
Controlled Differential Equations on Long Sequences via Non-standard Wavelets

Sourav Pal 1 Zhanpeng Zeng 1 Sathya N. Ravi 2 Vikas Singh 1

Abstract

Neural Controlled Differential equations (NCDE)
are a powerful mechanism to model the dynamics
in temporal sequences, e.g., applications involv-
ing physiological measures, where apart from the
initial condition, the dynamics also depend on
subsequent measures or even a different “control”
sequence. But NCDEs do not scale well to longer
sequences. Existing strategies adapt rough path
theory, and instead model the dynamics over sum-
maries known as log signatures. While rigorous
and elegant, invertibility of these summaries is
difficult, and limits the scope of problems where
these ideas can offer strong benefits (reconstruc-
tion, generative modeling). For tasks where it is
sensible to assume that the (long) sequences in
the training data are a fixed length of temporal
measurements – this assumption holds in most ex-
periments tackled in the literature – we describe
an efficient simplification. First, we recast the
regression/classification task as an integral trans-
form. We then show how restricting the class of
operators (permissible in the integral transform),
allows the use of a known algorithm that leverages
non-standard Wavelets to decompose the operator.
Thereby, our task (learning the operator) radically
simplifies. A neural variant of this idea yields con-
sistent improvements across a wide gamut of use
cases tackled in existing works. We also describe
a novel application on modeling tasks involving
coupled differential equations.

1. Introduction
In the last few years, the function approximation capabili-
ties of modern deep neural networks models (DNNs) (Liang
& Srikant, 2016; Hanson & Raginsky, 2020) have been
successfully exploited towards new results exploring the in-

1University of Wisconsin-Madison 2University of Illinois
Chicago. Correspondence to: Sourav Pal <spal9@wisc.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Details Approx.

Details Approx.

Details Approx.

Time

Time

Pa
ra

m
et

er
ize

d
In

te
gr

al
 O

pe
ra

to
r

C
on

tro
l

Pa
th

 :

v(t
)

Re
sp

on
se

Pa

th

 :
u(t

)
: Forward transform

: Inverse transform

Decompose

Recompose

Figure 1. A control path driving a response. Multi-resolution anal-
ysis allows the proposed parameterization of an integral operator.

terface of DNNs with the rich extant literature on differential
equations, a widely used tool in much of science. Conse-
quently, new capabilities have emerged (Li et al., 2020b;
Salvi et al., 2022). To see this, consider the task of model-
ing the relationship between variables and their derivatives,
using a first order Ordinary Differential Equation (ODE)
along with initial conditions of the form

z(0) = z0;
dz

dt
= f(z(t)) = f(zt) (1)

where zt ∈ Rd. In their prevalent use in simulation and
physics, the analytical form of f is known and hence the de-
facto approach would use numerical initial value problem
(IVP) solvers. But one may also hope to learn f parame-
terized as neural networks using observed data, and Neural
Ordinary Differential Equation (NODE) (Chen et al., 2018)
is a prominent example of such a model. Given a sequence
of observations x0, x1, · · · , xT , with each xi ∈ RD, where
D is the dimensionality of the observed space, NODE can
be written

z0 = Sθ(x0); zt = z0 +

∫ t

0

fθ(zs)ds (2)

where Sθ and fθ are neural networks pertaining to the initial
condition and latent dynamics in a latent space of dimen-
sionality d respectively. Here, s is introduced as the variable
of integration. In (1) and (2), zt = z(t) is the value of the

1

Controlled Differential Equations on Long Sequences via Non-standard Wavelets

latent variable z when the variable of integration is varied up
to t. Similarly, z0 = z(0) denotes the initial latent variable
determined from the initial observation of x0 = x(0). We
will use zt to denote z(t) (similarly for other variables).

The solution to an ODE/NODE is characterized by its initial
conditions and underlying dynamics. However, in many
cases (e.g., molecular dynamics), one must also model the
noise and perturbations, often due to coupling with the en-
vironment leading to solutions influenced by conditions
distinct from the ones at the start of the trajectory. Stochas-
tic Differential Equations (SDE) nicely capture this setting,
where the solutions correspond to stochastic processes. Sim-
ilar to ODEs, the fusion of SDEs and DNNs have been stud-
ied, and finds use in score-based generative models (Song
et al., 2020; Song & Ermon, 2020; Vahdat et al., 2021),
data augmentation (Meng et al., 2021) among others (Jia &
Benson, 2019; Li et al., 2020a; Nazarovs et al., 2021).

Beyond ODEs/SDEs: In many other cases, the dynam-
ics may be influenced by yet another source (separate from
noise) – and the Controlled Differential Equations (CDE) lit-
erature (Salvi, 2021) corresponds to this general setting. To
allow learning in this regime, (Kidger et al., 2020) proposed
Neural Controlled Differential Equation (NCDE) where the
key change from NODE (2) is the use of Riemann–Stieltjes
integral (instead of the Riemann integral),

z0 = Sθ(x0); zt = z0 +

∫ t

0

fθ(zs)dXs (3)

Here, X : t → RD is a continuous function of bounded
variation, say, a continuous approximation to the discrete
observations of x and serves as the “control” for the solution
to (3). If X is differentiable, we write the integral in (3) as:

zt = z0 +

∫ t

0

fθ(zs)
dX

ds
(s)ds (4)

which is in the Riemann integral form of an NODE. So, a
NCDE can use the same solvers as NODE. We point out
that t is the dimension along which the function evolves, it
is convenient to think of t as time (which can be appended
as a channel as in (Kidger et al., 2020)).

CDEs for long time series: While NCDEs are quite versa-
tile, long time series poses challenges in terms of training
time. The result in (Morrill et al., 2021), called Neural
Rough Differential Equation (NRDE), uses log-signatures
as summary measures of the control path to solve NCDEs,
thereby circumventing the expensive point-wise calculation,
achieving runtime and performance improvements. But in-
version of the signature transform (Chang et al., 2017; Lyons
& Xu, 2018) within a DNN model is challenging (Kidger
et al., 2019). Also, the signatures are obtained via a pre-
processing step. Finally, while numerical IVP solvers are
excellent, when operating on representations obtained via

upstream layers (or a pre-processing step), dealing with stiff-
ness and/or abrupt changes requires care (Hairer & Wanner,
1999; Curtiss & Hirschfelder, 1952; Holt et al., 2022).

Simplifications for long (but fixed length) time sequences:
At this time, NRDEs are an effective way to solve CDEs
for long sequences. But we notice that in most use cases
tackled in the literature, e.g., regression, reconstruction and
classification tasks, the training data corresponds to samples
whose length is fixed. And even if not, artificially adjusting
the data to satisfy this requirement, does not lead to any
disconnect between the task and the model’s functionality.
So, if the full time sequence is visible to the model (note that
this is also true when calculating log-signatures), to uncover
the latent dynamics, rather than step through incrementally,
one may unroll the entire sequence of (a very long sequence
of) steps, and attempt to solve it all at once. On its face,
our proposal to unroll appears to be a poor design choice,
especially for long sequences (it could increase the compute
footprint). It is not clear why this is a “simplification”.

Our contributions: Let us review the setting where the
model can access the entire fixed length sequence. Viewing
both x and z as two distinct functions, learning the latent
dynamics can be interpreted as learning a transform between
these function spaces. This can be written using the asso-
ciated kernel and its discretized operator. On its own, this
perspective does not endow any obvious advantages just yet.
Interestingly, we find that for nearly all applications tackled
so far via NRDE/NCDE approaches (as well as for cou-
pled differential equations), restricting the aforementioned
operator to a class (e.g., Calderon-Zygmund(CZ)) which
admits a structured decomposition suffices. In particular, a
key result from Beylkin, Coifman and Rokhlin referred to
as the BCR algorithm (Beylkin et al., 1991) is effective for
rapid calculation of integral transforms. We describe how
a neural variant, derived from the BCR algorithm, yields
excellent performance on long sequence tasks, achieving
sizable runtime benefits (up to a few orders of magnitude).
An overview of the proposed framework is shown in Fig. 1.
Further, tasks such as autoencoding and reconstruction that
are difficult using log-signatures (due to invertibility) are
possible and quite efficient. Finally, new capabilities that
emerge include modeling coupled differential equations.

2. Review: Calderon-Zygmund Operators and
Non-standard Wavelet Forms

CZ operators: In harmonic analysis, singular integrals can
be considered as an integral operator (transform) A:

A(f)(t) =

∫
a(t, s)f(s)ds (5)

where the kernel function/operator a(t, s) is singular along
the diagonal t = s. We briefly review Calderon-Zygmund

2

Controlled Differential Equations on Long Sequences via Non-standard Wavelets

(CZ) operators which are central to our model. CZ operators
are singular integrals with the property that the associated
a(t, s) is smooth away from the diagonal and satisfies:

|a(t, s)| ≤ 1

|t− s|

|∂Mt a(t, s)|+|∂Ms a(t, s)| ≤ C0

|t− s|1+M

(6)

where C0 is some constant greater than zero and M is an
integer greater than 1 which corresponds to the M -th partial
derivative. This property enables compression of integral
operators when expressed in their non-standard form, de-
scribed next.

Multi-resolution analysis (MRA): Consider a scaling func-
tion (or father wavelet) ϕ(τ) which is smooth, where τ is
the dimension over which we seek to perform MRA. The
scaled and translated copies of the scaling function can be
represented as:

ϕlk(τ) = 2l/2ϕ(2lτ − k) (7)

where l ∈ {0, 1, · · · } denotes the level of decomposition
(scaling) associated with the MRA scheme and k ∈ Z de-
notes the translation along the dimension of analysis. At
each level l, the set of scaling functions ϕlk forms the ba-
sis for the vector space V l. We get a nested sequence of
subspaces with V l ⊂ V l+1. Hence, ϕ(τ) ∈ V 0 has a
representation in terms of a linear combination of the ba-
sis functions in V 1, known as the two-scale equation (or
refinement equation or dilation relation) as follows:

ϕ(τ) =
∑
k∈Z

hk
√
2ϕ(2τ − k) (8)

where hk are coefficients; they are nonzero only in the
associated support of the wavelet family under consideration.
It is this compact support which enables “local” analysis
through wavelets otherwise absent in Fourier based schemes.
The wavelet function (or mother wavelet) is defined in terms
of the scaling function as:

ψ(τ) =
∑
k∈Z

gk
√
2ϕ(2τ − k) (9)

with associated coefficients gk, which are related to hk by
the quadrature mirror relation:

gk = (−1)1−kh1−k (10)

Similar to (7), the scaled and translated versions of the
wavelet function can be represented as:

ψl
k(τ) = 2l/2ψ(2lτ − k) (11)

for l ∈ {0, 1, · · · } (corresponding to scale) and k ∈ Z
(corresponding to translation). At a given level l, the wavelet

functions ψl
k form a basis for the difference space, W l =

V l+1⊖V l. This material is covered in detail in (Daubechies,
1992; Mallat, 1999; Alexander & Poularikas, 1998) .

Non-standard form: Wavelets in higher dimensions are
often composed by combining the MRA scheme for 1D, de-
fined in terms of scaling functions ϕlk and wavelet functions
ψl
k along multiple dimensions. We will focus on the 2D case,

where there are two ways to arrive at a 2D decomposition
scheme: (a) standard form and (b) non-standard form. For
a given number of levels L of analysis, the standard form
involves the repeated application of a 1D wavelet transform
in the first dimension, L times, followed by the repeated ap-
plication of 1D wavelet transform in the second dimension.
In contrast, the non-standard form involves the alternative
application of 1D wavelet transform in either dimension
until the desired level, L is reached. The standard basis
functions are obtained by the Cartesian product of the 1D
wavelets and the father wavelet, whereas the non-standard
basis functions at a particular level are obtained from the
Cartesian product of scaling and wavelet functions at the
same level (Kopp & Purgathofer, 1998). Why is this rele-
vant? Like in (Fan et al., 2019), we will use a non-standard
2D MRA to compress CZ operators. The beauty of the
non-standard form lies in the decoupling among different
levels, achieved during decomposition followed by a simple
coupling mechanism during reconstruction, this will man-
ifest in a recursive relation (Beylkin et al., 1991). On the
other hand, the standard form leads to interactions between
different levels.

3. From CDEs to Integral Transform
Notations: We consider our observations to be sequen-
tial measurements, i.e., each sample can be represented as
x := (x0, x1, x2, . . . , xT), where T denotes the sequence
length for the time series. Since the samples may not be
univariate, for (x0, · · · , xi, . . . , xT), we use D to denote
the dimensionality (e.g., number of channels) i.e., xi ∈ RD.
Let X : t→ RD be a “path” – a continuous differentiable
function of bounded variation t ∈ [0, · · · , T] (which may
represent time). Note that x is often assumed to be a dis-
cretization of an underlying process, observed only through
x, and X is an approximation to this underlying process,
usually obtained via interpolation (Kidger et al., 2020).

Latent space modeling of CDEs: NCDEs (Kidger et al.,
2020) model the dynamics in some latent space, say
of dimensionality d, that lead to the observations pro-
vided. The trajectory in the latent space will be z :=
(z0, · · · , zi, · · · , zT), where zi ∈ Rd. Let

gθ : RD → Rd (12)

be a neural network parameterized by θ, such that, we have,

3

Controlled Differential Equations on Long Sequences via Non-standard Wavelets

the initial latent variable (at the start of the process) as:

z0 = gθ(X(0)) ≡ gθ(x0); z0 ∈ Rd×1,X(0) ∈ RD×1

(13)

where x0 ∈ RD is the input observed at the first time step.
For simplicity, we use t = 0 for the first time instance in the
trajectory (but in general, it can be arbitrary). Next, let

fθ : Rd → Rd×D (14)

be any neural network depending on model parameters θ.
We use θ as a generic placeholder variable to denote the
parameterization of the corresponding neural network. Then,
as described in (3) the NCDE model is:

zt = z0 +

∫ t

0

fθ (zs) dXs ; t > 0 (15)

Assume X is differentiable and using dX
ds (s) ≡ X′(s),

zt = z0 +

∫ t

0

fθ (zs)
dX

ds
(s)ds = z0 +

∫ t

0

fθ (zs)X
′(s)ds

(16)

The identity in (16) above is the NCDE in (Kidger et al.,
2020). It is in the form of a definite integral, where the
limits of integration are from start of trajectory t0 = 0 to the
point of evaluation t, and solved using numerical solvers.

Transformation between function spaces: Let us define
another neural network parameterized by θ in the following
way,

hθ : Rd → RD×k (17)

For the fθ term in (16), we propose to define:

fθ(zs) = aθ(t, s)× (hθ(zs))
T ; aθ(t, s) ∈ Rd×k (18)

where aθ(t, s) is parameterized by θ (using θ as a generic
placeholder), fθ(·) ∈ Rd×D and hθ(·) ∈ RD×k. The non-
linearities in f can be absorbed within aθ and/or hθ. Then,
(16) can be cast as:

zt = z0 +

∫ t

0

aθ(t, s) (hθ(zs))
T X′(s)ds (19)

Now, since s is a dummy variable of integration, we may
combine the derivative of the path and a function of the
hidden state, and denote the result as vs,

(hθ(zs))
T ×X ′(s) := v(s) ≡ vs (20)

where X ′(s) ∈ RD×1 and vs ∈ Rk×1. Substituting back,

zt = z0 +

∫ t

0

aθ(t, s)v(s)ds (21)

Simply by defining ut = zt − z0 gives us

ut =

∫ t

0

aθ(t, s)v(s)ds (22)

Instead of viewing the integral in s ∈ [0, t], we can view
that the integration is carried out over the entire domain s ∈
Ω with appropriate restrictions on the operator, presented
shortly. This gives us a parameterized integral transform,

ut =

∫
s∈Ω

aθ(t, s)v(s)ds (23)

Takeaway: With (23) we have written the CDE as an in-
tegral transform, taking us from v(s) to u(t) with kernel
aθ(t, s). Do the simple manipulations above offer any bene-
fits? In fact, it may even be computationally more challeng-
ing to solve (23) than to directly deploy mature numerical
solvers on (16). We will see shortly that we must constrain
the class of the operator aθ we will consider – and if we
do so, significant benefits are available. This observation is
what makes the approach efficient and practical.
Remark 3.1. If d = k = 1, then the kernel is a scalar
valued kernel, otherwise it will be a tensor-valued kernel
(which needs some specific implementation strategies). For
simplicity, we will consider the scalar valued kernel for the
remainder of the presentation.

4. Leveraging the Non-standard form
Computationally, to apply the integral transform (23), we
must solve it via discretization. If we consider discretization
using the (given) frequency/sampling rate of the observa-
tions, i.e., T discrete values, we can represent (23) as:

u = Av (24)

where u ∈ RT , v ∈ RT and A ∈ RT×T . This matrix-
vector product involves O(T 2) operations. For large values
of T (long sequences), the situation does not look promising.

4.1. MRA using the BCR algorithm

Unrolling the differential equation along time and solving
it at once appears difficult, but a closer look reveals ex-
tensive structure that can be exploited. In a seminal work
(Beylkin et al., 1991), Beylkin, Coifman and Rokhlin (BCR)
exploited sparse representations and corresponding algo-
rithms for rapidly performing integral transforms, alterna-
tively viewed as application of dense matrices to vectors
as we have in (24). Depending on the type of operator, the
BCR scheme can yield remarkable efficiency. The BCR
algorithm uses a class of orthonormal wavelet bases, to be
specific, the ones constructed by I. Daubechies (Daubechies,
1988), popularly referred to as “dbn” wavelets, where n
corresponds to the number of vanishing moments (2n is the

4

Controlled Differential Equations on Long Sequences via Non-standard Wavelets

corresponding support), e.g., “db2”. The main observation
in the result was that for the class of orthonormal wavelets,
the corresponding non-standard 2D multi-resolution anal-
ysis (MRA) of CZ integral operators exhibit a diagonally
banded structure and hence can facilitate the fast application
of dense matrices to arbitrary vectors.

Consider, the non-parameterized version of (23) with kernel
a(t, s) and the corresponding integral operator denoted by
A. Then, at any level l of 2D MRA of A, we have:

αl
km =

∫∫
ψl
k(t)a(t, s)ψ

l
m(s)dtds

βl
km =

∫∫
ψl
k(t)a(t, s)ϕ

l
m(s)dtds

γlkm =

∫∫
ϕlk(t)a(t, s)ψ

l
m(s)dtds

Al
km =

∫∫
ϕlk(t)a(t, s)ϕ

l
m(s)dtds

(25)

where αl
km, β

l
km, γ

l
km, A

l
km are the coefficients obtained by

projecting the integral operator A along the wavelet bases
of level l.

Use in our case: We observe that when modeling temporal
data, it is critical to preserve memory of the measurements
for the time points that are far away from the current time
point in [0, T]. However, it is also sensible to assume that
the magnitude of information flow, both through zeroth-
order and higher order derivatives, across the sequence has
a decreasing but non-zero value when the distance between
time points of interest is large. This is precisely the property
associated with Calderon-Zygmund kernels (CZ) (6). This
informs the choice of our kernel – we assume that our data
will admit modeling using the CZ operators in our integral
transform in (23).

Due to BCR (Beylkin et al., 1991), for the MRA scheme,
we will have the following estimates ∀|k −m|≥ 2M

|αl
km|+|βl

km|+|γlkm|≤ CM

1 + |k −m|1+M
(26)

Hence, we can consider the coefficient matrices at level l,
i.e., αl, βl, γl to be diagonally banded with a band length
of B ≥ 2M . This is precisely the sparse representation
we exploit; it admits an error bound of C

BM log2(T), where
C is a constant dependent on the kernel a(t, s) and the
original operator A in its discrete form (has a dimension
of T × T). The approximation in (26) holds for all k,m
pairs via an extra boundedness condition, see (Beylkin et al.,
1991). When using the BCR algorithm to compute (24) the
computational complexity is O(T) (Beylkin et al., 1991;
Fan et al., 2019).
Remark 4.1. The non-standard form of BCR has been used
in the context of neural networks in (Fan et al., 2019), al-
beit for a completely different purpose. In our work, we

Al vl
Al+1γl+1

αl+1 βl+1

vl+1

dl+1̂
Al+1γl+1

αl+1 βl+1

vl+1

dl+1 T T

Figure 2. The application of dense matrix to an arbitrary vector
via BCR based decomposition is shown towards right. Note the
diagonally banded structure (26,28). Towards the left, we have our
approximate efficient re-parameterization of the diagonally banded
matrix via Partially Un-shared Convolution (PUC). Note that seg-
ments of same color in the banded diagonals of αl+1, βl+1, γl+1

share parameters.

use a different parameterization which is efficient and cir-
cumvents issues like over-fitting, and we will give details
later. Moreover, a closer look at (Fan et al., 2019) suggest
other overfitting-related issues in the prior work, which our
proposal resolves, the specifics of which are described next.

5. Deriving an Efficient (Deep) BCR Algorithm
Consider a 1D forward/inverse transform of orthogonal
wavelets WT and W respectively denoting the filters (both
scaling and wavelet functions). Then, the 2D MRA of the
operator A can be written as (Beylkin et al., 1991; Fan et al.,
2019):

WTAlW =

[
αl+1 βl+1

γl+1 Al+1

]
;Al = W

[
αl+1 βl+1

γl+1 Al+1

]
WT

(27)

Throughout, we assume that l = 0 corresponds to the finest
resolution, and increasing l denotes coarser resolutions.
While there is no restriction for the wavelets to be fixed
at all levels, for simplicity of presentation, we assume that
the same pair of forward and inverse wavelet transform are
used at all levels. Hence, the application of the operator A
on any vector v at a finer level l, can be written in terms of a
coarser level l+ 1 as (Beylkin et al., 1991; Fan et al., 2019):

ul = Alvl = W
[
αl+1 βl+1

γl+1 Al+1

]
(WT vl)

= W
([

αl+1 βl+1

γl+1 0

] [
dl+1

vl+1

]
+

[
0

ul+1

]) (28)

Remark 5.1 (Sparsity/MRA). This yields a recursive rela-
tion. We should not instantiate the dense operator A at the
finest level. The dense operations are relegated to a much
coarser level where the dimensionality is small. Also, note
from (26) that the matrix of coefficients αl, βl, γl are all
diagonally banded, so we have avoided the computational
burden present in a naive unrolling, see Fig. 2. In doing so,
the parameterization is required only at the coarsest level,
L, denoted by dθ, signifying that this is a dense FC layer.

Other modules needed: The other pieces of parameteri-
zation involve the diagonally banded matrices αl, βl, γl at

5

Controlled Differential Equations on Long Sequences via Non-standard Wavelets

each level l of the MRA. These are convolutions with fil-
ters depending on the position called Locally Connected
Layers in (Fan et al., 2019) (unshared convolution). Essen-
tially, these are diagonally banded matrices corresponding
to linear layers. However, we find that this is heavily over-
parameterized and performs poorly, leads to over-fitting, and
other problems. We instead propose, a Partially Un-shared
Convolution (PUC) layer, which is neither a linear layer
(weights vary across the sequence length), nor a pure convo-
lution (weights are shared). In PUC, weights are shared for
a partial length of the sequence before they are unshared,
this is repeated a small number of times. While it may seem
that this will reduce the capacity of the model, we find that
this small change is highly effective. One explanation is
that the kernel should not change drastically for every time
point in the sequence (i.e., there is some continuity in the
function that we are trying to estimate).
Algorithm 1 BCR-DE

1: Input: Set of sequence {xn}Nn=1, where each xn :=
(xn0 , x

n
1 , . . . x

n
T), with xni ∈ RD, T is sequence length.

2: Input: L, the number of levels of decomposition
3: Input: WT and W , 1D forward and inverse wavelet

transform respectively.
4: Input: gθ, hθ, dθ,Lθ, rθ all learnable modules
5: Compute: Continuous approximation of each observa-

tion xn and denote it by Xn

6: Compute: zn = gθ(x
n)

7: Compute: X′n = derivative(Xn)
8: Compute: vn = (hθ(z

n))T ×X′n

9: Initialize: approx = [], detail = []
10: for l = 1 to l = L do
11: an,dn = WT (vn) // a:approx, d:detail coefficient
12: approx.append(an), detail.append(dn)
13: vn = an

14: end for
15: Compute:un = dθ(a

n) // u:transformed sequence
16: for l = L to l = 1 do
17:

[
dn

an

]
= PUC(Lθ[l],

[
detail[l]
approx[l]

]
) +

[
0
un

]
18: un = W

([
dn

an

])
19: end for
20: Output: rθ(un)

Algorithm 2 Partially Un-shared Convolution (PUC)

1: Input: Lθ[l],

[
dn

an

]
2: Compute: d′n = Lθ[l][α]d

n + Lθ[l][β]a
n

3: Compute: a′n = Lθ[l][γ]d
n

4: Output:
[
d′n

a′
n

]
)

Our algorithm: With all modules in hand, we can now
present Algorithm 1. In lines 5–8, we compute the function

in the v space using the above procedure. Thereafter, lines
9–14 represent the forward wavelet transform, where the
details and approximations are stored for future computa-
tions. Note that the parameters in Lθ can be indexed by the
corresponding level l, which further contains parameters
for the diagonally banded matrices represented by αl, βl, γl,
(28). Partially Un-shared convolution (PUC) layer is best
understood through Fig. 2 and Algorithm 2. Line 18 corre-
sponds to the inverse wavelet transform. The final output is
obtained after applying a learnable transform.

Implementation detail: For all experiments shown here,
we parameterized gθ, hθ and dθ using fully connected layers,
along with tanh non-linearities. For each level l of Lθ, we
parameterize using our PUC layer. Finally, the last module
rθ is also parameterized using fully connected layers.

5.1. Discussion/Wrapping up

In Section 3, we discussed how apart from restricting our op-
erator to be a CZ operator, one may impose some additional
restrictions. These restrictions are particularly relevant when
one wants to update the latent variables only based on the
past values (for some time point) and not future time points
(> t). This boils down to the discretized operator being
lower triangular. In our non-standard multi-resolution de-
composition of the operator, this roughly translates to band
diagonal matrices αl, βl, γl at various levels l, except for
the very coarse matrix AL, where it is lower triangular
(although this does not offer any noticeable benefits), see
Appendix A.
Remark 5.2. Our choice of operators results in diagonally
banded matrices based on (6 , 26). It is convenient to think
of them as diagonally dominant matrices, common in finite
element methods used to solve differential equations.
Remark 5.3. CDEs require the differentiable approximation.
We assume a differentiable path, but the requirement is
weaker since our discretization is fixed and we only need
derivatives at the known points. Even if the path is not
differentiable, in practice, we can use finite differences. In
CDEs, during training, the sequence length is fixed but
because of the use of adaptive step size solvers in most
cases, a different number of steps may be needed. BCR-
DE is solver-free because it is fixed length and also fixed
(although not necessarily uniform) discretization.

A note on Wavelet Basis. Recall that RDEs involve the
log-signature transform for the specific choice of the basis
function (pre-processing step). In our model, the use of
wavelets to model the dynamics allows the basis functions
to be learnable. Further, both the forward wavelet transform
and its accompanying inverse transform are efficient and
allow circumventing invertibility issues, which offers ben-
efits for auto-encoders and coupled differential equations
experiments.

6

Controlled Differential Equations on Long Sequences via Non-standard Wavelets

Model RMSE Time (hrs)

RR HR SpO2 RR HR SpO2

ODE-RNN (s512) 1.66 ± 0.06 6.75 ± 0.9 1.98 ± 0.31 0.0 0.1 0.1

NCDE (s1) 2.79 ± 0.04 9.82 ± 0.34 2.83 ± 0.27 23.8 22.1 28.1

NCDE (s512) 2.53 ± 0.03 12.22 ± 0.11 2.98 ± 0.04 0.1 0.0 0.1

NRDE (d3s8) 2.42 ± 0.19 7.67 ± 0.40 2.55 ± 0.13 2.9 3.2 3.1

NRDE (d3s128) 1.51 ± 0.08 2.97 ± 0.45 1.37 ± 0.22 0.5 1.7 1.7

NRDE (d3s512) 1.49 ± 0.08 3.46 ± 0.13 1.29 ± 0.15 0.3 0.4 0.4

BCR-DE 1.53 ± 0.09 3.27 ± 0.16 1.18 ± 0.15 0.4 0.5 0.9

Table 1. Mean and standard deviation of RMSE over three runs
and mean training time for prediction of vital signs RR, HR, SpO2.
Note: Contents in parenthesis beside baseline models depict their
variants; ’s’ for step size and ’d’ for depth whenever applicable.
6. Experimental evaluations
We present evaluations on a wide variety of experimental
settings from prediction to autoencoding to modeling cou-
pled differential equations, to assess the effectiveness and
capability of our proposed method.

6.1. Prediction using Medium length/Long Sequences

6.1.1. PHYSIOLOGICAL MEASUREMENTS: REGRESSION

(a)–(b) Dataset and Setup. We evaluate a regression
task on data from Beth Israel Deaconess Medical Centre
(BIDMC), see (Tan et al., 2020). The three different tasks
involve predicting the average values of (i) Respiratory
Rate (RR), (ii) Heart Rate (HR) and (iii) oxygen satura-
tion (SpO2) based on a participant’s PPG and ECG data
over a long time interval. The original data as collected
by BIDMC was sampled at 125Hz, and (Tan et al., 2020)
converts/provides a time series of length 4000 for a sliding
window of 32 seconds which we use in our experiments.

(c) Main findings. We report baseline results for ODE-
RNN (Rubanova et al., 2019), NCDE, NRDE from (Morrill
et al., 2021) in Table 1. For each baseline, we report both its
best performing variant and its most efficient variant (train-
ing time). The data are moderately long sequence lengths
(4000), so we should only expect parity. Our model (BCR-
DE, in blue) achieves comparable performance relative to
NRDE (with occasional runtime benefits) while improving
performance (Root Mean Square Error (RMSE) on test set)
over alternatives by a noticeable margin.

6.1.2. EIGENWORMS: CLASSIFICATION

(a) Dataset. We use the EigenWorms dataset from (Bag-
nall et al., 2017) with a much longer sequence length of
17984 where the task is to classify a worm into one of the 5
types, one wild and four other mutant types based on motion
capture data originally collected in (Brown et al., 2013).

(b) Setup. Baselines. As in §6.1.1, we report baseline re-
sults for ODE-RNN (Rubanova et al., 2019), NCDE, NRDE

Model Accuracy (%) Time (hrs)

ODE-RNN (s128) 47.9 ± 5.3 0.01
NCDE (s4) 66.7 ± 11.8 5.5
NCDE (s128) 48.7 ± 2.6 0.1
NRDE (d2s4) 83.8 ± 3.0 2.4
NRDE (d3s128) 68.4 ± 8.2 0.1
BCR-DE 77.8 ± 1.2 0.01
BCR-DE (Noise) 78.7 ± 2.4 0.01

Table 2. Mean (and s.d.) of test set accuracy over three repeats and
average training time. Parenthesized text indicates baseline model
variants; ‘s’ for step size and ‘d’ for depth.

from (Morrill et al., 2021) in Table 2 including both best
and the most efficient variants. Our model setup. Our model
works in the latent space of wavelet coefficients at multiple
resolutions. Perturbing these coefficients during training
helps regularize the model. We train a variant of our model,
BCR-DE (Noise), and report both models but with no hyper-
parameter search for our model as in (Morrill et al., 2021).

(c) Main findings. Results are reported in Table 2. BCR-DE
achieves a comparable performance to the best baseline of
NRDE but with a runtime that is two orders of magnitude
faster. We see there is a sizable variance in performance due
to the small dataset size (181 train/40 test samples).

6.2. Auto-Encoder for Medium Length Sequences

We consider several use-cases of sequence to sequence mod-
elling from the perspective of auto-encoders for time-series.

(a) Dataset. Similar to §6.1.1, we use the BIDMC32 (Tan
et al., 2020) data (sequence length of 4000).

(b) Setup. We evaluate the performance metric of Mean
Squared Error (MSE) along with training time for NCDE,
NRDE and BCR-DE for six different setups. In all cases,
we train until convergence, or a maximum budget of 100
epochs, whichever is smaller. A couple of adjustments to
baselines were needed, described next.

The experimental settings in NCDE (Kidger et al., 2020)
and NRDE (Morrill et al., 2021) did not involve sequence
to sequence tasks, hence we made some adjustments for fair
comparisons. (i) To give each model the same expressive
power, we follow (Morrill et al., 2021) and compare models
with similar number of parameters. (ii) We adjusted the out-
put of NCDE/NRDE to output sequences (small adjustments
to the code). (iii) NRDE creates summaries over segments
of the temporal sequence. So, the effective length of the
sequence is reduced due to log-signatures. We report perfor-
mance on the sub-sampled data with the caveat that we do
not use NRDE’s full trajectory (for the full sequence length).
This is because of invertibility of the signature transform,
see (Kidger et al., 2019). We also present the baseline mod-
els with time as an additional channel in the input as used in
(Kidger et al., 2020; Morrill et al., 2021). Our model (BCR-
DE) does not need this channel. (iv) To use NRDE as a

7

Controlled Differential Equations on Long Sequences via Non-standard Wavelets

Task Dataset NCDE NRDE BCR-DE

MSE Time (hrs) MSE Time (hrs) MSE Time (hrs)

AE PPG 6.05e-5 3.63 0.014 0.67 0.012 0.2
ECG 6.06e-5 3.03 0.014 0.57 0.024 0.19

DAE PPG 0.008 4.1 0.023 0.92 0.009 0.18
ECG 0.008 3.04 0.023 0.73 0.02 0.18

MAE PPG 0.28 2.23 0.106 5.47 0.024 0.22
ECG 0.29 1.5 0.106 3.76 0.097 0.23

Table 3. MSE on test set and training time for auto-encoding, de-
noising auto-encoding and masked auto-encoding for PPG/ECG
data. BCR-DE gives comparable or better performance but needs
a much lower runtime.

baseline, we fix a depth of 3 and a reasonable step size of 50.
(v) We use the adjoint method for the baselines. Otherwise,
for medium length/long sequences, memory becomes pro-
hibitive. Avoiding the adjoint method offers some speed-up
but running medium length/long sequences is challenging.
(vi) We use the fixed step size solver from the Runge–Kutta
family “RK4” (Press et al., 1992) in all of our baseline ex-
periments. Adaptive step size solvers like Dormand-Prince
method “DOPRI5” (Dormand & Prince, 1980) yield better
results, but the compute budget for running the full set of
experiments we present here was excessive.

6.2.1. RECONSTRUCTION

This is a vanilla auto-encoder for time-series data. We
consider both PPG and ECG data separately.

(c) Main findings. As can be seen in Table 3, NCDE can
achieve good performance but with an order of magnitude
higher training time. NRDEs can achieve it a bit faster
but note that the reconstruction is only evaluated on a sub-
sample of the original length. BCR-DE achieves good re-
construction in the shortest time. Note that for NCDE, the
error is very small and it was achieved in only 2 epochs.

6.2.2. DENOISING

Next, we check the model in a denoising autoencoding setup.
We add standard Gaussian noise scaled by 0.1. Ablation
studies (different scales of noise) are in the Appendix.

(c) Main findings. Table 3 shows that our model achieves
good denoising, but in orders of magnitude less time.

6.2.3. MASKED RECONSTRUCTION

We now check the model’s efficacy in performing masked
reconstruction, where we mask a fixed length (50) segment
of the data . In many continuous sensor measurement set-
tings, the sensor may get switched off or deactivated. We
leverage the fact that we model the dynamics using wavelet
coefficients, and so we can adjust our loss to minimize total
variation (TV) and ℓ1-norm of the details apart from the stan-
dard reconstruction loss (Ding & Selesnick, 2015). In doing
so, we are able to faithfully capture the overall dynamics

25
50

Tr
ue

Lotka-Volterra

0

5
Van der Pol

0

1

Hodgkin-Huxley

25
50

Ou
rs

0

5

0

1

0 2000 4000

25
50

NC
DE

0 5000 10000

0

5

0 10000 20000

0

1

Figure 3. Comparing predicted trajectories for different coupled
differential equations with simulated ground truth. As one can see
in all the cases, our method (BCR-DE) can almost perfectly match
the true trajectory. It is better than NCDE and does so in much less
time. Note: Visualization of the trajectory from NRDE is omitted
as the output is a sub-sample of the original sequence length.

Figure 4. Comparison of trajectories for a chaotic Lorenz system.
BCR-DE can match the original trajectory almost exactly.

and produce reasonable reconstructions.

(c) Main findings. From Table 3, we see that BCR-DE
achieves the best performance in the least time.

6.3. Coupled Differential Equations

In many common dynamical systems, we may have multiple
dependent variables and one independent variable (time).
The measurements may be described by a system of differ-
ential equations, or coupled differential equations. Since we
model the operator of an integral transform, we hypothesize
that BCR-DE may model the behavior in coupled differen-
tial equations. Here, we check if this is the case.

(a)-(b) Dataset and Setup. We now list the various in-
stances used in our experiments: (i) Toy DE; (ii) Lotka-
Volterra; (iii) Van der Pol Oscillator; (iv) Lorenz Sys-
tem; (v) Hodgkin-Huxley model; (vi) Temperature/Relative-
Humidity sequence. Details are given in Appendix C. In all
cases for simulated data, we use 2000 training samples and
1000 samples each for validation and test. Adam (Kingma
& Ba, 2014) is used as an optimizer with weight decay of
0.0001 and we use a learning rate of 0.01. We reduce the
learning rate when the validation loss plateaus. We use MSE
as the loss function.

(c) Main findings. The MSE and training time for all set-
tings is reported in Table 4. We see that BCR-DE is very
efficient and gives small MSE values. Comparisons with
ground truth trajectories are shown in Fig. 3 and Fig. 4.

8

Controlled Differential Equations on Long Sequences via Non-standard Wavelets

Setting (Seq Len) NCDE NRDE BCR DE

MSE Time (hrs) MSE Time (hrs) MSE Time (hrs)

Toy Coupled DE (4k) 1e-4 0.62 6e-5 0.02 3e-4 0.009

Lotka-Volterra (4k) 377.9 43.74 365.4 3.04 0.19 0.134

Van der Pol (10k) 0.023 43.6 0.94 7.43 1e-3 0.34

Chaotic Lorenz (10k) 66.15 42.9 133.3 3.7 0.05 0.35

Hodgkin-Huxley (20k) 0.02 45.35 1.24 4.28 4e-4 0.35

Benzene Conc. (240) 250.3 3.64 725.4 1.17 212.9 0.046

Table 4. MSE on test set and train time for different settings of cou-
pled differential equations. In almost all cases, BCR-DE achieves
the best performance (MSE) in significantly less time.

6.4. Performance trade-offs w.r.t. decomposition levels

We also studied the dependence between the levels of de-
composition in BCR-DE with the model performance using
the Hodgkin-Huxley coupled differential equation as an ex-
ample. For a sequence length of 20K, with only two levels
of decomposition, the dense matrix is too large to be in-
stantiated (due to GPU memory limits). For level 3, the
model has 225M parameters and does not perform well. For
level 6, the model has roughly 3M parameters and we can
achieve good MSE of about 1e-2 or lower. When increasing
the number of levels to 8 or more, the number of parameters
in the model are about 100K and we can achieve, an MSE of
about 1e-4. This shows that as the number of levels of reso-
lution is increased, we can achieve the benefits of BCR-DE,
however when the levels are too few, the multi-resolution is
similar to naive unrolling and faces a computational burden.

7. Related Work
Apart from works described in Section 1, the interface of
neural networks and ordinary differential equations is an
active topic of research with a number of nice results in the
last year alone (Rodriguez et al., 2022; Meunier et al., 2022;
Irie et al., 2022). More results are also appearing marrying
partial differential equations and neural networks (Li et al.,
2020b;c; Brandstetter et al., 2022; Long et al., 2018; Berg &
Nyström, 2019). Slightly distinct from this thrust, there is
an evolving body of work which takes into account physics
based constraints to model dynamical systems (Raissi et al.,
2019; Li et al., 2021; Krishnapriyan et al., 2021) as PDEs,
often utilizing learning in various ways. The family of
generative models popularly known as diffusion models
(Croitoru et al., 2022) exploit the dynamics modelled as
SDE, and have radically expanded the types of applications
that can benefit from results in this area.

Wavelets, which inform our operator compression, have
been heavily studied since the 1970s, but also more recently
vis-à-vis deep neural networks (Xu et al., 2019; Guo et al.,
2017; Hy & Kondor, 2022). Wavelets, similar to their use
in §4.1, are emerging as important tools for efficiency gains.
For example, (Zeng et al., 2022) provided an approximation

mechanism for self-attention via a multi-resolution/wavelet
analysis. Recently (Guth et al., 2022) accelerated score-
based generative models by leveraging wavelet coefficients
across multiple scales. Ideas like (Michau et al., 2022;
Pedersen et al.) have proposed parameterizing the wavelet
functions and learning them based on data.

8. Conclusions
We give a strategy for strong efficiency gains for a sub-
class of learning tasks involving long temporal sequences
where Neural CDE/Neural RDE models are appropriate.
For these problems, especially when the task corresponds
to regression or classification, if each longitudinal sequence
in the training data is a fixed length of temporal samples,
we show that unrolling the dynamics to obtain an integral
transform followed by restricting the class of operators,
allows the use of a simple neural interpretation of BCR
algorithm. We should note that our results do not involve
any new insights that allow generic speed-ups for CDEs.
Rather, for most use-cases shown in the literature, promis-
ing improvements in run-time are possible. We suspect
that these advantages may hold in some other cases where
learning the dynamics (as accomplished in a model such as
NCDE/NRDE) is an intermediary step towards a subsequent
prediction/classification goal. Limitations. We point out
scenarios where the use of BCR-DE offers minimal bene-
fits. First, since we compute the integral transform of the
entire sequence at once, it is 2-3× more memory intensive
than baselines. This was not a problem for the experiments
reported here (commodity GPUs were sufficient), but may
turn out to be a bottleneck for sequences that are an order of
magnitude longer. For shorter sequences, there are minimal
advantages, if any, since the NCDE runtime/performance is
quite good, as shown in our first experiment. In an actual
online setting, when new data arrives continually, for each
sequence, the model must be retrained. Here, at best, we
can choose to retrain lazily and so in the extreme case, the
compute benefits will take a large hit. Code is available at
https://github.com/sourav-roni/BCR-DE.

Acknowledgments
This work was partially supported by funds from the Vilas
Board of Trustees and NIH grant RF1 AG059312. Ravi was
supported by UIC startup funds. We thank Cindy Orozco
Bohorquez for answering questions regarding (Fan et al.,
2019) and Lopa Mukherjee for offering feedback on mul-
tiple drafts of the paper. The reviewers were particularly
generous with their time in offering numerous detailed sug-
gestions that have significantly improved the paper overall.

9

https://github.com/sourav-roni/BCR-DE

Controlled Differential Equations on Long Sequences via Non-standard Wavelets

References
Alexander, E. and Poularikas, D. The handbook of formulas

and tables for signal processing. Boca Raton, Florida,
33431, 1998.

Bagnall, A., Lines, J., Bostrom, A., Large, J., and Keogh, E.
The great time series classification bake off: a review and
experimental evaluation of recent algorithmic advances.
Data mining and knowledge discovery, 31(3):606–660,
2017.

Berg, J. and Nyström, K. Data-driven discovery of pdes
in complex datasets. Journal of Computational Physics,
384:239–252, 2019.

Beylkin, G., Coifman, R., and Rokhlin, V. Fast wavelet
transforms and numerical algorithms i. Communications
on pure and applied mathematics, 44(2):141–183, 1991.

Brandstetter, J., Worrall, D., and Welling, M. Message pass-
ing neural pde solvers. arXiv preprint arXiv:2202.03376,
2022.

Brown, A. E., Yemini, E. I., Grundy, L. J., Jucikas, T.,
and Schafer, W. R. A dictionary of behavioral motifs
reveals clusters of genes affecting caenorhabditis elegans
locomotion. Proceedings of the National Academy of
Sciences, 110(2):791–796, 2013.

Chang, J., Duffield, N., Ni, H., and Xu, W. Signature inver-
sion for monotone paths. Electronic Communications in
Probability, 22:1–11, 2017.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. K. Neural ordinary differential equations. Advances
in neural information processing systems, 31, 2018.

Croitoru, F.-A., Hondru, V., Ionescu, R. T., and Shah, M.
Diffusion models in vision: A survey. arXiv preprint
arXiv:2209.04747, 2022.

Curtiss, C. F. and Hirschfelder, J. O. Integration of stiff equa-
tions. Proceedings of the National Academy of Sciences,
38(3):235–243, 1952.

Daubechies, I. Orthonormal bases of compactly supported
wavelets. Communications on pure and applied mathe-
matics, 41(7):909–996, 1988.

Daubechies, I. Ten lectures on wavelets. SIAM, 1992.

Ding, Y. and Selesnick, I. W. Artifact-free wavelet denois-
ing: non-convex sparse regularization, convex optimiza-
tion. IEEE signal processing letters, 22(9):1364–1368,
2015.

Dormand, J. R. and Prince, P. J. A family of embedded
runge-kutta formulae. Journal of computational and ap-
plied mathematics, 6(1):19–26, 1980.

Fan, Y., Bohorquez, C. O., and Ying, L. Bcr-net: A neural
network based on the nonstandard wavelet form. Journal
of Computational Physics, 384:1–15, 2019.

Guo, T., Seyed Mousavi, H., Huu Vu, T., and Monga, V.
Deep wavelet prediction for image super-resolution. In
Proceedings of the IEEE conference on computer vision
and pattern recognition workshops, pp. 104–113, 2017.

Guth, F., Coste, S., De Bortoli, V., and Mallat, S.
Wavelet score-based generative modeling. arXiv preprint
arXiv:2208.05003, 2022.

Hairer, E. and Wanner, G. Stiff differential equations solved
by radau methods. Journal of Computational and Applied
Mathematics, 111(1-2):93–111, 1999.

Hanson, J. and Raginsky, M. Universal simulation of stable
dynamical systems by recurrent neural nets. In Learning
for Dynamics and Control, pp. 384–392. PMLR, 2020.

Hodgkin, A. L. and Huxley, A. F. A quantitative description
of membrane current and its application to conduction
and excitation in nerve. The Journal of physiology, 117
(4):500, 1952.

Holt, S. I., Qian, Z., and van der Schaar, M. Neural laplace:
Learning diverse classes of differential equations in the
laplace domain. In International Conference on Machine
Learning, pp. 8811–8832. PMLR, 2022.

Hy, T. S. and Kondor, R. Multiresolution matrix factor-
ization and wavelet networks on graphs. In Topological,
Algebraic and Geometric Learning Workshops 2022, pp.
172–182. PMLR, 2022.

Irie, K., Faccio, F., and Schmidhuber, J. Neural differential
equations for learning to program neural nets through con-
tinuous learning rules. arXiv preprint arXiv:2206.01649,
2022.

ISyE8843A, B. V. H. 1 basics of wavelets.

Jia, J. and Benson, A. R. Neural jump stochastic differential
equations. Advances in Neural Information Processing
Systems, 32, 2019.

Kidger, P., Bonnier, P., Perez Arribas, I., Salvi, C., and
Lyons, T. Deep signature transforms. Advances in Neural
Information Processing Systems, 32, 2019.

Kidger, P., Morrill, J., Foster, J., and Lyons, T. Neural
controlled differential equations for irregular time series.
Advances in Neural Information Processing Systems, 33:
6696–6707, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

10

Controlled Differential Equations on Long Sequences via Non-standard Wavelets

Kopp, M. and Purgathofer, W. Interleaved dimension de-
composition: A new decomposition method for wavelets
and its application to computer graphics. 1998.

Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R., and
Mahoney, M. W. Characterizing possible failure modes
in physics-informed neural networks. Advances in Neural
Information Processing Systems, 34:26548–26560, 2021.

Li, X., Wong, T.-K. L., Chen, R. T., and Duvenaud, D.
Scalable gradients for stochastic differential equations.
In International Conference on Artificial Intelligence and
Statistics, pp. 3870–3882. PMLR, 2020a.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier
neural operator for parametric partial differential equa-
tions. arXiv preprint arXiv:2010.08895, 2020b.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Graph kernel network for partial differential
equations. arXiv preprint arXiv:2003.03485, 2020c.

Li, Z., Zheng, H., Kovachki, N., Jin, D., Chen, H., Liu,
B., Azizzadenesheli, K., and Anandkumar, A. Physics-
informed neural operator for learning partial differential
equations. arXiv preprint arXiv:2111.03794, 2021.

Liang, S. and Srikant, R. Why deep neural net-
works for function approximation? arXiv preprint
arXiv:1610.04161, 2016.

Long, Z., Lu, Y., Ma, X., and Dong, B. Pde-net: Learning
pdes from data. In International Conference on Machine
Learning, pp. 3208–3216. PMLR, 2018.

Lyons, T. J. and Xu, W. Inverting the signature of a path.
Journal of the European Mathematical Society, 20(7):
1655–1687, 2018.

Mallat, S. A wavelet tour of signal processing. Elsevier,
1999.

Meng, Z., Singh, V., and Ravi, S. N. Neural tmdlayer: Mod-
eling instantaneous flow of features via sde generators. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 11635–11644, 2021.

Meunier, L., Delattre, B. J., Araujo, A., and Allauzen, A.
A dynamical system perspective for lipschitz neural net-
works. In International Conference on Machine Learning,
pp. 15484–15500. PMLR, 2022.

Michau, G., Frusque, G., and Fink, O. Fully learnable
deep wavelet transform for unsupervised monitoring of
high-frequency time series. Proceedings of the National
Academy of Sciences, 119(8):e2106598119, 2022.

Morrill, J., Salvi, C., Kidger, P., and Foster, J. Neural rough
differential equations for long time series. In Interna-
tional Conference on Machine Learning, pp. 7829–7838.
PMLR, 2021.

Nazarovs, J., Chakraborty, R., Tasneeyapant, S., Ravi, S.,
and Singh, V. A variational approximation for analyzing
the dynamics of panel data. In Uncertainty in Artificial
Intelligence, pp. 107–117. PMLR, 2021.

Pedersen, C., Eickenberg, M., and Ho, S. Learnable wavelet
neural networks for cosmological inference.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flan-
nery, B. P. Numerical recipes in c. 2. Cambrige Univer-
sity, 1992.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
physics, 378:686–707, 2019.

Rodriguez, I. D. J., Ames, A., and Yue, Y. Lyanet: A
lyapunov framework for training neural odes. In Inter-
national Conference on Machine Learning, pp. 18687–
18703. PMLR, 2022.

Rubanova, Y., Chen, R. T. Q., and Duvenaud, D. K.
Latent ordinary differential equations for irregularly-
sampled time series. In Wallach, H., Larochelle,
H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and
Garnett, R. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates,
Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/
42a6845a557bef704ad8ac9cb4461d43-Paper.
pdf.

Salvi, C. Rough paths, kernels, differential equations and an
algebra of functions on streams. PhD thesis, University
of Oxford, 2021.

Salvi, C., Lemercier, M., and Gerasimovics, A. Neural
stochastic pdes: Resolution-invariant learning of contin-
uous spatiotemporal dynamics. In Advances in Neural
Information Processing Systems, 2022.

Song, Y. and Ermon, S. Improved techniques for train-
ing score-based generative models. Advances in neural
information processing systems, 33:12438–12448, 2020.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

11

https://proceedings.neurips.cc/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf

Controlled Differential Equations on Long Sequences via Non-standard Wavelets

Tan, C. W., Bergmeir, C., Petitjean, F., and Webb, G. I.
Monash university, uea, ucr time series regression archive.
arXiv preprint arXiv:2006.10996, 2020.

Vahdat, A., Kreis, K., and Kautz, J. Score-based generative
modeling in latent space. Advances in Neural Information
Processing Systems, 34:11287–11302, 2021.

Xu, B., Shen, H., Cao, Q., Qiu, Y., and Cheng, X. Graph
wavelet neural network. arXiv preprint arXiv:1904.07785,
2019.

Zeng, Z., Pal, S., Kline, J., Fung, G. M., and Singh, V. Multi
resolution analysis (mra) for approximate self-attention.
In International Conference on Machine Learning, pp.
25955–25972. PMLR, 2022.

12

Controlled Differential Equations on Long Sequences via Non-standard Wavelets

A. Lower triangular kernel approximations
In this section, we will look at the structure of coefficient matrices α, β, γ from 25 when the kernel is assumed to be lower
triangular.

We will work with Daubechies wavelets, which are compactly supported and orthogonal. Note that the analysis will depend
on how the compact support is identified, but the procedure will remain the same, with limits being adjusted.

Let, p be a positive integer, the scaling function ϕ(x) is supported in [0, 2p − 1]. Note that here x is a generic variable
denoting the dimension over which the wavelet transform is applied, this was denoted as τ in review of MRA in Section 2.
Given the scaling function, the mother wavelet function ψ(x) is supported in [−p+ 1, p]. Also, the scaled and translated
version of the scaling and wavelet functions can be described as below:

ϕ
(ℓ)
k (x) = 2ℓ/2ϕ

(
2ℓx− k

)
, ℓ = 0, 1, 2, . . . , k ∈ Z (29)

ψ
(ℓ)
k (x) = 2ℓ/2ψ

(
2ℓx− k

)
, ℓ = 0, 1, 2, . . . , k ∈ Z (30)

We consider the integral operator with the kernel a(x, y) in the periodic interval [0, T]. The nonstandarad form is essentially
a data sparse representaiton of A using 2D multiresolution wavelet basis. We consider lower triangular kernel, which means,
we can further write a(x, y) as follows:

a(x, y) =

{
a(x, y) x ≤ y
0 x > y

(31)

A
(ℓ)
k1,k2

:=

∫ T

y=0

∫ T

x=0

ϕ
(ℓ)
k1

(x)a(x, y)ϕ
(ℓ)
k2

(y)dx dy (32)

Using the lower triangular property and arranging the integral, we have:

A
(ℓ)
k1,k2

:=

∫ T

y=0

ϕ
(ℓ)
k2

(y)

(∫ y

x=0

ϕ
(ℓ)
k1

(x)a(x, y)dx

)
dy (33)

A
(ℓ)
k1,k2

:=

∫ T

y=0

2ℓ/2ϕ
(
2ℓy − k2

)(∫ y

x=0

2ℓ/2ϕ
(
2ℓx− k1

)
a(x, y)dx

)
dy (34)

Now, since ϕ(x) has support in [0, 2p− 1], we can write the following two conditions, where integrands are non zero.

0 ≤ 2ℓx− k1 ≤ 2p− 1

k1/2
ℓ ≤ x ≤ (2p− 1 + k1)/2

ℓ
(35)

Similarly,

0 ≤ 2ℓy − k2 ≤ 2p− 1

k2/2
ℓ ≤ y ≤ (2p− 1 + k2)/2

ℓ
(36)

So, for A(l)
k1,k2

== 0, we have:

(2p− 1 + k2)/2
ℓ < k1/2

ℓ

2p− 1 + k2 < k1

k1 > k2 + (2p− 1)

(37)

13

Controlled Differential Equations on Long Sequences via Non-standard Wavelets

This says, A(l) will primarily be an lower triangular matrix with 2p − 1 diagonals above the lower triangle (potentially
non-zero).

Next, for α, we have:

α
(ℓ)
k1,k2

:=

∫ T

y=0

∫ T

x=0

ψ
(ℓ)
k1

(x)a(x, y)ψ
(ℓ)
k2

(y)dx dy (38)

Using lower triangular property and arrangement, we can write:

α
(ℓ)
k1,k2

:=

∫ T

y=0

2ℓ/2ψ
(
2ℓy − k2

)(∫ y

x=0

2ℓ/2ψ
(
2ℓx− k1

)
a(x, y)dx

)
dy (39)

Since, ψ(x) in our case of Daubechies wavelets is supported in [−p+ 1, p], we can write the following 2 conditions, where
integrands are non zero:

−p+ 1 ≤ 2ℓx− k1 ≤ p

(−p+ 1 + k1)/2
ℓ ≤ x ≤ (p+ k1)/2

ℓ
(40)

Similarly,

−p+ 1 ≤ 2ℓy − k2 ≤ p

(−p+ 1 + k2)/2
ℓ ≤ y ≤ (p+ k2)/2

ℓ
(41)

Then, for αℓ
k1,k2

== 0, we have:

(p+ k2)/2
ℓ < (−p+ 1 + k1)/2

ℓ

p+ k2 < −p+ 1 + k1

k1 > k2 + (2p− 1)

(42)

Again, as before for Aℓ; αℓ will be primarily lower triangular with 2p− 1 diagonals above the lower triangle (potentially
non-zero).

Next, for β, we have:

β
(ℓ)
k1,k2

:=

∫ T

y=0

∫ T

x=0

ψ
(ℓ)
k1

(x)a(x, y)ϕ
(ℓ)
k2

(y)dx dy (43)

Using lower triangular property and arrangement, we can write:

β
(ℓ)
k1,k2

:=

∫ T

y=0

2ℓ/2ϕ
(
2ℓy − k2

)(∫ y

x=0

2ℓ/2ψ
(
2ℓx− k1

)
a(x, y)dx

)
dy (44)

Based, on the support of ϕ and ψ, we have the following two conditions, where integrand is non zero:

−p+ 1 ≤ 2ℓx− k1 ≤ p

(−p+ 1 + k1)/2
ℓ ≤ x ≤ (p+ k1)/2

ℓ
(45)

And,

0 ≤ 2ℓy − k2 ≤ 2p− 1

k2/2
ℓ ≤ y ≤ (2p− 1 + k2)/2

ℓ
(46)

So, for β(ℓ)
k1,k2

== 0, we have:

(2p− 1 + k2)/2
ℓ < (−p+ 1 + k1)/2

ℓ

2p− 1 + k2 < −p+ 1 + k1

k1 > k2 + (3p− 2)

(47)

14

Controlled Differential Equations on Long Sequences via Non-standard Wavelets

Again, we have βℓ be primarily lower triangular with 3p− 2 diagonals above the lower triangle (potentially non-zero).

Next, for γℓ, we have:

γ
(ℓ)
k1,k2

:=

∫ T

y=0

∫ T

x=0

ϕ
(ℓ)
k1

(x)a(x, y)ψ
(ℓ)
k2

(y)dx dy (48)

Using lower triangular property and arrangement, we can write:

γ
(ℓ)
k1,k2

:=

∫ T

y=0

2ℓ/2ψ
(
2ℓy − k2

)(∫ y

x=0

2ℓ/2ϕ
(
2ℓx− k1

)
a(x, y)dx

)
dy (49)

Based, on the support of ϕ and ψ, we have the following two conditions, where integrand is non zero:

0 ≤ 2ℓx− k1 ≤ 2p− 1

k1/2
ℓ ≤ x ≤ (2p− 1 + k1)/2

ℓ
(50)

−p+ 1 ≤ 2ℓy − k2 ≤ p

(−p+ 1 + k2)/2
ℓ ≤ y ≤ (p+ k2)/2

ℓ
(51)

So, for γ(ℓ)k1,k2
== 0, we have:

(p+ k2)/2
ℓ < k1/2

ℓ

p+ k2 < k1

k1 > k2 + (p)

(52)

Hence, we have γℓ be primarily lower triangular with p diagonals above the lower triangle (potentially non-zero).

In the treatment of the lower triangular property above we see that α, β, γ are also lower triangular with few elements above
the diagonal non-zero. This coupled with our assumption that the operator is a Calderon-Zygmund operator, provides the
banded diagonal approximation for αℓ, βℓ, γℓ.

B. Experiment Details
B.1. EigenWorms and BIDMC32

The training is performed with learning rate of 0.01, with Adam optimizer and an weight decay of 0.0001. We use learning
rate scheduler to reduce learning rate when validation loss plateaus with a patience of 5 and factor of 0.5.

B.2. Long Sequence Autoencoder

Here, we consider the BIDMC32 data presented in (Tan et al., 2020). In all cases we train for 100 epochs with initial lr of
0.01 and use mean squared error as the loss function. Adam as an optimizer with weight decay of 0.0001. Learning rate is
reduced when validation loss plateaus with a patience of 5 and factor of 0.5. Size of training set is 5508, while validation
and test set have 1181 samples each. Below, we outline, the details of the model(s) which provide the best performance for
BCR-DE.

B.2.1. RECONSTRUCTION

• PPG: Params: 133680; Memory 1445.43 MB, time: 1360.01s, test loss: 0.01039
Params: 59416; Memory 654.28 MB, time: 726.46s, test loss: 0.012086

• ECG: Params: 133680; Memory 1445.43 MB, time: 1331.89s, test loss: 0.019030
Params: 59416; Memory 654.28 MB, time: 677.89s, test loss: 0.024419

15

Controlled Differential Equations on Long Sequences via Non-standard Wavelets

B.2.2. DENOISING (ABLATION)

Next, we demonstrate the capability of our mode in a denoising autoencoding setup, we add standard Gaussian noise at
three different scales: 0.01, 0.05, 0.1 and report the best performance of our model below.:

• PPG (Noise scale: 0.01) Params: 59416; Memory 655.25 MB, time: 663.46s, test loss: 0.0069

• PPG (Noise scale: 0.05) Params: 59416; Memory 655.25 MB, time: 675.24s, test loss: 0.0071

• PPG (Noise scale: 0.1) Params: 59416; Memory 655.25 MB, time: 661.70s, test loss: 0.0086

• ECG (Noise scale: 0.01) Params: 59416; Memory 655.25 MB, time: 662.42s, test loss: 0.0203

• ECG (Noise scale: 0.05) Params: 59416; Memory 655.25 MB, time: 684.86s, test loss: 0.0189

• ECG (Noise scale: 0.1) Params: 59416; Memory 655.25 MB, time: 661.64s, test loss: 0.0205

As can be seen from above, our model is robust for considerably high magnitude of noise, and can achieve equivalent
performance in all cases irrespective of the amount of denoising.

B.2.3. MASKED RECONSTRUCTION (ABLATION)

Below, we present the best performance of BCR-DE for two different lengths of masked segments, 50 and 100 respectively
for both PPG and ECG.

• PPG (Masked50): Params: 59416; Memory 704.12 MB, time: 796.62s, test loss: 0.02414

• PPG (Masked100): Params: 59416; Memory 704.12 MB, time: 1355.28s, test (recon) loss: 0.02396

• ECG (Masked50): Params: 59416; Memory 704.12 MB, time: 831.14s, test loss: 0.09736

• ECG (Masked100): Params: 59416; Memory 704.12 MB, time: 2242.7s, test loss: 0.1130

C. Coupled Differential Equation
(i) Toy DE: We consider the following simple system of differential equations with initial conditions:

dy

dt
= −y + 3x;

dx

dt
= 4x− 2y; y(0) = 2 x(0) = 1 (53)

which has an analytical solution given by: y(t) = 3et − e2t and x(t) = 2et − e2t. We simulate the data for a sequence
length of 4000. We intend to model the dynamics of one stream given the other.

(ii) Lotka-Volterra: We consider the well known predator-prey interactions between Snowshoe Hare and Canadian Lynx
involving nonlinear dynamics and given by:

dH

dt
= rH

(
1− H

k

)
− aHL

c+H
;

dL

dt
= a

bHL

c+H
− dL (54)

where we use a = 3.2, b = 0.6, c = 50, d = 0.56, k = 125, r = 1.6. We simulate the data using scipy odeint for sequence
length of 10000. The goal is to predict the population trajectory of Hare given that of Lynx.

(iii) Van der Pol Oscillator: We consider Van der Pol oscillator which is a non-linear system involving damping and is not
conservative. It is a 2nd order differential equation whose 2-D form is:

dx

dt
= µ

(
x− x3

3
− y

)
;

dy

dt
=
x

µ
(55)

We use µ = 6 and scipy odeint to generate solutions with sequence length 10000 and the model is trained to generate
dynamics in one dimension given the other.

16

Controlled Differential Equations on Long Sequences via Non-standard Wavelets

Figure 5. Comparison of trajectories for a chaotic Lorenz system. BCR-DE can be seen to match the original trajectory almost exactly.

(iv) Lorenz System: We consider the Lorenz system which is a nonlinear, aperiodic, three-dimensional system of ordinary
differential equations and is known to exhibit chaotic behavior, and was originally developed to model atmospheric
convection. In its simplest form Lorenz equations are:

dx

dt
= σ(y − x);

dy

dt
= x(ρ− z)− y;

dz

dt
= xy − βz (56)

We use σ = 10, ρ = 28, β = 8/3 for our experiments and use scipy odeint to generate solutions with sequence length 10000.
The task is the model the chaotic trajectory in the third dimension given trajectories in the first two dimension.

(v) Hodgkin–Huxley model We consider the Hudgkin-Huxley model ((Hodgkin & Huxley, 1952)) which is a set of
nonlinear differential equations used to describe electrical phenomenon of cells such as neurons and muscle cells. The
system of ODEs is:

dVm
dt

=
I

Cm
− ḡKn

4

Cm
(Vm − VK)

− ḡNam
3h

Cm
(Vm − VNa)−

ḡl
Cm

(Vm − Vl)

d∗
dt

= α∗ (Vm) (1− ∗)− β∗ (Vm) ∗; ∗ ∈ {n,m, h}

We used open source implementation from 1 to simulate our data. We model n,m, h which resemble the probability of
opening of the ion channel being dependent on the type of the channel (either Sodium or Potassium in this case) based on
the potential Vm and external stimulus I .

(vi) Temperature/Pressure/Humidity: Although this dataset is small in sequence length (so BCR-DE is not ideal), we
want to assess performance. We focus on data where a natural coupling is expected, for example between temperature
and relative humidity in the dataset of “BenzeneConcentration” from (Tan et al., 2020). In this case, there are 8 different
variables for the time series out of which we work with two of them and the goal is to recover relative humidity based on
observed temperature.

(vii) Character Trajectory: We consider the character trajectory dataset from (Bagnall et al., 2017). The data consists of 3
channels corresponding to the x,y coordinates and the pen tip force while drawing one of the 20 characters from English
alphabet. We model the two dimensions via a coupled differential equation and seek to reconstruct one from the other.

In this case our model achieves MSE of 0.12624 in 0.052 hours of training time.

1https://github.com/swharden/pyHH

17

