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Abstract
Despite the success of Random Network Distilla-
tion (RND) in various domains, it was shown as
not discriminative enough to be used as an uncer-
tainty estimator for penalizing out-of-distribution
actions in offline reinforcement learning. In this
paper, we revisit these results and show that, with
a naive choice of conditioning for the RND prior,
it becomes infeasible for the actor to effectively
minimize the anti-exploration bonus and discrim-
inativity is not an issue. We show that this lim-
itation can be avoided with conditioning based
on Feature-wise Linear Modulation (FiLM), re-
sulting in a simple and efficient ensemble-free
algorithm based on Soft Actor-Critic. We eval-
uate it on the D4RL benchmark, showing that it
is capable of achieving performance comparable
to ensemble-based methods and outperforming
ensemble-free approaches by a wide margin.

1. Introduction
In recent years, significant success has been achieved in ap-
plying Reinforcement Learning (RL) to challenging and
large-scale tasks such as Atari (Badia et al., 2020), Go
(Schrittwieser et al., 2020), Dota 2 (Berner et al., 2019),
and Minecraft (Baker et al., 2022). However, the online na-
ture of such RL algorithms makes it difficult to apply them
in the real world, where online collection of large amounts
of exploratory data may not be feasible for safety or fi-
nancial reasons. Offline Reinforcement Learning (Levine
et al., 2020) promises a more controllable and data-driven
approach, focusing on algorithms that can learn from a fixed,
pre-recorded dataset without requiring additional environ-
ment interactions.

The use of ensembles for uncertainty-based penalization has
proven to be one of the most effective approaches for offline
RL. Ensemble-based algorithms, such as SAC-N, EDAC
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Figure 1. Mean performance of SAC-RND variants on walker and
hopper medium-* datasets, each averaged over 3 seeds. We plot
performance for the naive version, which uses concatenation con-
ditioning, and our final version, which is described in Section 5.
We also plot the final scores for the ensemble-free CQL (Kumar
et al., 2020) and the ensemble-based SAC-N (An et al., 2021). It
can be seen that our version is a significant improvement over the
naive version, achieving performance comparable to ensembles.

(An et al., 2021), and MSG (Ghasemipour et al., 2022)
currently achieve state-of-the-art results on most D4RL (Fu
et al., 2020) datasets, outperforming ensemble-free methods
by a wide margin. Unfortunately, in order to achieve the best
performance, these algorithms may require tens or hundreds
of ensemble members, leading to significant computational
and memory overhead, as well as extended training duration
(Nikulin et al., 2022).

Recent research (Yang et al., 2022) has successfully reduced
the ensemble size to tens of Q-networks in the worst-case
scenarios. However, given the general trend for model scal-
ing in offline RL (Kumar et al., 2022; Reed et al., 2022; Lee
et al., 2022), efficiently training even ten Q-networks with
80 million parameters each is not feasible. Furthermore,
Ghasemipour et al. (2022) showed that methods for efficient
ensemble training found in supervised learning literature
do not deliver performance comparable to naive ensembles
and can even worsen the results. Thus, further research
on efficient uncertainty estimation for offline RL is needed,
with the goal of reducing the size of the ensemble as much
as possible or even fully removing it.

In this work, we move away from ensembles and take an
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alternative approach to uncertainty estimation, proposing an
efficient offline RL method with ensemble-free uncertainty
estimation via Random Network Distillation (RND) (Burda
et al., 2018). RND, a simple and fast ensemble competitor
for epistemic uncertainty estimation (Ciosek et al., 2019),
is an attractive choice for offline RL. However, previous
research (Rezaeifar et al., 2022) found RND to be insuffi-
ciently discriminative for good results.

In our preliminary experiment (Section 3), we show that
RND is discriminative enough to detect OOD actions, which
contradicts the previous study (Rezaeifar et al., 2022). Nev-
ertheless, our results show that the naive application of RND
does indeed not lead to good results (see Figure 1). Building
upon these findings, we further simplify the problem and
analyze the reasons for this issue (Section 4). We discover
that a naive choice of conditioning for the RND prior can
hinder the minimization of the anti-exploration bonus by
the actor, and that conditioning based on Feature-wise Lin-
ear Modulation (FiLM) (Perez et al., 2018) is particularly
effective in solving this problem.

Based on our findings, we propose a new ensemble-free
offline RL algorithm called SAC-RND (Section 5). We eval-
uate our method on the D4RL (Fu et al., 2020) benchmark
(Section 6), and show that SAC-RND achieves performance
comparable to ensemble-based methods while outperform-
ing ensemble-free approaches.

2. Background
Offline Reinforcement Learning. Reinforcement learning
problem can be described as a Markov Decision Process
(MDP) defined by the {S,A,P,R, γ} tuple with state space
S ⊂ RN , action space A ⊂ RM , transition dynamics P :
S × A → S, reward function R : S × A → R, and a
discount factor γ. The goal of reinforcement learning in
an infinite horizon setting is to produce a policy π(a|s)
that maximizes the expected cumulative discounted return
Eπ[

∑∞
t=0 γ

tr(st, at)].

In offline reinforcement learning, a policy must be learned
from a fixed dataset D collected under a different policy or
mixture of policies, without any environment interaction.
This setting poses unique fundamental challenges (Levine
et al., 2020), since the learning policy is unable to explore
and has to deal with distributional shift and extrapolation
errors (Fujimoto et al., 2019) for actions not represented in
the training dataset.

Offline RL as Anti-Exploration. There are numerous ap-
proaches for offline RL, a substantial part of which constrain
the learned policy to stay within the support of the train-
ing dataset, thus reducing (Kumar et al., 2020) or avoiding
(Kostrikov et al., 2021) extrapolation errors. For our work,
it is essential to understand how such a constraint can be

framed as anti-exploration (Rezaeifar et al., 2022).

Similarly to online RL, where novelty bonuses are used as
additive intrinsic rewards for effective exploration, in offline
RL, novelty bonuses can induce conservatism, reducing the
reward in unseen state-action pairs. Hence the name anti-
exploration, since the same approaches from exploration
can be used, but a bonus is subtracted from the extrinsic
reward instead of being added to it.

However, unlike online RL, subtracting a bonus from the
raw reward would not be as useful, since the novelty bonus
is, by design, close to zero for in-dataset state-action pairs.
Therefore, it is more effective to apply it where the overesti-
mation for OOD actions emerges — the temporal difference
learning target:

r + γEa′∼π(·|s′)[Q(s′, a′)− b(s′, a′)] (1)

where the actor is trained to maximize the expected Q-value,
as is usually done in off-policy actor-critic algorithms (Lil-
licrap et al., 2015; Haarnoja et al., 2018). It can be shown
that, theoretically, these approaches are equivalent, but the
latter is more suited for use in offline RL (Rezaeifar et al.,
2022).

An illustrative example of how such framing can be effective
are ensemble-based approaches such as SAC-N & EDAC
(An et al., 2021) and MSG (Ghasemipour et al., 2022),
which currently outperform their ensemble-free counterparts
by a large margin on most D4RL (Fu et al., 2020) benchmark
datasets. For the anti-exploration bonus, these methods use
ensemble disagreement as a proxy for epistemic uncertainty.
However, a large number of ensemble members is usually
required for a competitive result.

Random Network Distillation. Random network distilla-
tion (RND) was first proposed in online RL (Burda et al.,
2018) as a simple and effective exploration bonus. To this
day, RND is still considered a strong baseline for explo-
ration that can work well even in stochastic environments,
contrary to some more modern approaches (Jarrett et al.,
2022).

RND consists of two neural networks: a fixed and randomly
initialized prior network f̄ψ̄, and a predictor network fψ
which learns to predict the prior outputs on the training data:

∥fψ(s)− f̄ψ̄(s)∥22 (2)

Both networks map states to embeddings in RK , and the
gradient through prior is disabled. The interpretation of
the novelty is straightforward: with the sufficiently diverse
prior, the predictor must learn to match embeddings on data
points similar to the training dataset, while failing to predict
on new examples. A bonus in such a case may simply be a
prediction error, as in Equation (2).
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In a subsequent work, Ciosek et al. (2019) analyses the
success of RND in a supervised setting, and shows that
fitting random priors can be a competitive alternative to
ensembles for estimating epistemic uncertainty.

Note that in practice, the choice of predictor and prior having
the same architecture and the estimation of novelty from
states only are very common, but arbitrary. Moreover, for
offline RL, we are interested in estimating the novelty of an
action conditioned on the state, which is why in our work
RND depends on both: fψ(s, a).

Multiplicative Interactions. The most common way to
fuse two different streams of information is feature con-
catenation, which is straightforward but can be suboptimal
(Dumoulin et al., 2018). Jayakumar et al. (2020) shows that
multiplicative interactions provide a powerful inductive bias
for fusing or conditioning from multiple streams and are
superior in practice. We provide a brief review of those used
in our work (excluding concatenation): gating, bilinear, and
feature-wise linear modulation (FiLM).

Gating. Simple conditioning with two linear layers and
pointwise multiplication of the resulting features (Srivastava
et al., 2019).

f(a, s) = tanh(W1a+ b1)⊙ σ(W2s+ b2)

Bilinear. Bilinear layer in its most general form, as pro-
posed by Jayakumar et al. (2020).

f(a, s) = sTWa+ sTU+ Va+ b

where W is a 3D tensor, U, V are regular matrices and b is
a vector. However, in our work, we also use the implemen-
tation as in PyTorch (Paszke et al., 2019), which does not
learn U, V by default.

FiLM. Special case of a bilinear layer with low-rank weight
matrices (Perez et al., 2018).

f(h, s) = γ(s)⊙ h+ β(s)

Usually, FiLM operates on hidden activations h before non-
linearity between layers. Thus, the main network takes a as
an input.

3. Random Network Distillation is
Discriminative Enough

To better understand the possible difficulties of applying
RND to offline RL, we first reproduce the main experiment
from Rezaeifar et al. (2022), which showed that RND is not
discriminative enough to be used as a novelty bonus. For
convenience, we provide the original figure from Rezaeifar
et al. (2022) in the Appendix B. We also compare RND with
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Figure 2. Anti-exploration bonus (Rezaeifar et al., 2022) on the
walker2d-medium dataset for trained SAC-N (An et al., 2021),
Q-ensemble (N = 25) and RND. Bonus is computed for state-
action pairs from the original dataset and different perturbations of
actions: random actions, dataset actions to which Gaussian noise
is added with different scales. Both RND networks use simple
state-action concatenation. The result is strikingly different from a
similar figure in the Rezaeifar et al. (2022) (we provide the original
figure in the Appendix B for convenience). Contrary to previous
research, it can be seen that RND is capable of distinguishing ID
from OOD actions and is comparable to a trained Q-ensemble.

a trained Q-ensemble (N = 25) from the SAC-N algorithm
(An et al., 2021). Similarly to Rezaeifar et al. (2022), we
use simple state-action concatenation. Predictor and prior
share the identical architecture of 4-layer MLPs.

The goal of the experiment (see Figure 2) is to visually
plot the anti-exploration bonus for ID state-action pairs
and different perturbations of actions to model OOD data:
random actions sampled from a uniform distribution and
dataset actions to which Gaussian noise with different scales
is added.

To our surprise, the result on Figure 2 is strikingly different
from previous work. It shows that RND is able to discrim-
inate between ID and OOD actions with varying degrees
of distributional shift and is comparable to a trained Q-
ensemble. In contrast, Rezaeifar et al. (2022) hypothesizes
that RND can only work well out of the box for discrete ac-
tion spaces and visual features, and concludes that extending
it to continuous action spaces is not straightforward.

After further investigation of the open-sourced codebase1 in
search of discrepancies with our implementation, we found
that the only difference is that, contrary to the advice of
Ciosek et al. (2019), Rezaeifar et al. (2022) sets the predictor
smaller than prior by two layers during RND pretraining. It
is important to make the predictor larger or comparable in
capacity to the prior so that it can minimize the loss to zero
on the training dataset (Ciosek et al., 2019). However, the
actual RND hyperparameters used in the final publication
were not listed, so we cannot draw a definitive conclusion
about the reason for such different results.

1https://github.com/shidilrzf/Anti-exploration-RL
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4. Concatenation Prior Hinders Bonus
Minimization

A well-behaved anti-exploration bonus for continuous action
spaces, be it RND or any other, should satisfy at least two
criteria. First, it should be discriminative enough to detect
novel actions and downweight their value estimates (see
Equation (1)). Ideally, the bonus should be close to zero for
ID data so that we do not bias the Q-function, as this can
be detrimental to training. Second, it should allow the actor
to easily minimize the bonus with gradient descent during
training.

In Section 3, we showed that RND can detect OOD ac-
tions. Nevertheless, naive use of RND as an anti-exploration
bonus on top of the Soft Actor Critic algorithm (Haarnoja
et al., 2018) still does not provide satisfactory performance
(see Figure 1) with scores lower than CQL (Kumar et al.,
2020) and SAC-N (An et al., 2021). This gives us an hint
that the problem may not be the discriminative power of
RND, but that the actor cannot effectively minimize the
anti-exploration bonus during training.

To test our hypothesis that the actor cannot effectively min-
imize the anti-exploration bonus, we further simplify the
problem by removing the critic from the SAC algorithm
but keeping the entropy bonus (see Algorithm 2 in the Ap-
pendix). We expect that, in such a setting, the actor will be
able to successfully minimize the anti-exploration bonus to
the possible minimum, i.e. comparable to the bonus for the
ground truth data at the end of the RND pretraining. As a
consequence, since dataset actions provide the minimum
bonus by design, we also expect that the distance from the
agent to dataset actions should be small.

We set predictor architecture to state-action concatenation.
Additionally, we explore different conditioning schemes for
the prior. We use the halfcheetah, walker2d and hopper
medium datasets, with 3 seeds each. Figure 3 compares
the anti-exploration bonus for dataset actions during RND
pretraining (see Figure 3a) and for agent actions during
training (see Figure 3b).

As one can see for all prior architectures except one, the
anti-exploration bonus during actor training is much higher
than it should be according to the values on the dataset
actions. These results confirm our hypothesis. Furthermore,
we can note from Figure 3c that the actor cannot clone the
behavioral policy, since the distance to the dataset actions
can even increase during training.

However, RND with the FiLM prior architecture allows the
actor to effectively minimize the anti-exploration bonus and
successfully clone the behavioral policy. This suggests that,
with the right inductive bias for the prior, we can solve the
problems of naive RND and possibly achieve better results.

Table 1. Comparison of different RND predictors. Prior uses FiLM
conditioning. Predictor uses conditioning in the first layer. All
scores are averaged over 3 random seeds. Halfcheetah tasks are
omitted, as we found them non-representative of the final perfor-
mance on harder tasks.

Task Name Concat Gating Bilinear FiLM

hopper-medium-v2 94.8 39.7 98.4 86.3
hopper-medium-expert-v2 71.5 59.3 110.3 102.7
hopper-medium-replay-v2 100.3 51.3 100.8 100.3

walker2d-medium-v2 94.8 82.3 92.8 95.1
walker2d-medium-expert-v2 86.1 84.2 108.9 110.0
walker2d-medium-replay-v2 90.3 87.5 88.3 75.7

Average 89.6 67.3 99.9 95.0

5. Anti-Exploration by Random Network
Distillation

We are now ready to present SAC-RND: a new offline RL
method for continuous action spaces, based on our findings
in Section 3 and Section 4. It is simple, ensemble-free and
achieves state-of-the-art results comparable to ensemble-
based methods. We have chosen the Soft Actor-Critic
(Haarnoja et al., 2018) algorithm as the backbone of the
method. In this section, we will explain how the RND is
trained and how we define the anti-exploration bonus.

Random Network Distillation. We pretrain RND with
MSE loss between prior and predictor embeddings, stop-
ping gradient through prior and freezing both networks after-
wards during SAC training. We keep both networks similar
in size to the agent and critic, which are 4 layer MLPs. Con-
trary to Burda et al. (2018); Ciosek et al. (2019), we do not
add additional layers to the predictor to prevent undesirable
results. This is because, when the predictor size is bigger
than prior on state-based tasks (not image-based as in orig-
inal work by Burda et al. (2018)), we observe that it can
sometimes overgeneralize to OOD prior embeddings.

According to Section 4, for the prior, we use FiLM condi-
tioning on penultimate layer before nonlinearity. In prin-
ciple, the predictor can be arbitrary (Ciosek et al., 2019),
but in practice, its architecture and conditioning type can
also affect performance. We conduct a preliminary study
on a small subset of the D4RL Gym tasks to select the best-
performing conditioning. Based on the results in Table 1,
we chose a predictor with bilinear conditioning in the first
layer, as it showed the best performance.

Anti-Exploration Bonus. We define the anti-exploration
bonus similarly to RND loss as

b(s, a) = ∥fψ(s, a)− f̄ψ̄(s, a)∥22 (3)

and additionally divide it by RND loss running standard
deviation (which is tracked during pretraining phase) to
increase its scale uniformly among environments. Such
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(a) RND bonus for dataset actions
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Figure 3. Effect of different state-action conditioning in the prior of RND on actor training. We use the halfcheetah, walker2d and hopper
medium datasets, with 3 seeds each. For training procedure, see Algorithm 2 in the Appendix. (a) Anti-exploration bonus for in-dataset
actions during RND pretraining. We additionally divide the bonus by the RND loss running standard deviation to increase its scale
(see Section 5) so the anti-exploration bonus increases slightly over time as standard deviation decreases. However, this does not affect
minimization by the actor and is needed to highlight the differences. (b) Anti-exploration bonus for actor actions during training. Ideally,
it should converge to values close to the final values in (a). (c) Distance of actor actions to true in-dataset actions during training. Ideally,
it should decrease, as actions closer to the behavioral policy have the lowest bonus by design.

scaling simplifies hyperparameter search, shrinking the pos-
sible range of useful α coefficients that control the level of
conservatism during training.

For detailed training procedure and full SAC losses, we
refer to Algorithm 1 in the Appendix (differences with the
original SAC algorithm are highlighted in blue).

6. Experiments
In this section, we present an empirical evaluation of our
method using the D4RL benchmark on the Gym domain
(Section 6.1) and the more challenging AntMaze domain
(Section 6.2). Next, we provide additional analysis and
visual insight into why FiLM conditioning in the prior might
be beneficial (Section 6.3). Finally, we present an ablation
that compares more variations of conditioning for predictor
and prior (Section 6.4). For each experiment, we also list the
exact hyperparameters in Appendix E and implementation
details in Appendix D. Additionally, we analyse sensitivity
to hyperparameters in Appendix G.

6.1. Evaluation on the Gym Domain

Setup. We evaluate our method on all available datasets for
the HalfCheetah, Walker2d and Hopper tasks in the Gym do-
main of the D4RL benchmark. For ensemble-free baselines,
we chose CQL (Kumar et al., 2020), IQL (Kostrikov et al.,
2021), TD3+BC (Fujimoto & Gu, 2021), which show good
results and are widely used in practice. We also report scores
for vanilla SAC (Haarnoja et al., 2018). For ensemble-based
baselines, we chose SAC-N & EDAC (An et al., 2021) and
the more recent RORL (Yang et al., 2022), which currently
achieve state-of-the-art scores in this domain. We follow the
An et al. (2021) and train for 3M gradient steps, evaluating

on 10 episodes.

Results. The resulting scores are presented in Table 2. We
see that SAC-RND stands out from the ensemble-free meth-
ods and outperforms them by a wide margin, achieving a
mean score comparable to EDAC and only slightly behind
RORL. Note that we do not use ensembles, whereas SAC-N
can require up to 500 critics, EDAC up to 50 and RORL up
to 20. In addition, we compare our proposed changes with
the naive predictor and prior, confirming that our modifi-
cations are essential for achieving good performance (see
Figure 1).

6.2. Evaluation on the AntMaze Domain

Setup. We evaluate our method on all datasets available for
the AntMaze domain of the D4RL benchmark. Ensemble-
free baselines are the same as in Section 6.1. For ensemble-
based baselines, we chose RORL (Yang et al., 2022) and
MSG (Ghasemipour et al., 2022), the latter of which, to
our knowledge, currently has the best mean score for this
domain. We do not include SAC-N and EDAC, as there are
no public results for them on this domain, and we were also
unable to obtain a non-zero result. We follow the An et al.
(2021) and train for 3M gradient steps, evaluating on 100
episodes.

Results. The resulting scores are presented in Table 3.
Kostrikov et al. (2021) has shown that many offline RL
methods that perform well on the Gym domain fail on the
AntMaze domain. It can be seen that, on the AntMaze do-
main, SAC-RND shows good results that are on par with
ensembles, and outperforms ensemble-free methods. This
also shows that our choice of predictor and prior generalises
well to new domains. Note that, in addition to ensembles,
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Table 2. SAC-RND evaluation on the Gym domain. We report the final normalized score averaged over 4 random seeds on v2 datasets.
TD3 + BC and IQL scores are taken from Lyu et al. (2022). CQL, SAC, SAC-N and EDAC scores are taken from An et al. (2021). RORL
scores are taken from Yang et al. (2022).

Ensemble-free Ensemble-based

Task Name SAC TD3+BC IQL CQL SAC-N EDAC RORL SAC-RND

halfcheetah-random 29.7 ± 1.4 11.0 ± 1.1 13.1 ± 1.3 31.1 ± 3.5 28.0 ± 0.9 28.4 ± 1.0 28.5 ± 0.8 29.0 ± 1.5
halfcheetah-medium 55.2 ± 27.8 48.3 ± 0.3 47.4 ± 0.2 46.9 ± 0.4 67.5 ± 1.2 65.9 ± 0.6 66.8 ± 0.7 66.6 ± 1.6
halfcheetah-expert -0.8 ± 1.8 96.7 ± 1.1 95.0 ± 0.5 97.3 ± 1.1 105.2 ± 2.6 106.8 ± 3.4 105.2 ± 0.7 105.8 ± 1.9
halfcheetah-medium-expert 28.4 ± 19.4 90.7 ± 4.3 86.7 ± 5.3 95.0 ± 1.4 107.1 ± 2.0 106.3 ± 1.9 107.8 ± 1.1 107.6 ± 2.8
halfcheetah-medium-replay 0.8 ± 1.0 44.6 ± 0.5 44.2 ± 1.2 45.3 ± 0.3 63.9 ± 0.8 61.3 ± 1.9 61.9 ± 1.5 54.9 ± 0.6
halfcheetah-full-replay 86.8 ± 1.0 - - 76.9 ± 0.9 84.5 ± 1.2 84.6 ± 0.9 - 82.7 ± 0.9

hopper-random 9.9 ± 1.5 8.5 ± 0.6 7.9 ± 0.2 5.3 ± 0.6 31.3 ± 0.0 25.3 ± 10.4 31.4 ± 0.1 31.3 ± 0.1
hopper-medium 0.8 ± 0.0 59.3 ± 4.2 66.2 ± 5.7 61.9 ± 6.4 100.3 ± 0.3 101.6 ± 0.6 104.8 ± 0.1 97.8 ± 2.3
hopper-expert 0.7 ± 0.0 107.8 ± 7.0 109.4 ± 0.5 106.5 ± 9.1 110.3 ± 0.3 110.1 ± 0.1 112.8 ± 0.2 109.7 ± 0.3
hopper-medium-expert 0.7 ± 0.0 98.0 ± 9.4 91.5 ± 14.3 96.9 ± 15.1 110.1 ± 0.3 110.7 ± 0.1 112.7 ± 0.2 109.8 ± 0.6
hopper-medium-replay 7.4 ± 0.5 60.9 ± 18.8 94.7 ± 8.6 86.3 ± 7.3 101.8 ± 0.5 101.0 ± 0.5 102.8 ± 0.5 100.5 ± 1.0
hopper-full-replay 41.1 ± 17.9 - - 101.9 ± 0.6 102.9 ± 0.3 105.4 ± 0.7 - 107.3 ± 0.1

walker2d-random 0.9 ± 0.8 1.6 ± 1.7 5.4 ± 1.2 5.1 ± 1.7 21.7 ± 0.0 16.6 ± 7.0 21.4 ± 0.2 21.5 ± 0.1
walker2d-medium -0.3 ± 0.2 83.7 ± 2.1 78.3 ± 8.7 79.5 ± 3.2 87.9 ± 0.2 92.5 ± 0.8 102.4 ± 1.4 91.6 ± 2.8
walker2d-expert 0.7 ± 0.3 110.2 ± 0.3 109.9 ± 1.2 109.3 ± 0.1 107.4 ± 2.4 115.1 ± 1.9 115.4 ± 0.5 114.3 ± 0.6
walker2d-medium-expert 1.9 ± 3.9 110.1 ± 0.5 109.6 ± 1.0 109.1 ± 0.2 116.7 ± 0.4 114.7 ± 0.9 121.2 ± 1.5 105.0 ± 7.9
walker2d-medium-replay -0.4 ± 0.3 81.8 ± 5.5 73.8 ± 7.1 76.8 ± 10.0 78.7 ± 0.7 87.1 ± 2.4 90.4 ± 0.5 88.7 ± 7.7
walker2d-full-replay 27.9 ± 47.3 - - 94.2 ± 1.9 94.6 ± 0.5 99.8 ± 0.7 - 109.2 ± 1.8

Average 16.2 67.5 68.9 73.6 84.4 85.2 85.7 85.2

both MSG and RORL require pre-training or supervision
with behavioural cloning in order to achieve reported results,
while our method does not require any additional modifica-
tions.

Table 3. SAC-RND evaluation on AntMaze domain. We report
the final normalized score averaged over 4 random seeds on v1
datasets. IQL, CQL, MSG scores are taken from Ghasemipour
et al. (2022) and SAC from (Kumar et al., 2020). TD3+BC, RORL
scores are taken from Yang et al. (2022).

Ensemble-free Ensemble-based

Task Name SAC TD3+BC IQL CQL RORL MSG SAC-RND

antmaze-umaze 0.0 78.6 87.5 74.0 97.7 ± 1.9 97.8 ± 1.2 97.2 ± 1.2
antmaze-umaze-diverse 0.0 71.4 62.2 84.0 90.7 ± 2.9 81.8 ± 3.0 83.5 ± 7.7
antmaze-medium-play 0.0 10.6 71.2 61.2 76.3 ± 2.5 89.6 ± 2.2 65.5 ± 35.7
antmaze-medium-diverse 0.0 3.0 70.0 53.7 69.3 ± 3.3 88.6 ± 2.6 88.5 ± 9.2
antmaze-large-play 0.0 0.2 39.6 15.8 16.3 ± 11.1 72.6 ± 7.0 67.2 ± 6.1
antmaze-large-diverse 0.0 0.0 47.5 14.9 41.0 ± 10.7 71.4 ± 12.2 57.6 ± 22.7

Average 0.0 27.3 63.0 50.6 65.2 83.6 76.6

6.3. Why is FiLM Conditioning Beneficial for Bonus
Minimization?

In Section 4, we showed that FiLM conditioning in the RND
prior significantly improved the actors’ ability to minimize
the anti-exploration bonus. Since the issue occurred during
actor training, we hypothesize that this may be related to
the anti-exploration bonus optimization landscape. In this
section, we analyze the anti-gradient fields for conditioning
with concatenation or FiLM for the prior network.

For the purpose of analysis, we design a toy dataset with
only four categorical states and two-dimensional actions
sampled uniformly in each corner of the grid (see Ap-
pendix C for dataset visualization and generation details).

We fix the hyperparameters and pretrain two RNDs that

differ only in the type of prior conditioning. The predictor
uses simple concatenation. Next, in Figure 4, we plot the
two-dimensional anti-gradient field for the anti-exploration
bonus conditioned on each state. The effect of FiLM be-
comes more apparent in these plots. While the resulting
anti-gradients for concatenation are noisy and only point
in the direction of the minimum in a small neighbourhood,
the directions for FiLM are smooth over the entire available
action space and point to the correct global minimum for
each state. While we cannot draw general conclusions from
such a demonstration, based on the results of Section 4,
we hypothesize that a similar phenomenon might exist in
high-dimensional problems as well.

6.4. Exploring More Conditioning Pairs

One might wonder (1) how different types of conditioning
for predictor and prior interact with each other and (2) where
to introduce conditioning in terms of depth for it to be most
beneficial.

To answer these questions, we return to the experiment from
Section 4 and generate more variations for each type (where
it is possible): conditioning on the first layer, on the last
layer, and on all layers. We also look at two variations
of the bilinear layer: full, as presented in Jayakumar et al.
(2020), and simplified, which is used by default in PyTorch.
In Figure 5 we plot the final MSE between the resulting
policy and the behavioural one on the training data. Two
interesting observations can be made from these findings.

First, FiLM may not be the only architecture with the right
inductive biases for the prior, and both bilinear types with
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Figure 4. Actions’ anti-gradient field for the anti-exploration bonus conditioned on four categorical states at each corner for the toy problem
introduced in Section 6.3. We visualize the dataset in Figure 7 in the appendix. The top row corresponds to RND with concatenation
conditioning in the prior, while the bottom row corresponds to FiLM conditioning. As can be seen, the resulting anti-gradients for
concatenation are noisy, while the directions for FiLM are smooth over the entire available action space.

conditioning on all layers can also achieve similar results.
However, compared to FiLM, inner bilinear layers are much
more computationally expensive, as they involve at least
one 3D weight tensor and two additional 2D weight tensors,
and the hidden dimensions are usually much higher than the
input dimensions.

Second, it appears that conditioning on the last layer is most
beneficial for the predictor, while conditioning on all layers
is beneficial for the prior. In spite of that, it is difficult to
draw broad conclusions, as different types may work well
for new problems and domains.

7. Related Work
Model-free offline RL. Most offline RL approaches focus
on the distribution shift problem and overestimation bias
of Q-values for OOD actions. Some researchers address
this by imposing strict constraints for policy updates, pe-
nalizing the divergence from the behavioral policy with KL
divergence, maximum mean discrepancy (MMD) distance
(Kumar et al., 2019; Wu et al., 2019), simple mean squared
error (MSE) (Fujimoto & Gu, 2021), or by re-weighting
behavioral policy actions with the estimated advantages
(Nair et al., 2020). Others directly regularize Q-values
by lowering return estimates for OOD actions, preventing
overestimation for unseen actions. For instance, Kumar
et al. (2020), Ghasemipour et al. (2022) and Rezaeifar et al.
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Figure 5. Mean squared error between actions of the actor trained
with different conditioning for the predictor & prior and actions
of the behavioral policy. We use the halfcheetah, walker2d and
hopper medium datasets, with 3 seeds each. It can be seen that
conditioning on each layer is beneficial for the priors, while for the
predictors, it is better to condition on the last layer. Note that this
experiment is in the setting of Section 4, that is, without a critic.

(2022) explicitly introduce an optimization term that lowers
Q-values for OOD actions, while An et al. (2021) penalizes
implicitly by utilizing the lower-confidence bound (LCB)
of Q-values. Alternatively, the evaluation of OOD actions
can be avoided altogether by using the upper expectile value
function (Kostrikov et al., 2021) or by policy optimization
within a latent action space (Chen et al., 2022; Zhou et al.,
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2021; Akimov et al., 2022).

In our work, we follow the anti-exploration approach
(Rezaeifar et al., 2022). In contrast to An et al. (2021);
Ghasemipour et al. (2022); Yang et al. (2022), we com-
pletely eliminate ensembles for uncertainty estimation, thus
reducing computational overhead without sacrificing perfor-
mance. Moreover, unlike Rezaeifar et al. (2022), we have
succeeded in using an RND for novelty detection in offline
RL for continuous action spaces.

Estimation bias in Q-learning. In both offline and on-
line reinforcement learning, off-policy Q-learning methods
suffer from an overestimation bias in the temporal differ-
ence learning target (Van Hasselt et al., 2016; Fujimoto
et al., 2018). This phenomenon is orthogonal to overes-
timation due to unseen actions in offline RL, as it occurs
even in the presence of strong conservatism constraints. It
is mainly caused by target prediction errors for seen transi-
tions and their propagation due to the maximum operation
maxa′∈AQ(s′, a′). To address this problem, Fujimoto et al.
(2018) introduced clipped double Q learning (Van Hasselt
et al., 2016) in TD3, which uses a minimum of two critics.
This approach was later used by Haarnoja et al. (2018) in
SAC to improve stability and accelerate convergence.

In our work, we use clipped double Q-learning (Fujimoto
et al., 2018), since SAC-RND is based on SAC (Haarnoja
et al., 2018), and found it beneficial for stability. However,
to ensure that it does not introduce additional conservatism,
which can be a confounding factor for the impact of RND,
we always set the number of critics to two.

Uncertainty estimation in offline RL. Uncertainty estima-
tion is a popular technique in reinforcement learning and is
used for a variety of purposes such as exploration, planning,
and robustness. In offline RL, its use is mostly limited to
modeling epistemic uncertainty (Clements et al., 2019), in-
cluding measuring the prediction confidence of dynamics
models (Yu et al., 2020; Kidambi et al., 2020) or critics (An
et al., 2021; Rezaeifar et al., 2022). This approach can be
further used to induce uncertainty-aware penalization during
training.

Alternatively, uncertainty can help overcome suboptimal
conservatism by designing more flexible offline approaches,
e.g., conditioning on different levels of confidence to dy-
namically adjust the level of conservatism during evaluation
(Hong et al., 2022) or using Bayesian perspective to design
an optimal adaptive offline RL policy (Ghosh et al., 2022).

In our work, we estimate epistemic uncertainty and use it as
an anti-exploration bonus to induce conservatism. Unlike
previous approaches, we do not use ensembles to estimate
epistemic uncertainty.

Efficient ensembles Ensembles are a powerful and sim-

ple non-Bayesian baseline for uncertainty estimation that
outperform Bayesian neural networks in practice (Lakshmi-
narayanan et al., 2017). However, training deep ensembles
can be both memory intensive and computationally demand-
ing, making the design of efficient ensembles an attractive
research direction for which numerous methods have been
developed. For example, Gal & Ghahramani (2016) pro-
posed to use dropout to approximate Bayesian inference in
deep Gaussian processes, and Durasov et al. (2021) derived
a method to interpolate between dropout and full ensembles
with fixed masks and controllable overlap between them.
Meanwhile, Wen et al. (2020) significantly reduced the cost
by defining each weight matrix as the Hadamard product
of a shared weight among all ensemble members and a
rank-one matrix per member.

Recently, Ghasemipour et al. (2022) showed that, in offline
RL, none of the most popular approaches for efficient en-
sembles are capable of delivering performance that is com-
parable to naive ensembles, and that more work is needed in
this research direction. In our work, we chose an alternative
path for uncertainty estimation with RND, which was shown
to a fast and competitive counterpart to ensembles (Ciosek
et al., 2019).

8. Conclusion
In this work, we revisited the results from previous research
(Rezaeifar et al., 2022), showing that with a naive choice
of conditioning for the RND prior, it becomes infeasible
for the actor to effectively minimize the anti-exploration
bonus and discriminativity is not an issue. To solve this,
we proposed conditioning based on FiLM, which led us
to a new ensemble-free method called SAC-RND. We em-
pirically validated that it achieves results comparable to
ensemble-based methods and outperforms its ensemble-free
counterparts. As such, we believe that our work is a valuable
contribution to anti-exploration and uncertainty estimation
in offline RL. In addition, we further outline the possible
limitations of this work in the Appendix A.
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A. Limitations
Several limitations of this work should be noted. While we provide extensive experiments and ablations on the well-
established D4RL benchmark for continuous control, we lack the benchmarks for discrete actions and visual state spaces.
Thus, we cannot be absolutely certain that the same pair of predictor and prior will generalize to the new domains, and
additional exploration on new problems may be needed. However, the general properties of the good RND prior for
offline RL uncovered in this work remain the same and should guide practitioners in the new applications of our method.
Furthermore, we have explored only a limited set of the many available conditioning variations. Finally, our method inherits
the limitations of anti-exploration style algorithms (Rezaeifar et al., 2022) — sensitivity to the reward and RND bonus scale,
as this greatly affects the level of conservatism, thus requiring the α sweep for each problem separately. To alleviate this
limitation, we additionally explicitly checked the sensitivity to this parameter using the expected online performance metric
in the Appendix G.

B. Previous Research Results

Figure 6. Anti-exploration bonus on walker2d-medium dataset for RND and CVAE. Note that figure taken from Rezaeifar et al. (2022) for
a convenient comparison with our results in Figure 2.

C. Toy Dataset
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Figure 7. Toy dataset visualization introduced in Section 6.3. This toy dataset consists of four categorical states for each corner of the
limited 2D actions grid. For each state, we uniformly sample 4096 two-dimensional actions within a limited square. We use one-hot
encoding for the states during RND training.

D. Implementation Details
In our experiments, we use hyperparameters from Table 4 where possible and sweep over α to pick the best value for each
dataset. We implement all of our models using the Jax (Bradbury et al., 2018) framework. For the exact implementation
of conditioning variants for predictor and prior networks, refer to our code at https://github.com/tinkoff-ai/
sac-rnd. Similarly to Nikulin et al. (2022); Kumar et al. (2022); Smith et al. (2022), we add Layer Normalization (Ba
et al., 2016) to the critic after each layer as it greatly improves stability and convergence speed. For SAC-N in Section 4 we
use the implementation from the CORL library (Tarasov et al., 2022). All experiments were performed on V100 and A100
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GPUs. With our implementation, each training for 3 million training steps usually takes ∼ 40 minutes to run (∼ 15 minutes
for the typical 1 million steps).

Gym Domain. We use the v2 version of each dataset. We follow the An et al. (2021) approach and run our
algorithms for 3 million training steps and report the final normalized average score over 10 evaluation episodes.
For the final experiments, we use 4 seeds, while using less for hyperparameter tuning. We tune the α co-
efficient over the {1.0, 3.0, 4.0, 5.0, 8.0, 9.0, 10.0, 13.0, 15.0, 20.0, 25.0} range for the walker and hopper datasets.
We found that the halfcheetah datasets require a lower level of conservatism, which is why we tune over the
{0.001, 0.1, 0.3, 0.5, 0.8, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0} range for these datasets while keeping the same number of candidates.
We follow the Ghasemipour et al. (2022) approach and choose the best α for each dataset (see Table 5).

AntMaze Domain. We use the v1 version of each dataset due to the fact that the v0 version has major problems and
bugs during generation (e.g., some trajectories have discontinuities where the agent teleports from one part of the maze to
another 2). We follow the An et al. (2021) approach and run our algorithms for 3 million training steps and report the final
normalized average score over 100 evaluation episodes. Same as Chen et al. (2022), we scale the reward by 100.0. We found
that actor and critic require different levels of conservatism in these tasks, which is why we chose to decouple α and use
separate values (the same approach was used in Rezaeifar et al. (2022)). We tune the α for the actor in the {0.5, 1.0, 1.5}
range, and α for the critic in the {0.001, 0.01, 0.1} range. We follow the Ghasemipour et al. (2022) approach and choose
the best α for each dataset (see Table 7).

E. Hyperparameters
Table 4. SAC-RND general hyperparameters.

Parameter Value

optimizer Adam (Kingma & Ba, 2014)
batch size 1024 (256 on antmaze-*)
learning rate (all networks) 1e-3 (3e-4 on antmaze-*)
tau (τ ) 5e-3
hidden dim (all networks) 256
num layers (all networks) 4
RND embedding dim (all tasks) 32
target entropy -action_dim
gamma (γ) 0.99 (0.999 on antmaze-*)
nonlinearity ReLU

Table 5. SAC-RND best hyperparameters used in D4RL Gym domain.

Task Name α

halfcheetah-random 0.1
halfcheetah-medium 0.3
halfcheetah-expert 6.0
halfcheetah-medium-expert 0.1
halfcheetah-medium-replay 0.1
halfcheetah-full-replay 3.0

hopper-random 5.0
hopper-medium 25.0
hopper-expert 20.0
hopper-medium-expert 15.0
hopper-medium-replay 8.0
hopper-full-replay 3.0

walker2d-random 1.0
walker2d-medium 8.0
walker2d-expert 4.0
walker2d-medium-expert 25.0
walker2d-medium-replay 8.0
walker2d-full-replay 3.0

2https://github.com/Farama-Foundation/D4RL/issues/77
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Table 6. SAC-RND best hyperparameters used in D4RL AntMaze domain.

Task Name α (actor) α (critic)

antmaze-umaze 1.0 0.1
antmaze-umaze-diverse 1.0 0.1
antmaze-medium-play 0.5 0.001
antmaze-medium-diverse 1.0 0.01
antmaze-large-play 1.0 0.01
antmaze-large-diverse 0.5 0.01

F. Runtime Comparison

Table 7. Runtime comparison for different algorithms on halfcheetah-medium-v2 dataset. We measure time on V100 GPU for standard 1M
updates with batch size 256 and identical network sizes. For SAC-N (An et al., 2021) we report times for all ensemble size configurations
from the original publication. Note that, as we discussed in Appendix D, all algorithms were implemented in Jax (Bradbury et al., 2018),
which is typically much faster for small networks than PyTorch (Paszke et al., 2019) alternatives.

Algorithm Updates / s ↑ Runtime (m) ↓
TD3+BC 1485 11.2
SAC-2 1285 12.9
SAC-RND 850 19.6
SAC-10 809 20.5
SAC-20 559 29.7
SAC-100 171 97.3
SAC-200 93 178.3
SAC-500 39 424.0

G. Sensitivty to Hyperparameters
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Figure 8. Expected Online Performance (Kurenkov & Kolesnikov, 2022) under uniform offline policy selection. It can be seen, that for
satisfactory results in all domains a budget of at least five policies for online evaluations is needed.
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H. Architecture Visualization

(a) Predictor (b) Prior

Figure 9. Visualization of the final RND architecture described in the section 5. For the predictor we use bilinear (Jayakumar et al., 2020)
conditioning on the first layer. For the prior we use FiLM (Perez et al., 2018) conditioning on the penultimate layer before nonlinearity.
States are encoded with a single linear layer of double hidden size, which output is then divided into equal parts for the γ and β. While
the number of linear layers can be arbitrary, in our work we use N = 2, so the network size is 4 layers in total (see Table 4).
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I. Pseudocode

Algorithm 1 Soft Actor-Critic with Random Network Distillation (SAC-RND)

Initialize policy parameters θ, Double Q-function parameters {ϕ1, ϕ2}, RND predictor and prior parameters {ψ,ψ′}, and
offline replay buffer D
for desired number of pretraining steps do

Sample a mini-batch B = {(s, a)} from D
Update RND predictor weights ψ with gradient descent using

∇ψ
1

|B|
∑
s∈B

[
∥fψ(s, a)− f̄ψ̄(s, a)∥22

]
end for
for desired number of training steps do

Sample a mini-batch B = {(s, a, r, s′)} from D
Compute target Q-values (shared by all Q-functions):

y(r, s′) = r + γ
[
min
j=1,2

Qϕ̄i
(s′, a′)− β log πθ(a′|s′)− αb(s′, a′)

]
where a′ ∼ πθ(·|s′) and b(s′, a′) is an anti-exploration bonus defined by Eq. (3).
Update each Q-function Qϕi with gradient descent using

∇ϕi

1

|B|
∑

(s,a,r,s′)∈B

[
Qϕi

(s, a)− y(r, s′)
]2

Update policy with gradient ascent using

∇θ
1

|B|
∑
s∈B

[
min
j=1,2

Qϕi
(s, ãθ(s))− β log π(ãθ(s)|s)− αb(s, ãθ(s))

]
where ãθ(s) is a sample from π(·|s) which is differentiable w.r.t. θ via the reparametrization trick.
Update target networks with ϕ̄i ← (1− ρ)ϕ̄i + ρϕi

end for
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Algorithm 2 Simplified SAC-RND (without a critic) used in experiments for Section 4 and Section 6.4.

Initialize policy parameters θ, RND predictor and prior parameters {ψ,ψ′}, and offline replay buffer D
for desired number of pretraining steps do

Sample a mini-batch B = {(s, a)} from D
Update RND predictor weights ψ with gradient descent using

∇ψ
1

|B|
∑
s∈B

[
∥fψ(s, a)− f̄ψ̄(s, a)∥22

]
end for
for desired number of training steps do

Sample a mini-batch B = {(s, a, r, s′)} from D
Update policy with gradient descent using

∇θ
1

|B|
∑
s∈B

[
β log π(ãθ(s)|s) + b(s, ãθ(s))

]
where ãθ(s) is a sample from π(·|s) which is differentiable w.r.t. θ via the reparametrization trick and b(s′, a′) is an
anti-exploration bonus defined by Eq. (3).

end for
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