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Abstract
Graph neural networks (GNNs) based methods
have achieved impressive performance on node
clustering task. However, they are designed on
the homophilic assumption of graph and cluster-
ing on heterophilic graph is overlooked. Due to
the lack of labels, it is impossible to first identify
a graph as homophilic or heterophilic before a
suitable GNN model can be found. Hence, clus-
tering on real-world graph with various levels of
homophily poses a new challenge to the graph
research community. To fill this gap, we pro-
pose a novel graph clustering method, which con-
tains three key components: graph reconstruc-
tion, a mixed filter, and dual graph clustering
network. To be graph-agnostic, we empirically
construct two graphs which are high homophily
and heterophily from each data. The mixed fil-
ter based on the new graphs extracts both low-
frequency and high-frequency information. To re-
duce the adverse coupling between node attribute
and topological structure, we separately map them
into two subspaces in dual graph clustering net-
work. Extensive experiments on 11 benchmark
graphs demonstrate our promising performance.
In particular, our method dominates others on het-
erophilic graphs. The code is available at DGCN.

1. Introduction
Graphs are pervasive and have been widely used in numer-
ous real-world scenarios, such as social networks, traffic
networks, and recommendation systems (Liu et al., 2021).
Graph clustering that groups nodes without the need of
human annotation is a fundamental yet challenging graph
analysis task (Zhang et al., 2019; Liu et al., 2022a). Based
on GNN’ powerful structure information exploitation ca-
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pability, many clustering methods (Wang et al., 2019; Fan
et al., 2020) have achieved remarkable performance on ho-
mophilic graphs.
However, there are many heterophilic graphs in which most
of connected nodes belong to different classes (Pei et al.,
2020; Xie et al., 2023). Traditional GNNs learn representa-
tions via message passing mechanism under the assumption
of homophily (Fang et al., 2022). Facing heterophilic graphs,
previous approaches mainly suffer two limitations. On the
one hand, the local neighbors in a graph are nodes that are
proximally located, while nodes that are semantically sim-
ilar might be far apart on heterophilic graph (Zhu et al.,
2020). Thus, existing techniques fail to capture long-range
information from distant nodes. On the other hand, they
don’t distinguish similar and dissimilar neighbors, which
carry different amounts of information. Learning a discrimi-
native graph representation needs to pass diverse messages
between nodes on heterophilic graphs. Consequently, the
GNN-based methods performing well on homophilic graphs
produce unsatisfactory performance on heterophilic graphs
(Abu-El-Haija et al., 2019).
Numerous GNN methods have been proposed to deal with
heterophily. Some approaches expand neighbor fields, while
others refine the GNN architectures. The first class includes
exploring high-order information (Wang & Derr, 2021) and
mining more neighbors in other spaces (Wang et al., 2022).
The latter class aggregates message adaptively, like adaptive
filter (He et al., 2021; Luan et al., 2021; Wang & Zhang,
2022) and attention or weight mechanism (Bo et al., 2021;
Yang et al., 2021). Moreover, several recent methods, like
(Bi et al., 2022) and (Topping et al., 2022), preprocess het-
erophily graphs to make them fit for GNNs.
Though the aforementioned methods improve the perfor-
mance of GNNs on heterophilic graphs in some downstream
tasks, there exists two critical problems: 1) the training of
customized network, the learning of adaptive filter, and
graph rewiring (Bi et al., 2022) rely on labelled samples,
which makes them not be applicable to clustering task. 2)
GNNs embed the raw data into a single subspace, where the
coupling of attribute and topological structure aggravates
the adverse effect of heterophily. Any incorrect or incom-
plete in the attributes or structures would deteriorate the
quality of learned representations.
For unsupervised learning, the first and foremost chal-
lenge we face is that there is no labels for us to judge
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whether a graph is homophilic or heterophilic. Therefore,
it is not practical to develop individual models to handle
homophilic and heterophilic graphs separately for clustering.
Moreover, it is also subjective to simply classify a graph as
homophilic or heterophilic since real-world graph data could
have various levels of homophily. To address this open prob-
lem, we propose a holistic approach in this work to handle
real graphs, which includes three key components: graph
reconstruction, a mixed filter, and dual graph clustering net-
work. We first construct new homophilic and heterophilic
graphs to explore both low-frequency and high-frequency
information. In particular, the structure reconstruction pro-
cess is fully unsupervised and general. The mixed filter is
designed to smooth graph signals, which makes our model
be applicable to both homophilic and heterophilic graphs.
Finally, the smoothed features are fed into dual graph clus-
tering network to obtain the clustering result. We summarize
our contributions as follows:

• We propose two unsupervised graph construction strate-
gies to extract homophilic and heterophilic information
from any type of graphs.

• We design a mixed filter that exploits both low-
frequency and high-frequency components of data.
This approach can also be applied to classification task.

• We reduce the adverse coupling between attribute and
topological structure by mapping them into two differ-
ent subspaces.

• Extensive experiments on homophilic and heterophilic
graphs demonstrate the promising performance of our
proposed method.

2. Related Work
2.1. Graph Clustering

Numerous attributed graph clustering methods have been
proposed to exploit nodes’ feature and topological structure
information. These methods can be roughly classified into
two categories: GNN-based methods and shallow graph
embeddings based methods. GNN-based methods learn the
graph representation for clustering via aggregating neigh-
borhood information in prior graph (Kipf & Welling). To
improve the clustering performance, (Cheng et al., 2021)
and (Peng et al., 2021) adopt attention mechanism to adap-
tively integrate topology and attribute information. Inspired
by the success of contrastive learning, (Xia et al., 2021)
learns a consensus representation from multiview graph.
Shallow methods learn graph embeddings without neural
networks and perform traditional clustering methods on
them. For example, (Zhang et al., 2019) obtains more dis-
criminative representations by enlarging receptive field to
explore high-order information. (Lin & Kang, 2021) and

(Lin et al., 2023) learn clustering-favorable embeddings via
low-pass filter. (Pan & Kang, 2021) constructs a new graph
for clustering via pulling nearest neighbors close.
However, these methods only focus on homophilic graphs
and are not directly applicable to heterophilic graphs. In
this work, we aim to develop an omnipotent method, which
is suitable for real graph with different levels of homophily.

2.2. Heterophilic Graph Learning

Heterophilic structure is prevalent in practice, from per-
sonal relationships in daily life to chemical and molecular
scientific study. Developing powerful heterophilic GNN
models is a hot research topic. (Lim et al., 2021b;a) pro-
vide general benchmarks for heterophilic graph learning.
In addition, many methods have been proposed to revise
GNNs for heterophilic graphs. (Yang et al., 2021) speci-
fies propagation weight for each attribute to make GNNs
fit heterophilic graphs and (Li et al., 2022) explores the
underlying homophilic information by capturing the global
correlation of nodes. (Zhu et al., 2020) enlarges receptive
field via exploring high-order structure. (Chien et al., 2021)
adaptively combines the representation of each layer and
(Chen et al., 2020) integrates embeddings from different
depths with residual operation.
Although these approaches alleviate the heterophilic prob-
lem to some extent, they rely on prior knowledge like labels
for training, which are not available in unsupervised sce-
nario. To our best knowledge, clustering on heterophilic
graph has never been investigated. To fill this gap, we re-
construct homophilic and heterophilic graphs to make the
proposed model handle any kinds of graphs.

3. Methodology
3.1. Notation

Define graph data as G = {V, Ã,X}, where V represents
the set of N nodes, X = {x1, ..., xN}⊤ is the feature matrix.
Initial graph structure Ã characterizes the relation between
nodes. D represents the degree matrix. The normalized
adjacency matrix is A = D− 1

2 (Ã+ I)D− 1
2 and the corre-

sponding graph Laplacian is L = I −A. 1. is a matrix with
all 1s.

3.2. Structure Reconstruction

In practice, we can’t know whether a given graph is ho-
mophilic or not in unsupervised tasks. Hence, separately
developing homophilic and heterophilic methods is unreal-
istic. Moreover, real graphs always contain both homophilic
and heterophilic nodes. To have a holistic model, we de-
velop a structure reconstruction approach. Specifically, we
construct a heterophilic graph and a homophilic graph from
the original graph.
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(a) (b) (c)

Figure 1. (a) and (b) show the changes of homophily ratio in homophilic and heterophilic graphs. (c) shows the homophily ratios of
1-hop and other hops nodes sharing the same label. It’s clear that homophily ratio of homophilic graphs decreases when more hops are
considered. However, the change in heterophilic graphs is irregular. Particularly, the nodes in 1-hop and 2-hop sharing the same label have
the highest homophily ratio.

3.2.1. HETEROPHILIC GRAPH CONSTRUCTION

Firstly, we select the nodes which are far away from each
other in both feature space and structure space as negative
pairs, which prevents us from false negative pairs. Specif-
ically, we use complementary graphs of similarity graph
and topology graph to construct a heterophily graph. The
procedure is formulated as follows:

W̄ = 1.−W,

Ā = 1.−A,

H = W̄ ⊙ Ā,

(1)

where the similarity matrix W is obtained through co-
sine similarity of node features, which characterizes the
closeness among nodes in feature space. ⊙ represents the
Hadamard product, which is used to describe non-neighbor
relation in both feature space and topology space. For ho-
mophilic graph, nodes of the same class tend to be adjacent
topologically, and neighbors in complementary graph have a
tendency to be different. The adjacent nodes in heterophilic
graph are often dissimilar because of the connection be-
tween nodes of diverse types (Ning et al., 2022). Moreover,
nodes with large edge weights in similarity graph more
likely belong to the same class , thus adjacent nodes in cor-
responding complementary graph are more possibly have
small edge weights, i.e., they are different. It is rational to
pick adjacent nodes from both W̄ and Ā, so that the recon-
structed graph H is heterophilic. H could be dense, thus
we just keep 5 edges for each node corresponding to top 5
dissimilar nodes.

3.2.2. HOMOPHILIC GRAPH CONSTRUCTION

In practice, even the homophilic graph doesn’t have a ho-
mophily score of 1, i.e., there exists some heterophilic nodes
in homophilic graph. Thus, we could further improve the
homophily level of raw graph by minimizing the distances

among adjacent nodes, which is formulated as:

min
Si:

N∑
j=1

Sij ∥xi − xj∥2 ,

where Si: represents the i-th row of S. To avoid the trivial
solution S = I , we rewrite above equation as:

min
Si:

N∑
j=1

Sij ∥xi − xj∥2 + S2
ij .

It’s clear that the graph S will be more homophilic
when edges are defined by nodes sharing high similar-
ity. The homophily ratio h(l) of nodes in different hops
vary considerably according to Fig. 1, where h(l)(G) =

1

|Ã(l)
ij |

∑
Ã

(l)
ij >0

1(yi = yj) and l is the number of hop and

exponent of Ã (Ma et al., 2022). Consequently, the message
propagation path in S could be incorrect when the 2-hop
neighbors of a node are dissimilar to its 1-hop neighbors.
Furthermore, the nodes sharing the same label with 1-hop
and 2-hop neighbors have the highest ratio. Based on this
observation, we design a regularization term to integrate the
1-hop and 2-hop neighbor relation, i.e., we enforce all 2-hop
neighboring nodes are in the set of 1-hop neighborhood. Let
∥xi − xj∥2 = Kij , then we construct a homophilic graph
S by solving the following optimization problem:

min
Sij

SijKij + S2
ij +

(
S
(2)
ij − Sij

)2
,

s.t. Sij > 0,

N∑
j=1

Sij = 1,

(2)

where S(2) is the 2-hop graph, i.e., S(2) = S × S.
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Optimization Firstly, we initialize S with A. Then we
reformulate problem (2) via its Lagrangian function:

min
Si:

N∑
j=1

[SijKij + (S
(2)
ij − Sij)

2 + S2
ij ]

−
N∑
j=1

λ1jSij − λ2i(

N∑
j=1

Sij − 1).

(3)

The derivative of Eq. (3) w.r.t. Sij is

Kij + 2(Sii + Sjj − 1)(S
(2)
ij − Sij) + 2Sij − λ1j − λ2j

+

N∑
f ̸=j

2Sjf [SijSjf + (S
(2)
if − SijSjf )− Sif ].

(4)
Remove the self-loop on graph, i.e., let Sii = 0. S and
S(2) can be regarded as constants at the last iteration. By
introducing Cf ,

Cf =

{
S
(2)
if − SijSjf − Sif , i ̸= f

0, otherwise

we rewrite Eq. (4) as:

Kij−2(S
(2)
ij −Sij)+2Sij−λ1j−λ2i+

∑
f ̸=j

2S2
jfSij+2SjfCf .

(5)
Note that the KKT condition λ1jSij = 0 , which yields:

Sij(Kij − 2(S
(2)
ij − Sij) + 2Sij − λ2j

+
∑
f ̸=j

2S2
jfSij + 2SjfCf ) = 0. (6)

Afterwards, we obtain the closed-form solution of Sij :

Sij = [
2S

(2)
ij + λ2j −Kij − 2

∑
f ̸=j SjfCf

2(2 +
∑

f ̸=j S
2
jf )

]+, (7)

where [•]+ operator means max(•, 0). Following the sec-
ond constraint, we have

∑
j

[
2S

(2)
ij + λ2j −Kij − 2

∑
f ̸=j SjfCf

2(2 +
∑

f ̸=j S
2
jf )

]+ − 1 = 0.

.

To obtain Sij , we need to compute λ2j first by solving this
optimization problem:

min
λ2j

N∑
j=1

[
2S

(2)
ij + λ2j −Kij − 2

∑
f ̸=j SjfCf

2(2 +
∑

f ̸=j S
2
jf )

]+−1. (8)

We can solve Eq. (8) by gradient descent algorithm or
treating it as a Linear programming (LP) problem.

3.3. Graph Filtering

Based on the assumption that graph signal should be smooth,
i.e., the neighbor nodes tend to be similar, low-pass filter
has been used to obtain smoothed representations that are
clustering-friendly (Pan & Kang, 2021). One typical low-
pass filter (Zhang et al., 2019) can be formulated as:

F = (I − 1

2
L)kX, (9)

where F is the filtered representation, k is the order of graph
filtering.
However, Eq. (9) could be ineffective resulting from its
heavy dependence on raw topological graph which could be
noisy and incomplete. Additionally, low-pass filtering ne-
glects the high-frequency components in data, which leads
to information loss and inferior performance. This would be
more worse for heterophilic graph, where high-frequency
information plays a critical role. Since it is impossible to
know whether a given graph is homophilic or not in unsu-
pervised learning, it’s necessary to design a generic filter to
handle different types of graphs. To this end, we design a
mixed filter for graph data as follows:

F = µ(
1

2
LH)kX + (1− µ)(I − 1

2
LS)

kX, (10)

where µ > 0 is a trade-off parameter balancing low-pass
and high-pass representations, LS and LH are the nor-
malized Laplacian matrices of reconstructed homophilic
and heterophilic graphs. Note that our mixed filter is not
combining low-pass and high-pass filter simply, we apply
newly constructed graphs rather than the raw graph, which
often has low-quality. The final representation F is used as
the input of clustering network.

3.4. Dual Graph Clustering Network

In this section, we introduce our proposed Dual Graph Clus-
tering Network (DGCN) to address the nodes clustering
task. As shown in Fig. 2, DGCN contains two unshared
encoders and a decoder, and all of them are MLPs. Dif-
ferent from GNNs which learn representations in only one
space, two encoders EθF and EθA are utilized to map fil-
tered features and structural graph into attribute subspace
and structure subspace respectively. This would reduce the
interaction between attribute and structure for heterophilic
nodes. The structure encoder is applied to preserve some
original structure information. The obtained representations
are:

ZF = EθF (F ),

ZA = EθA(A).
(11)

Moreover, to alleviate representation collapse, i.e., represen-
tations of all nodes tend to be the same, we add a correlation
reduction item to prevent it (Zbontar et al., 2021).
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Figure 2. The framework of DGCN. There are three key components: 1) structure reconstruction is used to reconstruct homophilic and
heterophilic graphs; 2) a mixed graph filter is designed to obtain smooth representations for any kind of graphs; 3) dual encoders are
applied to learn embeddings in attribute and topology space.

LCR =
1

d2

∑(
M− Ĩ

)2
=

1

d2

d∑
i=1

(Mii − 1)
2
+

1

d2 − d

d∑
i=1

∑
j ̸=i

M2
ij ,

(12)

where d is the dimension of node attribute, M is the similar-
ity of corresponding nodes in two encoders,

Mij =
ZA

⊤
i ZF j

∥ZAi∥ · ∥ZF j∥
.

Afterwards, ZA and ZF are concatenated as Z.

Decoder is employed to obtain reconstructed features F̄ .
The features of some “easy samples” change little during
reconstruction, which indicates that these nodes contribute
less information for training our model. We adopt the Scaled
Cosine Error (SCE) as the objective of reconstruction (Hou
et al., 2022), which can down-weight easy samples’ contri-
bution by controlling sharpening parameter β in training:

LSCE =

N∑
i=1

(
1− F⊤

i F̄i

∥Fi∥ ·
∥∥F̄i

∥∥
)β

, β ≥ 1. (13)

Finally, we pull soft cluster assignment probabilities dis-
tribution and target distribution for cluster enhancement.
Specifically, the soft assignment distribution Q is computed
as:

qiu =

(
1 + ∥zi − σu∥2 /α

)−α+1
2

∑
u′

(
1 + ∥zi − σu′∥2 /α

)−α+1
2

, (14)

where cluster centres σ are initialized by k-means on em-
beddings and α is the Student’s t-distribution’s degree of
freedom. Then target distribution P is formulated as:

piu =
q2iu/

∑
i qiu∑

k′ (q2ik′/
∑

i qik′)
. (15)

We minimize the KL divergence loss between Q and P
distributions to make the data representation closer to cluster
centres and improve cluster cohesion:

LCLU = KL(P∥Q) =
∑
i

∑
u

piu log
piu
qiu

(16)

In summary, the objective of DGCN can be computed by:

L = LCR + LSCE + LCLU . (17)

We minimize this objective function to train our model and
the result of clustering for node i is:

Yi = argmax qic
c

. (18)

4. Experiments
4.1. Datasets

To evaluate the effectiveness of the proposed method, we
conduct extensive experiments on 11 benchmarks, includ-
ing homophilic graph datasets, like Cora, Citeseer (Kipf &
Welling), ACM (Fan et al., 2020), AMAP (Liu et al., 2022b),
EAT (Mrabah et al., 2022); heterophilic graph datasets, like
Texas, Cornell, Wisconsin, Washington (Pei et al., 2020),
Twitch (Lim et al., 2021b), and Squirel (Rozemberczki et al.,
2021). The statistical information of them is summarized in
Table 1.
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Table 1. Statistics information of datasets.
Graph datasets Nodes Dims. Edges Clusters Homophily Ratio

Heterophilic Graphs Texas 183 1703 325 5 0.0614
Cornell 183 1703 298 5 0.1220

Wisconsin 251 1703 515 5 0.1703
Washington 230 1703 786 5 0.1434

Twitch 1912 2545 31299 2 0.5660
Squirrel 5201 2089 217073 5 0.2234

Homophilic Graphs Cora 2708 1433 5429 7 0.8137
Citeseer 3327 3703 4732 6 0.7392

ACM 3025 1870 29281 3 0.8207
AMAP 7650 745 119081 8 0.8272

EAT 399 203 5994 4 0.4046

Table 2. Results on heterophilic graphs. The best results are bolded with red and the second-best performance is also bolded. ‘-’ means
that the source code can’t produce any results.

Methods
Texas Cornell Wisconsin Washington Twitch Squirrel

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

DAEGC 45.99 11.25 42.56 12.37 39.62 12.02 40.43 - 56.59 - 25.55 2.36
MSGA 57.22 12.13 50.77 14.05 54.72 16.28 - - - - 27.42 4.31
FGC 53.48 5.16 44.10 8.6 50.19 12.92 51.30 - 70.71 - 25.11 1.32

GMM 58.29 13.06 58.86 - 52.08 8.89 60.86 20.56 - - - -
RWR 57.22 13.87 58.29 - 53.96 16.02 63.91 23.13 - - - -

ARVGA 59.89 16.37 56.23 - 56.23 13.73 60.87 16.19 - - - -
DGCNβ=2 72.68 33.67 62.29 29.93 71.71 41.29 69.13 28.22 70.34 39.84 31.34 7.24
DGCNβ=1 74.57 39.93 61.74 21.76 72.90 43.52 69.56 28.43 71.00 41.81 31.39 8.54

4.2. Comparison Methods

To demonstrate the superiority of our method, we adopt 13
baselines for performance comparison. Specifically, there
are four kinds of methods: 1) typical GNN-based methods,
like DAEGC (Wang et al., 2019), MSGA (Wang et al.,
2021), SSGC (Zhu & Koniusz, 2021), GMM (Zhu et al.,
2022), RWR (Huang et al., 2019), ARVGA (Pan et al.,
2019); 2) contrastive learning-based methods, like MVGRL
(Hassani & Khasahmadi, 2020), SDCN (Bo et al., 2020),
DFCN (Tu et al., 2021), and DCRN (Liu et al., 2022b),
which employ MLP and GNNs jointly to learn an aligned
representation from augmented views; 3) state-of-the-art
MLP-based clustering method AGE (Cui et al., 2020),
which obtains a clustering-favorable representation via
Laplacian smoothing filter and adaptive encoder; 4) shallow
methods which utilize a low-pass filter to smooth the raw
features and remove the noises, like MCGC (Pan & Kang,
2021) and FGC (Kang et al., 2022). We implement DGCN
with both β = 1 and β = 2. In fact, SCE loss with β = 1 is
equivalent to traditional Frobenius norm.

4.3. Experimental Setting

For fairness, all compared methods are implemented with
the same setting in original papers. Our network is trained
with Adam optimizer for 500 epochs until convergence. The
learning rate of optimizer is set to 1e-2. We tune filter order
k in [1, 2, 3, 4, 5, 10]. We adopt ACCuracy (ACC) and
Normalized Mutual Information (NMI) as cluster metrics in
all experiments.

4.4. Results

Table 2 reports the results on heterophilic datasets. We
can see that DGCN obtains much better performance than
existing clustering methods. With respect to the second-best
performance, our method improves the accuracy up to 10%
on Texas and Wisconsin, 5% on Washington. One reason is
that the comparison methods are not deliberately designed
for heterophilic graphs. To our best knowledge, there is no
clustering techniques considering graph heterophily in the
literature. In addition, GNN-based methods don’t perform
well on heterophilic graphs, which is consistent with the
conclusion on classification task. By contrast, our method
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Table 3. Results on homophilic graphs. AvgRank represents the average ranking of methods on five graphs.

Methods
Cora Citeseer ACM AMAP EAT

AvgRankACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

DFCN 36.33 19.36 69.50 43.9 90.90 69.40 76.88 69.21 49.37 32.90 5.4
DCRN 48.93 - 70.86 45.86 91.93 71.56 79.94 73.70 51.33 - 3.6
SSGC 69.60 54.71 69.11 42.87 89.09 64.71 60.23 60.37 32.41 4.65 7.6

MVGRL 70.47 55.57 68.66 43.66 86.73 60.87 45.19 36.89 32.88 11.72 8.2
SDCN 60.24 50.04 65.96 38.71 90.45 68.31 53.44 44.85 39.07 8.83 7.8
AGE 73.50 57.58 70.39 44.92 90.91 69.42 75.98 - 47.26 - 4

MCGC 42.85 24.11 64.76 39.11 91.64 70.71 71.64 61.54 32.58 7.04 7.6
FGC 72.90 56.12 69.01 44.02 88.13 62.77 71.04 - 41.11 - 6.2

DGCNβ=2 72.19 56.04 71.27 44.13 92.03 71.58 76.07 66.13 53.13 22.92 2.6
DGCNβ=1 72.89 56.82 71.60 44.83 92.60 71.85 76.06 65.46 53.52 24.81 2

(a) Cora with mixed filter (b) Cora with raw graph A (c) Texas with mixed filter (d) Texas with raw graph A

Figure 3. Accuracy on Cora and Texas with raw graphs and reconstructed graphs.

takes care of both homophilic and heterophilic nodes, thus
it improves the performance significantly. In addition, we
can see that β can impact the performance a little bit.

Table 3 shows the clustering results on homophilic graphs.
Our method achieves competitive performance and shows
the highest rank. It can be observed that the SOTA con-
trastive learning methods produce unstable results. This
is because their performance highly depends on the graph
augmentation strategy, which requires domain knowledge
and is not flexible to any data. For shallow methods FGC
and MCGC, their performance also changes a lot on differ-
ent datasets. This is attributed to their usage of low-pass
filter, which is not suitable to real graphs with different
levels of homophily. DGCN is better than AGE in most
cases since our mixed filter explores both low-frequency
and high-frequency components of original data and reduces
information loss, while AGE neglects the high-frequency
signal.

To sum up, DGCN obtains stable and promising results on
both homophilic and heterophilic graphs. This is mainly
because it extracts homophilic and heterophilic information
from raw graph. Consequently, DGCN is applicable to

cluster real graphs, where we have no idea of homophily
ratios.

5. Ablation Study
Our mixed filter is based on the newly constructed ho-
mophilic and heterophilic graphs in which neighbor nodes
tend to be similar and dissimilar, thus they contain low-
frequency and high-frequency information, respectively. To
show the effectiveness of our filter, we examine the cluster-
ing accuracy of DGCN with different filter orders k and bal-
ance parameters µ. Particularly, we don’t apply graph filter-
ing when k = 0 and employ low-pass (high-pass) filter only
when µ = 0 (µ = 1). As shown in Fig. 3, graph filtering
considerably boosts model performance on both homophilic
and heterophilic graphs with A or reconstructed graphs. Fur-
thermore, the best performance is always achieved when
µ ̸= 0, which validates the importance of incorporating
high-frequency information.

With respect to raw graph, the constructed graphs further
boost the performance. However, there are two differences:
1) heterophilic graph is sensitive to high-frequency com-
ponents while homophilic graph prefers to low-frequency
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(a) A of Cora (b) A of Texas (c) S of Cora (d) S of Texas

Figure 4. The variation of average similarity of 1-hop and 2-hop neighbor nodes under different filter orders on Cora and Texas. Fsl and
Fal represent the filtered features with low-pass filter on homophilic graph S and raw graph A, Fhh is obtained by high-pass filter on
heterophilic graph H .

parts; 2) DGCN achieves the best performance on het-
erophilic graph with a small k, while it also works well
with a large k on homophilic graph.

Table 4. The homophily score of constructed graphs.
A S H

Cora 0.8137 0.8110 0.1699
Citeseer 0.7392 0.8018↑ 0.1780

ACM 0.8207 0.9006↑ 0.3236
AMAP 0.8272 0.9449↑ 0.1259

EAT 0.4046 0.6039↑ 0.2691

Texas 0.0614 0.4654↑ 0.1767
Cornell 0.1220 0.4583↑ 0.1734

Wisconsin 0.1703 0.4301↑ 0.2274
Washington 0.1434 0.4522↑ 0.1391↓

Twitch 0.5660 0.7103↑ 0.2401↓
Squirrel 0.2234 0.4781↑ 0.1999↓

We report the homophily score of constructed graphs in
Table. 4. Homophilic graph S indeed has higher homophily
score on most datasets, which proves that the designed reg-
ularizer pulls 1-hop and 2-hop neighbors close. The ho-
mophily score of heterophilic graph is improved by 16% on
average. There is no clear improvement on Cora because
few nodes are near each other in terms of a 1-hop and 2-hop
manner. All Hs have a relative small value. However, the
homophily score of H is increased on Texas, Cornell, and
Wisconsin. The reason is that these graphs have few edges,
then reconstructed heterophilic graphs become dense, where
some edges connect the nodes of the same class.

To further understand the influence of filters, we plot the
variation of cosine similarity by changing the filter order k
in Fig. 4. As observed, on Cora, filtered feature similarity of
1-hop and 2-hop nodes obtained from high-order low-pass
filter gets big while features from high-order high-pass filter
tend to be dissimilar. By contrast, on heterophilic graph

Texas, features from high-order low-pass filter or high-pass
filter get more similar. These verify that graph filtering does
preserve different kinds of topological information, i.e., low-
pass and high-pass filter capture homophilic and heterophilic
structures, respectively. Consequently, our mixed filter can
handle two types of graphs simultaneously.

Moreover, similarity variation patterns with the mixed filter
of S and A are similar. This means that S does not loss
too much topological information from A. Importantly, the
similarity with low-pass or high-pass filter converges to
larger values, which indicates that filters with S and H get
the similar nodes close.

6. Conclusion
In this paper, we make the first attempt to address the chal-
lenge of node clustering without any prior knowledge of
graph homophily. We design a mixed filter to jointly ex-
plore low-frequency and high-frequency components by
reconstructing two graphs from the raw graph, which can be
generalized to other tasks. Moreover, to reduce the potential
coupling between attribute and topology structure of data,
we project the smoothed attribute and raw structure into
two subspaces via two individual MLPs. Comprehensive
experimental results on 11 graph benchmarks demonstrate
the proposed method’s impressive performance. Therefore,
our method generalizes well to real data. One potential limi-
tation is that there could be information loss resulting from
feature reconstruction without considering structure. In fu-
ture work, we aim to design a new architecture to handle
this issue.
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