

cmin

≥ 1, (55)

then

−2
(
1 + β − β

c(g̃i)

B
+ K̃

)
ϵ = −2

(
β + K̃

)
ϵ+ 2

(
β
c(g̃i)

B
− 1

)
ϵ (rearranging)

≥ −2
(
β + K̃

)
ϵ. (using (55))

Applying this to (54) completes the proof.
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The inequality in Lemma C.2 for the augmented greedy set of cardinality ℓ can be further simplified. We will use the
following observations.
Lemma C.4. The following inequality holds:

f(G̃ℓ) ≥ (1− 1

e
)f(OPT)− 2(β + K̃)ϵ.

Proof. Applying i = ℓ to Lemma C.2 and bounding the coefficient for f(OPT),

f(G̃ℓ) ≥

1− ℓ∏
j=1

(1− c(g̃j)

B
)

 f(OPT)− 2(β + K̃)ϵ

≥

1− ℓ∏
j=1

(1− c(g̃j)

c(G̃ℓ)
)

 f(OPT)− 2(β + K̃)ϵ (by construction, c(G̃ℓ) > B)

≥

1− ℓ∏
j=1

(1− c(G̃ℓ)/ℓ

c(G̃ℓ)
)

 f(OPT)− 2(β + K̃)ϵ (using Fact 2)

=

[
1− (1− 1

ℓ
)ℓ
]
f(OPT)− 2(β + K̃)ϵ (simplifying)

≥
(
1− 1

e

)
f(OPT)− 2(β + K̃)ϵ. (using Fact 3)

Using the aforementioned lemmas, we are now ready to complete the proof for Theorem 3 (robustness of GREEDY+
algorithm). We will bound the value of set GL using the results on the augmented greedy set (48) of cardinality ℓ, and in
turn bound the value of the set S, the final output of GREEDY+.

Recall that GREEDY+ chooses the set S to be either the best individual element (based on f̂ ) a∗ ← argmaxe∈Ω f̂(e) or the
output of the greedy process GL. Let aOPT = argmaxe∈Ω f(e) denote the element with the highest value under f . Then

f(a∗) ≥ f̂(a∗)− ϵ

≥ f̂(aOPT)− ϵ (by definition of a∗)

≥ f(aOPT)− 2ϵ. (56)

By construction (48), G̃ℓ includes one more element a′ than G̃ℓ−1 (and a′ maximizes (47)). By submodularity, the marginal
gain of a′ is bounded by f(a′) and in turn by the best individual element based on surrogate function f̂ ,

f(G̃ℓ−1) + f(aOPT) ≥ f(G̃ℓ−1) + f(a′) (by definition of aOPT)

≥ f(G̃ℓ−1) +
[
f(G̃ℓ−1 ∪ a′)− f(G̃ℓ−1)

]
(by submodularity)

= f(G̃ℓ−1 ∪ a′)

= f(G̃ℓ) (by construction (48))

≥ (1− 1

e
)f(OPT)− 2(β + K̃)ϵ, (57)

where (57) follows from Lemma C.4.

Also by construction (48), the greedy and augmented greedy processes match up to and including the set of cardinality ℓ− 1,
so

f(GL) ≥ f(Gℓ−1) (monotonicity)

= f(G̃ℓ−1). (By construction (48))
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Thus,

f(GL) + f(aOPT) ≥ f(G̃ℓ−1) + f(aOPT)

≥ (1− 1

e
)f(OPT)− 2(β + K̃)ϵ. (using (57))

At least one of f(GL) and f(aOPT) is at least half of the value of the right hand side,

max{f(GL), f(a
OPT)} ≥ 1

2
(1− 1

e
)f(OPT)− (β + K̃)ϵ (58)

Thus, for the chosen set S

f(S) ≥ f̂(S)− ϵ

= max{f̂(GL), f̂(a
∗)} − ϵ

≥ max{f̂(GL), f̂(a
OPT)} − ϵ (a∗ is the element with largest f̂ value)

≥ max{f(GL)− ϵ, f(aOPT)− ϵ} − ϵ (element-wise dominance)

= max{f(GL), f(a
OPT)} − 2ϵ

≥ 1

2
(1− 1

e
)f(OPT)− (β + K̃)ϵ− 2ϵ (from (58))

=
1

2
(1− 1

e
)f(OPT)− (2 + β + K̃)ϵ.

which completes the proof.

C.5. Proof for Robustness of PARTIALENUMERATION

Now we analyze the PARTIALENUMERATION algorithm for submodular maximization under a knapsack constraint
proposed in Sviridenko (2004); Khuller et al. (1999). Recall that Proposition 6.3 in Section 6 of the main paper states
PARTIALENUMERATION is a (1− 1

e , 4 + 2K̃ + 2β)-robust approximation algorithm for submodular maximization under a
knapsack constraint.

Proof. Assume |OPT| > 3, otherwise the algorithm finds a (1, 2)-robust approximation, so it is also a (1− 1
e , 2(K̃ + β))-

robust approximation for non-trivial cases where K̃ ≥ 1 and β ≥ 1. Enumerate the elements of the optimal solution as
OPT = {Y1, · · · , Ym}, corresponding to the order they would be selected by the simple greedy algorithm (iteratively
selecting the element with the largest marginal gain, not the largest marginal density)

Yi+1 = argmax
Y ∈OPT

f({Y1, · · · , Yi, Y })− f({Y1, · · · , Yi}), (59)

and let R = {Y1, Y2, Y3}. Consider the iteration where the algorithm considers R. Define the function

f ′(A) = f(A ∪R)− f(R). (60)

f ′ is a non-decreasing submodular set function with f ′(∅) = 0, and the optimal solution (with budget B− c(R)) is OPT\R
since for any set S with cost c(S) ≤ B − c(R),

f ′(OPT \R) = f(OPT ∪R)− f(R) (def of f ′)
= f(OPT)− f(R) (R ⊆ OPT by construction)
≥ f(S ∪R)− f(R)

= f ′(S).

Hence we can apply GREEDY+ algorithm to f ′ (based on noisy evaluations). Let gℓ be the first element from OPT\R which
could not be added due to budget constraints, and let A = {g1, · · · , gℓ−1} be first ℓ− 1 elements selected by GREEDY+
algorithm. Let G = A ∪R. Using Lemma C.4, we get

f ′(A ∪ gℓ) ≥ (1− 1

e
)f ′(OPT \R)− 2(β′ + K̃ ′)ϵ,
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where β′ = B−c(R)
c′min

, K̃ ′ = min{n − 3, β′} and c′min = mine∈Ω\R c(e). Simple calculation can show that β′ ≤ β and

K̃ ′ ≤ K̃. Thus,

f ′(A ∪ gℓ) ≥ (1− 1

e
)f ′(OPT \R)− 2(β + K̃)ϵ,

From the definition of f ′, we have f(G) = f ′(A) + f(R). Let ∆ = f ′(A ∪ gℓ)− f ′(A). We have

f ′(A) + ∆ ≥ (1− 1

e
)f ′(OPT \R)− 2(β + K̃)ϵ. (61)

Further observe that elements in OPT are ordered that for all 1 ≤ i ≤ 3,

f({Y1, · · · , Yi})− f({Y1, · · · , Yi−1})
≥f({Y1, · · · , Yi−1, gℓ})− f({Y1, · · · , Yi−1}) (ordering rule)
≥f(R ∪A ∪ gℓ)− f(R ∪A) ({Y1, · · · , Yi−1} ⊆ R when 1 ≤ i ≤ 3 and submodularity)
=f(R ∪A ∪ gℓ)− f(R)− (f(R ∪A)− f(R))

=f ′(A ∪ gℓ)− f ′(A)

=∆.

By telescoping sum, f(R) ≥ 3∆. Now we get

f(G) = f(R) + f ′(A)

≥ f(R) + (1− 1

e
)f ′(OPT \R)− 2(β + K̃)ϵ−∆

≥ f(R) + (1− 1

e
)f ′(OPT \R)− 2(β + K̃)ϵ− f(R)/3

≥ (1− 1

3
)f(R) + (1− 1

e
)f ′(OPT \R)− 2(β + K̃)ϵ

≥ (1− 1

e
) [f ′(OPT \R) + f(R)]− 2(β + K̃)ϵ (e ≤ 3)

= (1− 1

e
)f(OPT)− 2(β + K̃)ϵ. (definition of f ′)

The output of the algorithm is not necessarily G because the values of the evaluated triplets are based on surrogate function
f̂ . Denote O as the output of the algorithm and denote G′ as the best evaluated set (with respect to f̂ ) with size ℓ+ 2 (same
as G). We must have that f̂(G′) ≥ f̂(G). Also denote the final set (until violating budget) continuing G′ as G′′. We have,

f(O) ≥ f̂(O)− ϵ

≥ f̂(G′′)− ϵ (selection rule of the algorithm)
≥ f(G′′)− 2ϵ

≥ f(G′)− 2ϵ (G′ ⊆ G′′ and monotonicity of f )

≥ f̂(G′)− 3ϵ

≥ f̂(G)− 3ϵ

≥ f(G)− 4ϵ

≥ (1− 1

e
)f(OPT)− (4 + 2β + 2K̃)ϵ,

finishing the proof.

D. Implementation of Algorithm OGo

In this section we describe implementation details and parameter selection for OGo algorithm (Streeter and Golovin, 2008).

The choice of exploration probability is given by the original paper:γ = n1/3β
(

log(n)
T

)1/3
, where β = B/cmin. Note that
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Algorithm 2 Online Greedy for Opaque Feedback Model (OGo)

Input: set of base arms Ω, horizon T , cost for each arm c(a), budget B

Initialize n← |Ω|, cmin ← mina∈Ω{c(a)}, β ← B
cmin

, γ ← n1/3β
(

log(n)
T

)1/3
, ϵ←

√
β log(n)

γT

Initialize ω1 ← ones(β, n)
for t ∈ [1, · · · , T ] do
St ← ∅
l← zeros(β, n) // loss
Randomly sample a value ξ ∼ Uniform([0, 1])
if ξ ≤ γ then
e ∼ Uniform({1, · · · , β})
for i ∈ [1, · · · , e− 1] do

// For experts before e, exploit
Select an arm a with probability ωt[i,a]∑

ωt[i,:]
, re-sample if a ∈ St

St ← St ∪ {a} with probability cmin

c(a) ; St ← St−1 otherwise
end for
a ∼ Uniform({1, · · · , n}\St) // For expert e, explore
St ← St ∪ {a}
Play action St, observe ft(St)

Update l[i, j]← cminft(St)
c(a) for all i = e and j ̸= a // Feed cminft(St)

c(a) back to expert e associated with action a

Update ωt+1[i, j]← ωt[i, j] exp(−ϵl[i, j]) for all pairs of i and j
else

// Exploitation with probability 1− γ
for i ∈ [1, · · · , β] do

// For experts before e, exploit
Select arm a with probability ωt[i,a]∑

ωt[i,:]
, re-sample if a ∈ St

St ← St ∪ {a} with probability cmin

c(a) ; St ← St−1 otherwise
end for
Play action St, observe ft(St)
ωt+1[i, j]← ωt[i, j] // Since feeding back 0 to all expert-action payoffs, loss is 0, no update

end if
end for

in the original paper, B is used instead of β, because they assume the minimum cost is 1. Here we generalize it to arbitrary
non-negative costs. ϵ is the learning rate for Randomized Weighted Majority (WMR) expert algorithm (Arora et al., 2012).

It is chosen by setting the derivative of regret upper bound to zero, which is ϵ =
√

log(n)
Te

, where Te is the time spent on

updating expert e. Since it explores with probability γ, and there are β expert algorithms, we have Te ≈ γT
β . Thus we pick

ϵ =
√

β log(n)
γT . In experiments, there are many cases the chosen γ is large or even larger than 1, so we cap the probability of

exploring γ by 1/2 to avoid exploring too much. Note that unlike a hard budget in our setting, for OGo, it only requires the
budget to be satisfied in expectation, so in general we might choose sets over budget. Algorithm 2 is the pseudo code for
implementation details of OGo.

E. Comments on Lower bounds of Submodular CMAB
For the setting we explore in this paper, with stochastic (or even adversarial) knapsack-constrained combinatorial MAB
with submodular expected rewards and just bandit feedback, it remains an open question if Õ(T 1/2) expected cumulative
α-regret is possible (ignoring n and β). Both (Streeter and Golovin, 2008) and (Niazadeh et al., 2021) analyze lower bounds
for the adversarial setting. However, (Streeter and Golovin, 2008) obtain bounds for 1-regret (it is NP-hard in offline setting
to obtain an approximation ratio better than 1− 1/e). (Niazadeh et al., 2021) obtain Ω̃(T 2/3) lower bounds for the harder
setting where feedback is only available during “exploration” rounds chosen by the agent, who incurs an associated penalty.
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F. Dealing with Small Time Horizons in Experiments
In Section 6, we used N = K̃n as an upper bound on the number of function evaluations for both C-ETC-K and C-ETC-Y,
where n is the number of base arms and K̃ is an upper bound of the cardinality of any feasible sets. When the time horizon
T is small, it is possible that the exploration phase will not finish due to the formula being optimized for m (the number of
plays for each action queried by A) uses a loose bound on the exploitation time. When this is the case, we select the largest
m (closest to the formula) for which we can guarantee that exploration will finish. Recall that for C-ETC-Y and C-ETC-K,
the number of oracle calls can only be upper bounded in advance.

We first calculate m† using (26):

m† =

⌈
δ2/3T 2/3 log(T )1/3

2K̃2/3n2/3

⌉
.

Note that a (slightly tighter) upper bound on the number of subsets evaluated during the exploration phase (with K̃ bounding
the number of iterations of the greedy process) is

N ≤ n+ (n− 1) + · · ·+ (n− K̃ + 1)

=

(
n− K̃

2
+

1

2

)
K̃.

We compare
(
n− K̃

2 + 1
2

)
K̃m† with T .

• Case 1. If
(
n− K̃

2 + 1
2

)
K̃m† < T , C-ETC can finish exploring. We select m = m†.

• Case 2. If
(
n− K̃

2 + 1
2

)
K̃m† ≥ T , it is possible that the algorithm cannot finish exploring. In this case, we will

find a new m, so that the exploration can be guaranteed to finish. We select the largest m (closest to m†) so that the
exploration time is upper bounded by T ,

m =
T(

n− K̃
2 + 1

2

)
K̃

.

G. Basic Facts
Fact 1. For a monotonically non-decreasing submodular set function f defined over subsets of Ω, we have for arbitrary
subsets A,B ⊆ Ω,

f(B)− f(A) ≤
∑

j∈B\A

[f(A ∪ {j})− f(A)] .

Fact 2. (Khuller et al., 1999) For x1, · · · , xn ∈ R+ such that
∑

xi = A, the function [1 −
∏n

i=1(1 −
xi

A )] achieves its
minimum at x1 = x2 = · · · = xn = A/n.
Fact 3. For k ≥ 1,

1−
(
1− 1

k

)k

≥ 1− 1

e
.

H. Expanded Discussions of Other Related Works
H.1. Relation to (Streeter and Golovin, 2008)

In (Streeter and Golovin, 2008), an offline iterative greedy algorithm was adapted for the knapsack constraint. In addition to
the differences between adversarial and stochastic CMAB problem formulations and regret definitions discussed in Section 5,
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there are two key differences between the regret bounds of OGo in (Streeter and Golovin, 2008) and the regret bounds for
the proposed adaptations C-ETC-B, C-ETC-Y, C-ETC-K, C-ETC-S making them incomparable.

The first key difference is that Streeter and Golovin (2008) only adapted an offline iterative greedy algorithm that in general
does not achieve a constant approximation. The algorithm is a natural extension of the offline algorithm proposed by
Nemhauser et al. (1978) for cardinality constraints. It iteratively adds elements based on density (marginal gain divided
by cost). However, Khuller et al. (1999) implicitly showed that unless the greedy procedure happens to use up the whole
budget exactly, which in general does not happen, the procedure will not achieve a constant approximation ratio. The offline
algorithms we adapted, (Sviridenko, 2004; Yaroslavtsev et al., 2020), all use that iterative greedy procedure as a sub-routine,
but then augment the output with elements based on values (instead of densities). While the iterative greedy subroutine
is straightforward to adapt like OGo was (with a caveat described below as the second difference), it is unclear how the
additional augmentation should be implemented. One possibility would be to add additional expert algorithms but they
would not be sequential (the augmentations are distinct/independent of each other).

The second key difference is that while we considered “hard” knapsack constraints (i.e., every action/subset must be within
budget), OGo was only designed to handle knapsack constraints in expectation, where the expectation is over the algorithm’s
randomness. More specifically, for each round, the algorithm constructs the actions by sampling base arms one by one based
on some probabilities, so that overall the expected budget used is B. That means that OGo is allowed to select actions whose
cost is larger than the budget B.

In (Golovin et al., 2014), the authors propose an algorithm for adversarial setting with submodular rewards when there is a
matroid constraint (neither knapsack nor matroid constraints are special cases of the other).

H.2. Relation to (Niazadeh et al., 2021)

For the particular problem of submodular CMAB with knapsack constraints, we do not believe Niazadeh et al. (2021)’s
results hold directly because of the required sub-problem structure:

• First, Niazadeh et al. (2021)’s framework requires a known number of sub-problems.

• Second, efficient offline approximation algorithms for knapsack-constrained submodular maximization do not have the
“purely” iterative-greedy sub-problem structure required by Niazadeh et al. (2021)’s framework.

In the following, we explain these two points in detail. Before we discuss those points, we would also like to point out that
Niazadeh et al. (2021)’s framework is for adversarial problems while ours is for stochastic problems; the two settings (and
subsequently frameworks) are different from one another and cannot be specialized to the other. Thus, our novelty is not just
in proposing a framework through which example offline algorithms can be adapted which were not adaptable under theirs,
but in proposing a framework for stochastic problems where only bandit feedback (the reward) is available. Finally, we also
note that the general regret guarantees of our framework are different than those of Niazadeh et al. (2021)’s; that may in part
be due to different problem setups.

1. Niazadeh et al. (2021)’s framework requires the offline algorithm to have a known number of sub-problems (iterations).
For offline approximation algorithms for submodular maximization with knapsack constraints, the number of iterations
(corresponding to the number of elements added to the greedy set) is not known ahead of time. It varies with different
problem instances. It can be upper-bounded (by B/cmin), but for certain problem instances the greedy set chosen
could be a single element and for other instances it could be a large cardinality set. A potential, albeit partial, “fix”
that we believe could be done for iterative greedy offline approximation algorithms where the number of iterations is
upper-bounded but not known a priori is to extend Niazadeh et al. (2021)’s framework for weakened constraints, namely
that the constraint is only required to be met in expectation. We believe this could be done since Streeter and Golovin
(2008)’s adaptation of the standard greedy algorithm for cardinality-constrained submodular maximization was similar
to (Niazadeh et al., 2021)’s adaptation of the same algorithm. For knapsack problems, Streeter and Golovin (2008)
adapted an offline iterative greedy algorithm but only considered satisfying the knapsack constraint in expectation.
They take an upper bound on the number of iterations and converted each (potential) iteration into an experts algorithm.
For each experts algorithm, the adaptation included an element with some probability so that the expected size was the
budget. We anticipate a similar modification could be done for Niazadeh et al. (2021)’s framework as well.
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2. Niazadeh et al. (2021)’s framework requires the offline algorithm to have an iterative greedy structure, where the output
of the i-th subproblem is a feasible solution that is fed into the (i+ 1)-th subproblem. However, unlike the case for the
cardinality constraint, the structures of the offline algorithms for knapsack-constrained submodular maximization are
not “pure” iterative greedy. They do all employ an iterative greedy sub-routine that adds elements based on density
(marginal value divided by cost), but that iterative greedy sub-routine alone does not achieve a constant approximation
(Khuller et al., 1999). Offline approximation algorithms for this problem that achieve constant approximations all
employ additional steps.

• For example, Yaroslavtsev et al. (2020)’s procedure takes the output of the iterative greedy procedure and then
augments it with additional elements. It may be possible to implement this second sub-routine as separate
sub-problems (each adapted using expert algorithms), but these new subproblems would not be part of a chain
of subproblems, the output of one feeding into the next. And these extra sub-problems would have different
characteristics than those in the main iterative-greedy chain.

• For Sviridenko (2004)’s partial enumeration procedure, which is known to achieve the best approximation ratio of
1− 1/e but with high complexity, the solution is selected by re-running an iterative greedy sub-routine on every
feasible subset of size at most three. This algorithm might be revised as a purely iterative greedy procedure, such
as the first sub-problem selecting the subset of size as most three (so over

(
n
3

)
possible choices), but this will lead

to extremely slow update for the first sub-problem because of its dimension and bandit feedback, rendering it
impractical for the online setting.

H.3. Relation to (Li et al., 2022)

The offline algorithm proposed in (Li et al., 2022) outputs a feasible solution, but to select that solution, it queries the value
oracle for some subsets whose cost is above the budget. Specifically, in (Li et al., 2022), the first subroutine (used to bound
f(OPT)) in the algorithm is an iterative greedy approximation algorithm, with selected set S′ yielding an upper and lower
bound on the optimal value f(OPT), namely 1

4f(S
′) ≤ f(OPT) ≤ 2f(S′). Those bounds on the optimal value are then

used in later sub-routines.

That first sub-routine iterates over all elements once (in an arbitrary order) and adds element u if f(u|S′)
c(u) ≥

f(S′)
B , where

S′ is the currently selected set. There is no enforcement that S′ constructed in this sub-routine remains feasible (i.e., its
cost is under budget, c(S′) ≤ B). For example, consider f being linear (thus submodular), B = 2, f(1) = 1, f(2) = 2,
f(3) = 3, and c(u) = 1 for all u ∈ {1, 2, 3}, where the value u corresponds to the order the elements would be evaluated.
That subroutine will select {1, 2, 3} as the final set, with a total cost of 3 > B. Even if that sub-routine is modified to have
two passes, such as one pass to evaluate marginal values, then a second pass over them in order of decreasing marginal
values, that counter-example could be expanded by having all marginal values the same and then linear conditional values
with similar construction as the example above.

As mentioned, the sub-routine in question is only used for upper and lower bounding f(OPT). Looser upper and lower
bounds could be used so that only feasible sets are evaluated, namely maxu f(u) ≤ f(OPT) ≤ B

cmin
maxu f(u), but these

would not provide upper and lower bound approximations that are a constant fraction within f(OPT), which we expect
would lead to the computational complexity depending on the budget B and thus no longer being a “clean linear time”
algorithm.

H.4. Related work on Stochastic Submodular CMAB with Semi-Bandit Feedback

There are also a number of works that require additional “semi-bandit” feedback. For combinatorial MAB with submodular
rewards, a common type of semi-bandit feedback are marginal gains (Lin et al., 2015; Yue and Guestrin, 2011; Yu et al., 2016;
Takemori et al., 2020a), which enable the learner to take actions of maximal cardinality or budget, receive a corresponding
reward, and gain information not just on the set but individual elements. For the full-bandit setting we consider, to greedily
build a solution, we need to spend time taking small cardinality actions to estimate their quality, incurring regret.

I. Experiments with Song Recommendation
We test our methods on the application of song recommendation on the Million Song Dataset (Bertin-Mahieux et al., 2011).
In this problem, the agents aims to recommend a bundle of songs to users such that they are liked by as many users as
possible.
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(a) (b)

(c) (d)

Figure 2: Plots for song recommendation example. (a) and (b) are comparison results for cumulative regret as a function of
time horizon T . (c) and (d) are the moving average plot with window size 100 of instantaneous reward as a function of t.
The gray dashed lines in (a) and (b) represent y = aT 2/3 for various values of a for visual reference. The gray dashed lines
in (c) and (d) represent expected rewards for the action chosen by an offline greedy algorithm.

Data Set Description and Experiment Details

From the Million Song Dataset, we extract most popular 20 songs and 100 most active users. As in Yue and Guestrin (2011),
we model the system as having a set of topics (or genres) G with |G| = d and for each item e ∈ Ω, there is a feature vector
x(e) := (Pg(e))g∈G ∈ Rd that represents the information coverage on different genres. For each genre g, we define the
probabilistic coverage function fg(S) by 1−

∏
e∈S (1− Pg(e)) and define the reward function f(S) =

∑
i wifi(S) with

linear coefficients wi. The vector w := [w1, . . . , wd] represents user preference on genres. In calculating Pg(e) and w, we
use the same formula for calculating w̄(e, g) and θ∗ in Hiranandani et al. (2020). Like Takemori et al. (2020b), we define
the cost of a song by its length (in seconds). For each user, the stochastic rewards of set S are sampled from a Bernoulli
distribution with parameter f(S). For the total reward, we take the average over all users. When making the plots, we use
statistics taken from 10 runs.

Results and Discussion

Figures 2a and 2b show average cumulative regret curves for C-ETC-K (in blue), C-ETC-Y (in orange) and OGo (in
green) for different horizon T values when the budget constraint B is 500 and 800, respectively. Figures 2c and 2d are the
instantaneous reward plots over a single horizon T = 215, 443. Again, C-ETC significantly outperforms OGo for all time
horizons and budget considered. We again estimated the slopes for both methods on log-log scale plots. Over the horizons
tested, OGo’s cumulative regret (averaged over ten runs) has a growth rate above 0.85. The growth rates of C-ETC-K for
budgets 500 and 800 are 0.70 and 0.73, respectively. The growth rates of C-ETC-Y for budgets 500 and 800 are 0.70 and
0.71, respectively.
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