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Abstract
The Sliced-Wasserstein distance (SW) is a com-
putationally efficient and theoretically grounded
alternative to the Wasserstein distance. Yet, the
literature on its statistical properties – or, more
accurately, its generalization properties – with
respect to the distribution of slices, beyond the
uniform measure, is scarce. To bring new contri-
butions to this line of research, we leverage the
PAC-Bayesian theory and a central observation
that SW may be interpreted as an average risk,
the quantity PAC-Bayesian bounds have been de-
signed to characterize. We provide three types of
results: i) PAC-Bayesian generalization bounds
that hold on what we refer as adaptive Sliced-
Wasserstein distances, i.e. SW defined with re-
spect to arbitrary distributions of slices (among
which data-dependent distributions), ii) a princi-
pled procedure to learn the distribution of slices
that yields maximally discriminative SW, by opti-
mizing our theoretical bounds, and iii) empirical
illustrations of our theoretical findings.

1. Introduction
The Wasserstein distance is a metric between probability
distributions and a key notion of the optimal transport frame-
work (Villani, 2009; Peyré & Cuturi, 2019). Over the past
years, it has received a lot of attention from the machine
learning community because of its theoretical grounding
and the increasing number of problems relying on the com-
putation of distances between measures (Solomon et al.,
2014; Frogner et al., 2015; Montavon et al., 2016; Kolouri
et al., 2017; Courty et al., 2016; Schmitz et al., 2018), such
as the learning of deep generative models (Arjovsky et al.,
2017; Bousquet et al., 2017; Tolstikhin et al., 2017). As
the measures µ and ν to be compared are usually unknown,
the Wasserstein distance W (µ, ν) is estimated through an
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“empirical” version W (µn, νn), where µn
.
= {x1, . . . , xn}

and νn
.
= {y1, . . . , yn} are i.i.d. samples from µ and ν,

respectively (without loss of generality, samples will be
assumed to have the same size n). Due to its unfavorable
O(n3 log n) computational complexity, the Wasserstein dis-
tance scales badly on large datasets (Peyré & Cuturi, 2019)
and alternatives have been devised to overcome this limita-
tion, such as the Sinkhorn algorithm (Cuturi, 2013; Cuturi
& Peyré, 2016), multi-scale (Oberman & Ruan, 2015) or
sparse approximations approaches (Schmitzer, 2016).

The Sliced-Wasserstein distance (SW) (Rabin et al., 2012)
is another computationally efficient alternative, which takes
advantage of the closed-form and fast computation of the
one-dimensional Wasserstein distance. For d-dimensional
(d > 1) samples {x1, . . . , xn} and {y1, . . . , yn}, the
computation of SW(µn, νn) is done by uniformly sam-
pling m projection directions {θ1, . . . , θm} and by
averaging the m one-dimensional Wasserstein distances
W ({⟨θj , x1⟩, . . . , ⟨θj , xn⟩}, {⟨θj , y1⟩, . . . , ⟨θj , yn⟩}) for
j = 1, . . . ,m. SW has been analyzed theoretically
(Bonnotte, 2013; Nadjahi et al., 2019; Bayraktar & Guo,
2021; Nadjahi et al., 2020b), refined to gain additional
efficiency (Nadjahi et al., 2021) and to handle “nonlinear”
projections (Kolouri et al., 2019a; 2020), and it has been
successfully used in a variety of machine learning tasks
(Bonneel et al., 2015; Kolouri et al., 2016; Carriere et al.,
2017; Liutkus et al., 2019; Deshpande et al., 2018; Kolouri
et al., 2018; 2019b; Nadjahi et al., 2020a; Bonet et al.,
2021; Rakotomamonjy & Ralaivola, 2021). A direction to
yet improve SW consists in adapting ρ, the distribution of
{θi}mi=1 in a data-dependent manner, as done by maximum
SW (max-SW, (Deshpande et al., 2019)), which aims at
finding a unique slice θ⋆ (or equivalently, the Dirac measure
δθ⋆) that maximizes the one-dimensional Wasserstein
distance, or distributional SW (DSW) (Nguyen et al., 2021),
which seeks for a maximally discriminative distribution on
the unit sphere. These works fall into the class of what we
refer as adaptive Sliced-Wasserstein distances and denote
SW(·, ·; ρ), overloading the SW(·, ·) notation to make
explicit the dependence on ρ.

A question of interest in adaptive SW, which has not been
explicitly addressed in previous work, is whether one can
learn a distribution ρ⋆(µn, νn) from training data, such that
SWp

p(µ, ν; ρ
⋆(µn, νn)) is guaranteed to be highly discrim-
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inative. In our work, we address this problem by measur-
ing the “generalization” gap between SWp

p(µn, νn; ρ) and
SWp

p(µ, ν; ρ). Bounds on this gap can be derived from ex-
isting results for max-SW (Lin et al., 2021; Niles-Weed &
Rigollet, 2022). However, it is unclear how these bounds
are able to accommodate distributions ρ that are not reduced
to Dirac measures. To go that direction, we propose the
first connection between adaptive SW and PAC-Bayesian
theory and we derive a novel set of flexible PAC-Bayesian
generalization bounds. Our bounds state that with prob-
ability 1 − δ, the following holds for all measures (with
non-discrete support) ρ on the d-dimensional unit sphere:
SW(µ, ν; ρ) ≥ SW(µn, νn, ρ)− ε(n, ρ, δ), where ε can be
written explicitly and captures the properties of µ, ν, and
allows us to control the tightness of the bound via ρ.

Three key reasons make the PAC-Bayesian theory
(McAllester, 1999; Catoni, 2007; Alquier, 2021) particu-
larly suited to characterize the generalization properties of
adaptive SW. First, from a general perspective, the litera-
ture shows this framework allows the derivation of tight
bounds that can be converted into effective learning pro-
cedures (Ambroladze et al., 2007; Laviolette et al., 2006;
Germain et al., 2009; Zantedeschi et al., 2021). Second,
PAC-Bayesian bounds deal with the generalization ability
of learned distributions; while those distributions usually
lie on spaces of predictors, the distributions ρ of interest
in our case are the distributions of slices. Lastly, a key
quantity of PAC-Bayesian bounds is the average empirical
risk which, as we will show, can naturally be interpreted as
SWp

p(µn, νn; ρ), our main focus.

The paper is organized as follows. In Section 2, we re-
call essential notions of Sliced-Wasserstein distances and
PAC-Bayesian theory. We then delve into our contribu-
tions: i) a generic PAC-Bayesian bound for adaptive Sliced-
Wasserstein distances and refinements to specific settings
(Section 3), ii) a theoretically-grounded procedure to train
a maximally discriminative Sliced-Wasserstein distances
(Section 4) and iii) illustrations of the soundness of our the-
oretical results through numerical experiments, conducted
on both toy and real-world datasets (Section 5).

Notations. Let d ∈ N∗ with N∗ .
= N\{0}. For x, y ∈ Rd,

⟨x, y⟩ denotes the dot product between x and y, and ∥x∥
is the Euclidean norm of x. For X ⊂ Rd, P(X) is the
set of probability measures supported on X, and Pq(X) is
the set of probability measures supported on X with finite
moment of order q. U(X) is the uniform distribution on
X, and δx is the Dirac measure with mass on x ∈ X. For
µ ∈ P(X) and n ∈ N∗, µn

.
= 1

n

∑n
i=1 δxi

is the empirical
measure supported on n samples {x1, . . . , xn} i.i.d. from µ.
For µ ∈ P(R), Fµ is the cumulative distribution function
(c.d.f.) of µ and F−1

µ is its quantile function.

2. Background
2.1. Sliced-Wasserstein Distances

Sliced-Wasserstein distances refer to a family of distances
between probability measures, which was first introduced
by (Rabin et al., 2012) to overcome the computational is-
sues of the Wasserstein distance. We formally define the
Wasserstein distance and SW, and explain why the latter
can provide significant computational advantages over the
former. In what follows, we fix X ⊂ Rd.

Definition 1 (Wasserstein distance). Let p ∈ [1,+∞). The
Wasserstein distance of order p between µ, ν ∈ P(X) is

Wp
p(µ, ν)

.
= inf

π∈Π(µ,ν)

∫
X×X

∥x− y∥pdπ(x, y) ,

where Π(µ, ν) ⊂ P(X × X) denotes the set of probability
measures on X × X, whose marginals with respect to the
first and second variables are µ and ν respectively.

While Wp has been shown to possess appealing theoretical
properties, e.g. it is a metric on Pp(X) which metrizes the
weak convergence (Villani, 2009, Chapter 6), it is compu-
tationally too demanding in general. Indeed, consider two
discrete distributions µn, νn, each supported on n samples.
Computing Wp(µn, νn) means solving a linear program
(Peyré & Cuturi, 2019, Section 3.1), whose solution is not
analytically available in general, but can be approximated
with standard solvers from linear programming and combi-
natorial optimization. However, such methods have a super-
cubic cost in practice, and their worst-case computational
complexity scales in O(n3 log n).

Nevertheless, if µ, ν ∈ P(R), Wp(µ, ν) admits an analyti-
cal expression which can be efficiently approximated (Peyré
& Cuturi, 2019, Section 2.6): for any µ, ν ∈ P(R),

Wp
p(µ, ν) =

∫ 1

0

|F−1
µ (t)− F−1

ν (t)|pdt .

In particular, for µn = (1/n)
∑n

i=1 δxi
and νn =

(1/n)
∑n

i=1 δyi
such that, ∀i ∈ {1, . . . , n}, xi, yi ∈ R,

Wp
p(µn, νn) =

1

n

n∑
i=1

|x(i) − y(i)|p , (1)

where x(1) ≤ x(2) ≤ · · · ≤ x(n), y(1) ≤ y(2) ≤ · · · ≤ y(n).
Computing (1) thus consists in sorting the support points of
µn and νn, which induces O(n log n) operations.

Sliced-Wasserstein distances leverage the fast computation
of Wp(µ, ν) for any µ, ν ∈ P(R) to efficiently compare dis-
tributions supported on medium to high-dimensional spaces.
Their formal characterization is given below.

Definition 2 (Sliced-Wasserstein distance). Let Sd−1 .
=

{θ ∈ Rd : ∥θ∥ = 1} be the unit sphere in Rd. For
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θ ∈ Sd−1, denote by θ∗ : Rd → R the linear map such
that for x ∈ Rd, θ∗(x) .

= ⟨θ, x⟩. Let p ∈ [1,+∞) and
ρ ∈ P(Sd−1). The Sliced-Wasserstein distance of order p
based on ρ is defined for µ, ν ∈ P(X) as

SWp
p(µ, ν; ρ)

.
=

∫
Sd−1

Wp
p(θ

∗
♯µ, θ

∗
♯ ν)dρ(θ) , (2)

where for any measurable function f and ξ ∈ P(Rd), f♯ξ
is the push-forward measure of ξ by f : for any measurable
set A ⊂ R, f♯ξ(A)

.
= ξ(f−1(A)), f−1(A)

.
= {x ∈ Rd :

f(x) ∈ A}.

Computational complexity of SW. By (2), SWp
p(µ, ν; ρ)

is obtained by computing E[Wp
p(θ

∗
♯µ, θ

∗
♯ ν)] with E taken

over θ ∼ ρ. This expectation is intractable in general, and
commonly approximated with the Monte Carlo estimate

ŜW
p

p(µ, ν; ρ) =
1

m

m∑
j=1

Wp
p((θj)

∗
♯µ, (θj)

∗
♯ν) , (3)

where {θj}mj=1 are i.i.d. samples from ρ. Note that for
θ ∈ Sd−1, θ∗♯µ and θ∗♯ ν are one-dimensional probability
measures, which can be interpreted as projections of µ and
ν along θ. To illustrate this, consider µn = (1/n)

∑n
i=1 δxi

with xi ∈ Rd for i ∈ {1, . . . , n}. By definition, θ∗♯µn =

(1/n)
∑n

i=1 δ⟨θ,xi⟩. Therefore, computing (3) between µn

and νn amounts to projecting {xi}ni=1 and {yi}ni=1 along
θj ∼ ρ, then computing the one-dimensional Wasserstein
distance using (1), for j ∈ {1, . . . ,m}. This scheme re-
quires O

(
m(dn+ n log n)

)
operations which is, in general,

faster than computing Wp
p(µn, νn), especially for large n.

Theoretical properties of SW. Previous works have in-
vestigated theoretical properties of SWp

p(·, ·; ρ), to explain
its empirical success (Bonnotte, 2013; Bayraktar & Guo,
2021; Nadjahi et al., 2019; Lin et al., 2021; Nguyen et al.,
2021). However, most results apply to ρ = U(Sd−1) only
(which corresponds to the original definition of SW, (Rabin
et al., 2012)). In particular, whether (2) is a metric for any ρ
has not been established: we show in Appendix A1.1 that
SWp

p(·, ·; ρ) is always a pseudo-metric, and we discuss for
which choices of ρ it satisfies all metric axioms.

Adaptive SW. Recent works have argued that the uniform
distribution may not be the most relevant choice, depending
on the task at hand. Instead, they proposed to learn ρ from
the observed data. This strategy provides SWp

p(·, ·; ρ) with
an actual degree of freedom ρ, and motivates the term adap-
tive Sliced-Wasserstein distance. Specifically, (Deshpande
et al., 2019) and (Nguyen et al., 2021) solve a tailored opti-
mization problem in ρ targetting a high discriminative power
of ρ, in the sense that ρ puts more mass on the θ ∈ Sd−1

that maximize the separation of θ∗♯µ and θ∗♯ ν. The maximum
Sliced-Wasserstein distance (max-SW, (Deshpande et al.,
2019)) is defined as

maxSW(µ, ν)
.
= SWp

p(µ, ν; ρ
⋆
maxSW(µ, ν)) (4)

with ρ⋆maxSW(µ, ν)
.
= arg sup

δθ: θ∈Sd−1

SWp
p(µ, ν; δθ) , (5)

while the distributional Sliced-Wasserstein distance (DSW,
(Nguyen et al., 2021)) is given by

DSW(µ, ν)
.
= SWp

p(µ, ν; ρ
⋆
DSW(µ, ν)) (6)

with ρ⋆DSW(µ, ν)
.
= arg sup

ρ∈P(Sd−1),
E
θ,θ′∼ρ

|θ⊤θ′|≤C

SWp
p(µ, ν; ρ) (7)

where in (7), θ and θ′ are independent and C > 0 is a
hyperparameter. We have decoupled the search for the maxi-
mizing distances (4),(6) and the maximum arguments (5),(7)
for reasons we clarify below.

While there exist statistical guarantees on the gap be-
tween maxSW(µ, ν) and maxSW(µn, νn) (Lin et al., 2021;
Niles-Weed & Rigollet, 2022) (or between DSW(µ, ν) and
DSW(µn, νn) (Nguyen et al., 2021)), there is no explicit
theoretical argument on the error entailed by the learned dis-
tribution ρ⋆maxSW(µn, νn) (or ρ⋆DSW(µn, νn)) considered on
its own, outside the optimization procedure of max-SW (or
DSW). Given new samples {x′1, . . . , x′n} and {y′1, . . . , y′n}
from µ and ν, with empirical distributions µ′

n and ν′n,
there is no guarantee for SWp

p(µ
′
n, ν

′
n; ρ

⋆
maxSW(µn, νn)) to

be high, or in other words, there is no argument ensuring
the discriminative power of ρ⋆maxSW(µn, νn). One way to
palliate this lack of theory and to go one step further than
the max-SW and DSW cases, is to derive general results
relating SWp

p(µn, νn; ρ) and SWp
p(µ, ν; ρ), for families of

distributions ρ ∈ P(Sd−1). This is what we bring in the
present work in the form of a generalization bound rooted
in the PAC-Bayesian theory.

2.2. PAC-Bayesian Theory

PAC-Bayesian theory aims at assessing the ability of learn-
ing algorithms to generalize to unseen data, by deriving
generalization bounds. Let X ⊂ Rq, q ∈ N∗, and
Sn

.
= {zi}ni=1 a dataset of i.i.d. samples from an unknown

probability measure ξ ∈ P(X ). Consider a learning algo-
rithm whose outputs depend on the training data Sn and a
vector of parameters ω ∈ Ω. The performance of such algo-
rithm can be assessed via a loss function ℓ : Ω×X → R+.
Fix ω ∈ Ω. The empirical ℓ-risk r̂ℓ(ω, Sn) and true ℓ-risk
rℓ(ω) are defined as,

r̂ℓ(ω, Sn)
.
=

1

n

n∑
i=1

ℓ(ω, zi) (8)

rℓ(ω)
.
= Ez∼ξ[ℓ(ω, z)] (9)

A key objective of a learning procedure is to optimize (e.g.
minimize) the true risk (9), which in practice cannot be
achieved, because ξ is unknown. Instead, one focuses on
optimizing (8) over ω ∈ Ω, a sound strategy provided the
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minimizer of (8) accurately estimates the minimizer of (9):
this can be assessed via PAC-Bayesian bounds.

Let ρ ∈ P(Ω). PAC-Bayesian theory analyzes the gen-
eralization ability of ρ by measuring the gap between the
average empirical ℓ-risk Eω∼ρ[r̂ℓ(ω, Sn)] and the average
true ℓ-risk Eω∼ρ[rℓ(ω)]. A classical PAC-Bayesian bound
was derived by (Catoni, 2003) and is recalled below.

Theorem 1 ((Catoni, 2003)). Let ρ0 ∈ P(Ω) be a prior
distribution. Assume that 0 ≤ ℓ ≤ C. For all λ > 0, for
any δ ∈ (0, 1), the following holds with probability at least
1− δ (over the draw of the dataset Sn): ∀ρ ∈ P(Ω),

Eω∼ρ[rℓ(ω)] (10)

≤ Eω∼ρ[r̂ℓ(ω, Sn)] +
λC2

8n
+

1

λ

{
KL(ρ||ρ0) + log

1

δ

}
,

where KL(ρ||ρ0) is the Kullback-Leibler divergence be-
tween ρ and ρ0 : if ρ is absolutely continuous with respect
to ρ0, KL(ρ||ρ0)

.
=
∫
log (ρ(dθ)/ρ0(dθ)) ρ(dθ).

The literature on PAC-Bayes is rich of many other bounds,
and we refer to (Alquier, 2021) for an extensive survey.
In our work, we focus on Catoni’s bound because it is
generic (appropriate settings of λ give rise to other well-
known bounds) as are the proof techniques used to derive it
(Alquier, 2021, Section 2).

Applications. PAC-Bayesian bounds allow to control
the true risk via a function depending on the empirical
risk. For example, minimizing the left-hand side term of
Catoni’s bound (10) over ρ ∈ P(Ω) yields a data-dependent
distribution which guarantees the highest generalization
ability (Alquier, 2021, Section 2.1.2). PAC-Bayesian the-
ory was also applied for specific tasks, e.g. classification
(McAllester, 1999), ranking (Ralaivola et al., 2010), density
estimation (Higgs & Shawe-Taylor, 2010), deep learning
(Dziugaite & Roy, 2017; Chérief-Abdellatif et al., 2022).

3. Generalization Bounds for Adaptive
Sliced-Wasserstein Distances

In this section, we leverage the PAC-Bayesian frame-
work to derive generalization bounds for adaptive Sliced-
Wasserstein distances. Proofs are deferred to Appendix A2.

Before presenting our main results, we clarify the notion
of generalization for adaptive SW. In practice, since one
generally has access to data generated from unknown prob-
ability measures µ, ν, empirical estimates SWp

p(µn, νn; ρ)
are computed instead of SWp

p(µ, ν; ρ). Besides, adaptive
SW means that an algorithm is deployed to learn ρ from
µn, νn, so that SWp

p(µn, νn; ρ) is sufficiently discriminative
(Section 2.1). In this context, the learning algorithm is said
to generalize well if the distribution learned from µn, νn
(denoted by ρ(µn, νn)) is such that SWp

p(·, ·; ρ(µn, νn))

PAC-Bayes framework Our framework

{zi}ni=1 {(xi, yi)}ni=1

ξ ∈ P(X ) µ× ν ∈ P(Rd)× P(Rd)

ω ∈ Ω θ ∈ Sd−1

r̂ℓ(ω, {zi}ni=1) Wp
p(θ

∗
♯µn, θ

∗
♯ νn)

Eω∼ρ[r̂ℓ(ω, {zi}ni=1)] SWp
p(µn, νn; ρ)

rℓ(ω) E(xi,yi)ni=1
[Wp

p(θ
∗
♯µn, θ

∗
♯ νn)]

Eω∼ρ[rℓ(ω)] E(xi,yi)ni=1
[SWp

p(µn, νn; ρ)]

Table 1. Analogy between PAC-Bayes theory and our work.

is discriminative, even on unseen data. More formally,
given new samples {x′1, . . . , x′n} and {y′1, . . . , y′n} from
µ and ν, with associated empirical distributions µ′

n and ν′n,
SWp

p(µ
′
n, ν

′
n; ρ(µn, νn)) should be large.

Therefore, we measure generalization as the gap between
SWp

p(µ, ν; ρ) and SWp
p(µn, νn; ρ) for any ρ ∈ P(Sd−1).

We first derive a general bound on this gap, using PAC-
Bayesian theory, then refine it to specific settings directed
by conditions on the supports and the moments of µ and ν.

3.1. A Generic Generalization Bound

We establish a first generalization bound for adaptive SW,
by combining statistical properties of adaptive SW and tech-
niques from PAC-Bayesian theory.

Theorem 2. Let p ∈ [1,+∞) and µ, ν ∈ Pp(Rd). Assume
there exists a constant φµ,ν,p, possibly depending on µ, ν
and p such that: ∀λ > 0, ∀θ ∈ Sd−1,

E
[
exp

(
λ
{
Wp

p(θ
∗
♯µn, θ

∗
♯ νn)− E[Wp

p(θ
∗
♯µn, θ

∗
♯ νn)]

})]
≤ exp(λ2φµ,ν,p n

−1) , (11)

where E is taken with respect to the support points of µn and
νn. Additionally, assume there exists ψµ,ν,p : N∗ → R+,
possibly depending on µ, ν and p, such that, ∀ρ ∈ P(Sd−1),

E
∣∣SWp

p(µn, νn; ρ)− SWp
p(µ, ν; ρ)

∣∣ ≤ ψµ,ν,p(n) .

Let ρ0 ∈ P(Sd−1). Then, for any δ ∈ (0, 1), the following
holds with probability at least 1− δ: ∀ρ ∈ P(Sd−1),

SWp
p(µ, ν; ρ) ≥ SWp

p(µn, νn; ρ)−
λ

n
φµ,ν,p

− 1

λ

{
KL(ρ||ρ0) + log

(1
δ

)}
− ψµ,ν,p(n) . (12)

Link with PAC-Bayesian theory. Theorem 2 can be inter-
preted as a novel PAC-Bayesian bound tailored to adaptive
SW: the formal analogy between classical PAC-Bayesian
framework and our work is summarized in Table 1. The
key element is that Wp

p(θ
∗
♯µn, θ

∗
♯ νn) for some θ ∈ Sd−1
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Bounded supports Unbounded supports

Sub-Gaussianity (Def. 3) Bernstein moments (Def. 4)
φµ,ν,p Proposition 1 Proposition 3 Proposition 4
ψµ,ν,p Proposition 2 (Manole et al., 2022)

Table 2. Overview of the explicit forms of φµ,ν,p and ψµ,ν,p under different assumptions.

can be seen as an empirical risk (8), and consequently, the
average empirical risk is exactly SWp

p(µn, νn; ρ) (2). Nev-
ertheless, we emphasize that Theorem 2 is not obtained by
simply replacing the risks in Theorem 1 according to Ta-
ble 1. Indeed, this would return an upper bound (in terms
of SWp

p(µn, νn; ρ)) for E[SWp
p(µn, νn; ρ)], while we pro-

pose a lower bound for SWp
p(µ, ν; ρ) (12). Instead, we

propose the following slight paradigm shift: while clas-
sical PAC-Bayesian theory aims at minimizing the aver-
age true risk (hence, the upper bounds), our goal is to
maximize SWp

p(µ, ν; ρ) over ρ (hence, the need of lower
bounds). Therefore, Theorem 2 is established by first, adapt-
ing the elements of proof of Theorem 1 to establish a lower-
bound for E[SWp

p(µn, νn; ρ)], then bounding from above
E[SWp

p(µn, νn; ρ)] by SWp
p(µ, ν; ρ).

Discussion. Since our bound holds for all ρ ∈ P(Sd−1)
(12), it is therefore valid for ρ⋆maxSW (5) and ρ⋆DSW (7) com-
puted by max-SW and DSW. However, our bound is vacuous
for max-SW, because the KL penalty term is evaluated on a
Dirac distribution. In that singular case, more informative
generalization bounds can be deduced, using (Lin et al.,
2021; Niles-Weed & Rigollet, 2022) instead of PAC-Bayes:
we elaborate on this in Appendix A2.1.

We now clarify the role of each term involved in (12).
The KL divergence and λ arise from adapting the proof
techniques of Catoni’s bound, so their influence on the gen-
eralization gap can be further illustrated with the examples
in (Alquier, 2021, Section 2.1.3). More precisely, the KL di-
vergence results from a change of measure inequality known
as Donsker-Varadhan’s lemma (Donsker & Varadhan, 1975).
Previous work have applied other change of measure in-
equalities to derive PAC-Bayesian bounds in terms of other
divergences than KL (Alquier & Guedj, 2018). Nevertheless,
standard PAC-Bayesian bounds rely on the use of Donsker-
Varadhan’s lemma, hence the KL divergence. As we
introduce the first connection between PAC-Bayesian theory
and SW, we decided to use the most common technique.

Then, the quantities φµ,ν,p and ψµ,ν,p(n) capture the prop-
erties of SW, µ and ν. More precisely, φµ,ν,p bounds
the moment-generating function of a centered version of
Wp

p(θ
∗
♯µn, θ

∗
♯ νn) for any θ ∈ Sd−1, while ψµ,ν,p reflects the

sample complexity of SWp
p(·, ·; ρ) for any ρ ∈ P(Sd−1). To

further illustrate this, we specialize our generic bound (12)
under different settings: µ, ν have bounded supports, are

sub-Gaussian, or satisfy a Bernstein-type moment condition.
We present our results in the next sections and summarize
them in Table 2.

3.2. Application to Measures with Bounded Support

We first consider distributions supported on a bounded do-
main. We derive φµ,ν,p by applying similar arguments as
in the proof of McDiarmid’s inequality (McDiarmid, 1989),
similarly to (Weed & Bach, 2019, Proposition 20).

Proposition 1. Let X ⊂ Rd such that X has a finite diameter
∆, i.e. ∆ .

= sup(x,x′)∈X2 ∥x−x′∥ < +∞. Let p ∈ [1,+∞),
µ, ν ∈ P(X). Then, µ, ν ∈ Pp(X) and φµ,ν,p = ∆2p/2.

Next, we adapt the proof of (Manole et al., 2022, Lemma
B.3) to compute the explicit form of ψµ,ν,p in this setting.

Proposition 2. Let µ, ν ∈ P(X), where X ⊂ Rd has a finite
diameter ∆. Let p ∈ [1,+∞). Then, there exists a constant
C such that, ψµ,ν,p(n) = Cp∆pn−1/2.

By combining Propositions 1 and 2, we refine Theorem 2 to
distributions supported on a bounded domain: the resulting
bound is given in Appendix A2.4.

3.3. Application to Sub-Gaussian Measures

Next, we apply Theorem 2 to distributions with unbounded
supports. To handle this case, we assume specific constraints
on the moments on µ, ν, then derive φµ,ν,p by using gener-
alizations of McDiarmid’s inequalities. More precisely, we
assume that µ, ν are sub-Gaussian distributions.

Definition 3 (Sub-Gaussian distribution). Let µ ∈ P(Rd)
and σ > 0. µ is a sub-Gaussian distribution with variance
proxy σ2 if the following holds: for any θ ∈ Sd−1, for
λ ∈ R,

∫
R exp(λt)d(θ∗♯µ)(t) ≤ exp(λ2σ2/2).

The next proposition results from applying the general-
ized McDiarmid’s inequality for unbounded spaces with
finite sub-Gaussian diameter (Kontorovich, 2014) (Ap-
pendix A2.5).

Proposition 3. Let µ, ν ∈ P(Rd) such that µ, ν are sub-
Gaussian with variance proxy σ2, τ2 respectively. Then,
µ, ν ∈ P1(Rd) and φµ,ν,1 = σ2 + τ2.

The last ingredient to specialize Theorem 2 is to derive
ψµ,ν,p for µ, ν satisfying either Definition 3. To this end, we

5



Shedding a PAC-Bayesian Light on Adaptive Sliced-Wasserstein Distances

leverage the rate recently established in (Manole et al., 2022,
Theorem 2), which shows that ψµ,ν,p scales as n−1/2 log(n)
if µ, ν are sub-Gaussian distributions. Our final bound is ob-
tained by plugging Proposition 3 and the explicit formula of
ψµ,ν,1 in Theorem 2. We present this result and its detailed
proof in Appendix A2.7.

3.4. Bound for Measures with Bernstein moment
conditions

We study a more general class of distributions: we consider
the Bernstein-type moment condition below, which is milder
than sub-Gaussian distributions.

Definition 4 (Bernstein condition). Let µ ∈ P(Rd) and
σ2, b > 0. µ is said to satisfy the (σ2, b)-Bernstein con-
dition if for any k ∈ N, k ≥ 2, for any θ ∈ Sd−1,∫
R |t|

kd(θ∗♯µ)(t) ≤ σ2k!bk−2/2.

Definition 3 is strictly stronger than Definition 4: if µ ∈
P(Rd) verifies the (σ2, b)-Bernstein condition, then µ be-
longs to the class of heavy-tailed distributions called sub-
exponential distributions (Embrechts et al., 2013), which
contains sub-Gaussian distributions. Hence, the class of
sub-Gaussian distributions is smaller than the class of distri-
butions characterized by Definition 4.

Consider µ, ν satisfying Definition 4. First, we leverage
(Manole et al., 2022, Theorem 2) in that setting again, to
show that ψµ,ν,p scales as n−1/2 log(n) (Appendix A2.7).
Then, we apply the Bernstein-type McDiarmid’s inequality
given in (Lei, 2020, Theorem 5.1) to establish Proposition 4.

Proposition 4. Let µ, ν ∈ P(Rd) be two distributions
satisfying the Bernstein condition with parameters (σ2, b)
and (τ2, c) respectively. Let σ2

⋆ = max(σ2, τ2), b⋆ =
max(b, c). Then, µ, ν ∈ P1(Rd) and, for any λ ∈ R∗

+

s.t. λ < n/(2b⋆),

E
[
exp

(
λ
{
W1(θ

∗
♯µn, θ

∗
♯ νn)− E[W1(θ

∗
♯µn, θ

∗
♯ νn)]

})]
≤ exp(λ2φµ,ν,1(λ, n)n

−1) , (13)

where φµ,ν,1(λ, n) = 2σ2
⋆n

−1(1− 2b⋆λn
−1)−1.

We emphasize the following difference between equa-
tions (13) and (11): φµ,ν,1 is a function of λ ∈ Λ ⊂ R+

and n ∈ N∗, while in Theorem 2, φµ,ν,p is assumed to be a
constant. Nevertheless, the proof of Theorem 2 can easily
be adapted to derive a generic generalization bound assum-
ing φµ,ν,p depends on (λ, n): we give the corresponding
statement in Theorem A3. Hence, by plugging Proposition 4
and (Manole et al., 2022, Theorem 2) in Theorem A3, we
derive the generalization bound for distributions under the
Bernstein moment condition: see Appendix A2.7.

Note that for µ, ν satisfying Definition 3 or Definition 4, we
derived φµ,ν,p for p = 1 only: the generalized McDiarmid’s
inequalities used in the proofs of Propositions 3 and 4 can be

Algorithm 1 PAC-SW: Adaptive SW via PAC-Bayes bound
optimization.

Input: dataset {(xi, yi)}ni=1, parameter λ, prior ρ0, ini-
tialization ρ(0), number of iterations T , learning rate η
for t← 1 to T do
L(ρ(t−1))= SWp

p(µn, νn; ρ
(t−1))−KL(ρ(t−1)||ρ0)/λ

ρ(t) = ρ(t−1) + η∇ρL(ρ(t−1))
end for
return ρ(T )

applied if Wp
p is Lipschitz (Kontorovich, 2014; Lei, 2020).

This property is easily verified for p = 1, but not for p > 1.
Hence, the derivation of φµ,ν,p for p > 1 for such types
of distributions with unbounded domains requires different
proof techniques. We leave this problem for future work.

4. Optimization of Generalization Bounds for
Adaptive SW

We develop a principled methodology to learn a highly dis-
criminative Sliced-Wasserstein distance, by optimizing our
PAC-Bayesian generalization bounds. The idea consists in
making the lower bounds of SWp

p(µ, ν; ρ) derived in Sec-
tion 3 as tight as possible, in order to increase SWp

p(µ, ν; ρ)
while attaining a small generalization gap.

Given a training dataset {(xi, yi)}ni=1 and a prior ρ0 ∈
P(Sd−1), our objective is to find ρ⋆(µn, νn) such that,

ρ⋆(µn, νn) = arg sup
ρ∈F

SWp
p(µn, νn; ρ)−

KL(ρ||ρ0)
λ

(14)

with F a family of probability measures supported on Sd−1.
The choice of F manages the complexity of solving (14):
it should allow simple optimization, while being flexible to
make ρ⋆(µn, νn) expressive enough. We first propose to pa-
rameterize F as the class of von Mises-Fisher distributions.

Definition 5. The von Mises-Fisher distribution vMF(m, κ)
with mean direction m ∈ Sd−1 and concentration parameter
κ ∈ R∗

+ is a distribution on Sd−1 whose density is defined
for θ ∈ Sd−1 by vMF(θ; m, κ) = Cd/2(κ) exp(κm

⊤θ),
Cd/2(κ) = κd/2−1/{(2π)d/2Id/2−1(κ)}, with Id/2−1 the
modified Bessel function of the first kind at order d/2− 1.

Intuitively, the higher κ, the more concentrated vMF(m, κ)
is around m. Our objective becomes finding (m⋆, κ⋆)
such that vMF(m⋆, κ⋆) maximizes (14) over F =
{vMF(m, κ),m ∈ Sd−1, κ ∈ R∗

+}. Von Mises-Fisher
distributions have been successfully deployed in several
machine learning problems to effectively model spherical
data (Hasnat et al., 2017; Kumar & Tsvetkov, 2018; Scott
et al., 2021). Besides, one main advantage of using vMF is
that both the KL divergence between ρ = vMF(m, κ) and

6
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(b) µ = ν = N (0,Σd)

Figure 1. SWp
p(µn, νn; vMF(m, κ)) vs. n. Results are averaged over 30 runs, on log-log scale, with 10th-90th percentiles.

ρ0 = U(Sd−1) and its gradient with respect to (m, κ) admit
an analytical formula (Davidson et al., 2018).

While the vMF parameterization is practical, as it yields
an analytical objective, it may suffer from a lack of expres-
sivity (e.g., vMF distributions are unimodal). To handle
more complicated data, we also consider the parameteriza-
tion proposed in (Nguyen et al., 2021): we solve (14) over
F = {ρ = f♯U(Sd−1), f a neural network}. In that case,
the KL penalty term is intractable and we approximate it
with the methodology in (Ghimire et al., 2021) – where ap-
proximation errors of the KL estimator are given in different
scenarios.

We approximate the solution of (14) via gradient ascent: our
methodology is depicted in Algorithm 1, and specialized in
Algorithm A2 for the vMF parameterization.

Tuning λ. In classical PAC-Bayesian theory, λ is usually
set to n1/2 so that all terms in the bound that depend on λ
converge at the same rate to 0, as n grows to +∞. Neverthe-
less, using λ = nα with α ∈ (0, 1), α ̸= 1/2 can be more
useful in some specific settings. For instance, a common
issue when optimizing PAC-Bayesian bounds is that the ob-
jective can be dominated by the KL term (Chérief-Abdellatif
et al., 2022). To overcome this, one can downweight the
KL term by using α > 1/2, or more sophisticated schemes
(Blundell et al., 2015). On the other hand, as shown in Sec-
tion 3.2, 3.3 and 3.4, φµ,ν,p depend on parameters related to
the properties of µ, ν, which cannot be easily controlled in
practice. Choosing λ = nα with α < 1/2 helps attenuate
their influence on the objective (Haddouche et al., 2021).

5. Numerical Experiments
We conduct an empirical analysis to confirm our theoreti-
cal contributions and illustrate their consequences in prac-
tice, on both synthetic and real data. More details on
our experimental setup are given in Appendix A3, and
the code is available at https://github.com/rubenohana/PAC-
Bayesian_Sliced-Wasserstein..

Illustration of our bounds. Our first set of experiments
aims at empirically validating the rates of convergence in
Section 3. We sample two sets of n i.i.d. samples from

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0

10

20

30 DSW train
DSW test
DSW bound
PAC-SW train
PAC-SW test
PAC bound

(a) d = 5

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0

20

40

(b) d = 20

Figure 2. PAC-SW and DSW between µ = N (0,Σd) and ν =
N (γ1,Σd). The y-axis shows the distances or the associated
objective functions (see legend). Results are averaged over 10 runs,
and shown with 10th-90th percentiles.

the same distribution µ ∈ P(Rd). To illustrate our bound
on both bounded and unbounded supports, we choose µ
as a uniform or Gaussian distribution. We approximate
SWp

p(µn, νn; vMF(m, κ)) with m ∼ U(Sd−1) and κ > 0
by its Monte Carlo estimate (3) over 1000 projection direc-
tions. Figure 1 plots the approximation error (which reduces
to SWp

p(µn, νn; vMF(m, κ)), since the two datasets come
from the same distribution) against n, for different d and κ.
We observe that the error decays to 0 as n increases, and the
convergence rate is slower as d and κ increase. This con-
firms our theoretical analysis: the higher d, the larger the di-
ameter (resp., the sub-Gaussian diameter) when µ is uniform
(resp., Gaussian), the larger φµ,ν,p (Propositions 1 and 3).
Besides, the higher κ, the larger KL(vMF(m, κ)||U(Sd−1)).

Generalization ability of PAC-SW. Next, we study the
generalization properties of PAC-SW, i.e. whether the adap-
tive SW computed by Algorithm 1 is discriminative, even
on unseen data. We compare µ = N (0,Σd) and ν =
N (γ1,Σd), with γ > 0, Σd ∈ Rd×d symmetric positive
semi-definite set at random, and 0 (resp., 1) the vector
whose components are all equal to 0 (resp., 1). The higher
γ, the more dissimilar µ and ν. We sample n = 500
samples from µ and ν and optimize ρ⋆(µn, νn): the op-
timization is performed on the space of vMF distributions,
using Adam (Kingma & Ba, 2015) with its default parame-
ters. To analyze the generalization properties of ρ⋆(µn, νn),
we sample l = 2000 test points from µ, ν and compute
SWp

p(µl, νl; ρ
⋆(µn, νn)). We also compute the value of

(14), to evaluate the tightness of our bound. Results for
different values of d and γ are reported in Figure 2, and
confirm the generalization ability of ρ⋆(µn, νn).
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Figure 3. SWp
p(µn, νn; ρ) with (a-c) µ = N (0,Σd), ν = N (γ1,Σd), n = 1000, against γ, (d) classes 4 and 5 of Fashion-MNIST,

against n. ρ is learned on the train set, and we report values on the test set.

Comparison to existing instances of SW. In our pre-
vious experiment, we also implement a variant of DSW,
which consists in solving (Nguyen et al., 2021, Definition
2) based on our vMF parameterization. Figure 2 shows
that the gap between SWp

p(µn, νn; ρ
⋆
DSW(µn, νn)) and

SWp
p(µm, νm; ρ⋆DSW(µn, νn)) is small, hence ρ⋆DSW(µn, νn)

generalizes well on that setup. DSW bound in Figure 2
corresponds to the associated objective function of (Nguyen
et al., 2021, Definition 2).

Next, we compare the generalization properties of PAC-SW
and DSW, with ρ parameterized as a neural network. We
also evaluate max-SW and SW (i.e., SWp

p(·, ·;U(Sd−1)).
We compute the Monte Carlo estimate with m = 200 and
the learning rate η is taken as the best (i.e., yielding the
higher distance) out of [10−3, 10−2, 10−1, 1]. Each run is
averaged 10 times with standard deviations in shaded ar-
eas. On Figure 3(a-c), we measure the distance between
two Gaussians, as in Figure 2. We observe that PAC-SW
is always amongst the most discriminative distances, and
since we evaluate distances on unseen data, this implies it
has better generalization properties. On Figure 3(d), we con-
sider a more complicated dataset: we measure the distance
between 2 highly dissimilar classes of the Fashion-MNIST
dataset (Xiao et al., 2017) (classes 4 (coats) and 5 (sandals))
for different number of training points. PAC-SW and DSW
return higher values than max-SW and SW, illustrating they
are able to better discriminate, even on test data.

Note that max-SW and DSW share a common feature: they
learn a new distribution ρ(µn, νn) every time they are called
on new (µn, νn), i.e. they embed an optimization step. From
here on, when we will refer to the generalization ability of
max-DSW and DSW, it must be understood that a distribu-
tion ρ⋆ is learned from one sample pair (µn, νn) according
to their respective induction principle, and ρ⋆ is used on test
data to measure the generalization ability.

Generalization for generative modeling. In our previous
experiments, we observed that DSW can generalize as well
as PAC-SW. This encourages us to further explore the advan-
tages of a high generalization ability on a more complicated
setup. We consider a generative modeling task on MNIST
data (Deng, 2012), and we train a deep neural network that

Figure 4. Evolution of the Wasserstein distance between a set of
generated MNIST digits and the true MNIST test set with respect
to training time.

uses DSW as a loss, in the flavor of (Deshpande et al., 2018;
Nguyen et al., 2021). Usually, the distribution ρ is learned
at each iteration, when the user receive new data. We con-
jecture that if the learned distribution generalizes well to
unseen datasets, then gradients obtained from the distance
between minibatches would still provide sufficient infor-
mation to learn the generative model. As a consequence,
we evaluate the robustness and generalization ability of the
learned distribution using DSW updated only every 10 or
50 minibatches (denoted by −10 or −50 resp.). To train the
model, we followed the same approach (architecture and
optimizer) as the one described in (Nguyen et al., 2021).
For each minibatch of size 512, the distribution ρ is learned
by optimizing 100 projections over 100 iterations and the
generative model is trained over 400 epochs. We also report
results of a generative model trained with max-SW.

Figure 4 shows the evolution of the Wasserstein distance
(WD) between generated data and the test set with respect
to training time (measured after each epoch), for each dis-
tance and different update rate of the distribution ρ. We
can observe that classical DSW yields a WD of 29 after
∼ 104s. When learning ρ every 10 minibatch (DSW-10),
we achieve similar a WD value with half the running time.
When further reducing the frequency update of ρ (DSW-50),
we converge faster but with a loss in quality of generation
(WD ∼ 32). While using max-SW as a loss yields a reason-
able performance, computing ρ⋆maxSW every 10 minibatches
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leads to a very unstable learning and worst performances.
Results for the PAC-SW loss and examples of generated
digits can be found in Appendix A3.2.

6. Conclusion
We introduced a specific notion of generalization for adap-
tive SW, related to discriminative power, and leveraged the
PAC-Bayesian framework to derive generalization bounds.
We then developed a principled methodology to learn ρ from
the observed data so as SWp

p(·, ·; ρ) is discriminative with
high probability, thus, generalizes well. Our work, which
presents the first connection between PAC-Bayes and SW,
paves the way to interesting research directions. First, we
will study possible refinements of our bounds, using other
PAC-Bayes bounds than Catoni’s. Then, we plan to further
analyze why DSW generalizes well in our experiments, e.g.
by investigating a potential connection between the opti-
mization problem in (Nguyen et al., 2021) and ours. Finally,
we would like to reduce the computational complexity of
PAC-SW when ρ is parameterized as a neural network, since
it suffers from slow execution times mainly because of the
approximation of the KL term with (Ghimire et al., 2021).
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A1. Preliminaries
A1.1. Metric Properties of Sliced-Wasserstein Distances

Previous work have shown that for specific instances of ρ ∈ P(Sd−1), SWp(·, ·; ρ) : Pp(Rd)× Pp(Rd)→ R+ is a metric,
as it satisfies all metric axioms (positivity, symmetry, triangle inequality, identity of indiscernibles) (Bonnotte, 2013; Kolouri
et al., 2019a; Nguyen et al., 2021; Niles-Weed & Rigollet, 2022). However, to the best of our knowledge, the metric
properties of SWp(·, ·; ρ) for any ρ ∈ P(Sd−1) have not been established.

By adapting the proof techniques in (Bonnotte, 2013; Kolouri et al., 2019a), and due to the metric properties of the
Wasserstein distance, one can show that symmetry, positivity and triangle inequality hold for any ρ ∈ P(Sd−1), and that for
any µ ∈ Pp(Rd), SWp(µ, µ; ρ) = 0.

However, the reverse implication of the identity of indiscernibles, i.e.

∀µ, ν ∈ Pp(Rd), SWp(µ, ν; ρ) = 0 implies µ = ν , (A1)

does not hold for any ρ ∈ P(Sd−1). For example, consider µ, ν ∈ Pp(X) with X ⊂ Rd, and µ different from ν. Suppose
that ρ ∈ P(Θ) with Θ ⊂ Sd−1 such that ∀(θ, x) ∈ Θ× X, ⟨θ, x⟩ = 0. In that case, for any θ ∼ ρ, θ∗♯µ = θ∗♯ ν = δ{0}, and
since Wp is a metric, Wp(θ

∗
♯µ, θ

∗
♯ ν) = 0. Therefore, SWp

p(µ, ν; ρ) =
∫
Θ

Wp
p(θ

∗
♯µ, θ

∗
♯ ν)dρ(θ) = 0, but µ ̸= ν, so (A1) is

not satisfied.

We conclude that for any ρ ∈ P(Sd−1), SWp(·, ·; ρ) is a pseudo-metric, and if (A1) is satisfied, then it is a metric.

A1.2. Generalization Bounds for SW

We precise our argument in Section 1, which states that bounds on the generalization gap for SW distances can be established
using existing results for max-SW.

Let ρ ∈ P(Sd−1). By applying the triangle inequality for SWp(·, ·; ρ), then by the definition of max-SW, we obtain,

E|SWp(µn, νn; ρ)− SWp(µ, ν; ρ)| ≤ E[SWp(µn, µ; ρ)] + E[SWp(νn, ν; ρ)] (A2)
≤ E[maxSW(µn, µ)] + E[maxSW(νn, ν)] , (A3)

where E is taken with respect to {xi}ni=1, {yi}ni=1 i.i.d. from µ, ν respectively. We can then bound from above (A3), using
the convergence rates established in (Lin et al., 2021, Section 3.2) or (Niles-Weed & Rigollet, 2022, Theorem 1). These rates
vary depending on the properties of µ, ν: for instance, (Lin et al., 2021, Theorem 3.5) holds if µ, ν satisfy the Bernstein
condition.

Nevertheless, we argue that the generalization bounds resulting from eq.(A2)-(A3) are not tight for an arbitrary ρ ∈ P(Sd−1).
For instance, since we bound (A3) with (Lin et al., 2021; Niles-Weed & Rigollet, 2022), we obtain convergence rates that
linearly depend on d for any ρ, due to the properties of maximum SW. However, if we consider ρ = U(Sd−1), it is known
that E|SWp(µn, νn; ρ)− SWp(µ, ν; ρ)| converges to 0 at a dimension-free rate (Nadjahi et al., 2020b).

Another important drawback of such bounds is that the impact of ρ on the convergence rates is unclear. In Appendix A2.1,
we will further explain why our generalization bounds derived from PAC-Bayesian theory are more flexible and informative
for arbitrary ρ.

A2. Postponed Proofs for Section 3
A2.1. Proof of Theorem 2

Theorem 2 is obtained by adapting the proof techniques of Catoni’s PAC-Bayesian bound (Catoni, 2003). First, we recall
Donsker and Varadhan’s variational formula, which plays a central role in the PAC-Bayesian framework.

Lemma A1 (Donsker and Varadhan’s variational formula (Donsker & Varadhan, 1975)). Let Θ be a set equipped with a
σ-algebra and π ∈ P(Θ). For any measurable, bounded function h : Θ→ R,

logEθ∼π

[
exp(h(θ))

]
= sup

ρ∈P(Θ)

[
Eθ∼ρ[h(θ)]− KL(ρ||π)

]
12
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Proof of Theorem 2. Let p ∈ [1,+∞) and µ, ν ∈ Pp(Rd). Assume there exists φµ,ν,p such that for any θ ∈ Sd−1 and
λ > 0,

Eµ,ν

[
exp

(
λ
{

Wp
p(θ

∗
♯µn, θ

∗
♯ νn)− Eµ,ν [Wp

p(θ
∗
♯µn, θ

∗
♯ νn)]

})]
≤ exp(λ2φµ,ν,pn

−1) . (A4)

Let ρ0 ∈ P(Sd−1). By taking the expectation of (A4) with respect to ρ0, then using Fubini’s theorem to interchange the
expectation over ρ0 and the one over µ, ν, we obtain

Eµ,νEθ∼ρ0

[
exp

(
λ
{

Wp
p(θ

∗
♯µn, θ

∗
♯ νn)− Eµ,ν [Wp

p(θ
∗
♯µn, θ

∗
♯ νn)]

})]
≤ exp(λ2φµ,ν,pn

−1) . (A5)

By definition of the Wasserstein distance between empirical, univariate distributions of (1) , one can prove that θ 7→
λ
{

Wp
p(θ

∗
♯µn, θ

∗
♯ νn) − Eµ,ν [Wp

p(θ
∗
♯µn, θ

∗
♯ νn)]

}
is a bounded real-valued function on Sd−1. Therefore, we can apply

Lemma A1 to rewrite (A5) as follows.

Eµ,ν

[
exp

(
sup

ρ∈P(Sd−1)

[
Eθ∼ρ

[
λ
{

Wp
p(θ

∗
♯µn, θ

∗
♯ νn)− Eµ,ν [Wp

p(θ
∗
♯µn, θ

∗
♯ νn)]

}]
− KL(ρ||ρ0)

])]
≤ exp(λ2φµ,ν,pn

−1) ,

which, using the linearity of the expectation along with the definition of SW (2) , is equivalent to

Eµ,ν

[
exp

(
sup

ρ∈P(Sd−1)

[
λ
{

SWp
p(µn, νn; ρ)− Eµ,ν [SWp

p(µn, νn; ρ)]
}
− KL(ρ||ρ0)

])]
≤ exp(λ2φµ,ν,pn

−1) ,

or,

Eµ,ν

[
exp

(
sup

ρ∈P(Sd−1)

[
λ
{

SWp
p(µn, νn; ρ)− Eµ,ν [SWp

p(µn, νn; ρ)]
}
− KL(ρ||ρ0)

]
− λ2φµ,ν,pn

−1
)]
≤ 1. (A6)

Let s > 0. By the Chernoff bound
(
P(X > a) = P(es.X ≥ es.a) ≤ E[et.X ]e−t.a

)
Pµ,ν

(
sup

ρ∈P(Sd−1)

[
λ
{

SWp
p(µn, νn; ρ)− Eµ,ν [SWp

p(µn, νn; ρ)]
}
− KL(ρ||ρ0)

]
− λ2φµ,ν,pn

−1 > s
)

≤ Eµ,ν

[
exp

(
sup

ρ∈P(Sd−1)

[
λ
{

SWp
p(µn, νn; ρ)− Eµ,ν [SWp

p(µn, νn; ρ)]
}
− KL(ρ||ρ0)

]
− λ2φµ,ν,pn

−1
)]

exp(−s)

≤ 1 · exp(−s) = exp(−s) ,

where the last inequality follows from (A6).

Let e−s = ε such that s = log(1/ε). Then,

Pµ,ν

(
∃ρ ∈ P(Sd−1), λ

{
SWp

p(µn, νn; ρ)−Eµ,ν [SWp
p(µn, νn; ρ)]

}
−KL(ρ||ρ0)−λ2φµ,ν,pn

−1 > log(1/ε)
)
≤ ε . (A7)

Taking the complement of (A7) and rearranging the terms yields

Pµ,ν

(
∀ρ ∈ P(Sd−1), SWp

p(µn, νn; ρ) < Eµ,ν [SWp
p(µn, νn; ρ)] + λ−1

{
KL(ρ||ρ0) + log(1/ε)

}
+ λφµ,ν,pn

−1
)

≥ 1− ε .

Our final bound results from assuming there exists ψµ,ν,p(n) such that,

Eµ,ν |SWp
p(µn, νn; ρ)− SWp

p(µ, ν; ρ)| ≤ ψµ,ν,p(n) .
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Comparison with Appendix A1.2. In our work, instead of bounding SWp
p(·, ·; ρ) by maxSW, we apply PAC-Bayesian

theory directly on SWp
p(·, ·; ρ) for any ρ. As a result, our PAC-Bayes-inspired bounds are more flexible than bounds in

Appendix A1.2, since their convergence rates adapt to the distribution ρ (via the KL divergence). However, when ρ is a
Dirac measure, Theorem 2 become vacuous because of the KL term, as with most PAC-Bayesian bounds. In such cases,
which include maxSW, the bounds in Appendix A1.2 are more informative.

As discussed in Section 3.4, in specific settings, φµ,ν,p can be a function of λ ∈ R+ and n ∈ N∗. In that case, a
straightforward adaptation of the proof of Theorem 2 yields Theorem A3, which will be leveraged for distributions with
Bernstein-type moment conditions (Definition 4).

Theorem A3. Let p ∈ [1,+∞) and µ, ν ∈ Pp(Rd). Let Λ ⊂ R∗
+ and assume there exists φµ,ν,p : Λ× n→ R+, possibly

depending on µ, ν and p such that: ∀λ ∈ Λ, ∀θ ∈ Sd−1,

E
[
exp

(
λ
{
Wp

p(θ
∗
♯µn, θ

∗
♯ νn)− E[Wp

p(θ
∗
♯µn, θ

∗
♯ νn)]

})]
≤ exp(λ2φµ,ν,p(λ, n)n

−1) ,

where E is taken with respect to the support points of µn and νn. Additionally, assume there exists ψµ,ν,p : N∗ → R+,
possibly depending on µ, ν and p, such that, ∀ρ ∈ P(Sd−1),

E
∣∣SWp

p(µn, νn; ρ)− SWp
p(µ, ν; ρ)

∣∣ ≤ ψµ,ν,p(n) .

Let ρ0 ∈ P(Sd−1). Then, for any δ ∈ (0, 1), the following holds with probability at least 1− δ: ∀ρ ∈ P(Sd−1),

SWp
p(µ, ν; ρ) ≥ SWp

p(µn, νn; ρ)−
λ

n
φµ,ν,p(λ, n)

− 1

λ

{
KL(ρ||ρ0) + log

(1
δ

)}
− ψµ,ν,p(n) .

A2.2. Proof of Proposition 1

To prove Proposition 1, we leverage a concentration result that appears in the proof of McDiarmid’s inequality (recalled in
Theorem A4), and which relies on the bounded differences property (Definition A6).

Definition A6 (Bounded differences property). Let X ⊂ Rd, n ∈ N∗ and c = {ci}ni=1 ∈ Rn. A mapping f : Xn → R is
said to satisfy the c-bounded differences property if for i ∈ {1, . . . , n}, {xi}ni=1 ∈ Xn and x′ ∈ X,

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x
′, xi+1, . . . , xn)| ≤ ci .

Theorem A4 ((McDiarmid, 1989)). Let (Xi)
n
i=1 be a sequence of n ∈ N∗ independent random variables with Xi valued in

X ⊂ Rd for i ∈ {1, . . . , n}. Let c = {ci}ni=1 ∈ Rn and f : Xn → R satisfying the c-bounded differences property. Then,
for any λ > 0,

E
[
exp(λ{f − E[f ]})

]
≤ exp(λ2∥c∥2/8) .

The proof of Proposition 1 consists in applying Theorem A4 to a specific choice of f . To this end, we first show that the
Wasserstein distance between univariate distributions satisfies the bounded differences property, assuming bounded supports.

Lemma A2. Let X ⊂ R be a bounded set with diameter ∆ = sup(x,x′)∈X2 ∥x − x′∥ < +∞. Then, the mapping
f : (X2)n → R+ defined for w1:n

.
= {(ui, vi)}ni=1 ∈ (X2)n as

f(w1:n) = Wp
p(µ̃n, ν̃n) (A8)

where µ̃n, ν̃n are the univariate empirical measures computed over {ui}ni=1, {vi}ni=1 respectively, satisfies the c-bounded
differences property with ci = 2∆p/n for i ∈ {1, . . . , n}.

Proof. For clarity purposes, we start by introducing some notations. Let n ∈ N∗ and w1:n
.
= {(uj , vj)}nj=1 ∈ (X2)n.

Denote by µ̃n, ν̃n the empirical distributions supported over (uj)nj=1, (vj)
n
j=1 ∈ Xn respectively. Let (u′, v′) ∈ X2 and

i ∈ {1, . . . , n}. Denote by µ̃′
n the empirical distribution supported on (u′j)

n
j=1 where u′j = u′ if j = i, u′j = uj otherwise,

and by ν̃′n the empirical distribution over (v′j)
n
j=1 where v′j = v′ if j = i, v′j = vj otherwise.
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By definition of the Wasserstein distance between univariate distributions (1),

Wp
p(µ̃n, ν̃n)−Wp

p(µ̃
′
n, ν̃

′
n) =

1

n

n∑
j=1

|uσ(j) − vτ(j)|p −
1

n

n∑
j=1

|u′σ′(j) − v
′
τ ′(j)|

p

where σ : {1, . . . , n} → {1, . . . , n} (respectively, σ′ : {1, . . . , n} → {1, . . . , n}) is the permutation s.t. for j ∈ {1, . . . , n},
uσ(j) (resp., u′σ′(j)) is the j-th smallest value of (uj)nj=1 (resp., (u′j)

n
j=1). Let τ : {1, . . . , n} → {1, . . . , n} (respectively,

τ ′ : {1, . . . , n} → {1, . . . , n}) s.t. for j ∈ {1, . . . , n}, vτ(j) (resp., v′τ ′(j)) is the j-th smallest value of (vj)nj=1 (resp.,
(v′j)

n
j=1).

Therefore,

Wp
p(µ̃n, ν̃n)−Wp

p(µ̃
′
n, ν̃

′
n) ≤

1

n

n∑
j=1

|uσ′(j) − vτ ′(j)|p −
1

n

n∑
j=1

|u′σ′(j) − v
′
τ ′(j)|

p

=
1

n

(
|ui − vτ ′◦σ′−1(i)|p − |u′ − v′τ ′◦σ′−1(i)|

p + |uσ′◦τ ′−1(i) − vi|p − |u′σ′◦τ ′−1(i) − v
′|p
)

≤ 2∆p

n

We can use the same arguments to prove that Wp
p(µ̃

′
n, ν̃

′
n)−Wp

p(µ̃n, ν̃n) ≤ 2∆p/n. We conclude that,∣∣Wp
p(µ̃n, ν̃n)−Wp

p(µ̃
′
n, ν̃

′
n)
∣∣ ≤ 2∆p

n
.

Remark 1. Lemma A2 is an extension of (Weed & Bach, 2019, Proposition 20), which establishes a concentration bound
for Wp

p(µ, µn) around its expectation on any finite-dimensional compact space by exploiting McDiarmid’s inequality along
with the Kantorovich duality. We thus use similar arguments to prove Proposition 1 , except that we leverage the closed-form
expression of the one-dimensional Wasserstein distance instead of the dual formulation since we compare univariate
(projected) distributions.

Proof of Proposition 1. Let µ, ν ∈ P(X) where X ⊂ Rd has a finite diameter ∆. Let θ ∈ Sd−1. Then, θ∗♯µ, θ
∗
♯ ν are both

supported on a bounded domain Xθ ⊂ R whose diameter is denoted by ∆θ and satisfies ∆θ ≤ ∆. Consider the mapping f
defined as in (A8). Given Lemma A2, we can apply Theorem A4 to bound the moment-generating function of f − Ef : for
any λ > 0,

E
[
exp(λ{f − E[f ]})

]
≤ exp(λ2

n∑
i=1

(2∆p
θ/n)

2/8)

≤ exp(λ2∆2p
θ /(2n)) ≤ exp(λ2∆2p/(2n)) ,

where the expectation is computed over n samples w1:n
.
= {(ui, vi)}ni=1 ∈ (X2

θ)
n i.i.d. from θ∗♯µ× θ∗♯ ν. We conclude by

using the property of push-forward measures, which gives

Ew1:n∼(θ∗
♯µ×θ∗

♯ ν)
n

[
exp(λ{f(w1:n)− E[f(w1:n)]})

]
= Ez1:n∼(µ×ν)n

[
exp(λ{f(θ∗(z′1:n))− E[f(θ∗(z′1:n))]})

]
(A9)

where for z1:n
.
= {(xi, yi)}ni=1 ∈ (X2)n, θ∗(z1:n)

.
= {(⟨θ, xi⟩ , ⟨θ, yi⟩)}ni=1 ∈ (X2

θ)
n.

A2.3. Proof of Proposition 2

Recent work have bounded E|SWp(µn, νn; ρ)− SWp(µ, ν; ρ)| or E|SWp(µ, µn; ρ)| for specific choices of ρ ∈ P(Sd−1)
(Nadjahi et al., 2020b; Manole et al., 2022; Nguyen et al., 2021; Lin et al., 2021). These results do not exactly correspond to
what Theorem 2 requires, i.e. a bound on E|SWp

p(µn, νn; ρ)− SWp
p(µ, ν; ρ)|. We bound the latter quantity in Proposition 2,

by specifying the proof techniques in (Manole et al., 2022) for distributions with bounded supports, then generalizing a
result in (Nadjahi et al., 2020b).

15



Shedding a PAC-Bayesian Light on Adaptive Sliced-Wasserstein Distances

Lemma A3. Let X ⊂ R be a bounded set whose diameter is denoted by ∆ < +∞. Let µ, ν ∈ P(X) and denote by µn, νn
the empirical distributions supported over n ∈ N∗ samples i.i.d. from µ, ν respectively. Let p ∈ [1,+∞). Then, there exists
a constant C such that,

E
∣∣Wp

p(µn, νn)−Wp
p(µ, ν)

∣∣ ≤ Cp∆pn−1/2 .

Proof. Lemma A3 is obtained by adapting the techniques used in the proof of (Manole et al., 2022, Lemma 6), then applying
(Fournier & Guillin, 2015, Theorem 1). We provide the detailed proof for completeness.

Starting from the definition of Wp
p(µn, νn) (1), then using a Taylor expansion of (x, y) 7→ |x − y|p around (x, y) =

(F−1
µ (t), F−1

ν (t)), we obtain

Wp
p(µn, νn) =

∫ 1

0

∣∣F−1
µn

(t)− F−1
νn

(t)
∣∣pdt

=

∫ 1

0

∣∣F−1
µ (t)− F−1

ν (t)
∣∣pdt (A10)

+

∫ 1

0

p sgn
(
F̃−1
µn

(t)− F̃−1
νn

(t)
)∣∣F̃−1

µn
(t)− F̃−1

νn
(t)
∣∣p−1{

(F−1
µn

(t)− F−1
µ (t))− (F−1

νn
(t)− F−1

ν (t))
}
dt

where sgn(·) denotes the sign function, F̃−1
µn

(t) a real number between F−1
µn

(t) and F−1
µ (t), and F̃−1

νn
(t) a real number

between F−1
νn

(t) and F−1
ν (t).

By definition, (A10) is exactly Wp
p(µ, ν) and we obtain

|Wp
p(µn, νn)−Wp

p(µ, ν)|

=
∣∣∣ ∫ 1

0

p sgn
(
F̃−1
µn

(t)− F̃−1
νn

(t)
)∣∣F̃−1

µn
(t)− F̃−1

νn
(t)
∣∣p−1{

(F−1
µn

(t)− F−1
µ (t))− (F−1

νn
(t)− F−1

ν (t))
}
dt
∣∣∣

≤ p
∫ 1

0

∣∣F̃−1
µn

(t)− F̃−1
νn

(t)
∣∣p−1

{∣∣F−1
µn

(t)− F−1
µ (t)

∣∣+ ∣∣F−1
νn

(t)− F−1
ν (t)

∣∣}dt (A11)

≤ p sup
t∈(0,1)

∣∣F̃−1
µn

(t)− F̃−1
νn

(t)
∣∣p−1

{
W1(µn, µ) + W1(νn, ν)

}
, (A12)

where (A11) follows from the triangle inequality and (A12) results from the definition of the Wasserstein distance of order 1
between univariate distributions.

We then bound supt∈(0,1)

∣∣F̃−1
µn

(t) − F̃−1
νn

(t)
∣∣p−1

from above. By the definition of F̃−1
µn

(t), F̃−1
νn

(t) for t ∈ (0, 1), we
distinguish the following four cases:

(i) F̃−1
µn

(t) ≤ F−1
µn

(t), F̃−1
νn

(t) ≤ F−1
νn

(t)

(ii) F̃−1
µn

(t) ≤ F−1
µ (t), F̃−1

νn
(t) ≤ F−1

ν (t)

(iii) F̃−1
µn

(t) ≤ F−1
µn

(t), F̃−1
νn

(t) ≤ F−1
ν (t)

(iv) F̃−1
µn

(t) ≤ F−1
µ (t), F̃−1

νn
(t) ≤ F−1

νn
(t)

Hence, using the definition of quantile functions and the fact that the supports of µ, ν are assumed to be bounded, we obtain

sup
t∈(0,1)

∣∣F̃−1
µn

(t)− F̃−1
νn

(t)
∣∣p−1 ≤ ∆p−1 .

We conclude that,

|Wp
p(µn, νn)−Wp

p(µ, ν)| ≤ p∆p−1
{

W1(µn, µ) + W1(νn, ν)
}
.

and by linearity of the expectation,

E|Wp
p(µn, νn)−Wp

p(µ, ν)| ≤ p∆p−1
{
E[W1(µn, µ)] + E[W1(νn, ν)]

}
. (A13)
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Our final result follows from applying (Fournier & Guillin, 2015, Theorem 1). Since µ, ν ∈ P(X) where X ⊂ R is a
bounded set with finite diameter ∆ <∞, then for any q ≥ 1, the moment of µ (or ν) of order q is bounded by ∆q . Therefore,
the application of (Fournier & Guillin, 2015, Theorem 1) yields,

E[W1(µn, µ)] ≤ C ′∆n−1/2 , E[W1(νn, ν)] ≤ C ′∆n−1/2 . (A14)

where C ′ is a constant. We conclude by plugging (A14) in (A13).

Proof of Proposition 2. Let θ ∈ Sd−1. Since we assume that µ, ν ∈ P(X) where X ⊂ Rd is a bounded subset with finite
diameter ∆, one can easily prove that θ∗♯µ, θ

∗
♯ ν are supported on a bounded domain with diameter ∆θ ≤ ∆ < +∞.

Therefore, by Lemma A3, there exists a constant C such that,

E
∣∣Wp

p(θ
∗
♯µn, θ

∗
♯ νn)−Wp

p(θ
∗
♯µ, θ

∗
♯ ν)
∣∣ ≤ Cp∆pn−1/2 . (A15)

Next, we adapt the proof techniques in (Nadjahi et al., 2020b, Theorem 4) to establish the following inequality: for any
ρ ∈ P(Sd−1),

E|SWp
p(µn, νn; ρ)− SWp

p(µ, ν; ρ)| ≤
∫
Sd−1

E|Wp
p(θ

∗
♯µn, θ

∗
♯ νn)−Wp

p(θ
∗
♯µ, θ

∗
♯ ν)|dρ(θ) . (A16)

Hence, by plugging (A15) in (A16), we obtain

E|SWp
p(µn, νn; ρ)− SWp

p(µ, ν; ρ)| ≤ Cp∆pn−1/2 .

A2.4. Final Bound for Bounded Supports

By incorporating Propositions 1 and 2 in Theorem 2, we obtain the following result. Corollary A1 corresponds to a
specialization of our generic bound when considering distributions with bounded supports.

Corollary A1. Let p ∈ [1,+∞) and assume a bounded diameter ∆. Let ρ0 ∈ P(Sd−1) and δ > 0. Then, with probability
at least 1− δ, for all ρ ∈ P(Sd−1) and λ > 0, there exists a constant C such that,

SWp
p(µn, νn; ρ) ≤ SWp

p(µ, ν; ρ) + {KL(ρ||ρ0) + log(1/δ)}λ−1 + λ∆2p(2n)−1 + Cp∆pn−1/2

A2.5. Proof of Proposition 3

When the supports of the distributions are not bounded, Lemma A2 does not hold true, thus preventing the use of McDiarmid’s
inequality. Hence, to compute φµ,ν,p, we may use extensions of McDiarmid’s inequality which replace the finite-diameter
constraint by conditions on the moments of the distributions.

In particular, Proposition 3 follows from applying (Kontorovich, 2014, Theorem 1), a concentration result based on the
notion of sub-Gaussian diameter.

Definition A7 (Sub-Gaussian diameter (Kontorovich, 2014)). Let η be a distance function and (X, η, µ) be the associated
metric probability space. Consider a sequence of n ∈ N∗ independent random variables (Xi)

n
i=1 with Xi distributed from

µ for i ∈ {1, . . . , n}. Let Ξ(X) be the random variable defined by

Ξ(X) = εη(X,X ′) ,

where X,X ′ are two independent realizations from µ and ε is a random variable valued in {−1, 1} s.t. p(ε = 1) = 1/2
and ε is independent from X,X ′. Additionally, suppose there exists σ > 0 s.t. for λ ∈ R, Eµ[exp(λX)] ≤ exp(σ2λ2/2).
The sub-Gaussian diameter of (X, η, µ), denoted by ∆SG(X), is defined as ∆SG(X) = σ

(
Ξ(X)

)
.

Note that ∆SG ≤ ∆ (Kontorovich, 2014, Lemma 1). Since a set with infinite diameter may have a finite sub-Gaussian
diameter, Theorem A5 relaxes the conditions of Theorem A4.
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Theorem A5 (Theorem 1 (Kontorovich, 2014)). Let X ⊂ Rd and η : X× X→ R+ be a distance function. Consider the
metric probability space (X, η). For n ∈ N∗, let Xn be the product probability space equipped with the product measure
µn = µ1 × · · · × µn, where µi = µ. Define the L1 product metric ηn for any (x, x′) ∈ Xn × Xn as,

ηn(x, x′) =

n∑
i=1

η(xi, x
′
i) .

Let f : Xn → R s.t. f is 1-Lipschitz with respect to ηn, i.e. for any (x, x′) ∈ Xn × Xn, |f(x)− f(x′)| ≤ η(x, x′). Then,
E[f ] < +∞ and for λ > 0,

E [exp(λ{f − E[f ]})] ≤ exp(λ2n∆SG(X)
2/2) .

As discussed in (Kontorovich, 2014), the sub-Gaussian distributions on R are precisely those for which ∆SG(R) < +∞.
Proposition 3 then results from applying Theorem A5, as explained below.

Proof of Proposition 3. First, we prove that for any µ ∈ P(Rd) such that µ is sub-Gaussian with parameter σ2, then
µ ∈ P1(Rd). By definition, the first moment of µ is m1(µ) =

∫
Rd ∥x∥dµ(x). For any x ∈ Rd, we know that

∥x∥ =

(
d∑

k=1

|xk|2
)1/2

≤
d∑

k=1

|xk|

Therefore, m1(µ) can be bounded from above as follows.

m1(µ) ≤
∫
Rd

d∑
k=1

|xk|dµ(x)

≤
d∑

k=1

∫
Rd

|xk|dµ(x) (A17)

≤
d∑

k=1

∫
Rd

|
〈
θk, x

〉
|dµ(x)

≤
d∑

k=1

∫
R
|t|d(θk)⋆♯µ(t) (A18)

≤ d
√
2πσ2 (A19)

where for k ∈ {1, . . . , d}, θk ∈ Sd−1 is defined as (θk)i = 1 if i = k, (θk)i = 0 otherwise. (A17) results from the
linearity of the expectation, (A18) is obtained by applying the property of pushforward measures. (A19) follows from
the sub-Gaussian assumption on µ (Definition 3) and (Rivasplata, 2012, Proposition 3.2). Since m1(µ) < ∞ (A19), we
conclude that µ ∈ P1(Rd).

Now, consider the product metric space (R2, η) where η : R2 → R+ is the distance function defined for w .
= (u, v) ∈ R2,

w′ .= (u′, v′) ∈ R2 as,
η(w,w′)

.
= ∥u− u′∥+ ∥v − v′∥ = |u− u′|+ |v − v′| .

Let n ∈ N∗ and define f : (R2)n → R+ as: for any w1:n
.
= (wi)

n
i=1 ∈ (R2)n such that ∀i ∈ {1, . . . , n}, wi = (ui, vi) ∈

R2,
f(w1:n) = nW1(µ̃n, ν̃n) , (A20)

where µ̃n, ν̃n are the empirical distributions computed over (ui)ni=1, (vi)
n
i=1 respectively, i.e., denoting by δx the Dirac

measure at x,

µ̃n =
1

n

n∑
i=1

δui
, ν̃n =

1

n

n∑
i=1

δvi .
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We prove that f is 1-Lipschitz with respect to the L1 product metric ηn defined for any w1:n
.
= {(ui, vi)}ni=1 ∈ (R2)n,

w′
1:n

.
= {(u′i, v′i)}ni=1 ∈ (R2)n as,

ηn(w1:n, w
′
1:n) =

n∑
i=1

{
∥ui − u′i∥+ ∥vi − v′i∥

}
. (A21)

Since the Wasserstein distance satisfies the triangle inequality, one has

|W1(µ̃n, ν̃n)−W1(µ̃
′
n, ν̃

′
n)| ≤W1(µ̃n, µ̃

′
n) + W1(ν̃n, ν̃

′
n)

where µ̃n, ν̃n are the empirical distributions supported on (ui)
n
i=1, (vi)

n
i=1 respectively, and µ̃′

n, ν̃
′
n are the empirical

distributions supported on (u′i)
n
i=1, (v

′
i)

n
i=1 respectively. By definition of the Wasserstein distance between univariate

discrete distributions (Peyré & Cuturi, 2019, Remark 2.28),

W1(µ̃n, µ̃
′
n) =

1

n

n∑
i=1

∣∣u(i) − u′(i)∣∣
≤ 1

n

n∑
i=1

|ui − u′i| =
1

n

n∑
i=1

∥ui − u′i∥

where u(1) ≤ u(2) ≤ · · · ≤ u(n) and u′(1) ≤ u
′
(2) ≤ · · · ≤ u

′
(n). Analogously, W1(ν̃n, ν̃

′
n) ≤ 1

n

∑n
i=1 ∥vi − v′i∥. Therefore,

|W1(µ̃n, ν̃n)−W1(µ̃
′
n, ν̃

′
n)| ≤

1

n

n∑
i=1

{
∥ui − u′i∥+ ∥vi − v′i∥

}
. (A22)

We conclude from (A20) and (A22) that f is 1-Lipschitz with respect to the product metric ηn, as defined in (A21).

Next, let θ ∈ Sd−1 and µ, ν ∈ P(Rd) such that µ, ν are sub-Gaussian with respective variance proxy σ2, τ2. Consider the
probability metric space (R2, η, θ∗♯µ× θ∗♯ ν). By Definition A7 and the properties of the sum of independent sub-Gaussian
random variables (Rivasplata, 2012, Theorem 2.7), the sub-Gaussian diameter of that space is ∆SG(R2) =

√
2(σ2 + τ2).

We conclude the proof by applying Theorem A5 to f as defined in (A20), then reformulating the expectation over θ∗♯µ× θ∗♯ ν
as an expectation over µ× ν using the property of push-forward measures (see (A9)).

A2.6. Proof of Proposition 4

Proposition 4 results from the same arguments as in the proof of (Lei, 2020, Corollary 5.2). The latter result is obtained by
applying a generalized McDiarmid’s inequality, which we recall in Theorem A6.
Theorem A6 (Bernstein-type McDiarmid’s inequality (Lei, 2020)). Let X ⊂ Rd and X = (Xi)

n
i=1 be a sequence of n ∈ N∗

random variables i.i.d. from µ ∈ P(X). Let f : Xn → R s.t. E|f | <∞. For i ∈ {1, . . . , n}, let X ′
i be an independent copy

of Xi and X ′
(i) = (X1, . . . , Xi−1, X

′
i, Xi+1, . . . , Xn). Assume for i ∈ {1, . . . , n}, there exists ci,M > 0 s.t. for k ≥ 2,

E
[
|f(X)− f(X ′

(i))|
k | X−i

]
≤ c2i k!Mk−2/2 , (A23)

where X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xn). Then, for λ > 0 s.t. λM < 1,

E
[
exp{λ(f − E[f ])}

]
≤ exp

(
λ2∥c∥2/{2(1− λM)}

)
.

Proof of Proposition 4. First, we justify why for any µ ∈ P(Rd) s.t. µ satisfies the (σ2, b)-Bernstein condition, µ ∈ P1(Rd).
By (A18), the first order moment of µ, m1(µ) can be bounded as,

m1(µ) ≤
d∑

k=1

∫
R
|t|d(θk)⋆♯µ(t)

≤
d∑

k=1

{∫
R
|t|2d(θk)⋆♯µ(t)

}1/2

(A24)

≤ dσ (A25)
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where (A24) is obtained by applying Hölder’s inequality, and (A25) results from Definition 4. Hence, m1(µ) < ∞ and
µ ∈ P1(Rd).

The rest of the proof consists in applying Theorem A6 to f : (R2)n → R+ defined for any w1:n
.
= {(ui, vi)}ni=1 ∈ (R2)n

as,
f(w1:n) = W1(µ̃n, ν̃n) (A26)

where µ̃n, ν̃n are the empirical distributions of (ui)ni=1, (vi)
n
i=1 respectively.

For i ∈ {1, . . . , n}, let (u′i, v
′
i) ∈ R2. Denote by µ̃′

n the empirical distribution supported on
(u1, . . . , ui−1, u

′
i, ui+1, . . . , un) ∈ Rn, and by ν̃′n the empirical distribution supported on (v1, . . . , vi−1, v

′
i, vi+1, . . . , vn) ∈

Rn. Then,

|W1(µ̃n, ν̃n)−W1(µ̃
′
n, ν̃

′
n)| ≤W1(µ̃n, µ̃

′
n) + W1(ν̃n, ν̃

′
n) (A27)

≤ 1

n

{
|ui − u′i|+

∑
j=1,...,n,j ̸=i

|uj − uj |
}
+

1

n

{
|vi − v′i|+

∑
j=1,...,n,j ̸=i

|vj − vj |
}

(A28)

≤ 1

n

{
|ui − u′i|+ |vi − v′i|

}
(A29)

where (A27) follows from the fact that W1 satisfies the triangle inequality, and (A28) results from the definition of the
Wasserstein distance between univariate empirical distributions (Peyré & Cuturi, 2019, Remark 2.28).

Now, let µ ∈ P(Rd) (respectively, ν ∈ P(Rd)) satisfy the (σ2, b) (resp., (τ2, c))-Bernstein condition (Definition 4). Let
θ ∈ Sd−1 and consider w1:n = {(ui, vi)}ni=1 ∈ (R2)n i.i.d. from the product measure θ∗♯µ× θ∗♯ ν. We justify why f satisfies
the conditions of Theorem A6.

First, we show that E|f | is finite, where the expectation E is computed over n i.i.d. samples {(ui, vi)}ni=1 from θ∗♯µ× θ∗♯ νn.

E|f | ≤ 1

n

n∑
i=1

E[|ui − vi|] ≤
1

n

n∑
i=1

{E|ui|+ E|vi|}

≤ 1

n

n∑
i=1

{
E[|ui|2]1/2 + E[|vi|2]1/2

}
(A30)

≤ σ + τ (A31)

where (A30) results from Hölder’s inequality, and (A31) directly follows from the definition of the Bernstein condition
(Definition 4).

Besides, by using (A29) and the Bernstein condition Definition 4, one can show that

E[|W1(µ̃n, ν̃n)−W1(µ̃
′
n, ν̃

′
n)|k | u−i, v−i] ≤ n−k22(k−1)[σ2bk−2 + τ2ck−2]k!

where the expectation is computed over {(ui, vi)}ni=1 i.i.d. from θ∗♯µ× θ∗♯ ν. In other words, f as defined in (A26) satisfies
(A23) with, for i ∈ {1, . . . , 2n}, ci = 2σ⋆n

−1 and M = 4b⋆n
−1, where σ⋆ = max(σ, τ) and b⋆ = max(b, c). Our

final result follows from applying Theorem A6 to f , then applying the property of push-forward measures to obtain the
expectation with respect to µ× ν (see (A9)).

A2.7. Final Bound for Unbounded Supports

Before deriving the specialization of Theorem 2 for distributions with unbounded supports, we recall a useful bound on
SWp

p(·, ·;π) with π = U(Sd−1) (Theorem A7), which can be generalized for SW based on any ρ ∈ P(Sd−1) by adapting
the proof techniques in (Manole et al., 2022, Theorem 2).

Theorem A7 ((Manole et al., 2022)). Let p ≥ 1, q > 2p, s ≥ 1 and π = U(Sd−1). Denote Pp,q(s) ={
µ ∈ P(Rd) :

∫
Sd−1 Eµ[|θ⊤x|q]p/qdπ(θ) ≤ s

}
. Let µ, ν ∈ Pp,q(s). Then, there exists a constant C(p, q) > 0 depending

on p, q such that,
E|SWp

p(µn, νn;π)− SWp
p(µ, ν;π)| ≤ C(p, q)s log(n)1/2n−1/2

20



Shedding a PAC-Bayesian Light on Adaptive Sliced-Wasserstein Distances

We show that under the sub-Gaussian or the Bernstein moment condition assumptions, the assumptions in Theorem A7 are
satisfied, thus allowing its application in these two settings. This yields Corollaries A2 and A3, which we state and prove
hereafter.

Corollary A2. Let µ, ν ∈ P(Rd) and ρ ∈ P(Sd−1). Assume that µ (respectively, ν) is sub-Gaussian with variance proxy
σ2 (resp., τ2). Let σ2

⋆ = max(σ2, τ2). Then, there exists C ′(p) > 0 such that,

E|SWp
p(µn, νn; ρ)− SWp

p(µ, ν; ρ)| ≤ C ′(p)(4σ2
⋆)

p log(n)1/2n−1/2 .

Proof. Under the sub-Gaussian assumption on µ and ν, the moments of θ∗♯µ, θ
∗
♯ ν can be bounded for any θ ∈ Sd−1 as

follows: for any k ∈ N∗,
Eµ[| ⟨θ, x⟩ |2k] ≤ k!(4σ2)k , Eν [| ⟨θ, y⟩ |2k] ≤ k!(4τ2)k .

We conclude that µ, ν ∈ Pp,2(p+1)(s) with s = {(p+1)!}p/(2(p+1))(4σ2
⋆)

p and σ2
⋆ = max(σ2, τ2). The final result follows

from applying Theorem A7.

Corollary A3. Let µ, ν ∈ P(Rd) and ρ ∈ P(Sd−1). Assume that µ and ν satisfy the Bernstein condition, with parameters
(σ2, b) and (τ2, c) respectively. Let σ2

⋆ = max(σ2, τ2) and b⋆ = max(b, c). Then, there exists C ′(p, q) > 0 such that

E|SWp
p(µn, νn; ρ)− SWp

p(µ, ν; ρ)| ≤ C ′(p, q)σ
2p/q
⋆ b

p(q−2)/q
⋆ log(n)1/2n−1/2 .

Proof. Under the Bernstein condition on the moments of µ, ν, we can use the definition of the push-forward measures along
with the Cauchy-Schwarz inequality and obtain for any θ ∈ Sd−1 and k ∈ N∗,

Eµ[| ⟨θ, x⟩ |2k] ≤ σ2k!bk−2/2 , Eν [| ⟨θ, y⟩ |2k] ≤ τ2k!ck−2/2 . (A32)

Let q > 2p. By (A32), µ, ν ∈ Pp,q(s) with s = (σ2
⋆q!/2)

p/qb
p(q−2)/q
⋆ . The application of Theorem A7 concludes the proof.

We can finally provide the refined bounds, assuming the distributions are either sub-Gaussian or satisfy the Bernstein
condition. On the one hand, incorporating Proposition 3 and Corollary A2 in Theorem 2 gives us the following corollary.

Corollary A4. Let µ, ν ∈ P(Rd). Assume µ (resp., ν) is sub-Gaussian with variance proxy σ2 (resp., τ2). Let σ2
⋆
.
=

max(σ2, τ2). Let ρ0 ∈ P(Sd−1) and δ > 0. Then, with probability at least 1− δ, for all ρ ∈ P(Sd−1) and λ > 0, there
exists C > 0 such that

SW1(µn, νn; ρ) ≤ SW1(µ, ν; ρ) + {KL(ρ||ρ0) + log(1/δ)}λ−1

+ λ(σ2 + τ2)n−1 + Cσ2
⋆ log(n)

1/2n−1/2 .

On the other hand, we leverage Proposition 4, Corollary A3 and Theorem A3 to derive the specified bound below.

Corollary A5. Let µ, ν ∈ P(Rd). Assume that µ and ν satisfy the Bernstein condition, with parameters (σ2, b) and (τ2, c)
respectively. Let σ2

⋆ = max(σ2, τ2) and b⋆ = max(b, c). Let ρ0 ∈ P(Sd−1) and δ > 0. Then, with probability at least
1− δ, for all ρ ∈ P(Sd−1) and λ > 0 s.t. λ < (2b⋆)

−1n, for q > 2, there exists C(q) > 0 such that

SW1(µn, νn; ρ) ≤ SW1(µ, ν; ρ) + {KL(ρ||ρ0) + log(1/δ)}λ−1

+ 2λσ2
⋆(1− 2b⋆λn

−1)−1n−2 + C(q)σ
2/q
⋆ b

(q−2)/q
⋆ log(n)1/2n−1/2 .

A3. Additional Experimental Details
All our numerical experiments presented in Section 5 can be reproduced using the code we provided in
https://github.com/rubenohana/PAC-Bayesian_Sliced-Wasserstein.
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Algorithm A2 PAC-Bayes bound optimization for vMF-based SW

Input: Datasets: x1:n = (xi)
n
i=1, y1:n = (yi)

n
i=1

SW order, number of slices: p ∈ [1,+∞), nS ∈ N∗

Bound parameter: λ ∈ R∗
+

Number of iterations, learning rate: T ∈ N∗, η ∈ (0, 1)

Initialized parameters: (m(0), κ(0)) ∈ Sd−1 × R∗
+

Output: Final parameters: (m(T ), κ(T ))

for t← 0 to T − 1 do
ρ(t) ← vMF(m(t), κ(t))
for k ← 1 to nS do
θ
(t)
k ∼ ρ(t) (Davidson et al., 2018, Algorithm 1)

end for
ρ
(t)
n ← n−1

S

∑n
k=1 δθ(t)

k

L(x1:n, y1:n, ρ(t), λ)← SWp
p(µn, νn; ρ

(t)
n )− λ−1KL(ρ(t)||ρ(0))[

m(t+1)

κ(t+1)

]
←
[
m(t)

κ(t)

]
+ η

[
∇mL(x1:n, y1:n, ρ(t), λ)
∇κL(x1:n, y1:n, ρ(t), λ)

]
end for
Return (m(T ), κ(T ))

Figure A1. Examples of generated MNIST digits. Left to right: DSW, DSW-10, maxSW, maxSW-10.

A3.1. Details on the Algorithmic Procedure

For clarity, we specify Algorithm 1 when the optimization is performed over the space of von Mises-Fisher distributions
(Definition 5). The procedure is detailed in Algorithm A2.

A3.2. Additional Results

Figure A1 displays additional qualitative results for the generative modeling experiment. We observe that the images
generated by DSW have a better quality than the ones produced by maxSW, even if DSW is not optimized at every training
iteration.

On Figure A2 are shown the results obtained on the generative modeling experiment of Section 5 using the PAC-SW loss.
PAC-SW can be competitive with DSW, but takes more time to execute as the computation of the KL cost is more costly
than the regularization term of DSW. However, we observe that the distribution of slices that we learn generalizes well.
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Figure A2. Generative modeling experiment when the slice distribution of PAC-SW is updated either at each iteration (PACSW), every 50
iterations (PACSW-50) or every 100 iterations (PACSW-100). Timing results of this experiment were obtained with a NVIDIA GPU
A100 80 GB, compared to Figure 4 which was on a NVIDIA V100.
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