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Abstract

The entropic fictitious play (EFP) is a recently
proposed algorithm that minimizes the sum of
a convex functional and entropy in the space of
measures — such an objective naturally arises in
the optimization of a two-layer neural network in
the mean-field regime. In this work, we provide a
concise primal-dual analysis of EFP in the setting
where the learning problem exhibits a finite-sum
structure. We establish quantitative global con-
vergence guarantees for both the continuous-time
dynamics and discrete-time & finite-particle algo-
rithm, based on properties of a proximal Gibbs
measure introduced in Nitanda et al. (2022). Fur-
thermore, our primal-dual framework entails a
memory-efficient particle-based implementation
of the EFP update, and also suggests a connection
to gradient boosting methods. We illustrate the
efficiency of our novel implementation in experi-
ments including neural network optimization and
image synthesis.

1. Introduction
In this work we consider the optimization of an entropy-
regularized convex functional in the space of measures:

min
µ∈P2

{F (µ) + λEnt(µ)} . (1)

Note that when F is a linear functional, i.e., F (µ) =
∫
fdµ,

then the above objective admits a unique minimizer µ∗ ∝
exp(−λ−1f), samples from which can be obtained using
various methods such as Langevin Monte Carlo. In the more
general setting of nonlinear F , efficiently optimizing (1) be-
comes more challenging, and existing algorithms typically
take the form of an interacting-particle update.
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Solving the objective (1) is closely related to the optimiza-
tion of neural networks in the mean-field regime, which
attracts attention because it captures the representation learn-
ing capacity of neural networks (Ghorbani et al., 2019; Li
et al., 2020; Abbe et al., 2022; Ba et al., 2022). A key ingre-
dient of the mean-field analysis is the connection between
gradient descent on the wide neural network and the Wasser-
stein gradient flow in the space of measures, based on which
the global convergence of training dynamics can be shown
by exploiting the convexity of the loss function (Nitanda
& Suzuki, 2017; Mei et al., 2018; Chizat & Bach, 2018;
Rotskoff & Vanden-Eijnden, 2018; Sirignano & Spiliopou-
los, 2020). However, most of these existing analyses do not
prove a convergence rate for the studied dynamics.

The entropy term in (1) leads to a noisy gradient descent
update, where the injected Gaussian noise encourages explo-
ration (Mei et al., 2018; Hu et al., 2019). Recent works have
shown that this added regularization entails exponential con-
vergence of the continuous dynamics (termed the mean-field
Langevin dynamics) under a logarithmic Sobolev inequality
condition that is easily verified in regularized empirical risk
minimization problems with neural networks (Nitanda et al.,
2022; Chizat, 2022; Chen et al., 2022; Suzuki et al., 2023).
Moreover, novel update rules that optimize (1) have also
been proposed in Nitanda et al. (2021); Oko et al. (2022);
Nishikawa et al. (2022), for which quantitative convergence
guarantees can be shown by adapting classical convex opti-
mization theory into the space of measures.

An important observation behind the design of these new
algorithms is a self-consistent condition of the global opti-
mum (Hu et al., 2019), namely, the optimal solution to the
objective (1) must satisfy

µ = µ̂, where µ̂(x) ∝ exp

(
− 1

λ

δF (µ)

δµ
(x)

)
, (2)

in which δF
δµ denotes the first-variation of F . Following

Nitanda et al. (2022), we refer to µ̂ as the proximal Gibbs
distribution. Based on properties of µ̂, Oko et al. (2022) and
Nitanda et al. (2022) established a primal-dual formulation
of the optimization problem in the finite-sum setting.

In this work, we analyze a different update rule that opti-
mizes (1) recently proposed in Ren & Wang (2022) termed
the entropic fictitious play (EFP). The EFP update is inspired
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Figure 1. 1D visualization of the parameter distribution of mean-field two-layer neural network (tanh) optimized by the mean-field
Langevin dynamics (MFLD), particle dual averaging2(PDA), and entropic fictitious play (EFP), all of which can solve the self-consistent
equation µ = µ̂, where µ̂ is the proximal Gibbs measure associated with µ. We set λ = λ′ = 10−2.

by the classical fictitious play in game theory for learning
Nash equilibria (Brown, 1951), which has been revisited by
(Cardaliaguet & Hadikhanloo, 2017; Hadikhanloo & Silva,
2019; Perrin et al., 2020; Lavigne & Pfeiffer, 2022) in the
context of mean-field games. Intuitively, the EFP method
successively accumulates µ̂ − µ to the current iteration µ
with an appropriate weight, as illustrated in Figure 1. In light
of the self-consistent condition (2), this iteration is quite in-
tuitive and natural, as it can be interpreted as a fixed-point
iteration on the optimality condition µ = µ̂.

Despite its simple structure, EFP can be computationally
prohibitive if implemented in a naive way. Specifically, for
approximately optimizing mean-field models, we typically
utilize a finite-particle discretization of the probability distri-
bution. Then, the additive structure of EFP update requires
additional particles to be added at each iteration. Therefore,
the number of particles linearly increases in proportion to
the number of steps, and nontrivial heuristics are needed to
reduce the computational costs in general settings.

1.1. Our Contributions

In this paper, we present a concise primal-dual analysis of
EFP in the finite-sum setting (e.g., empirical risk minimiza-
tion). We establish convergence in both continuous- and
discrete-time of the primal and dual objectives, which is
equivalent to the convergence of the Kullback-Leibler (KL)

2For illustrative purposes, we simplify the PDA implementation
from Nitanda et al. (2021) by removing the weighted averaging in
the gradient.

divergence between µ and µ̂. Furthermore, our framework
naturally suggests an efficient implementation of EFP for
finite-sum problems, where the memory consumption re-
mains constant across the iterations. Our contributions can
be summarized as follows.

• We provide a simple analysis of EFP for finite-sum prob-
lems through the primal-dual framework. Our global
convergence result holds in both continuous-and discrete-
time settings (Theorem 4.4 and 5.4).

• Our theory suggests a memory-efficient implementation
of EFP (Algorithm 2). Specifically, we do not memorize
all particles from the previous iterations, but instead store
the information via the proximal Gibbs distribution, with
memory cost that only depends on the number of training
samples but not the number of iterations.

• We present a connection between EFP and gradient-
boosting methods, which enables us to establish discrete-
time global convergence based on the Frank-Wolfe ar-
gument (Theorem 6.1). This analysis also allows us to
characterize the discretization error due to finite particles.

• We employ our novel implementation of EFP in various
experiments including neural network learning and image
synthesis (Tian & Ha, 2022).

1.2. Notations

∥ · ∥2, ∥ · ∥∞ denote the Euclidean norm and uniform
norm, respectively. Given a probability distribution µ on
Rd, we write the expectation w.r.t. θ ∼ µ as Eθ∼µ[·] or
simply Eµ[·], E[·] when the random variable and distri-
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bution are obvious from the context; e.g. for a function
f : Rd → R, we write Eµ[f ] =

∫
f(θ)dµ(θ) when f is

integrable. KL stands for the Kullback-Leibler divergence:
KL(µ∥µ′)

def
=
∫
dµ(θ) log dµ

dµ′ (θ) and Ent stands for the

negative entropy: Ent(µ) =
∫
dµ(θ) log dµ

dθ (θ). Let P2 be
the space of probability distributions on Rd such that abso-
lutely continuous with respect to Lebesgue measure and the
entropy and second moment are well-defined.

2. Preliminaries
2.1. Problem Setup

We say the functional G : P2 → R is differentiable and
convex when G satisfies the following. First, there exists a
functional (referred to as a first variation): δG

δµ : P2 ×Rd ∋
(µ, θ) 7→ δG

δµ (µ)(θ) ∈ R such that for any µ, µ′ ∈ P2,

dG(µ+ ϵ(µ′ − µ))

dϵ

∣∣∣∣
ϵ=0

=

∫
δG

δµ
(µ)(θ)d(µ′ − µ)(θ)

and G satisfies the convexity condition:

G(µ′) ≥ G(µ) +

∫
δG

δµ
(µ)(θ)d(µ′ − µ)(θ). (3)

Let F0 : P2 → R be differentiable and convex, and define
F (µ) = F0(µ)+λ′Eµ[∥θ∥22]. We consider the minimization
of an entropy-regularized convex functional:

min
µ∈P2

{L(µ) = F (µ) + λEnt(µ)} . (4)

Note both F andL are also differentiable convex functionals.
Throughout the paper, we make the following regularity
assumption on F0.

Assumption 2.1. We assume the first variation δF0

δµ satisfies
the Lipschitz continuity and boundedness in the following
sense: there exists constant M > 0 such that for any µ, µ′ ∈
P2 and for any θ, θ′ ∈ Rd,∣∣∣∣δF0

δµ
(µ)(θ)− δF0

δµ
(µ)(θ′)

∣∣∣∣ ≤M(W2(µ, µ
′) + ∥θ − θ′∥2),∣∣∣∣δF0

δµ
(µ)(θ)

∣∣∣∣ ≤M,

where W2 is the 2-Wasserstein distance.

For µ ∈ P2, we introduce the proximal Gibbs distribution,
which plays a key role in our analysis (for basic properties
see Nitanda et al. (2022); Chizat (2022)).

Definition 2.2 (Proximal Gibbs distribution). We define µ̂
be the Gibbs distribution so that

dµ̂

dθ
(θ) =

exp
(
− 1

λ
δF (µ)
δµ (θ)

)
Z(µ)

, (5)

where Z(µ) is the normalization constant and dµ̂/dθ repre-
sents the density function w.r.t. Lebesgue measure.
Remark 2.3. Under Assumption 2.1, the existence and
uniqueness of the minimizer µ∗ ∈ P2 of L is guaranteed by
Ren & Wang (2022), and µ∗ satisfies the first-order optimal-
ity condition: µ∗ = µ̂∗ (Hu et al., 2019).

We focus on the finite-sum setting as follows. Given dif-
ferentiable convex functions: ℓi : R → R and functions
hi : Rd → R (i ∈ {1, . . . , n}), we consider the following
minimization problem:

min
µ∈P2

{
L(µ) = 1

n

n∑
i=1

ℓi(E[hi]) + λ′E[∥θ∥22] + λEnt(µ)

}
,

(6)
where the expectation is taken with respect to θ ∼ µ, i.e.,
E[hi] = Eθ∼µ[hi(θ)]. Note that the problem (6) is a special
case of (4) by setting F0(µ) = 1

n

∑n
i=1 ℓi(Eµ[hi(θ)]). In

this setting, the first variation of F is

δF

δµ
(µ)(θ) =

1

n

n∑
i=1

ℓ′i(E[hi])hi(θ) + λ′∥θ∥22.

2.2. Example Applications

One noticeable example of problem (6) is the learning of
mean-field neural networks via empirical risk minimization.
Example 2.4 (Mean-field model). Let h(θ, ·) : X → R be
a function parameterized by θ ∈ Rd, where X is the data
space. The mean-field model is an integration of h(θ, ·) with
respect to the distribution µ ∈ P2 over the parameter space:
Eθ∼µ[h(θ, ·)]. Given training examples {(xi, yi)}ni=1 ⊂
X × R, denote hi(θ) as the output h(θ, xi). Then we may
choose the loss term as ℓi(Eµ[hi(θ)]) = ℓ(yi,E[h(θ, xi)]),
for convex loss functions such as the squared loss ℓ(y, y′) =
0.5(y − y′)2 and the logistic loss log(1 + exp(−yy′)).

Another example that falls into the framework of (6) is
density estimation using a mixture model.
Example 2.5 (Density Estimation). Let µ ∗ gδ (µ ∈ P2) be
the Gaussian convolution of µ:

µ ∗ gδ(·) ∝
∫

exp

(
−∥θ − ·∥

2
2

2σ2

)
dµ(θ),

where gδ(θ) = (2πσ2)−d/2 exp(−∥θ2∥/(2σ2)). Let
{ζi}ni=1 ⊂ Rd be the i.i.d. observations. Then, the
log-likelihood −

∑n
i=1 log(µ ∗ gδ(ζi)) can be written as∑n

i=1 ℓi(Eµ[hi]), by setting ℓi = − log and hi(θ) =
gδ(θ − ζi) since µ ∗ gδ(ζi) = Eθ∼µ[gδ(θ − ζi)].

3. Entropic Fictitious Play
3.1. The Ideal Update

The entropic fictitious play (EFP) algorithm (Ren & Wang,
2022) is the optimization method that minimizes the objec-
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tive (4). The continuous evolution {µt}t≥0 ⊂ P2 of the
EFP is defined as follows: for γ > 0,

dµt

dt
= γ(µ̂t − µt). (7)

Under Assumption 2.1, the existence of differentiable den-
sity functions that solve (7) is guaranteed.

The time-discretized version of the EFP can be obtained by
the explicit Euler’s method. Given a step-size η > 0,

µt+η = (1− ηγ)µt + ηγµ̂t. (8)

To execute this update, we need to compute the proximal
Gibbs distribution µ̂t, which can be accessed via standard
sampling algorithms such as Langevin Monte Carlo. This
ideal update is summarized in Algorithm 1 below.

Algorithm 1 Discrete-time Entropic Fictitious Play

Input: µ(0), T, η, γ

for t = 0 to T − 1 do
Compute µ̂(t) via standard sampling algorithms
Update µ(t+1) = (1− ηγ)µ(t) + ηγµ̂(t)

end for
Return µ(T )

As previously remarked, in light of the first-order optimality
condition µ∗ = µ̂∗, the discrete-time EFP (8) is an intu-
itive update that mirrors the fixed-point iteration methods.
However, the naive particle implementation of (8) would be
extremely expensive in terms of memory cost. In particu-
lar, the additive structure of the discrete-time EFP update
requires us to store all the past particles along the trajectory.
In other words, the memory cost scales linearly with the
number of iterations. This prohibits the practical use of EFP
beyond very short time horizon.

3.2. Efficient Particle Update for Finite-sum Settings

We now present an efficient implementation of discrete-time
EFP by exploiting the finite-sum structure as in Nitanda et al.
(2021); Oko et al. (2022). For comparison, we first provide
a recap for the naive implementation. To execute Algorithm
1, we run a sampling algorithm for each Gibbs distribution
µ̂(t), and build an approximation µ̂(t) ∼ 1

m

∑m
r=1 δθ(t)

r
by

finite particles θ
(t)
r ∼ µ̂(t) (r = 1, 2, . . . ,m), where δθ is

the Dirac measure at θ ∈ Rd. Then, the approximation
µ(t+1) to µ(t+1) can be recursively constructed as follows:

µ(t+1) = (1− ηγ)µ(t) +
ηγ

m

m∑
r=1

δ
θ
(t)
r
. (9)

It is clear that µ(t) consists of all particles obtained up to the
t-th iteration, and thus the number of particles accumulates
linearly with respect to the number of iterations.

Alternative implementation. Our starting observation is
that sampling algorithms for the Gibbs distribution such as
Langevin Monte Carlo only require the computation of the
gradient of the potential function. Recall that the potential
function ∇ δF (µ(t))

δµ (θ) of the proximal Gibbs distribution
µ̂(t) for finite-sum problems (6) is written as follows:

1

n

n∑
i=1

ℓ′i(Eµ(t) [hi(θ)])∇hi(θ) + 2λ′θ. (10)

Hence to approximate (10), we do not need to store particles
constituting µ(t) themselves, but only the empirical aver-
ages: Eµ(t) [hi(θ)] (i = 1, 2, . . . , n). Then, we notice that
these empirical averages can be recursively computed in an
online manner, because of the additive structure of the EFP
update (9): for i = 1, 2, . . . , n,

Eµ(t+1) [hi(θ)] = (1− ηγ)Eµ(t) [hi(θ)] +
ηγ

m

m∑
r=1

hi(θ
(t)
r ).

It is clear that the number of particles required to compute
the above update is m (i.e., the number of samples drawn
from the current Gibbs distribution), which can be kept
constant during training. This gives a memory-efficient and
implementable EFP update, which is described in Algorithm
2 using Langevin Monte Carlo (the sampling algorithm can
be replaced by other alternatives). For simplicity, we denote
H

(t)
i = Eµ(t) [hi(θ)] in the algorithm description.

Algorithm 2 Efficient Implementation of EFP for Finite-
sum Problem

Input: µ(0), λ, λ′, T, S, m, η, γ, η′

Randomly sample m particles {θ(−1)
r }mr=1 from µ(0)

Compute initial empirical averages: for i ∈ {1, 2, . . . , n}
H

(0)
i ← 1

m

∑m
r=1 hi(θ

(−1)
r )

for t = 0 to T − 1 do
Initialize {θ(0)r }mr=1 (e.g., {θr}mr=1 ← {θ

(t−1)
r }mr=1)

for s = 0 to S − 1 do
Run Langevin Monte-Carlo: for r ∈ {1, 2, . . . ,m}
g(s)(θ

(s)

r )← 1
n

∑n
i=1 ℓ

′
i(H

(t)
i )∇hi(θ

(s)

r )

ξ
(s)
r ∼ N (0, Id) (i.i.d. Gaussian noise)

θ
(s+1)

r ← (1−2η′λ′)θ
(s)

r −η′g(s)(θ
(s)

r )+
√
2η′λξ

(s)
r

end for
{θ(t)r }mr=1 ← {θ

(S)

r }mr=1

Update empirical averages: for i ∈ {1, 2, . . . , n}
H

(t+1)
i ← (1− ηγ)H

(t)
i + ηγ

m

∑m
r=1 hi(θ

(t)
r )

end for
Return {θ(T−1)

r }mr=1 and {H(T )
i }ni=1

Remark 3.1. The iteration complexity of Langevin Monte
Carlo has been extensively studied. In our problem setting,
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we may verify that the Gibbs measure µ̂t satisfies a log-
arithmic Sobolev inequality (LSI) via the Holley-Stroock
perturbation argument (Holley & Stroock, 1987). Therefore,
convergence of LMC is guaranteed from prior results (e.g.,
Vempala & Wibisono (2019)).

Benefits of the proximal Gibbs distribution. When mak-
ing the prediction by mean-field models (Example 2.4)
in machine learning applications, we need to compute
Eµ[h(θ, x)] on unseen input x ∈ X with an optimized distri-
bution µ. In the following section, we establish primal and
dual convergence of EFP, which implies the convergence of
the proximal Gibbs distribution µ̂t to the optimum. There-
fore, we can utilize particles {θ(T−1)

r }mr=1 to construct an
actual predictor 1

m

∑m
r=1 h(θ

(T−1)
r , x) because these parti-

cles follow the proximal Gibbs distribution which is approx-
imately optimal. Moreover, if we want to reduce the number
of particles, we can apply efficient compression methods for
the Gibbs distribution such as the kernel quadrature (Bach,
2017) and herding (Chen et al., 2018) to further improve the
particle complexity.

4. Convergence in Continuous Time
In this section, we provide a concise convergence analysis
of the EFP in continuous-time (7) using properties of the
proximal Gibbs distribution (5).

4.1. Primal Convergence

Let µ∗ ∈ P2 be an optimal solution of (4). The following
property relates the suboptimality gap to the KL divergence
involving the proximal Gibbs measure.

Proposition 4.1 (Nitanda et al. (2022); Chizat (2022)). For
any µ ∈ P2, we get

(1)
δL
δµ

(µ) = λ
δ

δµ′KL(µ′∥µ̂)|µ′=µ = λ log
dµ

dµ̂
,

(2) λKL(µ∥µ̂) ≥ L(µ)− L(µ∗) ≥ λKL(µ∥µ∗).

We now show that the continuous-time EFP (7) converges
linearly to the global optimal solution µ∗.

Theorem 4.2. Let {µt}t≥0 be the evolution described by (7).
Under Assumption 2.1, we get for t ≥ 0,

L(µt)− L(µ∗) ≤ exp(−γt)(L(µ0)− L(µ∗)).

Proof. From Proposition 4.1, we have

d

dt
(L(µt)− L(µ∗))

=

∫
δL
δµ

(µt)(θ)
dµt

dt
(θ)

=

∫
λγ log

dµt

dµ̂t
(θ)d(µ̂t − µt)(θ)

= −λγ (KL(µt∥µ̂t) + KL(µ̂t∥µt))

≤ −γ(L(µt)− L(µ∗)).

The statement then follows from a straightforward applica-
tion of Grönwall’s inequality.

4.2. Primal-Dual Convergence

To introduce a primal-dual formulation of the finite-sum
minimization problems (6), we denote ℓ∗i (·) as the Fenchel
conjugate, i.e.,

ℓ∗i (z
∗) = sup

z∈R
{zz∗ − ℓi(z)}. for z∗ ∈ R

Also, for any given vector g = {gi}ni=1 ∈ Rn, we define

qg(θ) = exp

(
− 1

λ

(
1

n

n∑
i=1

hi(θ)gi + λ′∥θ∥22

))
.

Then, the dual problem of (6) is defined as

max
g∈Rn

{
D(g) = − 1

n

n∑
i=1

ℓ∗i (gi)− λ log

∫
qg(θ)dθ

}
.

(11)
The duality theorem (Rockafellar, 1970; Bauschke et al.,
2011; Oko et al., 2022) guarantees the relationship D(g) ≤
L(µ) for any g ∈ Rn and µ ∈ P2 , and it is known that
the duality gap L(µ)−D(g) vanishes at the solutions of (6)
and (11) when they exist. In our problem setting, a more
precise result is given in Nitanda et al. (2022). We write
gµ = {ℓ′i(Eµ[hi(θ)])}ni=1 ∈ Rn (µ ∈ P2). Note that qg
and gµ are connected to the proximal Gibbs distribution
through the relation: qgµ ∝ µ̂. The following theorem from
Nitanda et al. (2022) exactly characterizes the duality gap
L(µ) − D(gµ) between µ ∈ P2 and gµ ∈ Rn via the KL
divergence to the proximal Gibbs distribution µ̂.

Theorem 4.3 (Duality Theorem (Nitanda et al., 2022)). Sup-
pose ℓi(·) is convex and differentiable. For any µ ∈ P2, the
duality gap between µ and gµ satisfies

0 ≤ L(µ)−D(gµ) = λKL(µ∥µ̂).

For the rest of the analysis, we further assume ℓi is the
twice differentiable convex function. The following theorem
shows the exponential convergence of KL(µt∥µ̂t) which
upper bounds the duality gap.
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Theorem 4.4. Let {µt}t≥0 be the evolution described by (7).
Under Assumptions 2.1, we get

KL(µt∥µ̂t) ≤ exp(−γt)KL(µ0∥µ̂0).

Proof. We calculate the time derivative of the primal and
dual objectives. On one hand, following the same computa-
tion as the proof of Theorem 4.2,

d

dt
L(µt) ≤ −λγKL(µt∥µ̂t).

On the other hand, we have

− d

dt
D(gµt

) = −∇D(gµt
)⊤

dgµt

dt

=
1

n

n∑
i=1

(
ℓ∗′i (gµt,i)−

1∫
qgµt

(θ)dθ

∫
hi(θ)qgµt

(θ)dθ

)
· d
dt

ℓ′i(Eµt
[hi(θ)])

= −γ

n

n∑
i=1

(Eµt
[hi(θ)]− Eµ̂t

[hi(θ)])
2
ℓ′′i (Eµt

[hi]) ≤ 0,

where we used µ̂t ∝ qgµt
(θ)dθ, ℓ∗′i = (ℓ′i)

−1, and

d

dt
ℓ′i(Eµt

[hi(θ)]) = ℓ′′i (Eµt
[hi])

∫
hi(θ)

dµt

dt
(θ)

= ℓ′′i (Eµt
[hi])(Eµ̂t

[hi]− Eµt
[hi]).

Combining these inequalities with Theorem 4.4,

d

dt
KL(µt∥µ̂t) =

1

λ

d

dt
(L(µt)−D(gµt))

≤ −γKL(µt∥µ̂t).

Therefore, Grönwall’s inequality finishes the proof.

Finally, Theorem 4.4 in combination with the following
result entails the convergence of L(µ̂t) to the optimal value.

Theorem 4.5 (Nitanda et al. (2022)). Suppose Assumptions
in Theorem 4.3 holds and suppose that ℓi is L-Lipschitz
smooth, that is, |ℓ′(z)−ℓ(z′)| ≤ L|z−z′| for any z, z′ ∈ R,
and ∥hi∥∞ ≤ B. Then,

L(µ̂t)−D(gµt) ≤ (λ+ 2B2L)KL(µt∥µ̂t).

5. Convergence in Discrete Time
Now we establish the convergence guarantee for the discrete-
time EFP (Algorithm 1). We present two different proof
strategies that might be of independent interest. The first
approach uses a one-step interpolation argument that builds
upon the continuous-time result in Section 4; whereas the
second approach is a Frank-Wolfe analysis based on the
gradient-boosting interpretation of EFP.

5.1. Analysis via One-step Interpolation

The key to our first convergence proof is the one-step inter-
polation argument. For Algorithm 1, we take the following
continuous linear interpolation between µ(t) and µ(t+1) over
the space of probability distributions. Let ν0 = µ(t), and

νs = ν0 + γs(ν̂0 − ν0) = µ(t) + sγ(µ̂(t) − µ(t)),

where s ∈ [0, η]. Then, νs is a linear approximation to the
continuous EFP (7) and we obtain the following:

d

ds
L(νs) = −λγ (KL(ν0∥ν̂0) + KL(ν̂0∥ν0))

+

∫
λγ log

dνs
dν0

(θ) · dν̂0
dν̂s

(θ)d(ν̂0 − ν0)(θ).

The last term is a time-discretization error, which can be
small if the step size η is small. Therefore by evaluating this
error, we can extend the proof of Theorem 4.2 and obtain
the reduction in objective value per iteration.

In the following, we set t0 = ⌈ 1
γη ⌉ and introduce a constant

Dλ that depends on ℓi and λ (for complete descriptions see
Appendix A). In addition, we make the following bounded-
ness assumptions on hi and ℓi. We note the upper bound of
1 can be replaced by any value.

Assumption 5.1. For any i = 1, 2, . . . , n and z ∈ [1, 1],

∥hi∥∞ ≤ 1, |ℓ′i(z)| ≤ 1, 0 ≤ ℓ′′i (z) ≤ 1.

The following lemma evaluates the decrease in the primal
objective value in one step.

Lemma 5.2. Let {µ(t)}Tt=0 ⊂ P2 be a sequence generated
by Algorithm 1. Suppose γη ≤ 1

8 holds. Then, under
Assumptions 2.1 and 5.1, we get for t ≥ t0,

L(µ(t+1))− L(µ(t)) ≤ −λγηKL(µ(t)∥µ̂(t)) + γη2Dλ.

Similarly, we can evaluate the dual objective as follows.

Lemma 5.3. Let {µ(t)}Tt=0 ⊂ P2 be a sequence generated
by Algorithm 1. Suppose γη ≤ 1

8 holds. Then, under
Assumptions 2.1 and 5.1, we get for t ≥ t0,

−D(gµ(t+1)) +D(gµ(t)) ≤ 2γη2Dλ.

Combining the above lemmas with Theorem 4.3, we have

KL(µ(t+1)∥µ̂(t+1)) ≤ (1− γη)KL(µ(t)∥µ̂(t)) +
7γη2

λ
Dλ.

Hence we obtain the following primal-dual convergence.

Theorem 5.4. Let {µ(t)}Tt=0 ⊂ P2 be a sequence generated
by Algorithm 1. Suppose γη ≤ 1

8 holds. Then, under
Assumptions 2.1 and 5.1, we get for t ≥ t0,

KL(µ(t)∥µ̂(t)) ≤ (1− γη)t−t0KL(µ(t0)∥µ̂(t0)) +
7η

λ
Dλ.

6



Primal and Dual Analysis of Entropic Fictitious Play for Finite-sum Problems 7

6. Gradient Boosting Viewpoint
6.1. Analysis of Algorithm 1

We introduce a gradient-boosting viewpoint of the discrete-
time EFP (Algorithm 1). Recall the empirical loss is given as
F0(µ) =

1
n

∑n
i=1 ℓi(Eµ[hi(θ)]). Observe that the proximal

Gibbs distribution µ̂ is characterized by the minimizer of
the regularized linear functional:

min
µ′

{∫
δF0

δµ
(µ)(θ)dµ′(θ) + λKL(µ′∥ν)

}
, (12)

where ν is the Gaussian distribution in proportion to
exp(−λ′∥θ∥22/λ). This can be verified by computing the
first variation of the objective and solving the first-order opti-
mality condition: δF0

δµ (µ) + λ log(dµ′/dν) = 0. Therefore,
µ̂ can be interpreted as an approximation of the “negative
gradient”: − δF0

δµ (µ), and the EFP update (8) can be seen as a
regularized gradient boosting method for the empirical loss
F0 over the space of probability distributions. Consequently,
we can show the following convergence of F0(µ

(T )) based
on the Frank-Wolfe argument.

Theorem 6.1. Suppose Assumption 2.1 holds and suppose
ℓi is L-Lipschitz smooth, ℓi ≥ 0, and ∥h∥∞ ≤ B. Then, for
{µ(t)}Tt=0 ⊂ P2 generate by Algorithm 1, we get

F0(µ
(T )) ≤ ϵ′ + (1− ηγ)TF0(µ

(0)) + inf
ξ∈P2

L(ξ),

where ϵ′ = 2ηγB2L.

Based on this theorem, we can compute the required time-
complexity to achieve an ϵ-error for a given precision ϵ >
0 in the following sense: F0(µ

(T )) ≤ infξ∈P2
L(ξ) + ϵ.

Concretely, by setting ηγ = ϵ/(4B2L), the complexity is

T =
4B2L

ϵ
log

(
2F0(µ0)

ϵ

)
.

Remark 6.2. The infimum of L can be upper bounded as
follows: for any r > 0, infξ∈P2 L(ξ) ≤ infξ∈Br F0(ξ)+λr,
where Br = {ξ ∈ P2 | KL(ξ∥ν) ≤ r}. Therefore, by
setting λ = ϵr−1 the above result implies the convergence to
an approximate solution of F0 over Br, that is, F0(µ

(T )) ≤
infξ∈Br

F0(ξ)+2ϵ. However, we note that the small λ could
potentially affect the complexity of sampling steps for µ̂(t)

in the practical implementation such as Algorithm 2.

6.2. Analysis of Algorithm 2

Next, we outline the extension of Theorem 6.1 that applies to
Algorithm 2 (i.e., the finite-particle implementation). Specif-
ically, Theorem 6.1 can be relaxed so that EFP allows for
a tolerance factor in the next iteration µ(t+1); that is, for a
given ρ ≥ 0,

F0(µ
(t+1)) ≤ ηγρ+ F0((1− ηγ)µ(t) + ηγµ̂(t)). (13)

For the convenience of explanation in this section, we de-
note by µ′(t+1) the exact update (1− ηγ)µ(t) + ηγµ̂(t) in
Algorithm 1. Note that µ′(t+1) satisfies the above condition
with ρ = 0. The above relaxation (13) yields a guarantee
similar to Theorem 6.1 with ϵ′ = ρ+2ηγB2L. Let us apply
this extended version of Theorem 6.1 to the case of µ(t+1) =
(1 − ηγ)µ(t) + ηγν(t), where ν(t) = 1

m

∑m
r=1 δθ(t)

r
is an

empirical distribution attained by Langevin Monte Carlo for
µ̂(t). This is to say, we modify Algorithm 1 by replacing
µ̂(t) with an empirical distribution ν(t). If ∥hi∥∞ ≤ B and
ℓi is C-Lipschitz continuous, Pinsker’s inequality leads to
the following upper-bound on |F0(µ

′(t+1))− F0(µ
(t+1))|:

ηγCB

√
2KL(ν(t)∥µ̂(t)) +

ηγC

n

n∑
i=1

|Eν(t) [hi]− Eν(t) [hi]|,

where we set ν(t) = Law(θ
(t)
r ). Therefore, we can estimate

the particle and iteration complexities to satisfy the required
precision (13) by applying the convergence rate of the unad-
justed Langevin Monte Carlo (Vempala & Wibisono, 2019)
together with a standard concentration inequality as done in
Nitanda et al. (2021); Oko et al. (2022).
Theorem 6.3. Suppose Assumption 2.1 holds, ℓi is C-
Lipschitz continuous and L-Lipschitz smooth, ℓi ≥ 0,
and ∥h∥∞ ≤ B, and ∇hi is D-Lipschitz continuous re-
garding ∥ · ∥2. Suppose the underlying Langevin Monte

Carlo is run with the initialization θ
(0)

r ∼ µ(0). Given
δ ∈ (0, 1), hyperparameters η′, S,m of Algorithm 2, are

set as follows: η′ ≤ min
{

α
4L′2 ,

αρ2

128dB2C2L′2

}
, S ≥

1
αη′ log

αKL(µ(0)∥µ̂(t))
8η′dL′2 , m ≥ 8B2C2

ρ2 log 2nT
δ , where α is

the LSI-constant of µ̂(t) and L′ = 1
λ (CD + 2λ′). Then,

for {µ(t)}Tt=0 ⊂ P2 generate by Algorithm 2, we get with
probability at least 1− δ,

F0(µ
(T )) ≤ ϵ′ + (1− ηγ)TF0(µ

(0)) + inf
ξ∈P2

L(ξ),

where ϵ′ = ρ+ 2ηγB2L.

Theorem 6.3 entails the particle and iteration complex-
ity to achieve a given ϵ-accurate solution in the follow-
ing sense: F0(µ

(T )) ≤ infξ∈P2
L(ξ) + ϵ. In particular,

using the evaluation (Holley & Stroock, 1987) (see Ap-
pendix B), µ̂(t) satisfies LSI with at least the constant
α = 2λ′

λ exp
(
− 4BC

λ

)
. We set ρ = Θ(ϵ), ηγ = Θ(ϵ), and

T = Θ
(
ϵ−1 log F0(µ

(0))
ϵ

)
= Θ̃(ϵ−1). For the step size η′,

it is sufficient to consider the case of η′ = Θ
(
αλ2ϵ2

)
. Then,

S = Θ
(
α−2λ−2ϵ−2 log KL(µ(0)∥µ̂(t))

8ϵ2dL2

)
= Θ̃(α−2λ−2ϵ−2)

and m = Θ
(
ϵ−2 log 2nT

δ

)
= Θ̃(ϵ−2), where the notation

Θ̃ hides the logarithmic term for simplicity. Therefore, par-
ticle and iteration complexities are as follows, respectively:

m = Θ̃(ϵ−2), ST = Θ̃(α−2λ−2ϵ−3).

7
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7. Experiments
Note that our theory also guarantees the convergence of
the proximal Gibbs distribution µ̂(T−1) to the (regularized)
global optimal solution. Therefore, in the following, we
evaluate the performance of µ̂(T−1) as well as µ(T ) in the
applications of training two-layer neural networks as well
as image synthesis using transparent triangles.

7.1. Two-layer Neural Networks

As previously remarked, optimizing a two-layer neural net-
work in the mean-field regime is one important application
of the EFP algorithm. We write h(θ, x) = σ(θ⊤x) as one
neuron with trainable parameters θ ∈ Rd. In this setting,
the mean-field model Eµ[h(θ, ·)] is an infinite-width neural
network, and 1

m

∑m
r=1 h(θr, ·) is an M -particle approxima-

tion of the infinite-width limit (i.e., a neural network with
m hidden neurons).

We consider a student-teacher setting where the labels are
generated by a teacher network with cosine activation; we
set n = 500, d = 5. The student model is a two-layer net-
work with tanh activation and width m = 1000. The train-
ing objective is to minimize the empirical squared error, and
the regularization hyperparameters are set to λ = λ′ = 0.01.
We optimize the neural network using EFP with an outer-
loop step size ηγ = 0.01. At each iteration, we approximate
the proximal Gibbs measure µ̂t via the Langevin Monte
Carlo algorithm with step size η′ = 0.01.

100 101 102

number of steps

0.4

0.2

0.0

0.2

ob
je

ct
iv

e

( t)
(g t)
(g t)
( * )

Figure 2. Illustration of primal-dual convergence: learning two-
layer neural net with EFP (λ = λ′ = 10−2).

In Figure 2 we report the primal and dual objective values,
in which the entropy term is computed by the k-nearest
neighbors estimator (Kozachenko & Leonenko, 1987). The
optimal value L(µ∗) is approximated using the particle dual
averaging (PDA) algorithm (Nitanda et al., 2021) which
also globally optimizes the objective (6). Observe that the
duality gap vanishes as predicted by our theoretical analysis.

7.2. Image Synthesis with Triangles

We also consider the image synthesis experiment in Tian
& Ha (2022), where the goal is to “approximate” an image
via integrating transparent triangles. To draw the triangles,
we utilize a differentiable render (Laine et al., 2020) that
provides a differentiable map to translate the parameters
θ (representing the colors and vertexes) into a transparent
triangle h(θ). Then, we can construct an image Eθ∼µ[h(θ)]
by integrating h(θ) with the probability distribution µ. For
simple explanation, we take a W × H image of a single
channel, i.e., h(θ) = {hij(θ)}i,j ∈ RWH . We formalize
the problem of approximating a given image J ∈ RWH as
a regularized regression problem using the squared error:

1

WH

∑
i,j

ℓi,j(Eµ[hij(θ)]) =
1

WH

∑
i,j

(Ji,j − Eµ[hij(θ)])
2.

Then, we can apply Algorithm 2 to minimize this function
with regularization. We adopt the image “Mona Lisa” of
size 256 × 256 as the target. See Figure 3 for the original
target image and one generated image H(T ) = {H(t)

i,j }i,j
using EFP (Algorithm 2).

Figure 3. We run Algorithm 2 with λ = 10−5, λ′ = 10−4, T =
2000, S = 10, m = 1000, η · γ = 0.01 to fit the target image.
As for the step size for Langevin Monte Carlo, we used cosine
annealing from 0.1 to 0.01. The figure depicts the target image
“Mona Lisa” (left) and an obtained image (right).

In Figure 4 we compare the generated images H(T ) with
1
m

∑m
r=1 h(θ

(T−1)
r ) using different number of triangles of

m = 200 and m = 1000; we also report the generated
image under both µ(T ) and the Gibbs distribution, µ̂(T−1)

as explained in Section 3.2. Figure 4 depicts these generated
images. Finally, we plot the squared error of each image
during optimization in Figure 5.

We observe that EFP is capable of generating reasonable
images. Moreover, as the number of particle m increases,
the quality of images generated by both µ(T ) and µ̂(T−1)

improve and the discrepancy between them becomes smaller.
This is consistent with our theory, which guarantees the
convergence of both distributions to the optimal solution
when m becomes large.

8
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µ(T ) µ̂(T−1) µ(T ) µ̂(T−1)

Figure 4. Comparison of images generated by µ(T ) and µ̂(T−1).
We set m = 200 for the first two figures on the left, and m = 1000
for the two on the right. In both cases, the left and right figures
correspond to images by µ(T ) and µ̂(T−1), respectively.

Figure 5. Squared error achieved by µ(T ) and µ̂(T−1) with the
number of triangles (particle size) m = 200, 1000.

Conclusion
In this paper, we presented a concise primal-dual analysis
of the entropic fictitious play (EFP) algorithm for the finite-
sum minimization problem. Specifically, we showed the
convergence in both continuous- and discrete-time in terms
of the primal and dual objectives, which is equivalent to
the convergence of the KL divergence between µ and µ̂.
Our analysis also leads to an efficient implementation of
EFP which resolves the huge memory consumption issue.
Moreover, we introduced a gradient-boosting perspective of
EFP which gives a new discrete-time global convergence
analysis; under this perspective, EFP can be regarded as
the memory-efficient gradient-boosting method perform-
ing on the space of probability distributions. Finally, we
empirically verified our theory in the application of train-
ing two-layer neural networks and an image synthesis us-
ing transparent triangles. An interesting future work is the
generalization analysis for mean-field models. Especially,
learnability in the classification setting is of interest for the
combination of our convergence result and margin theory.
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A. Analysis in discrete-time
Lemma A.1. Suppose Assumption 5.1 holds. Then, any two probability distributions µ1, µ2 satisfy

C−1
λ ≤ µ̂1(θ)

µ̂2(θ)
≤ Cλ, (14)

with Cλ := exp(4/λ).

Moreover, let µ1, µ2 be two probability distributions, and µ := (1− t)µ1 + tµ2 be an interpolation with t ∈ [0, 1
2 ]. Then,

we have that

−4t ≤ µ̂(θ)

µ̂1(θ)
− 1 ≤ 4tCλ. (15)

Proof. Because of ∥hi∥∞ ≤ 1 and |(gµ)i| = |ℓ′i(x)| ≤ 1, the conclusion follows immediately by the following formulation:

µ̂1(θ)

µ̂2(θ)
=

exp
(
− 1

λ

(
1
n

∑n
i=1 hi(θ)gµ1,i + λ′∥θ∥22

))
exp

(
− 1

λ

(
1
n

∑n
i=1 hi(θ)gµ2,i + λ′∥θ∥22

)) ∫ exp
(
− 1

λ

(
1
n

∑n
i=1 hi(θ

′)gµ2,i + λ′∥θ′∥22
)
dθ′
)∫

exp
(
− 1

λ

(
1
n

∑n
i=1 hi(θ′′)gµ1,i + λ′∥θ′′∥22

)
dθ′′
) .

In the same way, to bound µ̂(θ)
µ̂1(θ)

, we consider the density ratio:

µ̂(θ)

µ̂1(θ)
=

exp
(
− 1

λ

(
1
n

∑n
i=1 hi(θ)gµ,i + λ′∥θ∥22

))
exp

(
− 1

λ

(
1
n

∑n
i=1 hi(θ)gµ1,i + λ′∥θ∥22

)) ∫ exp
(
− 1

λ

(
1
n

∑n
i=1 hi(θ

′)gµ1,i + λ′∥θ′∥22
)
dθ′
)∫

exp
(
− 1

λ

(
1
n

∑n
i=1 hi(θ′′)gµ,i + λ′∥θ′′∥22

)
dθ′′
) . (16)

Note that

|gµ,i − gµ1,i| =
∣∣∣∣ℓ′i(∫ hi(θ)dµ(θ)

)
− ℓ′i

(∫
hi(θ)dµ1(θ)

)∣∣∣∣
≤
∣∣∣∣∫ hi(θ)dµ(θ)−

∫
hi(θ)dµ1(θ)

∣∣∣∣
= t

∣∣∣∣∫ hi(θ)dµ2(θ)−
∫

hi(θ)dµ1(θ)

∣∣∣∣
≤ 2t.

Therefore, the equation (16) is upper and lower bounded by exp(4t/λ) and exp(−4t/λ), respectively. Note that we have
exp(4t/λ) ≤ 1 + 4t exp(4/λ) and exp(−4t/λ) ≥ 1− 4t if 0 ≤ t ≤ 1

4 holds, which concludes the proof.

Lemma A.2. Suppose Assumption 5.1 and γη < 1 hold. Then, for t ≥ t0 := ⌈ 1
γη ⌉, we get 1

2Cλ
µ̂(t) ≤ µ(t).

Proof. First, we observe that

µ(t) = (1− γη)µ(t−1) + ηγµ̂(t−1)

= · · · = (1− γη)tµ(0) + ηγ

t−1∑
s=0

(1− γη)t−s−1µ̂(s). (17)

According to the bounds (14) of Lemma A.1, µ̂s(θ) ≥ C−1
λ µ̂(t) holds for each s and θ. Therefore, (17) yields that

µ(t) ≥ ηγ

t−1∑
s=0

(1− γη)t−s−1C−1
λ µ̂(t) ≥ (1− (1− γη)t)C−1

λ µ̂(t).

By letting t ≥ t0 := ⌈ 1
γη ⌉ ≥ log1−γη

1
2 , we obtain that µ(t) ≥ 1

2Cλ
µ̂(t).

11
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We then present the analysis for each iteration of Algorithm 1 for the primal and dual objectives.
Lemma A.3. Suppose Assumption 5.1 and γη ≤ 1

8 hold. Then, for t ≥ t0 := ⌈ 1
γη ⌉, we get

L(µ(t+1))− L(µ(t)) ≤ −λγηKL(µ(t)∥µ̂(t)) + γη2(3Cλ + 5).

Proof. We consider the following continuous interpolation between µ(t) and µ(t+1). Let ν0 = µ(t), and νη = ν0 + γη(ν̂0 −
ν0) = µ(t) + ηγ(µ̂(t) − µ(t)). We then revisit the analysis on primal convergence (Theorem 4.2).

d

dη
L(νη) =

∫
δL
δµ

(νη)(θ)
dνη
dη

(θ)

=

∫
λγ log

dνη
dν̂η

(θ)d(ν̂0 − ν0)(θ)

=

∫
λγ log

dν0
dν̂0

(θ)d(ν̂0 − ν0)(θ) +

∫
λγ log

dνη
dν0

(θ)d(ν̂0 − ν0)(θ) +

∫
λγ log

dν̂0
dν̂η

(θ)d(ν̂0 − ν0)(θ) (18)

The first term is equal to −λγ (KL(ν0∥ν̂0) + KL(ν̂0∥ν0)) as previously.

To bound the second term, we bound the density ratio dνη

dν0
(θ) as

dνη
dν0

(θ) =
d(ν0 − γη(ν0 − ν̂0))

dν0
(θ) =

(1− γη)dµ(t)

dµ(t)
(θ) + γη

dµ̂(t)

dµ(t)
(θ)

{
≥ 1− γη,

≤ (1− γη) + 2Cλγη = 1 + γη(2Cλ − 1),

where we used Lemma A.2 the upper bound. Therefore, we have that∫
λγ log

dνη
dν0

(θ)d(ν̂0 − ν0)(θ) ≤ log(1 + γη(2Cλ − 1))− log(1− γη) ≤ γη(2Cλ + 2),

where we used that log(1 + x) ≤ x and log(1− x) ≥ 2x (0 ≤ x ≤ 1
2 ) for the last inequality.

The third term is bounded in a similar manner. The bounds (15) from Lemma A.1 yield that∫
λγ log

dν̂0
dν̂η

(θ)d(ν̂0 − ν0)(θ) ≤ log(1 + 4γηCλ)− log(1− 4γη).

RHS is further bounded by 4γη(Cλ + 2), where we used the fact that log(1 + x) ≤ x and log(1− x) ≥ 2x (0 ≤ x ≤ 1
2 ).

Putting it all together, (18) is bounded by

d

dη
L(νη) ≤ −λγ (KL(ν0∥ν̂0) + KL(ν̂0∥ν0)) + γη(6Cλ + 10) ≤ −λγKL(µ(t)∥µ̂(t)) + γη(6Cλ + 10).

By integrating LHS and RHS, we obtain that

L(νη)− L(ν0) ≤ −λγηKL(µ(t)∥µ̂(t)) + γη2(3Cλ + 5),

and L(µ(t+1))− L(µ(t)) = L(νη)− L(ν0) concludes the proof.

Lemma A.4. Suppose Assumption 5.1 and γη ≤ 1
8 hold. Then, for t ≥ t0 := ⌈ 1

γη ⌉, we get

−D(gµ(t+1)) +D(gµ(t)) ≤ 2γη2(1 + 2Cλ).

Proof. Let νη be defined in the same way as previously. We consider the evolution of d
dηD(gνη ) based on the analysis for

Theorem 4.4. We have that

− d

dη
D(gνη

) = −∇D(gνη
)⊤

dgνη

dν

=
1

n

n∑
i=1

(
ℓ∗′i (gνη,i)−

1∫
qgνη (θ)dθ

∫
hi(θ)qgνη (θ)dθ

)
· d

dη
ℓ′i(Eνη [hi(θ)])

= −γ

n

n∑
i=1

(Eνη
[hi(θ)]− Eν̂η

[hi(θ)])(Eν0
[hi(θ)]− Eν̂0

[hi(θ)])ℓ
′′
i (Eνη

[hi]). (19)

12
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where we used ν̂η ∝ qgνη (θ)dθ, ℓ∗′i = (ℓ′i)
−1, and

d

dη
ℓ′i(Eνη [hi(θ)]) = ℓ′′i (Eνη [hi])

∫
hi(θ)

dνη
dη

(θ) = ℓ′′i (Eνη [hi])(Eν̂0 [hi]− Eν0 [hi]).

We bound the difference between (Eνη
[hi(θ)]− Eν̂η

[hi(θ)]) and (Eν0
[hi(θ)]− Eν̂0

[hi(θ)]). First, Eνη
[hi(θ)] is evaluated

as

Eνη
[hi(θ)] = (1− γη)Eν0

[hi(θ)] + γηEν̂0
[hi(θ)]

∴ |Eνη
[hi(θ)]− Eν0

[hi(θ)]| ≤ 2γη, (20)

where we used ∥hi∥∞ ≤ 1. Next, according to (15) of Lemma A.1, we have that

|Eν̂η [hi(θ)]− Eν̂0 [hi(θ)]| =
∣∣∣∣∫ hid(ν̂η − ν̂0)

∣∣∣∣ ≤ 4γηCλ

∣∣∣∣∫ hidν̂0

∣∣∣∣ ≤ 4γηCλ. (21)

Now applying (20) and (21) to (19), we get

− d

dη
D(gνη

) = −γ

n

n∑
i=1

(Eν0
[hi(θ)]− Eν̂0

[hi(θ)])ℓ
′′
i (Eνη

[hi])
2 + 4γη(1 + 2Cλ)L ≤ 4γη(1 + 2Cλ).

where we also used ∥hi∥∞ ≤ 1 and 0 ≤ ℓ′′i ≤ 1. By integrating LHS and RHS, we obtain that

−D(gνη ) +D(gν0) ≤ 2γη2(1 + 2Cλ).

−D(gµ(t+1)) +D(gµ(t)) = −D(gνη
) +D(gν0

) by definition yields the assertion.

Theorem A.5. Suppose Assumption 5.1 and γη ≤ 1
8 hold. Then, for t ≥ t0 := ⌈ 1

γη ⌉, we get

KL(µ(t)∥µ̂(t)) ≤ (1− γη)t−t0KL(µ(t0)∥µ̂(t0)) +
7η

λ
(1 + Cλ)

for all t ≥ t0, where t0 = ⌈ 1
γη ⌉ and Cλ = exp(4/λ).

Proof. According to Lemmas A.3 and A.4, we have that

L(µ(t+1))−D(gµ(t+1))− (L(µ(t))−D(gµ(t+1))) ≤ −λγηKL(µ(t)∥µ̂(t)) + 7γη2(1 + Cλ).

LHS is equal to λKL(µ(t+1)∥µ̂(t+1))− λKL(µ(t)∥µ̂(t)), by using Theorem 4.3. Thus, we obtain that

KL(µ(t+1)∥µ̂(t+1))−KL(µ(t)∥µ̂(t)) ≤ −γηKL(µ(t)∥µ̂(t)) +
7γη2

λ
(1 + Cλ), (22)

and Grönwall’s inequality yields that(
KL(µ(t)∥µ̂(t))− η

λ
(7 + 7Cλ)

)
≤ (1− γη)t−t0

(
KL(µ(t0)∥µ̂(t0))− 7η

λ
(1 + Cλ)

)
. (23)

Therefore, we obtain that

KL(µ(t)∥µ̂(t)) ≤ (1− γη)t−t0KL(µ(t0)∥µ̂(t0)) +
7η

λ
(1 + Cλ)

for all t ≥ t0.

Corollary A.6. In order to make the dualty gap smaller than ε, i.e. L(µ(t))−D(gµ(t)) = λKL(µ(t)∥µ̂(t)) ≤ ε, it suffices to
take η = ε

14(1+Cλ)
and t ≥ 14γ(1 + Cλ)ε

−1 log(2eλε−1KL(µ(t0)∥µ̂(t0))).

13
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B. Gradient Boosting Viewpoint
B.1. Convergence analysis of an inexact EFP

We here relax the next iteration µ(t+1) to an inexact version. That is, we replace µ(t+1) = (1 − ηγ)µ(t) + ηγµ̂(t) in
Algorithm 1 with a probability distribution that satisfies

F0(µ
(t+1)) ≤ ηγρ+ F0((1− ηγ)µ(t) + ηγµ̂(t)). (24)

Then, we prove the generalized version of Theorem 6.1 which can apply to Algorithm 2 with the above modification.
Theorem B.1. Suppose Assumption 2.1 holds and suppose ℓi is L-Lipschitz smooth, ℓi ≥ 0, and ∥h∥∞ ≤ B. Then, for
{µ(t)}Tt=0 ⊂ P2 defined above, we get

F0(µ
(T )) ≤ ϵ′ + (1− ηγ)TF0(µ

(0)) + inf
ξ∈P2

L(ξ),

where ϵ′ = ρ+ 2ηγB2L.

Proof. For notational simplicity, we denote hi,µ = Eµ[hi(θ)]. By the L-Lipschitz smoothness of ℓi, boundedness |hi(θ)| ≤
B, and the definition of F0, we get for µ, µ′ ∈ P2,

F0(µ
′) ≤ F0(µ) +

1

n

n∑
i=1

ℓ′i(hi,µ)(hi,µ′ − hi,µ) +
L

2n

n∑
i=1

(hi,µ′ − hi,µ)
2

= F0(µ) +
1

n

n∑
i=1

ℓ′i(hi,µ)

∫
hi(θ)d(µ

′ − µ)(θ) +
L

2n

n∑
i=1

(∫
hi(θ)d(µ

′ − µ)(θ)

)2

≤ F0(µ) +

∫
δF0

δµ
(µ)(θ)d(µ′ − µ)(θ) +

L

2n

n∑
i=1

(∫
|hi(θ)|

∣∣∣∣d(µ′ − µ)

dθ
(θ)

∣∣∣∣dθ)2

≤ F0(µ) +

∫
δF0

δµ
(µ)(θ)d(µ′ − µ)(θ) +

B2L

2n

n∑
i=1

(∫ ∣∣∣∣d(µ′ − µ)

dθ
(θ)

∣∣∣∣ dθ)2

,

where we used δF0

δµ (µ)(θ) = 1
n

∑n
i=1 ℓ

′
i(hi,µ)hi(θ).

Since µ̂t is the minimizer of the objective (12) with µ = µ(t), i.e.,

µ̂(t) = argmin
µ′

{∫
δF0

δµ
(µ(t))(θ)dµ′(θ) + λKL(µ′∥ν)

}
,

%beginalign*

we see for any ξ ∈ P2,∫
δF0

δµ
(µ(t))(θ)dµ̂(t)(θ) ≤

∫
δF0

δµ
(µ(t))(θ)dµ̂(t)(θ) + λKL(µ̂(t)∥ν) ≤

∫
δF0

δµ
(µ(t))(θ)dξ(θ) + λKL(ξ∥ν).

Therefore, applying this inequality with µ′ = (1− ηγ)µ(t) + ηγµ̂(t) and µ = µ(t), and the convexity of F0,

F0(µ
(t+1))− ηγρ

≤ F0((1− ηγ)µ(t) + ηγµ̂(t))

≤ F0(µ
(t)) + ηγ

∫
δF0

δµ
(µ(t))(θ)d(µ̂(t) − µ(t))(θ) +

η2γ2B2L

2n

n∑
i=1

(∫ ∣∣∣∣d(µ̂(t) − µ(t))

dθ
(θ)

∣∣∣∣dθ)2

≤ F0(µ
(t)) + ηγ

∫
δF0

δµ
(µ(t))(θ)d(µ̂(t) − µ(t))(θ) + 2η2γ2B2L

≤ F0(µ
(t)) + ηγ

∫
δF0

δµ
(µ(t))(θ)d(ξ − µ(t))(θ) + ηγλKL(ξ∥ν) + 2η2γ2B2L

≤ F0(µ
(t)) + ηγ(F0(ξ)− F0(µ

(t))) + ηγλKL(ξ∥ν) + 2η2γ2B2L.

14
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This implies

F0(µ
(t+1))− F0(ξ) ≤ ηγρ+ ηγλKL(ξ∥ν) + 2η2γ2B2L+ (1− ηγ)(F0(µ

(t))− F0(ξ)).

With a slight modification, we get

F0(µ
(t+1))− F0(ξ)− λKL(ξ∥ν)− ϵ′ ≤ (1− ηγ)(F0(µ

(t))− F0(ξ)− λKL(ξ∥ν)− ϵ′).

where we set ϵ′ = ρ+ 2ηγB2L. Recursively applying this inequality,

F0(µ
(T )) ≤ ϵ′ + F0(ξ) + λKL(ξ∥ν) + (1− ηγ)TF0(µ

(0)).

Because of arbitrariness of ξ, we conclude

F0(µ
(T )) ≤ ϵ′ + (1− ηγ)TF0(µ

(0)) + inf
ξ∈P2

L(ξ).

B.2. Convergence analysis of Algorithm 2

We explain that Theorem B.1 can apply to Algorithm 2 as discussed in Remark 6.2. We redefine µ(t+1) as µ(t+1) =
(1 − ηγ)µ(t) + ηγν(t), where ν(t) is an empirical distribution ν(t) = 1

m

∑m
r=1 δθ(t)

r
attained by Langevin Monte Carlo

for µ̂t with the random initialization in Algorithm 2. Moreover, we set ν(t) = Law(θ
(t)
r ). Then, we can evaluate the gap

between µ(t+1) and an exact update µ′(t+1) = (1−ηγ)µ(t)+ηγµ̂(t) as follows. Suppose ∥hi∥∞ ≤ B and ℓi is C-Lipschitz
continuous. Then, we get

|F0(µ
′(t+1))− F0(µ

(t+1))| ≤ C

n

n∑
i=1

∣∣Eµ̂′(t+1) [hi]− Eµ(t+1) [hi]|
∣∣

=
ηγC

n

n∑
i=1

∣∣Eµ̂(t) [hi]− Eν(t) [hi]|
∣∣

≤ ηγC

n

n∑
i=1

∣∣Eµ̂(t) [hi]− Eν(t) [hi]|
∣∣+ ηγC

n

n∑
i=1

|Eν(t) [hi]− Eν(t) [hi]|

≤ ηγBC

∥∥∥∥∥dµ̂(t)

dθ
− dν(t)

dθ

∥∥∥∥∥
L1(dθ)

+
ηγC

n

n∑
i=1

|Eν(t) [hi]− Eν(t) [hi]|

≤ ηγBC

√
2KL(ν(t)∥µ̂(t)) +

ηγC

n

n∑
i=1

|Eν(t) [hi]− Eν(t) [hi]|, (25)

where we applied Pinsker’s inequality for the last inequality.

Therefore, we can estimate the particle and iteration complexities to satisfy the required precision (24) by applying the
convergence rate of Langevin Monte Carlo (Vempala & Wibisono, 2019) together with a standard concentration inequality
as done in Nitanda et al. (2021); Oko et al. (2022).

Definition B.2 (Log-Sobolev inequality). Let dµ = p(θ)dθ be a probability distribution with a positive smooth density
p > 0 on Rp. We say that µ satisfies the log-Sobolev inequality with constant α > 0 if for any smooth function f : Rp → R,

Eµ[f
2 log f2]− Eµ[f

2] logEµ[f
2] ≤ 2

α
Eµ[∥∇f∥22].

This inequality is analogous to strong convexity in optimization: let dν = q(θ)dµ be a probability distribution on Rp such
that q is smooth and positive. Then, if µ satisfies the log-Sobolev inequality with α, it follows that

KL(ν||µ) ≤ 1

2α
Eν [∥∇θ log q∥22].

15
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The above relation is directly obtained by setting f =
√
q in the definition of log-Sobolev inequality. Note that the right

hand side is nothing else but the squared norm of functional gradient of KL(ν∥µ) with respect to a transport map for ν.

It is well-known that strong log-concave densities satisfy the LSI with a dimension-free constant (up to the spectral norm of
the covariance).

Example B.3 ((Bakry & Émery, 1985)). Let q ∝ exp(−f) be a probability density, where f : Rp → R is a smooth function.
If there exists c > 0 such that ∇2f ⪰ cIp, then q(θ)dθ satisfies Log-Sobolev inequality with constant c.

In addition, the LSI is preserved under bounded perturbation, as originally shown in (Holley & Stroock, 1987). We also
provide a proof for completeness.

Lemma B.4 ((Holley & Stroock, 1987)). Let q(θ)dθ be a probability distribution on Rp satisfying the log-Sobolev inequality
with a constant α. For a bounded function B : Rp → R, we define a probability distribution qB(θ)dθ as follows:

qB(θ)dθ =
exp(B(θ))q(θ)

Eq[exp(B(θ))]
dθ.

Then, qBdθ satisfies the log-Sobolev inequality with a constant α/ exp(4∥B∥∞).

Theorem B.5 ((Vempala & Wibisono, 2019)). Consider a probability density q(θ) ∝ exp(−f(θ)) satisfying the log-Sobolev
inequality with constant α, and assume f is smooth and ∇f is L-Lipschitz, i.e., ∥∇θf(θ)−∇θf(θ

′)∥2 ≤ L∥θ − θ′∥2. If
we run the unadjusted Langevin algorithm with learning rate 0 < η′ ≤ α

4L2 and let q(s)(θ)dθ be a probability distribution
that θ(s) follows, then we have,

KL(q(s)∥q) ≤ exp(−αη′s)KL(q(1)∥q) + 8α−1η′dL2.

Lemma B.6 (Hoeffding’s inequality). Let Z,Z1, . . . , Zm be i.i.d. random variables taking values in [−a, a] for a > 0. Then,
for any ρ > 0, we get

P

[∣∣∣∣∣ 1m
m∑
r=1

Zr − E[Z]

∣∣∣∣∣ > ρ

]
≤ 2 exp

(
−ρ2m

2a2

)
.

We evaluate the inequality (25) by combining the above auxiliary results. By Lemma B.4 with Example B.3, we see
at least µ̂(t) satisfies LSI with the constant α = 2λ′

λ exp
(
− 4BC

λ

)
. Furthermore, under the Lipschitz continuity of ∇hi

where ∥∇hi(θ
′) − ∇hi(θ)∥2 ≤ D∥θ′ − θ∥2 for any θ, θ′ ∈ Rp, we see ∇ log dµ̂(t)

dθ is Lipschitz continuous with the

constant L′ = 1
λ (CD + 2λ′). We run Langevin Monte Carlo for µ̂(t) with the initialization θ

(0)

r ∼ µ(0). Then, if

S ≥ 1
αη′ log

αKL(µ(0)∥µ̂(t))
8η′dL′2 , we have by Theorem B.5,

KL(q(S)∥µ̂(t)) ≤ 16α−1η′dL′2,

where q(S) is the distribution of θ
(S)

r . Moreover, by Lemma B.6, we see with probability at least 1 − δ, for any i ∈
{1, 2, . . . , n},

|Eν(t) [hi]− Eν(t) [hi]| ≤ B

√
2

m
log

2n

δ
.

Noting θ
(t)
r = θ

(S)

r (i.e., ν(t) = q(S)), we get with probability at least 1− δ,

|F0(µ
′(t+1))− F0(µ

(t+1))| ≤ ηγBC

√
2KL(ν(t)∥µ̂(t)) +

ηγC

n

n∑
i=1

|Eν(t) [hi]− Eν(t) [hi]|

≤ ηγ

(
4BCL′

√
2η′d

α
+BC

√
2

m
log

2n

δ

)
.

Note this is a high probability bound per outer iteration t. Therefore, we take a union bound with respect to t ∈
{0, 1, . . . , T − 1} to obtain high probability bounds that hold all t. That is, with probability at least 1 − δ, for any

16
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t ∈ {0, 1, . . . , T − 1},

|F0(µ
′(t+1))− F0(µ

(t+1))| ≤ ηγ

(
4BCL′

√
2η′d

α
+BC

√
2

m
log

2nT

δ

)
.

To satisfy the condition (24) at all iterations t under the above event, it is sufficient take η′ and m as follows:

η′ ≤ αρ2

128dB2C2L′2 , m ≥
8B2C2

ρ2
log

2nT

δ
.

Taking everything into account, we get the following convergence guarantee for Algorithm 2.

Theorem B.7. Suppose Assumption 2.1 holds, ℓi is C-Lipschitz continuous and L-Lipschitz smooth, ℓi ≥ 0, and ∥h∥∞ ≤ B,
and ∇hi is D-Lipschitz continuous regarding ∥ · ∥2. Suppose the underlying Langevin Monte Carlo is run with the

initialization θ
(0)

r ∼ µ(0). Given δ ∈ (0, 1), hyperparameters η′, S,m of Algorithm 2, are set as follows:

η′ ≤ min

{
α

4L′2 ,
αρ2

128dB2C2L′2

}
, S ≥ 1

αη′
log

αKL(µ(0)∥µ̂(t))

8η′dL′2 , m ≥ 8B2C2

ρ2
log

2nT

δ
,

where α is the LSI-constant of µ̂(t) and L′ = 1
λ (CD + 2λ′). Then, for {µ(t)}Tt=0 ⊂ P2 generate by Algorithm 2, we get

with probability at least 1− δ,
F0(µ

(T )) ≤ ϵ′ + (1− ηγ)TF0(µ
(0)) + inf

ξ∈P2

L(ξ),

where ϵ′ = ρ+ 2ηγB2L.

We here derive particle and iteration complexities to achieve a given ϵ-accurate solution in the following sense: F0(µ
(T )) ≤

infξ∈P2
L(ξ) + ϵ. To this end, we set ρ = Θ(ϵ), ηγ = Θ(ϵ), and T = Θ

(
ϵ−1 log F0(µ

(0))
ϵ

)
= Θ̃(ϵ−1). The notation Θ̃

hides the logarithmic term for simplicity. For the step size η′, it is sufficient to consider the case of η′ = Θ
(
αλ2ϵ2

)
. Then,

S = Θ
(
α−2λ−2ϵ−2 log KL(µ(0)∥µ̂(t))

8ϵ2dL2

)
= Θ̃(α−2λ−2ϵ−2) and m = Θ

(
ϵ−2 log 2nT

δ

)
= Θ̃(ϵ−2). Therefore, particle and

iteration complexities are as follows, respectively:

m = Θ̃(ϵ−2), ST = Θ̃(α−2λ−2ϵ−3).
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