
Towards Understanding Ensemble Distillation in Federated Learning

Sejun Park 1 Kihun Hong 1 Ganguk Hwang 1

Abstract

Federated Learning (FL) is a collaborative ma-
chine learning paradigm for data privacy preser-
vation. Recently, a knowledge distillation (KD)
based information sharing approach in FL, which
conducts ensemble distillation on an unlabeled
public dataset, has been proposed. However, de-
spite its experimental success and usefulness, the
theoretical analysis of the KD based approach has
not been satisfactorily conducted. In this work,
we build a theoretical foundation of the ensem-
ble distillation framework in federated learning
from the perspective of kernel ridge regression
(KRR). In this end, we propose a KD based FL
algorithm for KRR models which is related with
some existing KD based FL algorithms, and ana-
lyze our algorithm theoretically. We show that our
algorithm makes local prediction models as much
powerful as the centralized KRR model (which is
a KRR model trained by all of local datasets) in
terms of the convergence rate of the generalization
error if the unlabeled public dataset is sufficiently
large. We also provide experimental results to ver-
ify our theoretical results on ensemble distillation
in federated learning.

1. Introduction
Despite the rapid development of machine learning algo-
rithms (Bochkovskiy et al., 2020; Nichol et al., 2022; Brown
et al., 2020), the performance of machines still heavily de-
pends on the size of the training dataset. However, due to
the hassle of data processing, manpower and time resources
are excessively consumed to obtain data, especially labeled
data, in supervised learning. Moreover, most of data is inac-
cessible for training a prediction model due to data privacy
preservation in general.
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Recently, Federated Learning (FL) (McMahan et al., 2017)
has been proposed as a solution to resolve data shortage and
data privacy preservation. Even though various FL algo-
rithms (McMahan et al., 2017; Li et al., 2020a; Yurochkin
et al., 2019; Wang et al., 2020; Karimireddy et al., 2020;
Li et al., 2021) have been proposed, most of them usually
iteratively conduct the following procedure in training. (i)
A server distributes a global model to clients for updat-
ing their local models and then each client trains its local
model using its local dataset. (ii) The clients send their
trained local models (or gradients) to the server and the
server aggregates them to update the global model. Such
approaches obviously improve the performance of the lo-
cal models while protecting data privacy, but sometimes
performance improvement is not significantly sufficient to
be applied for real world problems. Moreover, they have
some restrictions in local training. For example, most of
FL algorithms require that all local models be the same
model (McMahan et al., 2017; Li et al., 2020a), parts of a
global model (Arivazhagan et al., 2019; Jiang et al., 2022),
approximations of a global model (Diao et al., 2021; Yao
et al., 2021), or derived models from a meta model (Fallah
et al., 2020; Shamsian et al., 2021). Such restrictions do
not matter in a server-centric (i.e. server provider-centric)
learning framework. However, in a client-centric training
environment where most training strategies are led by indi-
vidual clients, they severely matter. Note that local model
architectures may also need to be protected as local data.

To overcome the above restrictions, knowledge distillation
(KD) (Hinton et al., 2015) based FL algorithms have been
proposed (Mora et al., 2022). Some of them improve the
effectiveness of the FL algorithms by conducting knowledge
distillation in addition to the existing FL algorithms (Lin
et al., 2020b; Zhu et al., 2021). Some others use knowledge
distillation as a main information sharing method, which can
be applied to a client-centric training environment, instead
of parameter sharing (Li & Wang, 2019; Cho et al., 2021;
Zhang et al., 2021). In these methods, they assume that
there exists an unlabeled public dataset or an unlabeled
data generator in a server or a shared data storage that all
clients can access. So, the knowledge of all local models
can be obtained in the server via the predictions of the
local models on the unlabeled public dataset. Then the
server combines the knowledge through a weighted average
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of the predictions and distributes the public dataset with
the averaged predictions to clients. Finally, clients use the
distributed dataset as well as their local datasets for their
local training.

There are some intuitions as to why this ensemble distil-
lation strategy works well. First, the predictions of local
models on the unlabeled public dataset contain the informa-
tion of local models like the parameters of local models in
typical FL algorithms. Second, the ensemble distillation pro-
cess is a kind of automatic crowdsourcing data labeling tech-
nique to provide additional data to each client. Therefore,
this strategy directly alleviates the data shortage problem of
clients. Despite these intuitions, KD based FL algorithms
do not have sufficient theoretical analysis even for the inde-
pendent and identically distributed (IID) case (i.e., all data
points of clients are independent and identically distributed)
unlike typical federated learning algorithms such as FedAvg
and FedProx (Li et al., 2020a;b; Yuan & Li, 2022).

In this work, we provide a theoretical analysis for the effec-
tiveness of ensemble distillation in federated learning. Even
though knowledge distillation and ensemble techniques are
difficult to be analyzed, some recent works provide analyti-
cal results for them in the context of kernel ridge regression
(KRR) (Zhang et al., 2013; Lin et al., 2017; 2020a; Mobahi
et al., 2020; Afonin & Karimireddy, 2022). Extending the
existing results, we provide a theoretical framework for
ensemble distillation of KRR models in general federated
learning setting. Unlike the theoretical framework of typical
FL algorithms which follows the optimization approach, we
leverage the generalization theory of statistical models in
this work. More precisely, we derive the convergence rate
of the expected risk with respect to the dataset size.

Our contributions in this work are as follows:

1. First, we analyze knowledge distillation with an aux-
iliary dataset in terms of the convergence rate of the
expected risk (Section 4). As an application of this
result, we verify the effectiveness of one-shot ensem-
ble distillation in federated learning with kernel ridge
regression (Section 5.2).

2. Second, we propose and analyze a new iterative en-
semble distillation algorithm like FedMD (Li & Wang,
2019) in federated learning with kernel ridge regres-
sion (Section 5.3 - 5.4). In the proposed algorithm,
to overcome the undesirable amplified regularization
in the repeated distillation procedures, we introduce a
de-regularization trick that leads to the effectiveness of
the proposed iterative ensemble distillation algorithm
(Section 5.3).

3. Third, we analyze how a random client selection strat-
egy, which is considered to resolve the communication

cost or system heterogeneity issue, affects the perfor-
mance of the proposed iterative ensemble distillation
algorithm (Section 5.5).

4. Lastly, we provide experimental results to validate our
theoretical results for the proposed iterative ensemble
distillation in federated learning (Section 6).

2. Related Works
Federated Learning: FL is a privacy-preserving decen-
tralized machine learning framework which is proposed in
McMahan et al. (2017). FL has several challenges to address
such as statistical heterogeneity (Li et al., 2020a; Karim-
ireddy et al., 2020), system (e.g., computational capability)
heterogeneity (Nishio & Yonetani, 2019), communication
efficiency (Konečnỳ et al., 2016; Caldas et al., 2018), and
privacy concerns (Bagdasaryan et al., 2020). Note that there
are theoretical results that the classic FL algorithms such
as FedAvg (McMahan et al., 2017) and FedProx (Li et al.,
2020a) converge for both IID and non-IID cases (Li et al.,
2020a;b; Yuan & Li, 2022).

Knowledge Distillation: KD is originally proposed in
Buciluǎ et al. (2006); Hinton et al. (2015) in the context
of model compression. The original KD encourages the
outputs of a student model to match the outputs of a pre-
trained teacher model. There are some variants of the origi-
nal student-teacher framework. Self-distillation utilizes the
student model itself as a teacher (Zhang et al., 2019). En-
semble distillation (or co-distillation) uses an ensemble of
models as a teacher (Hinton et al., 2015; Anil et al., 2018;
Lin et al., 2020b). Since it is an inclusive concept, we refer
to a knowledge distillation framework with several students
and a teacher which is an ensemble of (some of) them as
ensemble distillation like Lin et al. (2020b) in this work.

Knowledge Distillation in FL: There are two lines of
research mainly in federated learning with knowledge distil-
lation. One line of research aims at improving efficiency or
effectiveness of federated learning algorithms by applying
knowledge distillation (Lin et al., 2020b; He et al., 2020;
Zhu et al., 2021; Zhang et al., 2022a;b). In particular, Lin
et al. (2020b) improve the performance by applying ad-
ditional ensemble distillation on a server to train a server
model rather than directly replacing it with an aggregated
model of client models. They also propose an extended ver-
sion for heterogeneous model cases. However, it allows only
a few prototypes and clients should share their models with
the server. The other line of research aims at enabling to use
the black box models in FL (Li & Wang, 2019; Cho et al.,
2021; Zhang et al., 2021). Li & Wang (2019) first propose
the framework for FL with black box models. Subsequently,
Cho et al. (2021); Zhang et al. (2021) apply advanced en-
semble strategies to improve the performance in non-IID
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setting. However, to the best of our knowledge, there is
no previous work that provides the theoretical analysis of
KD in FL. Recently, Allen-Zhu & Li (2020) provide a great
theoretical analysis to explain why ensemble knowledge
distillation works on neural networks with the same archi-
tectures. However, we cannot directly apply their results
to ensemble distillation in FL since they assume all neural
networks use the same dataset.

Theoretical Analysis of Kernel Ridge Regression:
There are many prior works that analyze the convergence
rate of kernel ridge regression in expected risk sense or in
probability sense thanks to the closed form expression of its
solution. The convergence properties for the classical KRR
model have been analyzed well in Caponnetto & De Vito
(2007); Fischer & Steinwart (2020); Cui et al. (2021); Li
et al. (2023). Recently, Zhang et al. (2013); Lin et al. (2017);
Chang et al. (2017); Guo et al. (2017); Lin et al. (2020a);
Yin et al. (2021) also analyze distributed learning with KRR
models in various contexts. In particular, Lin et al. (2020a)
propose a communication scheme for distributed learning.
However, this approach does not preserve data privacy due
to the nature of the form of KRR solutions. On the other
hand, Mobahi et al. (2020); Borup & Andersen (2021) apply
KRR to study self-distillation. To the best of our knowledge,
Afonin & Karimireddy (2022) is the only preceding study
that utilizes KRR to provide a theoretical analysis of distil-
lation strategies in federated learning setting. However, they
mainly consider the case of two clients and their strategy is
an ensemble of infinite models, which is impractical. In our
work, we analyze standard ensemble distillation methods
for the KRR model with arbitrary number of clients.

3. Backgrounds
In this section, we briefly introduce some backgrounds for
our work. See Appendix A for details and comments.

3.1. Preliminaries and Notations

Our interest is a regression problem in FL setting. Let
X ⊂ Rd be an input space. We assume X is compact. Our
goal is to find a target function f0 : X → R. Let ρx,y
be a data generating distribution such that ρx,y(x, y) =
ρx(x) · ρy|x(y|x) where

Ey∼ρy|x [y|x] = f0(x) and Vary∼ρy|x(y|x) = σ2(x)

for any x ∈ X .

Let k : X × X → R be a continuous, symmetric, positive
semi-definite kernel such that∫∫

k(x1,x2)f(x1)f(x2) dρx(x1)dρx(x2) ≥ 0 (1)

for any f ∈ L2
ρx and the equality holds if and only if f = 0.

Hk ⊂ RX denotes a reproducing kernel Hilbert space with
a kernel k. Set κ = (supx∈X k(x,x))

1/2.

Define the covariance operator Lk : Hk → Hk by

Lkf =

∫
f(x)k(x, ·) dρx(x)

and its sample analog Lk,X : Hk → Hk by

Lk,Xf =
1

n

n∑
i=1

f(xi)k(xi, ·)

where X = {x1, · · · ,xn} ⊂ X . Let

N (λ) = tr((Lk + λI)−1Lk)

and
fλ = (Lk + λI)−1Lkf0

where λ > 0.

Define a compact embedding ιρx : Hk → L2
ρx by ιρxh =

[h]∼ρx where [h]∼ρx is the equivalence class containing h
in L2

ρx . Also, define its sample analog SD : Hk → Rn by

SDf = [f(x1), · · · , f(xn)]>

where D = {(x1, y1), · · · , (xn, yn)} ⊂ X × R.1

A> denotes the adjoint operator of a given operator A. We
write kx(·) = k(x, ·) and

KX1,X2
=

k(x1
1,x

1
2) · · · k(x1

1,x
m
2 )

...
. . .

...
k(xn1 ,x

1
2) · · · k(xn1 ,x

m
2 )


where X1 = {x1

1, · · · ,xn1} and X2 = {x1
2, · · · ,xm2 }.

Also, we write D(x) = {x1, · · · ,xn} where D =
{(x1, y1), · · · , (xn, yn)} is a given dataset.

Technical Assumptions: In this work we assume the
following assumptions.

Assumption 3.1. We assume Ey∼ρyy
2 <∞ and∫ (

exp

(
|y − f0(x)|

M

)
− |y − f0(x)|

M
− 1

)
dρy|x(y|x) ≤ γ2

2M2
(2)

for any x ∈ X where M and γ are positive constants.

Assumption 3.2. The target function f0 satisfies f0 =
Lrkg0 for some g0 ∈ Hk and r ∈ [0, 12 ]. In particular,
f0 ∈ Hk.

1We use a scaled L2 norm as a norm of Euclidean space Rn.
See Appendix A.
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Some previous works (Guo et al., 2017; Chang et al., 2017;
Lin et al., 2020a) assume that N (λ) satisfies

N (λ) ≤ Ceλ−s (3)

for some s ∈ (0, 1] and some constant Ce ≥ 1 independent
of λ. We do not assume any regularity condition on N (λ)
in this work to deal with the convergence rate of a general
case. However, under the above assumption (3), we can
obtain a better convergence rate by extending our analysis.
Note that (3) always holds with s = 1.

3.2. Kernel Ridge Regression and Optimal
Convergence Rate

Kernel ridge regression (KRR) is an algorithm to estimate
the target function f0. Let D = {(x1, y1), · · · , (xN , yN )}
be a labeled dataset whose data points are independently
drawn from ρx,y. Given a kernel k and a regularization hy-
perparameter λ > 0, a KRR model is given by a minimizer
of the following optimization problem

argmin
h∈Hk

1

N

N∑
i=1

(h(xi)− yi)2 + λ‖h‖2Hk .

Note that the solution of the above optimization problem
has a closed form expression

fD,λ = (Lk,D(x) + λI)−1S>Dy

where y = [y1, · · · , yN ]>.

One way to measure the performance of kernel ridge regres-
sion is to find a convergence rate of the expected loss

ED‖ιρx(fD,λ − f0)‖L2
ρx

with respect to the dataset size N . We provide a key theo-
rem from Caponnetto & De Vito (2007); Lin et al. (2017);
Fischer & Steinwart (2020).

Theorem 3.3. Under Assumption 3.1 and 3.2, with λ =

N−
1

2r+2 ,

ED‖ιρx(fD,λ − f)‖L2
ρx

= O
(
N−

2r+1
4r+4

)
.

Moreover, this convergence rate is optimal.

4. KRR with Knowledge Distillation
Let g be a teacher model which approximates f0. In the
noiseless data-free version, the optimization problem of
KRR with KD is given by

argmin
h∈Hk

α‖ιρx(h−f0)‖2L2
ρx

+(1−α)‖ιρx(h−g)‖2L2
ρx

+λ‖h‖2Hk

where α ∈ (0, 1) controls the distillation effect and λ > 0
is a regularization hyperparameter. From the first order
optimality condition, we obtain the minimizer

f̃λ = (Lk + λI)−1(αLkf0 + (1− α)Lkg). (4)

Now we consider a sample version. Let D1 =
{(x1

1, y
1
1), · · · , (xN1

1 , yN1
1 )} be a labeled dataset whose data

points are independently generated from ρx,y and D2(x) =

{x1
2, · · · ,x

N2
2 } be an unlabeled dataset whose data points

are independently generated from ρx. To distill the teacher’s
knowledge using D2(x), we consider the optimization prob-
lem

argmin
h∈Hk

α · 1

N1

N1∑
i=1

(h(xi1)− yi1)2

+ (1− α) · 1

N2

N2∑
i=1

(h(xi2)− g(xi2))2 + λ‖h‖2Hk .

Then, the solution of the above problem is

f̃D,λ = (αLk,D1(x) + (1− α)Lk,D2(x) + λI)−1

(αS>D1
y1 + (1− α)Lk,D2(x)g). (5)

A natural question is how much the performance of the
trained student model f̃D,λ can be improved and the answer
is given in the following:
Theorem 4.1 (Informal). The performance of the student
model f̃D,λ is at least as good as the worse of the teacher
model g and a trained KRR model using both datasets of
sizesN1 andN2 independently generated from ρx,y in terms
of the convergence rate of the expected risk when we use
adequate α and λ.

Theorem 4.1 is one of the key ideas to analyze ensemble
distillation in federated learning. See Appendix B for the
detailed statement and proof.

5. KRR with Ensemble Distillation in FL
5.1. Problem Formulation

We assume the following:

• There are total m clients and client j has a labeled
dataset Dj = {(x1

j , y
1
j ), · · · , (xNj , yNj )} whose data

points are independently generated from ρx,y (j =
1, · · · ,m). We assume |D1| = · · · = |Dm| = N
for simplicity. Set yj = [y1j , · · · , yNj ]> and D =⋃m
j=1Dj .

• To distill knowledge without sharing models, we as-
sume there is an unlabeled public dataset Dp(x) =

{x1
p, · · · ,x

Np
p } whose data points are independently

generated from ρx and whose size is Np.
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Algorithm 1 KRR with iterative Ensemble Distillation in
FL

1: Input: hyperparameters α ∈ (0, 1), λ > 0, and t ∈ N
2: Output: Trained model fj , j = 1, · · · ,m
3: Pretrain: For j = 1, · · · ,m, client j trains its model
fj using the loss function

argmin
h∈Hk

1

N

N∑
i=1

(h(xij)− yij)2 + λ‖h‖2Hk .

4: Each client downloads the unlabeled public dataset
Dp(x).

5: for t0 = 1, · · · , t do
6: For j = 1, · · · ,m, client j predicts on Dp(x) and

uploads the prediction ỹjp to the server.
7: The server computes an updated consensus

ỹp =
1

m

m∑
j=1

ỹjp.

8: Each client downloads the ensemble prediction ỹp.
9: For j = 1, · · · ,m, client j updates its model fj using

the loss function

argmin
h∈Hk

α · 1

N

N∑
i=1

(h(xij)− yij)2+

(1− α) · 1

Np

Np∑
i=1

(h(xip)− (ỹp)
i)2 + λ‖h‖2Hk .

10: end for

• Due to privacy concerns, only client j can access its
own dataset Dj . In addition, all clients can access the
public dataset Dp(x) with its pseudo labels.

• For simplicity, we write Lk,Dj(x) as Lk,Xj for j =
1, · · · ,m and Lk,Dp(x) as Lk,Xp .

• We consider and analyze an algorithm that performs
public data labeling through an ensemble prediction of
local models and local model training through knowl-
edge distillation. Algorithm 1 presents the detailed
procedure.

5.2. One-Shot Ensemble Distillation in FL

First, we deal with one-shot ensemble distillation in FL, i.e.,
Algorithm 1 with t = 1. Even though each client cannot
access the one-shot ensemble model, using the result in Lin
et al. (2020a) and Theorem 4.1, we can derive a strong result
that guarantees the performance of the local models after
one-shot ensemble distillation.

Theorem 5.1. Assume Assumption 3.1 and 3.2 hold. Also,
assume

m ≤ N2r+1−ε (6)

for any fixed ε ∈ (0, 1) and Np ≥ (m − 1)N . Let f̃ jD,λ
be the local model of client j after one-shot ensemble
distillation (j = 1, · · · ,m). Then, with α = 1/m and
λ = (mN)−

1
2r+2 ,

E‖ιρx(f̃ jD,λ − f0)‖L2
ρx

= O
(

(mN)−
2r+1
4r+4

)
for j = 1, · · · ,m.

The proof of Theorem 5.1 is provided in Appendix C.1.
Theorem 5.1 tells us that, under some assumptions, each
local model f̃ jD,λ after the one-shot ensemble distillation
has at least the same performance as the KRR model using
the whole dataset of size |D| = mN in terms of the con-
vergence rate of the expected risk. Note that Theorem 5.1
requires that the number of clients satisfy m ≤ N2r+1−ε

for any fixed ε ∈ (0, 1). However, one of main properties in
FL is a massively distributed environment (McMahan et al.,
2017). Therefore, it is more desirable to remove this restric-
tion on the number of clients, which is the main reason why
we consider iterative ensemble distillation (i.e., t > 1).

5.3. A Toy Example: Iterative Ensemble Distillation in
FL When m = 1

We now analyze iterative ensemble distillation. First, we
consider a simple example m = 1 to obtain some motiva-
tions. In this case, the local client trains its model using its
private datasetD1 and the public datasetDp(x) with pseudo
labels which are predictions of the local model. Thus, the
problem is equivalent to self-distillation on auxiliary unla-
beled dataset. To analyze this algorithm, our first interest is
to find the limiting regressor after infinitely many iterations.

Theorem 5.2. The local model f1 converges to

fD1,λ/α = (Lk,X1
+ λ/αI)−1S>D1

y1

after infinitely many iterations in Algorithm 1 with m = 1.

We provide the proof in Appendix C.2. Theorem 5.2 implies
that the limiting regressor is just a kernel ridge regressor us-
ing the private dataset D1 with an amplified regularization.
This result is closely related to the study of self-distillation
on kernel ridge regression (Mobahi et al., 2020; Borup &
Andersen, 2021). However, it has a limitation to analyze
the generalization error bound since an amplified regulariza-
tion makes the approximation error E‖ιρx(f − fλ/α)‖L2

ρx

excessively large when α is small.

To resolve this issue, we introduce a de-regularization trick.
Inspired by Kernel Inducing Point (KIP) scheme (Nguyen
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et al., 2021), we define a de-regularization trick for a predic-
tion v on Dp(x) as follows:

SDp(Lk,Xp + λ0I)−1S>Dpw = v

where λ0 ≥ 0 is a de-regularization hyperparameter. For
well-definedness of w, we require a condition KXp,Xp > 0.
Under this condition,

w = (SDp(Lk,Xp + λ0I)−1S>Dp)−1v

= (KXp,Xp +Npλ0I)K−1Xp,Xpv. (7)

Note that limλ0→0 w = v. Applying the de-regularization
trick, we modify Algorithm 1 so that each client uses the
de-regularized predictions, i.e.,

ỹ−p = (SDp(Lk,Xp + λ0I)−1S>Dp)−1ỹp

instead of ỹp except the last ensemble distillation step. The
de-regularization trick can be implemented in the server
since it only depends on Dp(x). Therefore, this procedure
does not require any additional computational resource in
the client side. We provide the modified algorithm (Algo-
rithm 2) in Appendix C.3.

From now on, we set λ0 = λ. The limiting regressor is
obviously changed if we adopt the de-regularization trick.
Theorem 5.3. The local model f1 converges to

f̃D1,λ =

(
Lk,X1

+ λI +
1− α
α

λP⊥Dp(x)

)−1
S>D1

y1

after infinitely many ensemble distillation steps with the
de-regularization trick in Algorithm 2 with m = 1 where
P⊥Dp(x) is the orthogonal projection onto the orthogonal
complement of a subspace

span (k(x, ·) : x ∈ Dp(x)) (8)

of the reproducing kernel Hilbert space Hk under the as-
sumption λ0 = λ and KXp,Xp is invertible.

Note that there is still an additional term 1−α
α λP⊥Dp(x) in

the inverse compared with fD1,λ. However, we can omit
this term if Np is large. The following theorem supports
this argument.
Theorem 5.4. Assume λ0 = λ and KXp,Xp is invertible.
We also assume that the density ρx is strictly positive on any
non-empty open subset of X . Let f̃D1,λ ∈ Hk be defined as
in Theorem 5.3. If α and λ do not depend on Np, then

lim
Np→∞

f̃D1,λ = (Lk,X1
+ λI)

−1
S>D1

y1 = fD1,λ

almost surely in the Hk-norm sense.

The proof of Theorem 5.4 is provided in Appendix C.5.
Then, our next question is how much public data is needed to
ignore the additional term 1−α

α λP⊥Dp(x) when we compute
the convergence rate of the expected risk. We answer this
question in Section 5.4 for the general setting of m clients.

5.4. Iterative Ensemble Distillation in FL for General
Case

We now turn to analyze iterative ensemble distillation for m
clients. Our main question is whether the limiting regressors
of clients after infinitely many iterations in Algorithm 2 have
the same performance as a KRR model using the whole
dataset D in terms of the convergence rate of the expected
risk. The answer is yes if the unlabeled public dataset is
sufficiently large under some regularity conditions.

Theorem 5.5. Assume Assumption 3.1 and 3.2 with 0 <
r ≤ 1

2 holds. We further assume m ≥ 2, λ0 = λ,

Np ≥ max

((
m

3r+2

2r2+2rN
1

2r+2

)1/(1−ε)
, (m− 1)N

)
for a fixed ε ∈ (0, 12 ), and KXp,Xp > 0. Let f̃ jD,λ be
the local model of client j after conducting Algorithm 2
with t = ∞ (j = 1, · · · ,m). Then, with α = 1/m and
λ = (mN)−

1
2r+2 ,

E‖ιρx(f̃ jD,λ − f0)‖L2
ρx

= O
(

(mN)−
2r+1
4r+4

)
for j = 1, · · · ,m.

Theorem 5.5 tells us that iterative ensemble distillation can
drop the restriction on m and N to attain the same con-
vergence rate as the KRR model trained by all data from
clients if we have sufficient unlabeled public data. Thus,
this theorem implies Algorithm 2 works well in a massively
distributed environment. Note that Theorem 5.5 requires
more unlabeled public data compared with Theorem 5.1.

However, Theorem 5.5 does not guarantee the performance
of the limiting regressors when r = 0 even if Np is large.
The reason is that de-regularization is closely related to the
projection PDp(x) but we have no convergence rate of ‖(I−
PDp(x))f0‖Hk when r = 0 where PDp(x) is the orthogonal
projection onto the subspace (8). For r > 0, the required
public dataset size decreases as r increases.

5.5. Effects of Client Selection Strategy

We discuss the performance of Algorithm 1 and 2 until now.
Note that these algorithms are a sort of synchronous algo-
rithms that have to wait until all clients finish training their
local models at each step. So, these algorithms may cause
waste of time especially in a massively distributed and/or
system heterogeneous environment. A typical approach to
resolve this issue in FL is to adopt a client selection strategy
in each communication round or to use an asynchronous
algorithm. When we directly adopt a random client selec-
tion strategy in Algorithm 2, the ensemble prediction ỹp
on Dp(x) may have a high variance, which makes the algo-
rithm unstable. Hence, we memorize the previous prediction
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ỹp,old and update ỹp as

ỹp = (1− γt0)ỹp,old + γt0 ỹp,new

at each communication round t0 like a Robbins-Monro
stochastic approximation (Robbins & Monro, 1951). We
provide a general framework (Algorithm 3) that considers
a client selection strategy and an asynchronous strategy in
Appendix C.7. See Appendix C.7 for details.

Based on the stochastic approximation theory (Robbins &
Monro, 1951; Bertsekas & Tsitsiklis, 1996), we obtain a re-
sult on the limiting regressor after infinitely many iterations
in Algorithm 3 as follows.
Corollary 5.6. Assume λ0 = λ and KXp,Xp is invertible.
We also assume that

∞∑
t0=1

γt0 =∞,
∞∑
t0=1

γ2t0 <∞.

If we sample a fixed number of clients uniformly from all
clients at each communication round, then the prediction ỹp
on Dp(x) after infinitely many ensemble distillation steps
with the de-regularization trick in Algorithm 3 converges to
SDpg

∗ almost surely where g∗ is the limiting ensemble re-
gressor after infinitely many ensemble distillation steps with
the de-regularization trick in Algorithm 2. In conclusion,
the local models after conducting Algorithm 3 with t =∞
is the same as the local models after conducting Algorithm
2 with t =∞.

We prove a general version of Corollary 5.6 in Appendix
C.8. See Appendix C.8 for details. Corollary 5.6 implies
that the local models derived from Algorithm 3 with uni-
form sampling is the same as those derived from Algorithm
2 as t → ∞. Therefore, the client selection strategy does
not affect the limiting regressor in the case of uniform client
sampling. If we sample clients non-uniformly, then the
effect of local datasets to the limiting regressor can be dif-
ferent.

5.6. Connection to Neural Network

From Section 5.2 to 5.5, we discuss the effectiveness of
ensemble distillation algorithms for kernel ridge regression
models. According to the approximation scheme of neural
networks as kernel machines (Jacot et al., 2018; Domin-
gos, 2020), it seems that ensemble distillation with neural
networks in regression problems can be also effective.

One remark is that we assume all clients use the same kernel
k in our analysis and this assumption is violated when neural
networks are used as local models. However, we can expect
the algorithms that match features in neural networks have
good performance according to our analysis. For instance,
FedHeNN (Makhija et al., 2022) uses Hilbert-Schmidt inde-
pendence criterion to match the features, which improves the

performance. Another remark is that the de-regularization
trick can be omitted in the ridgeless cases. Therefore, we
can see that some existing algorithms (Li & Wang, 2019;
Lin et al., 2020b) are the special cases of our algorithm.

6. Experiments
In this section, we provide experimental results to validate
our theoretical results. Rather than verifying the conver-
gence rate of the expected risk, we now analyze the expected
risk itself to confirm the practical effectiveness of ensemble
distillation algorithms.

6.1. Setup

We conduct experiments on three synthetic datasets and one
real world dataset. We refer to the three synthetic datasets as
Dataset 1, Dataset 2, and Dataset 3. Dataset 1 and Dataset
3 are from the existing works (Chang et al., 2017; Lin et al.,
2020a). The real world dataset is a simplified regression
version of the MNIST dataset from another existing work
(Cui et al., 2021). We refer to this dataset as MNIST. The
generating procedure for the datasets and the kernels used
for KRR are described in Appendix E.1. To evaluate the
performance, we compute the averaged mean squared error
of the local models over the test dataset.

To deal with massively distributed environment which is
mainly considered in FL, we set the number of clients
(m) is relatively large compared with the local dataset size
(N ). In addition, we set the unlabeled public dataset size
Np = (m− 1)N to compare one-shot ensemble distillation
and iterative ensemble distillation fairly. We conduct an
additional experiment to investigate the effect of the unla-
beled public dataset size. Detailed experiment setup (e.g.,
hyperparameter configuration) is described in Appendix E.2.

6.2. Illustrative Example: Effect of De-regularization
Trick

We first validate the effectiveness of the de-regularization
trick for iterative ensemble distillation. In this experiment,
we use Dataset 1 and set m = 20, N = 20, λ = 0.002 and
Np = 380.

As illustrated in Figure 1, the regularization effect is ampli-
fied as ensemble distillation is repeated when we do not use
the de-regularization trick. In contrast, the de-regularization
trick prevents the regularization effect from being amplified
even for a large t.

6.3. Performance Comparison

We compare the local training, the one-shot ensemble dis-
tillation algorithm, the iterative ensemble distillation algo-
rithm without the de-regularization, the iterative ensemble
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Figure 1. KRR regressors of a client paticipating in iterative ensemble distillation after t communication rounds (a) with the de-
regularization trick and (b) without the de-regularization trick. The solid blue line is the target function.

Table 1. Performance of the standalone model on different datasets
with sample sizes N = 10 and N = 20

DATASET N = 10 N = 20

DATASET 1 0.0329 0.0243
DATASET 2 0.0255 0.0144
DATASET 3 0.0785 0.0739
MNIST 0.9436 0.7845

distillation algorithm with the de-regularization, and the
central training (which gives the KRR model trained using
all local datasets). The performance of standalone KRR
models with sample sizes N ∈ {10, 20} is presented in
Table 1. We summarize the experimental results of the case
with N = 10 and various m in Figure 2. We present ad-
ditional experimental results with sample size N = 20 in
Appendix E.3.

We first observe that all ensemble distillation based FL algo-
rithms improve the performance of local models compared
with the local training. They also achieve the performance
as good as the central training on Dataset 2. However, the
one-shot ensemble distillation algorithm becomes worse
compared with the central training in the other cases. Es-
pecially, it has poor performance in massively distributed
environment with high dimensional datasets (Dataset 3 and
MNIST). The iterative ensemble distillation algorithm with-
out the de-regularization is also worse than the central train-
ing on Dataset 3. This algorithm does not achieve the same
performance as the central training in some other cases as
well.

On the other hand, the iterative ensemble distillation al-
gorithm with the de-regularization is dominant compared
with the one-shot ensemble distillation algorithm and the
iterative ensemble distillation algorithm without the de-
regularization in all settings. It is also comparable with the
central training in all experiments. Although our theoretical
result requires more unlabeled public data than (m− 1)N

Table 2. Performance of the iterative ensemble distillation algo-
rithm on Dataset 3 with different public dataset sizes Np ∈
{50, 100, 200, 500, 1000}. We set N = 10 and m = 50.

Np 50 100 200 500 1000

0.0251 0.0198 0.0168 0.0168 0.0164

data points, we can observe that (m−1)N unlabeled public
data points are enough for iterative ensemble distillation
to achieve the same performance as the central training in
practice. Moreover, it has not only the same convergence
rate but also the same expected risk as the central training
in our experiments.

We additionally compare our proposed algorithm with
FedMD (Li & Wang, 2019) with neural networks on multi-
ple datasets. See Appendix E.3 for the results.

6.4. Effect of Public Dataset Size

We compare the performance of the iterative ensemble dis-
tillation algorithm with the de-regularization on various Np.
We simulate this algorithm on Dataset 3 with N = 10 and
m = 50. The result is summarized in Table 2. Basically, the
performance of the algorithm is improved as Np increases.
However, the improvement slows down when Np is suffi-
ciently large. In other words, more public data points may
not improve the performance if there are already sufficient
public data points.

We provide additional experimental results including the
comparison between with a client selection strategy and
without a client selection strategy in Appendix E.3.

7. Conclusions
In this work, we provide a KRR based theoretical frame-
work to verify the effectiveness of KD, one-shot ensemble
distillation, and iterative ensemble distillation under some
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(a) Dataset 1 with N = 10
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(b) Dataset 2 with N = 10
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(c) Dataset 3 with N = 10
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(d) MNIST with N = 10

Figure 2. Comparison between the performance of the one-shot ensemble distillation algorithm (one-shot ED), the iterative ensemble
distillation algorithm without the de-regularization (IED w/o deregularization), the iterative ensemble distillation algorithm with the
de-regularization (IED w/ deregularization), and the central training. We set N = 10 and conduct the experiments with various m.

regularity conditions. We also analyze the effects of a client
selection strategy in our setting. We simulate ensemble
distillation to validate our theoretical results.
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A. Comments and Details on Section 3
A.1. Comments on Section 3.1

• For simplicity, we write Ah = A(h) for any h ∈ H1 and an operator A : H1 → H2 where H1 and H2 are Hilbert
spaces. Define A1h = Ah and Ath = AAt−1h for any integer t ≥ 2. For linear operators A : H1 → H2 and
B : H2 → H3, we write the composition B ◦A as BA whereH1,H2 andH3 are Hilbert spaces.

• We use a scaled L2 norm

‖a‖2 =

√
a21 + · · ·+ a2n

n

as a norm of Euclidean space Rn.

• Note that the kernel k is bounded since it is continuous on a compact domain X ×X . Thus, κ <∞. From the positive
definiteness of k, k(x1,x2) ≤ κ2 holds for any x1,x2 ∈ X .

• From the boundedness of k, the continuity of k, and the separability of X , we can conclude Hk is separable by Corollary
4 of Section 1.5 in Berlinet & Thomas-Agnan (2011).

• By Mercer’s theorem (Rasmussen & Williams, 2006) and Proposition 4.2 in Ferreira & Menegatto (2013), k(x,x′) =∑∞
i=1 µiφi(x)φi(x

′) where {µi}∞i=1 are eigenvalues of a linear operator Lk and each φi ∈ Hk is an eigenfunction of
Lk corresponding to µi such that µi ↓ 0,

∑∞
i=1 µi <∞, and {φi}∞i=1 is an orthonormal basis of L2

ρx .2 Moreover, we
know that {φi}∞i=1 are continuous and

Hk =

{
f(x) =

∞∑
i=1

fiφi :

∞∑
i=1

f2i
µi

<∞

}

with the inner product

〈f, g〉Hk =

∞∑
i=1

figi
µi

where f =
∑∞
i=1 fiφi and g =

∑∞
i=1 giφi. We can easily see that {√µiφi}∞i=1 is an orthonormal basis of Hk.

• For f ∈ L2
ρx such that f =

∑∞
i=1 fiφi ρx-almost everywhere where

∞∑
i=1

f2i
µi

<∞,

we can think f as an element
∑∞
i=1 fiφi in Hk.

• In the definition of ιρx : Hk → L2
ρx , [h]∼ρx means the equivalence class of all measureable functions that is equal to

h ∈ Hk ρx-almost everywhere.

• The adjoint operator ι>ρx : L2
ρx → Hk of ιρx satisfies

ι>ρx([h]∼ρx)(x) = 〈ι>ρx([h]∼ρx), kx〉Hk = 〈h, ιρx(kx)〉L2
ρx

=

∫
k(x, t)h(t) dρx(t).

Thus, Lk = ι>ρxιρx . From this fact and the compactness of ι>ρx (Steinwart & Christmann, 2008), we can see that Lk is
compact, self-adjoint, and positive. Also,

‖ιρxf‖2L2
ρx

= 〈ιρxf, ιρxf〉L2
ρx

= 〈ι>ρxιρxf, f〉Hk = 〈Lkf, f〉Hk = 〈L1/2
k f, L

1/2
k f〉Hk = ‖L1/2

k f‖2Hk . (9)
2In L2

ρx , they are considered as equivalence classes containing continuous functions φi.

13
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• Let D = {(x1, y1), · · · , (xn, yn)} be a labeled dataset. The adjoint S>D : Rn → Hk of SD maps c = [c1, · · · , cn]> ∈
Rn to

S>Dc =
1

n

n∑
i=1

cikxi .

Note that Lk,X = S>DSD. Obviously SD is compact since it has finite rank. Therefore Lk,X is also compact,
self-adjoint, and positive. Similarly as ιρx ,

‖SDf‖22 = 〈SDf, SDf〉2 = 〈S>DSDf, f〉Hk = 〈Lk,D(x)f, f〉Hk = 〈L1/2
k,D(x)f, L

1/2
k,D(x)f〉Hk = ‖L1/2

k,D(x)f‖
2
Hk . (10)

• Since SD only depends on D(x), we naturally define SD as SDf = [f(x1), · · · , f(xn)]> for D(x) = {x1, · · · ,xn}.

• We write kX(·) = [kx1(·), · · · , kxn(·)]> where X = {x1, · · · ,xn} ⊂ X .

• Assumption 3.1 is related to the condition of the noise term and Assumption 3.2 is regarding the regularity of the target
function f0.

• If the noise is uniformly bounded, Gaussian, or sub-Gaussian, then (2) is satisfied (Caponnetto & De Vito, 2007; Lin
et al., 2020a).

• (3) with s = 1 is always satisfied since

N (λ) =

∞∑
i=1

µi
µi + λ

≤
∞∑
i=1

µi
λ
≤ κ2

λ
(11)

which follows from

κ2 ≥
∫
k(x,x) dρx =

∫ ∞∑
i=1

µiφi(x)2 dρx =

∞∑
i=1

µi.

• Since N (λ) =
∑∞
i=1

µi
µi+λ

, it is monotonically decreasing with respect to λ and N (λ) → ∞ as λ ↓ 0. Thus, there
exists λ1 > 0 (e.g., λ1 = µ2) such that N (λ) ≥ 1 for 0 < λ < λ1.

A.2. Details on Section 3.2

• First, consider a noiseless data-free version :

argmin
h∈Hk

J [h] = ‖ιρx(h− f0)‖2L2
ρx

+ λ‖h‖2Hk .

From (9), we obtain
J [h] = 〈h− f0, Lk(h− f0)〉Hk + λ‖h‖2Hk .

Observe that

J [h+ εu]− J [h] = ε · 〈2Lk(h− f0) + 2λh, u〉Hk + o(ε)

since Lk is self-adjoint. By the definition of functional derivatives, we have

∇J [h] = 2Lk(h− f0) + 2λh.

Note that J is strongly convex since ∇2J [h] = 2(Lk + λI) ≥ 2λI holds. From the first order optimality condition,
the minimizer of the optimization problem is

fλ = (Lk + λI)−1Lkf0.

14
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• However, most of regression problems have limited datasets with noisy labels. Let D = {(x1, y1), · · · , (xN , yN )} be
a labeled dataset whose data points are independently drawn from ρx,y . Then the optimization problem is given by

argmin
h∈Hk

J [h] =
1

N

N∑
i=1

(h(xi)− yi)2 + λ‖h‖2Hk = ‖SDh− y‖22 + λ‖h‖2Hk

where y = [y1, · · · , yN ]>. Then,

J [h+ εu]− J [h] = ε · 2〈SDu, SDh− y〉2 + ε · 〈2λh, u〉Hk + o(ε)

= ε · 〈2S>DSDh− 2S>Dy + 2λh, u〉Hk + o(ε).

In other words,
∇J [h] = 2S>DSDh− 2S>Dy + 2λh = 2(Lk,D(x)h− S>Dy + λh).

Note that J is strongly convex since∇2J [h] = 2(Lk,D(x)+λI) ≥ 2λI holds. From the first order optimality condition,
we can see that the minimizer fD,λ is given by

fD,λ = (Lk,D(x) + λI)−1S>Dy.

In the matrix form we have
fD,λ = k>D(x)(NλI +KD(x),D(x))

−1y.

B. Details on Section 4
We now derive (4) and (5) as in Section A.2. Let g ∈ Hk be a teacher model which approximates f0.

• Consider a noiseless data-free version of kernel ridge regression problem with knowledge distillation :

argmin
h∈Hk

J [h] = α‖ιρx(h− f0)‖2L2
ρx

+ (1− α)‖ιρx(h− g)‖2L2
ρx

+ λ‖h‖2Hk

where α ∈ (0, 1) is a distillation hyperparameter and λ > 0 is a regularization hyperparameter. Then

J [h+ εu]− J [h] = ε · 〈2α · Lk(h− f0) + 2(1− α) · Lk(h− g) + 2λh, u〉Hk + o(ε)

and so
∇J [h] = 2α · Lk(h− f0) + 2(1− α) · Lk(h− g) + 2λh.

Again, ∇2J [h] = 2(Lk + λI) ≥ 2λI holds. Also, the minimizer f̃λ of the optmization problem is given by

f̃λ = (Lk + λI)−1(αLkf0 + (1− α)Lkg)

using the first order optimality condition.

• Let D1 = {(x1
1, y

1
1), · · · , (xN1

1 , yN1
1 )} be a dataset to train a student model whose data points are independently

generated from ρx,y. To distill knowledge of the teacher model g, we assume an unlabeled dataset D2(x) =

{x1
2, · · · ,x

N2
2 } whose data points are independently generated from ρx, is given. Then the optimization problem is

argmin
h∈Hk

J [h] = α · 1

N1

N1∑
i=1

(h(xi1)− yi1)2 + (1− α) · 1

N2

N2∑
i=1

(h(xi2)− g(xi2))2 + λ‖h‖2Hk

= α‖SD1
h− y1‖22 + (1− α)‖SD2

(h− g)‖22 + λ‖h‖2Hk

where α ∈ (0, 1) and λ > 0 are hyperparameters and y1 = [y11 , · · · , yN1 ]>. From

J [h+ εu]− J [h] = αε · 2〈SD1
u, SD1

h− y1〉2 + (1− α)ε · 2〈SD2
u, SD2

h− SD2
g〉2 + ε · 〈2λh, u〉Hk + o(ε)

= ε · 〈2αS>D1
SD1

h+ 2(1− α)S>D2
SD2

h− 2αS>D1
y1 − 2(1− α)S>D2

SD2
g + 2λh, u〉Hk + o(ε),
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we have
∇J [h] = 2(αLk,D1(x) + (1− α)Lk,D2(x) + λI)h− 2(αS>D1

y1 + (1− α)Lk,D2(x)g).

Observe that ∇2J [h] = 2(αLk,D1(x) + (1 − α)Lk,D2(x) + λI) ≥ 2λI holds. Applying the first order optimality
condition, the minimizer f̃D,λ of the optimization problem is

f̃D,λ = (αLk,D1(x) + (1− α)Lk,D2(x) + λI)−1(αS>D1
y1 + (1− α)Lk,D2(x)g).

The solution is written in the matrix form as

f̃D,λ =
[
k>D1(x)

k>D2(x)

]
(λI +DKD1(x)∪D2(x),D1(x)∪D2(x))

−1D

[
y1

g(D2(x))

]
(12)

where D = diag(α/N1, · · · , α/N1︸ ︷︷ ︸
N1

, (1− α)/N2, · · · , (1− α)/N2︸ ︷︷ ︸
N2

) and g(D2(x)) = [g(x1
2), · · · , g(xN2

2 )]>.

B.1. Proof of Theorem 4.1

We first prove the following theorem.

Theorem B.1. With the same notation as in Section 4, under Assumption 3.1 and 3.2,

E‖ιρx(f̃D,λ − f0)‖L2
ρx
≤ 9

(
1 +

2
√

2κ2

λ

(
α√
N1

+
1− α√
N2

))(
2ακ(M + γ)√

λN1

+ λ
1
2+r‖g0‖Hk

)
+ (1− α)1/2E

[
‖(Lk + λI)1/2(αLk,D1(x) + (1− α)Lk,D2(x) + λI)−1/2‖‖L1/2

k,D2(x)
(g − f0)‖Hk

]
holds.

Proof of Theorem B.1. Using (9) and Lemma D.3, we have

‖ιρx(f̃D,λ − f0)‖L2
ρx

= ‖L1/2
k (f̃D,λ − f0)‖Hk ≤ ‖(Lk + λI)1/2(f̃D,λ − f0)‖Hk .

By the triangle inequality and the submultiplicativity of the operator norm,

‖(Lk + λI)1/2(f̃D,λ − f0)‖Hk
≤ ‖(Lk + λI)1/2((αLk,D1(x) + (1− α)Lk,D2(x) + λI)−1(αS>D1

y1 + (1− α)Lk,D2(x)f0)− f0)‖Hk
+ (1− α)‖(Lk + λI)1/2(αLk,D1(x) + (1− α)Lk,D2(x) + λI)−1Lk,D2(x)(g − f0)‖Hk . (13)

First, we bound the first term in (13). Note that

(Lk + λI)1/2((αLk,D1(x) + (1− α)Lk,D2(x) + λI)−1(αS>D1
y1 + (1− α)Lk,D2(x)f0)− f0)

= (Lk + λI)1/2(αLk,D1(x) + (1− α)Lk,D2(x) + λI)−1(Lk + λI)1/2(Lk + λI)−1/2(α(S>D1
y1 − Lk,D1(x)f0)− λf0).

Let
Qd = ‖(Lk + λI)1/2(αLk,D1(x) + (1− α)Lk,D2(x) + λI)−1(Lk + λI)1/2‖.

By Lemma D.1, Lemma D.5, the triangle inequality, and the submultiplicativity of the operator norm, we have

Qd ≤ ‖(αLk,D1(x) + (1− α)Lk,D2(x) + λI)−1(Lk + λI)‖
= ‖I + α(αLk,D1(x) + (1− α)Lk,D2(x) + λI)−1(Lk − Lk,D1(x))

+ (1− α)(αLk,D1(x) + (1− α)Lk,D2(x) + λI)−1(Lk − Lk,D2(x))‖

≤ 1 +
1

λ
(α‖Lk,D1(x) − Lk‖+ (1− α)‖Lk,D2(x) − Lk‖). (14)
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On the other hand, by the submultiplicativity of the operator norm and Lemma D.1,

‖(Lk + λI)−1/2α(S>D1
y1 − Lk,D1(x)f0)‖Hk ≤ α‖(Lk + λI)−1/2‖ · ‖S>D1

y1 − Lk,D1(x)f0‖

≤ α√
λ
‖S>D1

y1 − Lk,D1(x)f0‖.

Also,

‖λ(Lk + λI)−1/2f0‖Hk = ‖λ(Lk + λI)−1/2Lrkg0‖Hk ≤ λ
1
2+r‖g0‖Hk (15)

by Lemma D.1. Therefore, by Lemma D.7 and Lemma D.8, we have

‖(Lk + λI)1/2((αLk,D1(x) + (1− α)Lk,D2(x) + λI)−1(αS>D1
y1 + (1− α)Lk,D2(x)f0)− f0)‖Hk

≤

(
1 +

2
√

2κ2

λ

(
α√
N1

+
1− α√
N2

))(
2ακ(M + γ)√

λN1

+ λ
1
2+r‖g0‖Hk

)
(log(6/δ))3/2

with confidence at least 1− δ. By Lemma D.9,

E‖(Lk + λI)1/2((αLk,D1(x) + (1− α)Lk,D2(x) + λI)−1(αS>D1
y1 + (1− α)Lk,D2(x)f0)− f0)‖Hk

≤ 9

(
1 +

2
√

2κ2

λ

(
α√
N1

+
1− α√
N2

))(
2ακ(M + γ)√

λN1

+ λ
1
2+r‖g0‖Hk

)
since Γ(5/2) = 3

√
π/4 < 3/2. The second term in (13) satisfies

(1− α)‖(Lk + λI)1/2(αLk,D1(x) + (1− α)Lk,D2(x) + λI)−1Lk,D2(x)(g − f0)‖Hk
≤ (1− α)‖(Lk + λI)1/2(αLk,D1(x) + (1− α)Lk,D2(x) + λI)−1L

1/2
k,D2(x)

L
1/2
k,D2(x)

(g − f0)‖Hk
≤ (1− α)‖(Lk + λI)1/2(αLk,D1(x) + (1− α)Lk,D2(x) + λI)−1/2‖
· ‖(αLk,D1(x) + (1− α)Lk,D2(x) + λI)−1/2(Lk,D2(x) + λI)1/2‖

· ‖(Lk,D2(x) + λI)−1/2L
1/2
k,D2(x)

‖‖L1/2
k,D2(x)

(g − f0)‖Hk

by the submultiplicativity of the operator norm. Applying Lemma D.1 and

(1− α)1/2‖(αLk,D1(x) + (1− α)Lk,D2(x) + λI)−1/2(Lk,D2(x) + λI)1/2‖ ≤ 1

which follows from Lemma D.2, we obtain that the second term in (13) is bounded by

(1− α)1/2‖(Lk + λI)1/2(αLk,D1(x) + (1− α)Lk,D2(x) + λI)−1/2‖‖L1/2
k,D2(x)

(g − f0)‖Hk

by the submultiplicativity of the operator norm. Taking the expectation completes the proof of Theorem B.1.

The following corollary implies Theorem 4.1.

Corollary B.2. Suppose Assumption 3.1 and 3.2 hold and g is independent of D2(x). With the same notation as in Section
4, if we set α = N1/(N1 +N2) and λ = (N1 +N2)−

1
2r+2 , then

E‖ιρx(f̃D,λ − f0)‖L2
ρx
≤ O

(
(N1 +N2)−

2r+1
4r+4 +

(
E‖ιρx(g − f0)‖2L2

ρx

)1/2)
.

Proof of Corollary B.2. Set α = N1/(N1 + N2) and λ = (N1 + N2)−
1

2r+2 . We will bound the given upper bound of
E‖ιρx(f̃D,λ − f0)‖L2

ρx
in Theorem B.1. We first observe that

1 +
2
√

2κ2

λ

(
α√
N1

+
1− α√
N2

)
= 1 + 2

√
2κ2(N1 +N2)

1
2r+2

(√
N1 +

√
N2

N1 +N2

)
≤ 1 + 4κ2 (16)
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and

2ακ(M + γ)√
λN1

+ λ
1
2+r‖g0‖Hk = 2κ(M + γ)(N1 +N2)

1
4r+4 · N1

N1 +N2
· 1√

N1

+ (N1 +N2)−
2r+1
4r+4 ‖g0‖Hk

≤ (2κM + 2κγ + ‖g0‖Hk) (N1 +N2)−
2r+1
4r+4

since
√
N1 +

√
N2 ≤

√
2(N1 +N2) and

√
N1 ≤

√
N1 +N2. Thus, we know that

9

(
1 +

2
√

2κ2

λ

(
α√
N1

+
1− α√
N2

))(
2ακ(M + γ)√

λN1

+ λ
1
2+r‖g0‖Hk

)
= O

(
(N1 +N2)−

2r+1
4r+4

)
.

Second, by the Cauchy-Schwarz inequality (Conway, 2019),

E
[
(1− α)1/2‖(Lk + λI)1/2(αLk,D1(x) + (1− α)Lk,D2(x) + λI)−1/2‖‖L1/2

k,D2(x)
(g − f0)‖Hk

]
≤
(
E‖(Lk + λI)1/2(αLk,D1(x) + (1− α)Lk,D2(x) + λI)−1/2‖2

)1/2 (
E‖L1/2

k,D2(x)
(g − f0)‖2Hk

)1/2
.

Since
‖(Lk + λI)1/2(αLk,D1(x) + (1− α)Lk,D2(x) + λI)−1/2‖2 = Qd

where Qd is defined in the proof of Theorem B.1, by (14) and Lemma D.7, we have

Qd ≤

(
1 +

2
√

2κ2

λ

(
α√
N1

+
1− α√
N2

))
(log(4/δ))1/2 ≤

(
1 +

2
√

2κ2

λ

(
α√
N1

+
1− α√
N2

))
(log(4/δ)) (17)

with confidence at least 1− δ where δ ∈ (0, 1) and so

E‖(Lk+λI)1/2(αLk,D1(x) +(1−α)Lk,D2(x) +λI)−1/2‖2 ≤ 4Γ

(
3

2

)(
1 +

2
√

2κ2

λ

(
α√
N1

+
1− α√
N2

))
≤ 4(1+4κ2)

by Lemma D.9 and (16) since Γ(3/2) =
√
π/2 < 1. On the other hand, by (10) and the independence of g and D2(x), we

find that

E‖L1/2
k,D2(x)

(g − f0)‖2Hk = E‖SD2
(g − f0)‖22 = E

[
1

N2

N2∑
i=1

(g(xi2)− f0(xi2))2

]
= E

[
E

[
1

N2

N2∑
i=1

(g(xi2)− f0(xi2))2 | g

]]
= E(g(x1

2)− f0(x1
2))2 = E‖ιρx(g − f0)‖2L2

ρx
.

Therefore,

E‖ιρx(f̃D,λ − f0)‖L2
ρx
≤ O

(
(N1 +N2)−

2r+1
4r+4 +

(
E‖ιρx(g − f0)‖2L2

ρx

)1/2)
.

Remark B.3. Since g is fixed in Section 4, we assume g is independent of D2(x) in Corollary B.2. In this case, when g is a
KRR model trained using a dataset D̃ whose size is Ñ such that D̃ is independent of D2(x), we know that(

E‖ιρx(g − f0)‖2L2
ρx

)1/2
= O

(
Ñ−

2r+1
4r+4

)
which can be proved by a similar argument as in the proof of Theorem 3.3 provided in Caponnetto & De Vito (2007). Thus,
we can conclude that the generalization error of f̃D,λ has the convergence rate O

(
min(N1 +N2, Ñ)−

2r+1
4r+4

)
. If D̃ is not

independent of D2(x), then it could be more complicated. However, we can achieve the same result using Lemma D.13
under some assumptions. We deal with this case in Section 5.4.
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C. Proofs and Comments on Section 5
C.1. Proof of Theorem 5.1

We first show the following theorem that is similar to Theorem 13 in Lin et al. (2020a).

Theorem C.1. Let

f̄D,λ =
1

m

m∑
i=1

(Lk,Xi + λI)−1S>Diyi.

Under Assumption 3.1 and 3.2,

E‖ιρx(f̄D,λ − f0)‖2L2
ρx

= O

(
λ2r+1 +

1

λmN
+ λ2r+1B2

)
+O(1) ·

(
λ2r+1B2 +

1

λmN

)
·
(

1 +
κ2

λ

)2

exp

(
− 1

4(κ2 + 1)B

)
·
(

1 +
1

4(κ2 + 1)B

)
holds if 0 < λ ≤ 1 and N (λ) ≥ 1 where

B =
1 + logN (λ)

λN
+

√
1 + logN (λ)

λN
.

Proof of Theorem C.1. We use a similar argument as in Lin et al. (2020a). Recall Proposition 9 in Lin et al. (2020a):

E‖ιρx(f̄D,λ − f0)‖2L2
ρx
≤ 2

(
‖ιρx(fλ − f0)‖2L2

ρx
+

1

m
E
[
Q4(P + S‖fλ‖Hk)2

]
+ E

[
Q4R2‖(Lk + λI)1/2(fλ − f0)‖2Hk

])
where

P = ‖(Lk + λI)−1/2(Lkf0 − S>D1
yD1

)‖Hk ,
Q = ‖(Lk + λI)1/2(Lk,X1 + λI)−1/2‖,
R = ‖(Lk + λI)−1/2(Lk − Lk,X1

)(Lk + λI)−1/2‖,

and
S = ‖(Lk + λI)−1/2(Lk − Lk,X1

)‖.
By (9), Lemma D.1, Lemma D.3, and the submultiplicativity of the operator norm, we have

‖ιρx(fλ − f0)‖2L2
ρx

= ‖L1/2
k (fλ − f0)‖2Hk ≤ ‖(Lk + λI)1/2(fλ − f0)‖2Hk

= ‖λ(Lk + λI)−1/2Lrkg0‖2Hk ≤ λ
2r+1‖g0‖2Hk . (18)

Note that

‖fλ‖Hk = ‖(Lk + λI)−1Lkf0‖Hk ≤ ‖f0‖Hk (19)

by the submultiplicativity of the operator norm and Lemma D.1. Therefore, applying Lemma D.7 and Lemma D.8 leads to

Q4(P + S‖fλ‖Hk)2 ≤ 16κ2(2
√

2κ‖f0‖Hk +M + γ)2
1

λN
(log(6/δ))2

with confidence at least 1− δ for 12 exp(−1/4(κ2 + 1)B) ≤ δ < 1. On the other hand, using the trivial bound

Q ≤ 1√
λ
‖(Lk + λI)1/2‖ ≤

(
κ2 + λ

λ

)1/2

(20)

which follows from the submultiplicativity of the operator norm and ‖(Lk + λI)1/2‖ = (µ1 + λ)1/2 ≤ (κ2 + λ)1/2, we get

Q4(P + S‖fλ‖Hk)2 ≤ 4κ2(2
√

2κ‖f0‖Hk +M + γ)2
(

1 +
κ2

λ

)2
1

λN
(log(6/δ))2
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with confidence at least 1− δ for δ ∈ (0, 1). By Lemma D.10 and Remark D.11,

E
[
Q4(P + S‖fλ‖Hk)2

]
= O

(
1

λN

)
+O(1) · 1

λN
·
(

1 +
κ2

λ

)2

exp

(
− 1

4(κ2 + 1)B

)
·
(

1 +
1

4(κ2 + 1)B

)
.

Next we turn to bound E
[
Q4R2‖(Lk + λI)1/2(fλ − f0)‖2Hk

]
. By Lemma D.7 and (20),

Q4R2 ≤ 16(κ2 + 1)2B2(log(8/δ))2

with confidence at least 1− δ for 8 exp(−1/4(κ2 + 1)B) ≤ δ < 1 and

Q4R2 ≤ 4

(
1 +

κ2

λ

)2

(κ2 + 1)2B2(log(8/δ))2

with confidence at least 1− δ for δ ∈ (0, 1). Again, using (18), Lemma D.10, and Remark D.11, we obtain

E
[
Q4R2‖(Lk + λI)1/2(fλ − f0)‖2Hk

]
= O(λ2r+1B2)

+O(1) · λ2r+1B2 ·
(

1 +
κ2

λ

)2

exp

(
− 1

4(κ2 + 1)B

)
·
(

1 +
1

4(κ2 + 1)B

)
.

Combining the bounds, we are done.

Now, we derive the performance of one-shot ensemble distillation. The following corollary implies Theorem 5.1.

Corollary C.2. Assume Assumption 3.1 and 3.2 hold. Also, assume m ≤ N2r+1−ε for any fixed ε ∈ (0, 1) and Np ≥
(m− 1)N . Let

f̃ iD,λ = (αLk,Xi + (1− α)Lk,Xp + λI)−1(αS>Diyi + (1− α)Lk,Xp f̄D,λ)

which is the local model of client i after one-shot ensemble distillation (i = 1, · · · ,m) where

f̄D,λ =
1

m

m∑
i=1

(Lk,Xi + λI)−1S>Diyi.

Then, with α = 1/m and λ = (mN)−
1

2r+2 ,

E‖ιρx(f̃ iD,λ − f0)‖L2
ρx

= O
(

(mN)−
2r+1
4r+4

)
for any i = 1, · · · ,m.

Proof of Corollary C.2. When m or N increases, Np also increases. Thus, it is enough to show the statement under the
assumption

N
(
N
− 1

2r+2
p

)
≥ 1.

Although we cannot directly apply Corollary B.2, we can show a similar statement using the same way as in the proof of
Corollary B.2. Since

9

(
1 +

2
√

2κ2

λ

(
α√
N1

+
1− α√
N2

))(
2ακ(M + γ)√

λN1

+ λ
1
2+r‖g0‖Hk

)
= O

(
(mN)−

2r+1
4r+4

)
and

E‖(Lk + λI)1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1/2‖2 ≤ 4

(
1 +

2
√

2κ2

λ

(
α√
N

+
1− α√
Np

))
≤ 4(1 + 4κ2),
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we have

E‖ιρx(f̃ iD,λ − f0)‖L2
ρx
≤ O

(
(mN)−

2r+1
4r+4 +

(
E‖ιρx(f̄D,λ − f0)‖2L2

ρx

)1/2)
.

Therefore, it suffices to show that

E‖ιρx(f̄D,λ − f0)‖2L2
ρx

= O
(

(mN)−
2r+1
2r+2

)
.

From m ≤ N2r+1−ε,

B ≤
(

log(eκ2N)

N
ε

2r+2

)1/2
(

1 +

(
log(eκ2N)

N
ε

2r+2

)1/2
)

=
1

N
ε

4(2r+2)

(
log(eκ2N)

N
ε

2(2r+2)

)1/2
(

1 +

(
log(eκ2N)

N
ε

2r+2

)1/2
)
.

Since

f(x) =

(
log(eκ2x)

x
ε

2(2r+2)

)1/2
(

1 +

(
log(eκ2x)

x
ε

2r+2

)1/2
)

is continuous on [1,∞) and vanishes at∞, f(x) ≤ C(κ, r, ε) holds for some C(κ, r, ε) which only depends on κ, r and ε.
Then

B ≤ C(κ, r, ε)
1

N
ε

4(2r+2)
.

Also, since 0 < B ≤ C(κ, r, ε) and

g(x) =
1

xβ
exp

(
− 1

4(κ2 + 1)x

)
is continuous on (0, C(κ, r, ε)] and vanishes at 0+,

1

Bβ
exp

(
− 1

4(κ2 + 1)B

)
≤ C ′(κ, r, ε, β)

for some C ′(κ, r, ε, β) which only depends on κ, r, ε and β when β > 0 is a fixed constant. Taking β = 1 + 8
ε (2r + 2), we

find that

exp

(
− 1

4(κ2 + 1)B

)
≤ B1+

8(2r+2)
ε · C ′

(
κ, r, ε, 1 +

8(2r + 2)

ε

)
≤ C(κ, r, ε)

8(2r+2)
ε C ′

(
κ, r, ε, 1 +

8(2r + 2)

ε

)
· B · 1

N2
.

Hence, (
1 +

κ2

λ

)2

exp

(
− 1

4(κ2 + 1)B

)
·
(

1 +
1

4(κ2 + 1)B

)
≤ (1 + κ2)2N2C(κ, r, ε)

8(2r+2)
ε C ′

(
κ, r, ε, 1 +

8(2r + 2)

ε

)
· B · 1

N2
·
(

1 +
1

4(κ2 + 1)B

)
= O(1).

As a consequence, by Theorem C.1, we get

E‖ιρx(f̄D,λ − f0)‖2L2
ρx

= O

(
λ2r+1 +

1

λmN
+ λ2r+1B2

)
+O(1) ·

(
λ2r+1B2 +

1

λmN

)
·
(

1 +
κ2

λ

)2

exp

(
− 1

4(κ2 + 1)B

)
·
(

1 +
1

4(κ2 + 1)B

)
= O

(
λ2r+1 +

1

λmN

)
= O

(
(mN)−

2r+1
2r+2 + (mN)−

2r+1
2r+2

)
= O

(
(mN)−

2r+1
2r+2

)
.

Remark C.3. In the proof of Corollary C.2, m ≤ N2r+1 is not sufficient to derive the same result since this condition does
not guarantee the boundedness of B.
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C.2. Proof of Theorem 5.2

Define an affine operator H : Hk → Hk by

Hg = (αLk,X1
+ (1− α)Lk,Xp + λI)−1(αS>D1

y1 + (1− α)Lk,Xpg)

which is a unique solution of

argmin
h∈Hk

J [h] = α · 1

N1

N1∑
i=1

(h(xi1)− yi1)2 + (1− α) · 1

N2

N2∑
i=1

(h(xi2)− g(xi2))2 + λ‖h‖2Hk .

Therefore, the limiting regressor of the local model f1 is H∞fD1,λ = limt→∞HtfD1,λ after infinitely many iterations in
Algorithm 1. Now, we prove the following theorem which is a more general statement of Theorem 5.2.

Theorem C.4. For any initial point h0 ∈ Hk, Hth0 converges to a unique fixed point fD1,λ/α of H as t→∞.

Proof of Theorem C.4. Define another operator H̄ : Hk → Hk by

H̄g = L
1/2
k,Xp

(αLk,X1 + (1− α)Lk,Xp + λI)−1(αS>D1
y1 + (1− α)L

1/2
k,Xp

g).

Observe that

‖H̄g1 − H̄g2‖Hk ≤
∥∥∥(1− α)L

1/2
k,Xp

(αLk,X1
+ (1− α)Lk,Xp + λI)−1L

1/2
k,Xp

∥∥∥ ‖g1 − g2‖Hk .
Since

(1− α)Lk,Xp < αLk,X1
+ (1− α)Lk,Xp + λI

and (1− α)Lk,Xp is of finite rank which implies it is compact, we have∥∥∥(1− α)L
1/2
k,Xp

(αLk,X1 + (1− α)Lk,Xp + λI)−1L
1/2
k,Xp

∥∥∥ < 1

by Lemma D.2. Thus, H̄ is a η-contraction where η ∈ (0, 1). By the Banach fixed point theorem (Banach, 1922), H̄th0
converges to a unique fixed point ḡ∗ of H̄ as t→∞. Define operators

A = L
1/2
k,Xp

and B = (αLk,X1
+ (1− α)Lk,Xp + λI)−1(αS>D1

y1 + (1− α)L
1/2
k,Xp
·).

Then Hh = BAh and H̄h = ABh for any h ∈ Hk. From the definition of ḡ∗,

Bḡ∗ = BH̄ḡ∗ = BABḡ∗ = HBḡ∗

which implies that
Bḡ∗ = (αLk,X1 + (1− α)Lk,Xp + λI)−1(αS>D1

y1 + (1− α)L
1/2
k,Xp

ḡ∗)

is a fixed point of H . Let g∗ be a fixed point of H , i.e., g∗ satisfies

Hg∗ = (αLk,X1 + (1− α)Lk,Xp + λI)−1(αS>D1
y1 + (1− α)Lk,Xpg

∗) = g∗.

Then,
αS>D1

y1 + (1− α)Lk,Xpg
∗ = (αLk,X1 + (1− α)Lk,Xp + λI)g∗,

i.e.,
g∗ = (Lk,X1

+ λ/αI)−1S>D1
y1 = fD1,λ/α.

Hence, H has a unique a fixed point and so Hth0 = BH̄t−1Ah0 converges to Bḡ∗ = g∗ = fD1,λ/α as t→∞.

Remark C.5. Note that H may not be a contraction since

‖(A+B + I)−1B‖ < 1

may not be true even if operators A and B are positive compact operators on a Hilbert space. So we have to follow the
above argument.
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Algorithm 2 KRR with iterative De-regularized Ensemble Distillation in FL

1: Input: hyperparameters α ∈ (0, 1), λ > 0, λ0 ≥ 0 and t ∈ N
2: Output: Trained model fj , j = 1, · · · ,m
3: Pretrain: For j = 1, · · · ,m, client j trains its model fj using the loss function

argmin
h∈Hk

1

N

N∑
i=1

(h(xij)− yij)2 + λ‖h‖2Hk .

4: Each client downloads the unlabeled public dataset Dp(x).
5: for t0 = 1, · · · , t do
6: For j = 1, · · · ,m, client j predicts on Dp(x) and upload the prediction ỹjp to server.
7: The server computes an updated consensus

ỹp =
1

m

m∑
j=1

ỹjp.

8: if t0 6= t then
9: The server applies the de-regularization trick to ỹp:

ỹp = (SDp(Lk,Xp + λ0I)−1S>Dp)−1ỹp.

10: end if
11: Each client downloads the ensemble prediction ỹp.
12: For j = 1, · · · ,m client j updates its model fj using the loss function

argmin
h∈Hk

α · 1

N

N∑
i=1

(h(xij)− yij)2 + (1− α) · 1

Np

Np∑
i=1

(h(xip)− (ỹp)
i)2 + λ‖h‖2Hk .

13: end for

C.3. Algorithm on KRR with Iterative De-regularized Ensemble Distillation in Federated Learning Setting

Applying the de-regularization trick except the last ensemble distillation step, we provide Algorithm 2.

C.4. Proof of Theorem 5.3

Similarly as in Appendix C.2, define an affine operator T : Hk → Hk by

Tg = (αLk,X1
+ (1− α)Lk,Xp + λI)−1(αS>D1

y1 + (1− α)S>Dp(SDp(Lk,Xp + λ0I)−1S>Dp)−1SDpg).

Then the limiting regressor of the local model f1 is T∞fD1,λ = limt→∞ T tfD1,λ after infinitely many ensemble distillation
steps with the de-regularization trick. As a result, the final local model is given by

(αLk,X1
+ (1− α)Lk,Xp + λI)−1(αS>D1

y1 + (1− α)Lk,XpT
∞fD1,λ).

We deal with T∞fD1,λ in this subsection to obtain some motivations. Before we prove Theorem 5.3, we provide the
following lemma.

Lemma C.6. Assume KXp,Xp > 0. Then,

S>Dp(SDp(Lk,Xp + λ0I)−1S>Dp)−1SDp = Lk,Xp + λ0PDp

holds where PDp is the orthogonal projection onto a subspace

span (k(x, ·) : x ∈ Dp(x))

of the reproducing kernel Hilbert space Hk.
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Proof of Lemma C.6. Note that

(Lk,Xp + λ0I)−1S>Dpv =
[
k(·,x1

p) · · · k(·,xNpp )
]

(KXp,Xp +Npλ0I)−1v

and so
SDp(Lk,Xp + λ0I)−1S>Dpv = KXp,Xp(KXp,Xp +Npλ0I)−1v.

We thus obtain

(Lk,Xp − S>Dp(SDp(Lk,Xp + λ0I)−1S>Dp)−1SDp)h = S>Dp(I − (SDp(Lk,Xp + λ0I)−1S>Dp)−1)SDph

= S>Dp

−Npλ0K−1Xp,Xp
 h(x1

p)
...

h(x
Np
p )




= −λ0
[
k(·,x1

p) · · · k(·,xNpp )
]
K−1Xp,Xp

 h(x1
p)

...
h(x

Np
p )

 .
On the other hand, from

SDpS
>
Dpv = SDp

 1

Np

Np∑
i=1

vik(xip, ·)

 =
1

Np
KXp,Xpv,

we have

S>Dp(SDpS
>
Dp)−1SDph = S>Dp

NpK−1Xp,Xp
 h(x1

p)
...

h(x
Np
p )


 =

[
k(·,x1

p) · · · k(·,xNpp )
]
K−1Xp,Xp

 h(x1
p)

...
h(x

Np
p )

 .
Therefore,

Lk,Xp − S>Dp(SDp(Lk,Xp + λ0I)−1S>Dp)−1SDp = −λ0S>Dp(SDpS
>
Dp)−1SDp ,

i.e.,
S>Dp(SDp(Lk,Xp + λ0I)−1S>Dp)−1SDp = Lk,Xp + λ0S

>
Dp(SDpS

>
Dp)−1SDp .

Set P = S>Dp(SDpS
>
Dp

)−1SDp . Then we observe that

(i) P is idempotent since

P 2 = S>Dp(SDpS
>
Dp)−1SDpS

>
Dp(SDpS

>
Dp)−1SDp = S>Dp(SDpS

>
Dp)−1SDp = P.

(ii) P is symmetric since

P> = (S>Dp(SDpS
>
Dp)−1SDp)> = S>Dp((SDpS

>
Dp)−1)>SDp

= S>Dp((SDpS
>
Dp)>)−1SDp = S>Dp(SDpS

>
Dp)−1SDp = P.

(iii) The range of P is span (k(x, ·) : x ∈ Dp(x)) since the range of S>Dp is contained in span (k(x, ·) : x ∈ Dp(x)) and
for any u(·) ∈ span (k(x, ·) : x ∈ Dp(x)) there exists v ∈ RNp such that u = S>Dpv which satisfies

PS>Dpv = S>Dp(SDpS
>
Dp)−1SDpS

>
Dpv = S>Dpv = u.

By Proposition 3.3 of chapter 2 in Conway (2019), P is the orthogonal projection of Hk onto span (k(x, ·) : x ∈ Dp(x)).

From the above lemma, we can applied the Banach fixed point theorem (Banach, 1922) again as before.
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Lemma C.7. Assume (1− α)λ0 < λ and KXp,Xp > 0. Define an operator T̄ : Hk → Hk as

T̄ g = (S>Dp(SDp(Lk,Xp + λ0I)−1S>Dp)−1SDp)1/2

(αLk,X1
+ (1− α)Lk,Xp + λI)−1(αS>D1

y1 + (1− α)(S>Dp(SDp(Lk,Xp + λ0I)−1S>Dp)−1SDp)1/2g).

Then T̄ is a η-contraction where η ∈ (0, 1). Thus, T̄ tg converges to a unique fixed point g̃∗ of T̄ as t→∞.

Proof of Lemma C.7. By Lemma C.6,

T̄ g = (Lk,Xp + λ0PDp)1/2(αLk,X1
+ (1− α)Lk,Xp + λI)−1(αS>D1

y1 + (1− α)(Lk,Xp + λ0PDp)1/2g).

Since PDp is a projection, 0 ≤ PDp ≤ I and so

Lk,Xp ≤ Lk,Xp + λ0PDp ≤ Lk,Xp + λ0I.

Thus,

0 ≤ (1− α)(Lk,Xp + λ0PDp) < αLk,X1
+ (1− α)Lk,Xp + λI. (21)

Since (1− α)(Lk,Xp + λ0PDp) is of finite rank which implies it is compact, by Lemma D.2,

‖(1− α)(Lk,Xp + λ0PDp)1/2(αLk,X1 + (1− α)Lk,Xp + λI)−1(Lk,Xp + λ0PDp)1/2‖ < 1. (22)

Hence, from the submultiplicativity of the operator norm, we have

‖T̄ g1 − T̄ g2‖Hk = ‖(1− α)(Lk,Xp + λ0PDp)1/2(αLk,X1 + (1− α)Lk,Xp + λI)−1(Lk,Xp + λ0PDp)1/2(g1 − g2)‖Hk
≤ ‖(1− α)(Lk,Xp + λ0PDp)1/2(αLk,X1

+ (1− α)Lk,Xp + λI)−1(Lk,Xp + λ0PDp)1/2‖‖g1 − g2‖Hk ,

i.e., T̄ is a η-contraction where η < 1. Applying the Banach fixed point theorem (Banach, 1922), we are done.

Similarly as in Appendix C.2, we prove the following general statement. Obviously, the following theorem implies Theorem
5.3.
Theorem C.8. Assume λ0 = λ and KXp,Xp > 0. For any h0 ∈ Hk, T th0 converges to a unique fixed point(

Lk,X1
+ λI +

1− α
α

λP⊥Dp(x)

)−1
S>D1

y1

of T as t→∞.

Proof of Theorem C.8. Let

A = (Lk,Xp + λ0PDp)1/2, B = (αLk,X1
+ (1− α)Lk,Xp + λI)−1(αS>D1

y1 + (1− α)(Lk,Xp + λ0PDp)1/2·).

Then Th = BAh and T̄ h = ABh for any h ∈ Hk. Let ḡ∗ be a unique fixed point of T̄ where the existence and the
uniqueness of the fixed point of T̄ follow from Lemma C.7. From the definition,

Bḡ∗ = BT̄ ḡ∗ = BABḡ∗ = TBḡ∗

holds, i.e., Bḡ∗ is a fixed point of T . Let g∗ be a fixed point of T . From

Tg∗ = (αLk,X1
+ (1− α)Lk,Xp + λI)−1(αS>D1

y1 + (1− α)(Lk,Xp + λ0PDp)g∗) = g∗,

we obtain
(αLk,X1 + λI − (1− α)λ0PDp)g∗ = αS>D1

y1.

Set λ0 = λ. Then
λI − (1− α)λ0PDp = αλI + (1− α)λ(I − PDp).

By Proposition 3.2 of chapter 2 in Conway (2019), I − PDp = P⊥Dp . Therefore,

g∗ =

(
Lk,X1

+ λI +
1− α
α

λP⊥Dp(x)

)−1
S>D1

y1.

In particular, a fixed point of T is unique. Consequently, T th0 = BT̄ t−1Ah0 converges to g∗ as t→∞ by Lemma C.7.
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Remark C.9. Without the de-regularization trick, the fixed point of H is(
Lk,X1

+
λ

α
I

)−1
S>D1

y1.

With the de-regularization trick, the fixed point of T is(
Lk,X1

+ λI +
1− α
α

λP⊥Dp(x)

)−1
S>D1

y1.

Thus, we can see that the de-regularization replaces 1−α
α λI by 1−α

α λP⊥Dp(x).

C.5. Proof of Theorem 5.4

Proof of Theorem 5.4. Using the formula

A−1 −B−1 = A−1(B −A)B−1, (23)

we have

f̃D,λ − fD1,λ = −
(
Lk,X1

+ λI +
1− α
α

λ(I − PDp(x))
)−1(

1− α
α

λ(I − PDp(x))
)

(Lk,X1
+ λI)

−1
S>D1

y1.

By Theorem 11 in Aydın & Gheondea (2021),

(I − PDp(x)) (Lk,X1 + λI)
−1
S>D1

y1 → 0

almost surely as Np →∞. Therefore, by Lemma D.1,

‖f̃D,λ − fD1,λ‖Hk ≤

∥∥∥∥∥
(
Lk,X1

+ λI +
1− α
α

λ(I − PDp(x))
)−1∥∥∥∥∥ · 1− α

α
λ ·
∥∥∥(I − PDp(x)) (Lk,X1

+ λI)
−1
S>D1

y1

∥∥∥
Hk

≤ 1− α
α

∥∥∥(I − PDp(x)) (Lk,X1
+ λI)

−1
S>D1

y1

∥∥∥
Hk
→ 0

almost surely as Np →∞.

Remark C.10. To apply the result provided in Aydın & Gheondea (2021), we assume that the density ρx is strictly positive
on any non-empty open subset of X in this case. In Section 5.4, we assume Assumption 3.2 with 0 < r ≤ 1

2 instead of this
condition to control the error.

C.6. Proof of Theorem 5.5

In this subsection, we assume λ0 = λ and KXp,Xp > 0. Similarly as before, we define an affine operator T : Hk → Hk by

Tg =

m∑
i=1

1

m
(αLk,Xi + (1− α)Lk,Xp + λI)−1(αS>Diyi + (1− α)S>Dp(SDp(Lk,Xp + λ0I)−1S>Dp)−1SDpg)

=

m∑
i=1

1

m
(αLk,Xi + (1− α)Lk,Xp + λI)−1(αS>Diyi + (1− α)(Lk,Xp + λPDp(x))g) (24)

where the second equality follows from Lemma C.6. Also, define T̄ : Hk → Hk as

T̄ g =

m∑
i=1

1

m
(Lk,Xp + λPDp(x))

1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1(αS>Diyi + (1− α)(Lk,Xp + λPDp(x))
1/2g).

Here, PDp(x) is the orthogonal projection onto a subspace

span (k(x, ·) : x ∈ Dp(x))
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of the reproducing kernel Hilbert space Hk. By the submultiplicativity of the operator norm, the triangle inequality, and
(22), we have

‖T̄ g1 − T̄ g2‖Hk ≤
1

m

m∑
i=1

‖(Lk,Xp + λPDp(x))
1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1(1− α)(Lk,Xp + λPDp(x))

1/2‖·

‖g1 − g2‖Hk
and

1

m

m∑
i=1

‖(Lk,Xp + λPDp(x))
1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1(1− α)(Lk,Xp + λPDp(x))

1/2‖ < 1,

i.e., T̄ is a η-contraction where η < 1. Set

A = (Lk,Xp + λPDp(x))
1/2, B =

m∑
i=1

1

m
(αLk,Xi + (1− α)Lk,Xp + λI)−1(αS>Diyi + (1− α)(Lk,Xp + λPDp(x))

1/2·).

Then Th = BAh and T̄ h = ABh for any h ∈ Hk. Let ḡ∗ be a unique fixed point of T̄ where the existence and the
uniqueness of a fixed point of T̄ follows from the Banach fixed point theorem (Banach, 1922). Then, for any h0 ∈ Hk,
T th0 = BT̄ t−1Ah0 converges to Bḡ∗. The following lemma is regarding the computation of Bḡ∗.
Lemma C.11. With the same notation as given above,

Bḡ∗ = α ·
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1S>Diyi +

(
1

m

m∑
i=1

(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1U1/2

)

α

(
I −

1

m

m∑
i=1

U1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1U1/2

)−1

U1/2

(
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1S>Diyi

)

where
U = Lk,Xp + λPDp(x) = S>Dp(SDp(Lk,Xp + λ0I)−1S>Dp)−1SDp .

Proof. From the definition of ḡ∗, we have

ḡ∗ =

m∑
i=1

1

m
U1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1(αS>Diyi + (1− α)U1/2ḡ∗).

Note that, from (21),

0 ≤ 1

m

m∑
i=1

U1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1U1/2 < I

which implies that
(
I − 1

m

∑m
i=1 U

1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1U1/2
)

is invertible. Hence,

ḡ∗ = α

(
I − 1

m

m∑
i=1

U1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1U1/2

)−1
U1/2

(
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1S>Diyi

)
. (25)

Plugging (25) into Bḡ∗ yields

Bḡ∗ =

m∑
i=1

1

m
(αLk,Xi + (1− α)Lk,Xp + λI)−1(αS>Diyi + (1− α)U1/2ḡ∗)

= α ·
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1S>Diyi +

(
1

m

m∑
i=1

(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1U1/2

)

α

(
I −

1

m

m∑
i=1

U1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1U1/2

)−1

U1/2

(
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1S>Diyi

)
.
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Since Algorithm 2 conducts knowledge distillation on the public dataset Dp(x) using Bḡ∗ in the last step, it suffices to
evaluate the performance of Bḡ∗ on Dp(x). To this end, we need two additional lemmas: Lemma C.12 and Lemma C.13.
Lemma C.12 can be viewed as an extension of the distributed semi-supervised kernel ridge regression (Chang et al., 2017).

Lemma C.12. Assume m ≥ 2, Assumption 3.1 and 3.2. Let

fsD,λ =
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1S>Diyi.

Then,

‖SDp(fsD,λ − f0)‖2 ≤ Λ +
1

m

m∑
i=1

Λi

where Λ and Λi are random variables for i = 1, · · · ,m such that Λ ≤ Λ̃(log(6/δ))5/4 with confidence at least 1− δ and
each Λi ≤ Λ̃i(log(6/δ))3/2 with confidence at least 1− δ. Here,

Λ̃ =
1

1− α
·

(
1 +

1

λ
· 2
√

2κ2√
Np

)1/2(
2κ(M + γ)√

λmN
+

2
√

2κ2‖f0‖Hk√
λmN

)
+

2
√

2κ2‖f0‖Hk√
λNp

+

(
1 +

1

λ
· 2
√

2κ2√
Np

)1/2

· λ1/2+r‖g0‖Hk

and

Λ̃i =
α

(1− α)
√
λ
·

(
2κ(M + γ)

λ
√
N

+
2
√

2κ2‖f0‖Hk
λ
√
N

+

(
1 +

1− α
λ
· 2
√

2κ2√
Np

)
‖f0‖Hk

)
2
√

2κ2√
N

.

In particular, under the assumption that Np ≥ (m − 1)N , with α = 1/m and λ = (mN)−
1

2r+2 , we have

Λ̃ = O
(

(mN)−
2r+1
4r+4

)
and Λ̃i = O

(
(mN)−

2r+1
4r+4

)
for i = 1, · · · ,m, which implies that

E‖SDp(fsD,λ − f0)‖2 = O
(

(mN)−
2r+1
4r+4

)
.

Proof of Lemma C.12. Using (10) and Lemma D.3, we obtain

‖SDp(fsD,λ − f0)‖2 =
∥∥∥L1/2

k,Xp
(fsD,λ − f0)

∥∥∥
Hk
≤
∥∥∥(Lk,Xp + λI)1/2(fsD,λ − f0)

∥∥∥
Hk
.

Define

f̃sD,λ = (αLk + (1− α)Lk,Xp + λI)−1S>Dy =
1

m

m∑
i=1

(αLk + (1− α)Lk,Xp + λI)−1S>Diyi

where y = [y>1 , · · · ,y>m]>. By the triangle inequality,∥∥∥(Lk,Xp + λI)1/2(fsD,λ − f0)
∥∥∥
Hk
≤
∥∥∥(Lk,Xp + λI)1/2(f̃sD,λ − f0)

∥∥∥
Hk

+
∥∥∥(Lk,Xp + λI)1/2(fsD,λ − f̃sD,λ)

∥∥∥
Hk
. (26)

First, we bound the first term in (26). Note that

(Lk,Xp + λI)1/2(f̃sD,λ − f0) = (Lk,Xp + λI)1/2(αLk + (1− α)Lk,Xp + λI)−1(S>Dy − Lkf0)

+ (Lk,Xp + λI)1/2((αLk + (1− α)Lk,Xp + λI)−1 − (Lk + λI)−1)Lkf0

+ (Lk,Xp + λI)1/2(fλ − f0). (27)
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Define

Qp = ‖(Lk,Xp + λI)−1/2(Lk + λI)1/2‖,
Q̃p = ‖(Lk,Xp + λI)1/2(Lk + λI)−1/2‖,
P = ‖(Lk + λI)−1/2(S>Dy − Lk,Xf0)‖Hk ,
S = ‖Lk,X − Lk‖,

and
Sp = ‖Lk,Xp − Lk‖.

Note that, by Lemma D.2,

αLk + (1− α)Lk,Xp + λI ≥ (1− α)(Lk,Xp + λI)

⇒ ‖(Lk,Xp + λI)1/2(αLk + (1− α)Lk,Xp + λI)−1(Lk,Xp + λI)1/2‖ ≤ 1

1− α
. (28)

Thus, the first term in (27) satisfies

‖(Lk,Xp + λI)1/2(αLk + (1− α)Lk,Xp + λI)−1(S>Dy − Lkf0)‖Hk ≤
1

1− α
Qp
(
P +

‖f0‖Hk√
λ
S
)
.

Also, the third term in (27) satisfies

‖(Lk,Xp + λI)1/2(fλ − f0)‖Hk ≤ Q̃p‖(Lk + λI)1/2(fλ − f0)‖Hk

and the second term in (27) satisfies

‖(Lk,Xp + λI)1/2((αLk + (1− α)Lk,Xp + λI)−1 − (Lk + λI)−1)Lkf0‖Hk
= ‖(Lk,Xp + λI)1/2(αLk + (1− α)Lk,Xp + λI)−1(1− α)(Lk − Lk,Xp)(Lk + λI)−1Lkf0‖Hk
≤ ‖(Lk,Xp + λI)−1/2‖ · Sp · ‖fλ‖Hk

by the submultiplicativity of the operator norm, (23), and (28). Combining them yields

‖(Lk,Xp + λI)1/2(f̃sD,λ − f0)‖Hk ≤
1

1− α
Qp
(
P +

‖f0‖Hk√
λ
S
)

+
‖f0‖Hk√

λ
Sp + Q̃p‖(Lk + λI)1/2(fλ − f0)‖Hk (29)

by Lemma D.1 and (19). From

‖(Lk + λI)1/2(fλ − f0)‖Hk = ‖λ(Lk + λI)−1/2f0‖Hk = ‖λ(Lk + λI)−1/2Lrkg0‖Hk ≤ λ1/2+r‖g0‖Hk

which follows from Lemma D.1 and the submultiplicativity of the operator norm, the inequality (29) becomes

‖(Lk,Xp + λI)1/2(f̃sD,λ − f0)‖Hk ≤
1

1− α
Qp
(
P +

‖f0‖Hk√
λ
S
)

+
‖f0‖Hk√

λ
Sp + Q̃pλ1/2+r‖g0‖Hk .

Now, we derive PAC-bounds for Qp, Q̃p, P , S, and Sp. By Lemma D.1, Lemma D.4, the triangle inequality, and the
submultiplicativity of the operator norm, we have

Qp ≤ ‖(Lk,Xp + λI)−1(Lk + λI)‖1/2 = ‖I + (Lk,Xp + λI)−1(Lk − Lk,Xp)‖1/2 ≤
(

1 +
1

λ
‖Lk − Lk,Xp‖

)1/2

(30)

and

Q̃p ≤ ‖(Lk,Xp + λI)(Lk + λI)−1‖1/2 = ‖I + (Lk,Xp − Lk)(Lk,Xp + λI)−1‖1/2 ≤
(

1 +
1

λ
‖Lk − Lk,Xp‖

)1/2

.
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By Lemma D.7 and Lemma D.8, with confidence at least 1− δ,

‖Lk,X − Lk‖ ≤
2
√

2κ2√
mN

(log(6/δ))1/2, ‖Lk,Xp − Lk‖ ≤
2
√

2κ2√
Np

(log(6/δ))1/2 and P ≤ 2κ(M + γ)√
λmN

log(6/δ)

where δ ∈ (0, 1). Then (
1 +

1

λ
‖Lk − Lk,Xp‖

)1/2

≤

(
1 +

1

λ
· 2
√

2κ2√
Np

)1/2

(log(6/δ))1/4.

Therefore,

‖(Lk,Xp + λI)1/2(f̃sD,λ − f0)‖Hk ≤
1

1− α
·

(
1 +

1

λ
· 2
√

2κ2√
Np

)1/2(
2κ(M + γ)√

λmN
+

2
√

2κ2‖f0‖Hk√
λmN

)
(log(6/δ))5/4

+
‖f0‖Hk√

λ
· 2
√

2κ2√
Np

(log(6/δ))1/2 +

(
1 +

1

λ
· 2
√

2κ2√
Np

)1/2

· λ1/2+r‖g0‖Hk(log(6/δ))1/4

with confidence at least 1− δ. Define

Λ̃ :=
1

1− α
·

(
1 +

1

λ
· 2
√

2κ2√
Np

)1/2(
2κ(M + γ)√

λmN
+

2
√

2κ2‖f0‖Hk√
λmN

)

+
2
√

2κ2‖f0‖Hk√
λNp

+

(
1 +

1

λ
· 2
√

2κ2√
Np

)1/2

· λ1/2+r‖g0‖Hk .

Then
‖(Lk,Xp + λI)1/2(f̃sD,λ − f0)‖Hk ≤ Λ̃(log(6/δ))5/4

with confidence at least 1− δ. We next bound the second term ‖(Lk,Xp + λI)1/2(f̃sD,λ − fsD,λ)‖Hk in (26). First, we bound
the norm of

f̃s,iD,λ = (αLk + (1− α)Lk,Xp + λI)−1S>Diyi.

Observe that

f̃s,iD,λ = (αLk + (1− α)Lk,Xp + λI)−1(S>Diyi − Lkf0) + (αLk + (1− α)Lk,Xp + λI)−1(Lk + λI)(Lk + λI)−1Lkf0.

Set
Q′p = ‖(αLk + (1− α)Lk,Xp + λI)−1(Lk + λI)‖.

By Lemma D.1 and the submultiplicativity of the operator norm, we have

Q′p = ‖I + (1− α)(αLk + (1− α)Lk,Xp + λI)−1(Lk − Lk,Xp)‖ ≤ 1 +
1− α
λ
‖Lk − Lk,Xp‖.

Again, applying Lemma D.1, the submultiplicativity of the operator norm, the triangle inequality, and (19), we obtain

‖f̃s,iD,λ‖Hk ≤
1

λ
‖S>Diyi − Lkf0‖Hk +

(
1 +

1− α
λ
‖Lk − Lk,Xp‖

)
‖f0‖Hk .

Now, by the submultiplicativity of the operator norm, the triangle inequality, and (23),

‖(Lk,Xp + λI)1/2(f̃sD,λ − fsD,λ)‖Hk

≤ 1

m

m∑
i=1

‖(Lk,Xp + λI)1/2((αLk + (1− α)Lk,Xp + λI)−1 − (αLk,Xi + (1− α)Lk,Xp + λI)−1)S>Diyi‖Hk

≤ 1

m

m∑
i=1

‖(Lk,Xp + λI)1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1α(Lk,Xi − Lk)f̃s,iD,λ‖Hk .
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Simliarly as in (28), we can easily see that

‖(Lk,Xp + λI)1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1(Lk,Xp + λI)1/2‖ ≤ 1

1− α
. (31)

Then, applying (31), Lemma D.1, and the submultiplicativity of the operator norm yields

1

m

m∑
i=1

‖(Lk,Xp + λI)1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1α(Lk,Xi − Lk)f̃s,iD,λ‖Hk

≤ 1

m

m∑
i=1

α

(1− α)
√
λ
‖Lk,Xi − Lk‖Hk‖f̃

s,i
D,λ‖Hk .

To find a PAC-bound of ‖Lk,Xi − Lk‖‖f̃
s,i
D,λ‖Hk , we use Lemma D.7 and Lemma D.8. Then, with confidence at least 1− δ,

‖Lk,Xp − Lk‖ ≤
2
√

2κ2√
Np

(log(6/δ))1/2, ‖Lk,Xi − Lk‖ ≤
2
√

2κ2√
N

(log(6/δ))1/2,

and

‖S>Diyi − Lk,Xif0‖Hk ≤
2κ(M + γ)√

N
log(6/δ).

Therefore,

‖Lk,Xi − Lk‖‖f̃
s,i
D,λ‖Hk ≤

(
2κ(M + γ)

λ
√
N

+
2
√

2κ2‖f0‖Hk
λ
√
N

+

(
1 +

1− α
λ
· 2
√

2κ2√
Np

)
‖f0‖Hk

)
2
√

2κ2√
N

(log(6/δ))3/2

with confidence at least 1− δ. Define

Λ̃i =
α

(1− α)
√
λ
·

(
2κ(M + γ)

λ
√
N

+
2
√

2κ2‖f0‖Hk
λ
√
N

+

(
1 +

1− α
λ
· 2
√

2κ2√
Np

)
‖f0‖Hk

)
2
√

2κ2√
N

for i = 1, · · · ,m. Then
α

(1− α)
√
λ
‖Lk,Xi − Lk‖Hk‖f̃

s,i
D,λ‖Hk ≤ Λ̃i(log(6/δ))3/2

with confidence at least 1 − δ for any i = 1, · · · ,m. Now, we set α = 1/m and λ = (mN)−
1

2r+2 . We also assume that
Np ≥ (m− 1)N . Then

1 ≤

(
1 +

1− α
λ
· 2
√

2κ2√
Np

)
≤

(
1 +

1

λ
· 2
√

2κ2√
Np

)
≤ (1 + 4κ2)

and (
2κ(M + γ)

λ
√
N

+
2
√

2κ2‖f0‖Hk
λ
√
N

)
≤ (2κ(M + γ) + 2

√
2κ2‖f0‖Hk) ·m1/(2r+2).

Thus, we have

Λ̃ ≤ 2(1 + 4κ2)1/2 · 2κ(M + γ) + 2
√

2κ2‖f0‖Hk
(mN)(2r+1)/(4r+4)

+
4κ2‖f0‖Hk

(mN)(2r+1)/(4r+4)
+

(1 + 4
√

2κ2)1/2‖g0‖Hk
(mN)(2r+1)/(4r+4)

= O
(

(mN)−
2r+1
4r+4

)
and

Λ̃i ≤ 4
√

2κ2 · (2κ(M + γ) + (1 + (4 + 2
√

2)κ2)‖f0‖Hk) · m
1/(2r+2)

m1/2
· 1

(mN)(2r+1)/(4r+4)
= O

(
(mN)−

2r+1
4r+4

)
.

By Lemma D.9, we conclude that

E‖SDp(fsD,λ − f0)‖2 ≤ EΛ +
1

m

m∑
i=1

EΛi = O
(

(mN)−
2r+1
4r+4

)
.
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The second lemma is regarding the convergence rate of ‖f0 − PDpf0‖Hk . Aydın & Gheondea (2021) prove that ‖f0 −
PDpf0‖Hk → 0 as Np →∞ under the condition that the density ρx is strictly positive on any non-empty open subset of
X . However, they do not provide the convergence rate. The following lemma provides a convergence rate if we assume a
regularity condition of f0.

Lemma C.13. Assume Assumption 3.2. Then,

‖f0 − PDpf0‖Hk ≤ 2λr‖g0‖Hk

with confidence at least 1− 4 exp(−1/4(κ2 + 1)B) where

B =
1 + logN (λ)

λNp
+

√
1 + logN (λ)

λNp

for any λ > 0 such that λ ∈ (0, 1) and N (λ) ≥ 1. Also,

‖f0 − PDpf0‖Hk ≤ ‖f0‖Hk

almost surely. In particular, for any fixed ε ∈ (0, 1),

E‖f0 − PDpf0‖Hk = O
(
N (−1+ε)r
p

)
.

Proof of Lemma C.13. Note that

(Lk,Xp + λI)−1Lk,Xpf0 = k>Dp(x)(NpλI +KXp,Xp)−1SDpf0 ∈ span(k(x, ·) : x ∈ Dp(x))

for any λ > 0. Thus,

‖f0 − PDpf0‖Hk = min
h∈span(k(x,·):x∈Dp(x))

‖f0 − h‖Hk ≤ ‖f0 − (Lk,Xp + λI)−1Lk,Xpf0‖Hk .

Hence,

‖f0 − PDpf0‖Hk ≤ ‖λ(Lk,Xp + λI)−1Lrkg0‖Hk
≤ λ‖(Lk + λI)−1/2‖‖(Lk + λI)1/2(Lk,Xp + λI)−1(Lk + λI)1/2‖‖(Lk + λI)−1/2Lrk‖‖g0‖Hk

by the submultiplicativity of the operator norm. Using Lemma D.1,

λ‖(Lk + λI)−1/2‖‖(Lk + λI)1/2(Lk,Xp + λI)−1(Lk + λI)1/2‖‖(Lk + λI)−1/2Lrk‖‖g0‖Hk
≤ λr‖(Lk + λI)1/2(Lk,Xp + λI)−1(Lk + λI)1/2‖‖g0‖Hk .

When we assume λ ∈ (0, 1) and N (λ) ≥ 1, by Lemma D.7, we have

‖f0 − PDpf0‖Hk ≤ 2λr‖g0‖Hk

with confidence at least 1− δ where 4 exp(−1/4(κ2 + 1)B) ≤ δ < 1. On the other hand,

‖f0 − PDpf0‖Hk ≤ ‖f0‖Hk

almost surely since ‖I − PDp‖ ≤ 1. Combining them, we have

E‖f0 − PDpf0‖Hk ≤ 2λr‖g0‖Hk + 4‖f0‖Hk exp

(
− 1

4(κ2 + 1)B

)
.

Set λ = N−1+εp for a fixed ε > 0. Since λ ↓ 0 as Np →∞, we may assume N (λ) ≥ 1. Then,

B ≤ 1

N
ε/4
p

(
log(eκ2Np)

N
ε/2
p

)1/2(
1 +

(
log(eκ2Np)

N ε
p

)1/2
)
.
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Since

f(x) =

(
log(eκ2x)

xε/2

)1/2
(

1 +

(
log(eκ2x)

xε

)1/2
)

is continuous on [1,∞) and vanishes at∞, f(x) ≤ C(κ, ε) for some C(κ, ε) > 0. Thus,

B ≤ C(κ, ε)
1

N
ε/4
p

.

Set

g(x) = x−β exp

(
− 1

4(κ2 + 1)x

)
.

Then g is continuous on (0, C(κ, ε)] and vanishes at 0+ for any β > 0. Therefore, we know that g(x) ≤ C ′(κ, ε, β) on
x ∈ (0, C(κ, ε)] for some C ′(κ, ε, β) > 0. Hence, we have

E‖f0 − PDpf0‖Hk ≤ 2λr‖g0‖Hk + ‖f0‖Hk exp

(
− 1

4(κ2 + 1)B

)
≤ 2N (−1+ε)r

p ‖g0‖Hk + ‖f0‖HkB
4(1−ε)r

ε · C ′
(
κ, ε,

4(1− ε)r
ε

)
≤ 2N (−1+ε)r

p ‖g0‖Hk + ‖f0‖HkN (−1+ε)r
p C(κ, ε)

4(1−ε)r
ε C ′

(
κ, ε,

4(1− ε)r
ε

)
= O

(
N (−1+ε)r
p

)
.

We are now ready to derive the main result in this subsection.

Theorem C.14. Assume m ≥ 2, λ0 = λ, Assumption 3.1, and Assumption 3.2 with 0 < r ≤ 1
2 . We further assume

Np ≥ max

((
m

3r+2

2r2+2rN
1

2r+2

)1/(1−ε)
, (m− 1)N

)
for some fixed 0 < ε < 1

2 . Let g∗ = T∞h0 for any h0 ∈ Hk where the operator T is defined in (24). Then, with α = 1/m

and λ = (mN)−
1

2r+2 ,

E‖SDp(g∗ − f0)‖2 = O
(

(mN)−
2r+1
4r+4

)
.

Proof of Theorem C.14. When m or N increases, λ decreases and Np increases. Thus, we may assume N (λ) ≥ 1 and
N (1/

√
Np) ≥ 1. Set U = S>Dp(SDp(Lk,Xp + λI)−1S>Dp)−1SDp and V = Lk,Xp + λI . Note that V is invertible and

Lk,Xp ≤ U = Lk,Xp + λPDp ≤ V = Lk,Xp + λI.

Define

g̃ =
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1Uf0.

By the triangle inequality,
‖SDp(g∗ − f0)‖2 ≤ ‖SDp(g∗ − g̃)‖2 + ‖SDp(g̃ − f0)‖2.

First, note that
‖SDp(g̃ − f0)‖2 = ‖L1/2

k,Xp
(g̃ − f0)‖Hk ≤ ‖(Lk,Xp + λI)1/2(g̃ − f0)‖Hk
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by (10) and Lemma D.3. By the triangle inequality,

‖(Lk,Xp + λI)1/2(g̃ − f0)‖Hk

≤ 1

m

m∑
i=1

‖V 1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1(Lk,Xp + λPDp − αLk,Xi − (1− α)Lk,Xp − λI)f0‖Hk

≤ 1

m

m∑
i=1

‖V 1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1α(Lk,Xp − Lk,Xi)f0‖Hk

+
1

m

m∑
i=1

λ‖V 1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1(I − PDp)f0‖Hk .

By the submultiplicativity of the operator norm, Lemma D.1, and (31),

‖V 1/2(g̃ − f0)‖Hk ≤
1

m

m∑
i=1

(
α

(1− α)
√
λ
‖Lk,Xp − Lk,Xi‖‖f0‖Hk +

√
λ

1− α
‖(I − PDp)f0‖Hk

)
. (32)

Set Λ1
i = α

(1−α)
√
λ
‖Lk,Xp − Lk,Xi‖‖f0‖Hk . By the triangle inequality,

‖Lk,Xp − Lk,Xi‖ ≤ ‖Lk,Xp − Lk‖+ ‖Lk − Lk,Xi‖.

By Lemma D.7, with confidence at least 1− δ,

‖Lk,Xi − Lk‖ ≤
2
√

2κ2√
N

(log(4/δ))1/2 and ‖Lk,Xp − Lk‖ ≤
2
√

2κ2√
Np

(log(4/δ))1/2.

Then, with confidence at least 1− δ,

Λ1
i ≤ Λ̃1(log(4/δ))1/2 (33)

where

Λ̃1 :=
2
√

2ακ2‖f0‖Hk
(1− α)

√
λ

(
1√
N

+
1√
Np

)
= O

(
(mN)−

2r+1
4r+4

)
.

Also,

E

[ √
λ

1− α
‖(I − PDp)f0‖Hk

]
≤ 2(mN)−

1
4r+4 ·O

(
((m− 1)N)−

2r
4r+4

)
= O

(
(mN)−

2r+1
4r+4

)
(34)

by Lemma C.13. On the other hand, by (10) and Lemma D.3,

‖SDp(g∗ − g̃)‖2 = ‖L1/2
k,Xp

(g∗ − g̃)‖Hk ≤ ‖U1/2(g∗ − g̃)‖Hk .

We can see that

U1/2g̃ =
1

m

m∑
i=1

U1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1Uf0

= α ·
1

m

m∑
i=1

U1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1Uf0 +

(
1

m

m∑
i=1

(1− α)U1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1U1/2

)

α

(
I −

1

m

m∑
i=1

U1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1U1/2

)−1

1

α

(
I −

1

m

m∑
i=1

U1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1U1/2

)
U1/2f0

= α ·
1

m

m∑
i=1

U1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1Uf0 +

(
1

m

m∑
i=1

(1− α)U1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1U1/2

)

α

(
I −

1

m

m∑
i=1

U1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1U1/2

)−1

U1/2

1

α

(
I −

1

m

m∑
i=1

(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1U

)
f0.
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Thus, by the triangle inequality, the submultiplicativity of the operator norm, and Lemma C.11, we have

‖U1/2(g∗ − g̃)‖Hk

= α ·

∥∥∥∥∥U1/2

(
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1S>Diyi −
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1Uf0

)∥∥∥∥∥
Hk

+

∥∥∥∥∥
(

1

m

m∑
i=1

U1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1U1/2

)
α

(
I −

1

m

m∑
i=1

U1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1U1/2

)−1∥∥∥∥∥
·

∥∥∥∥∥U1/2

(
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1S>Diyi −
1

α

(
I −

1

m

m∑
i=1

(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1U

)
f0

)∥∥∥∥∥
Hk

.

First, we bound the first term. By the triangle inequality and Lemma D.3,∥∥∥∥∥U1/2

(
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1S>Diyi −
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1Uf0

)∥∥∥∥∥
Hk

≤

∥∥∥∥∥V 1/2

(
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1S>Diyi −
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1Uf0

)∥∥∥∥∥
Hk

≤

∥∥∥∥∥V 1/2

(
f0 −

1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1S>Diyi

)∥∥∥∥∥
Hk

+

∥∥∥∥∥V 1/2

(
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1Uf0 − f0

)∥∥∥∥∥
Hk

.

From (32), we know∥∥∥∥∥V 1/2

(
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1Uf0 − f0

)∥∥∥∥∥
Hk

≤ 1

m

m∑
i=1

Λ1
i +

√
λ

1− α
‖(I − PDp)f0‖Hk .

Also, using the same argument as in the proof of Lemma C.12, it satisfies that∥∥∥∥∥V 1/2

(
f0 −

1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1S>Diyi

)∥∥∥∥∥
Hk

≤ Λ +
1

m

m∑
i=1

Λi (35)

where random variables Λ and Λi(i = 1, · · · ,m) are given in Lemma C.12. In particular, Λ ≤ Λ̃(log(6/δ))5/4 with
confidence at least 1 − δ and Λi ≤ Λ̃i(log(6/δ))3/2 with confidence at least 1 − δ where Λ̃ = O

(
(mN)−

2r+1
4r+4

)
and

Λ̃i = O
(

(mN)−
2r+1
4r+4

)
. We next turn to derive an upper bound of the second term. To bound

∥∥∥∥∥
(

1

m

m∑
i=1

U1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1U1/2

)
α

(
I −

1

m

m∑
i=1

U1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1U1/2

)−1∥∥∥∥∥ ,
we use Lemma D.6. From

0 ≤ U = Lk,Xp + λPDp ≤ V = Lk,Xp + λI <
1

1− α
(αLk,Xi + (1− α)Lk,Xp + λI),

we have
(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1 < V −1

for any i = 1, · · · ,m. Hence

1

m

m∑
i=1

(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1 < V −1

and

V <

(
1

m

m∑
i=1

(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1

)−1
.
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Note that U is of finite rank which means that U1/2 is of finite rank and so compact, and all of the above operators are
positive. Applying Lemma D.6 and the above inequality yields∥∥∥∥∥
(

1

m

m∑
i=1

U1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1U1/2

)
α

(
I −

1

m

m∑
i=1

U1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1U1/2

)−1∥∥∥∥∥
≤

∥∥∥∥∥
(

1

m

m∑
i=1

V 1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1V 1/2

)
α

(
I −

1

m

m∑
i=1

V 1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1V 1/2

)−1∥∥∥∥∥ .
By the submultiplicativity of the operator norm,∥∥∥∥∥
(

1

m

m∑
i=1

V 1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1V 1/2

)
α

(
I −

1

m

m∑
i=1

V 1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1V 1/2

)−1∥∥∥∥∥
≤

∥∥∥∥∥ 1

m

m∑
i=1

V 1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1V 1/2

∥∥∥∥∥
∥∥∥∥∥α
(
I −

1

m

m∑
i=1

V 1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1V 1/2

)−1∥∥∥∥∥
≤

∥∥∥∥∥α
(
I −

1

m

m∑
i=1

V 1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1V 1/2

)−1∥∥∥∥∥ .
Here, the second inequality follows from the fact that∥∥∥∥∥ 1

m

m∑
i=1

V 1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1V 1/2

∥∥∥∥∥ ≤ 1

m

m∑
i=1

∥∥∥V 1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1V 1/2
∥∥∥ ≤ 1.

which comes from the triangle inequality and (31). Set

A−11 = α

(
I − 1

m

m∑
i=1

V 1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1V 1/2

)−1
.

On the other hand, since A 7→ A−1 is operator convex (Bhatia, 2013),(
I −

1

m

m∑
i=1

V 1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1V 1/2

)−1

≤
1

m

m∑
i=1

(I − V 1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1V 1/2)−1.

Since
(
I − 1

m

∑m
i=1 V

1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1V 1/2
)−1

is positive,

∥∥A−1
1

∥∥ ≤ ∥∥∥∥∥α · 1

m

m∑
i=1

(I − V 1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1V 1/2)−1

∥∥∥∥∥
≤ α · 1

m

m∑
i=1

∥∥∥(I − V 1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1V 1/2)−1
∥∥∥ .

Since V 1/2 is invertible, by Lemma D.5 and the submultiplicativity of the operator norm,

α
∥∥∥(I − V 1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1V 1/2)−1

∥∥∥
= α

∥∥∥V −1/2(V −1 − (1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1)−1V −1/2
∥∥∥

≤ α
∥∥∥(V −1 − (1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1)−1V −1

∥∥∥
= α

∥∥∥(I − (1− α)V (αLk,Xi + (1− α)Lk,Xp + λI)−1)−1
∥∥∥

= α
∥∥∥(αLk,Xi + (1− α)Lk,Xp + λI)(αLk,Xi + αλI)−1

∥∥∥
≤
∥∥∥(αLk,Xi + (1− α)Lk,Xp + λI)(Lk,Xi + λI)−1

∥∥∥ .
From

(αLk,Xi + (1− α)Lk,Xp + λI)(Lk,Xi + λI)−1 = I + (1− α)(Lk,Xp − Lk,Xi)(Lk,Xi + λI)−1,
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by the triangle inequality, the submultiplicativity of the operator norm, and Lemma D.1, we get∥∥(αLk,Xi + (1− α)Lk,Xp + λI)(Lk,Xi + λI)−1
∥∥ ≤ 1 +

1− α
λ

(
‖Lk,Xi − Lk‖+ ‖Lk,Xp − Lk‖

)
.

By Lemma D.7,

‖Lk,Xi − Lk‖ ≤
2
√

2κ2√
N

(log(4/δ))1/2 and ‖Lk,Xp − Lk‖ ≤
2
√

2κ2√
Np

(log(4/δ))1/2

with confidence at least 1− δ. Therefore, ∥∥A−11

∥∥ ≤ 1

m

m∑
i=1

Θ1,i (36)

where Θ1,i is a random variable such that Θ1,i ≤ Θ̃1(log(4/δ))1/2 with confidence at least 1− δ for i = 1, · · · ,m. Here,

Θ̃1 = 1 +
2
√

2(1− α)κ2

λ

(
1√
N

+
1√
Np

)
= O

(
m

1
2r+2

)
.

However, this upper bound (36) is not sufficiently small for our analysis. Thus, we will find a better upper bound now. First,
we bound the norm of

A−12 = V 1/2

(
1

m

m∑
i=1

(αLk + (1− α)Lk,Xp + λI)−1(Lk,Xi + λI)

)−1
V −1/2.

By the submultiplicativity of the operator norm,

∥∥A−12

∥∥ ≤ ∥∥∥V 1/2(Lk + λI)−1/2
∥∥∥ ·
∥∥∥∥∥∥(Lk + λI)1/2

(
1

m

m∑
i=1

Lk,Xi + λI

)−1
(Lk + λI)1/2

∥∥∥∥∥∥
·
∥∥∥(Lk + λI)−1/2(αLk + (1− α)Lk,Xp + λI)1/2

∥∥∥ · ∥∥∥(αLk + (1− α)Lk,Xp + λI)1/2V −1/2
∥∥∥ .

By Lemma D.1, Lemma D.4, the triangle inequality, and the submultiplicativity of the operator norm,∥∥∥V 1/2(Lk + λI)−1/2
∥∥∥ ≤ (1 +

1

λ
‖Lk,Xp − Lk‖

)1/2

,∥∥∥(αLk + (1− α)Lk,Xp + λI)1/2V −1/2
∥∥∥ ≤ (1 +

α

λ
‖Lk,Xp − Lk‖

)1/2
and ∥∥∥(Lk + λI)−1/2(αLk + (1− α)Lk,Xp + λI)1/2

∥∥∥ ≤ (1 +
1− α
λ
‖Lk,Xp − Lk‖

)1/2

.

By Lemma D.1, Lemma D.5, the triangle inequality, and the submultiplicativity of the operator norm,∥∥∥∥∥∥(Lk + λI)1/2

(
1

m

m∑
i=1

Lk,Xi + λI

)−1
(Lk + λI)1/2

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
(

1

m

m∑
i=1

Lk,Xi + λI

)−1
(Lk + λI)

∥∥∥∥∥∥
≤ 1 +

1

λ

∥∥∥∥∥ 1

m

m∑
i=1

Lk,Xi − Lk

∥∥∥∥∥ .
By Lemma D.7,

‖Lk,Xp − Lk‖ ≤
2
√

2κ2√
Np

(log(4/δ))1/2 and

∥∥∥∥∥ 1

m

m∑
i=1

Lk,Xi − Lk

∥∥∥∥∥ ≤ 2
√

2κ2√
mN

(log(4/δ))1/2
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with confidence at least 1− δ. Therefore, with confidence at least 1− δ,

∥∥A−12

∥∥ ≤ (1 +
2
√

2κ2

λ
√
Np

)3/2(
1 +

2
√

2κ2

λ
√
mN

)
(log(4/δ))5/4 = O(1)(log(4/δ))5/4.

Next, we bound ‖A2 −A1‖. Note that

A1 =
1

α

(
I − 1

m

m∑
i=1

V 1/2(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1V 1/2

)

= V 1/2

(
1

α

(
I − 1

m

m∑
i=1

(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1V

))
V −1/2

= V 1/2

(
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1(Lk,Xi + λI)

)
V −1/2

and so

A2 −A1 = V 1/2

(
1

m

m∑
i=1

(αLk + (1− α)Lk,Xp + λI)−1(Lk,Xi + λI)

)
V −1/2

− V 1/2

(
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1(Lk,Xi + λI)

)
V −1/2

=
1

m

m∑
i=1

V 1/2(αLk + (1− α)Lk,Xp + λI)−1α(Lk,Xi − Lk)(αLk,Xi + (1− α)Lk,Xp + λI)−1(Lk,Xi + λI)V −1/2

using (23). By the triangle inequality, the submultiplicativity of the operator norm, and the fact that

(Lk + λI)−1/2(Lk,Xi + λI)(Lk + λI)−1/2 = (Lk + λI)−1/2(Lk,Xi − Lk)(Lk + λI)−1/2 + I,

we have∥∥∥V 1/2(αLk + (1− α)Lk,Xp + λI)−1α(Lk,Xi − Lk)(αLk,Xi + (1− α)Lk,Xp + λI)−1(Lk,Xi + λI)V −1/2
∥∥∥

≤ α‖V 1/2(αLk + (1− α)Lk,Xp + λI)−1/2‖ · ‖(αLk + (1− α)Lk,Xp + λI)−1/2(Lk + λI)1/2‖ · R
· ‖(Lk + λI)1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1(Lk + λI)1/2‖ · (R+ 1) · ‖(Lk + λI)1/2V −1/2‖

where

R = ‖(Lk + λI)−1/2(Lk,Xi − Lk)(Lk + λI)−1/2‖.

Since (1− α)V ≤ αLk + (1− α)Lk,Xp + λI ,

‖V 1/2(αLk + (1− α)Lk,Xp + λI)−1/2‖ ≤ (1− α)−1/2

by Lemma D.2. By Lemma D.1, Lemma D.4, the triangle inequality, and the submultiplicativity of the operator norm,

‖(αLk + (1− α)Lk,Xp + λI)−1/2(Lk + λI)1/2‖ ≤
(

1 +
1− α
λ
‖Lk,Xp − Lk‖

)1/2

and

‖(Lk + λI)1/2V −1/2‖ ≤
(

1 +
1

λ
‖Lk,Xp − Lk‖

)1/2

.

By Lemma D.1, Lemma D.5, the triangle inequality, and the submultiplicativity of the operator norm,

‖(Lk + λI)1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1(Lk + λI)1/2‖ ≤ 1 +
1

λ

(
α‖Lk,Xi − Lk‖+ (1− α)‖Lk,Xp − Lk‖

)
.
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To find a PAC-bound, applying Lemma D.7 yields

‖Lk,Xp − Lk‖ ≤
2
√

2κ2√
Np

(log(12/δ))1/2, ‖Lk,Xi − Lk‖ ≤
2
√

2κ2√
N

(log(12/δ))1/2,

and

R ≤ 2(κ2 + 1) ·

(
1 + logN (λ)

λN
+

√
1 + logN (λ)

λN

)
log(12/δ)

with confidence at least 1− δ for any δ ∈ (0, 1). Then, we apply Lemma D.13 to see that ‖A2 −A1‖ is the mean of random
variables that are bounded by

α(1− α)−1/2

(
1 +

2
√

2κ2

λ
√
Np

)(
1 +

2
√

2κ2

λ

(
α√
N

+
1− α√
Np

))
· 2(κ2 + 1) ·

(
1 + logN (λ)

λN
+

√
1 + logN (λ)

λN

)
·(

1 + 2(κ2 + 1) ·

(
1 + logN (λ)

λN
+

√
1 + logN (λ)

λN

))
(log(a0/δ))

q0

for some a0 ≥ 1 and q0 > 0 with confidence at least 1− δ. Note that

(1− α)−1/2

(
1 +

2
√

2κ2

λ
√
Np

)(
1 +

2
√

2κ2

λ

(
α√
N

+
1− α√
Np

))
· 2(κ2 + 1) = O(1).

On the other hand,

m−
r+2
4r+4

(
1 + logN (λ)

λN
+

√
1 + logN (λ)

λN

)
≤

log
(

(eκ2)(mN)
1

2r+2

)
(mN)

r
4r+4

+

√√√√ log
(

(eκ2)(mN)
1

2r+2

)
(mN)

r
4r+4

= O(1)

since

f(x) =
log(eκ2x1/(2r+2))

xr/(4r+4)

is continuous on [1,∞) and vanishes at∞ which implies that

log
(

(eκ2)(mN)
1

2r+2

)
(mN)

r
4r+4

= O(1).

Therefore,

α

(
1 + logN (λ)

λN
+

√
1 + logN (λ)

λN

)(
1 + 2(κ2 + 1) ·

(
1 + logN (λ)

λN
+

√
1 + logN (λ)

λN

))
= O

(
m−

r
2r+2

)
and so ‖A2 −A1‖ is the mean of random variables that are bounded by O

(
m−

r
2r+2

)
(log(a0/δ))

q0 for some a0 ≥ 1 and
q0 > 0 with confidence at least 1− δ respectively. Thus, applying the formula

A−11 =

d 1r e−1∑
j=0

A−12

(
(A2 −A1)A−12

)j
+A−11

(
(A2 −A1)A−12

)d 1r e ,
(36), and Lemma D.13 yield

‖A−11 ‖ ≤
d 1r e∑
j=0

Ξj (37)
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where Ξj is the mean of random variables that are bounded by O(1)(log(a/δ))q for some a ≥ 1 and q > 0.

The last part of the proof is devoted to bounding∥∥∥∥∥U1/2

(
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1S>Diyi −
1

α

(
I −

1

m

m∑
i=1

(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)−1U

)
f0

)∥∥∥∥∥
Hk

.

Note that

U
1/2

(
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)
−1
S
>
Di

yi −
1

α

(
I −

1

m

m∑
i=1

(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)
−1
U

)
f0

)

= U
1/2

(
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)
−1
S
>
Di

yi −
1

α

(
I −

1

m

m∑
i=1

(1− α)(αLk,Xi + (1− α)Lk,Xp + λI)
−1

(Lk,Xp + λPDp )

)
f0

)

= U
1/2 1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)
−1

(S
>
Di

yi − Lk,Xif0 − λf0)−
1− α
α

U
1/2 1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)
−1
λ(I − PDp )f0.

By Lemma D.3 and the triangle inequality, the first term is bounded as follows:∥∥∥∥∥U1/2 1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1(S>Diyi − Lk,Xif0 − λf0)

∥∥∥∥∥
Hk

≤

∥∥∥∥∥V 1/2

(
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1S>Diyi − f0

)∥∥∥∥∥
Hk

+

∥∥∥∥∥V 1/2

(
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1Lk,Xif0 − f0

)∥∥∥∥∥
Hk

+ λ

∥∥∥∥∥V 1/2

(
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1

)
f0

∥∥∥∥∥
Hk

.

By Lemma C.12,∥∥∥∥∥V 1/2

(
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1S>Diyi − f0

)∥∥∥∥∥
Hk

≤ Λ +
1

m

m∑
i=1

Λi.

Using the exact same way as in the proof of Lemma C.12 (since it is just the noisefree case),∥∥∥∥∥V 1/2

(
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1Lk,Xif0 − f0

)∥∥∥∥∥
Hk

≤ Λ0 +
1

m

m∑
i=1

Λ0
i (38)

where Λ0 and Λ0
i are random variables such that Λ0 ≤ O

(
(mN)−

2r+1
4r+4

)
(log(6/δ))5/4 with confidence at least 1 − δ

and each Λ0
i ≤ O

(
(mN)−

2r+1
4r+4

)
(log(6/δ))3/2 with confidence at least 1 − δ. Also, by the triangle inequality, the

submultiplicativity of the operator norm, (31), and Lemma D.1,

λ

∥∥∥∥∥V 1/2

(
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1

)
f0

∥∥∥∥∥
Hk

≤ λ

1− α
· 1

m

m∑
i=1

‖(Lk,Xp + λI)−1/2Lrkg0‖Hk

=
λ

1− α
‖(Lk,Xp + λI)−1/2Lrkg0‖Hk

≤ λ

1− α
Qp‖(Lk + λI)−1/2Lrkg0‖Hk

≤ 1

1− α
· λr+ 1

2Qp‖g0‖Hk

where Qp is already defined in the proof of Lemma C.12. By (30),

λ

∥∥∥∥∥V 1/2

(
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1

)
f0

∥∥∥∥∥
Hk

≤ 1

1− α
·
(

1 +
1

λ
‖Lk − Lk,Xp‖

)1/2

λr+
1
2 ‖g0‖Hk .
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By Lemma D.7,

λ

∥∥∥∥∥V 1/2

(
1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1

)
f0

∥∥∥∥∥
Hk

≤ 1

1− α
·

(
1 +

2
√

2κ2

λ
√
Np

)1/2

λr+
1
2 ‖g0‖Hk(log(4/δ))1/4

(39)

with confidence at least 1− δ where

1

1− α
·

(
1 +

2
√

2κ2

λ
√
Np

)1/2

λr+
1
2 ‖g0‖Hk = O

(
(mN)−

2r+1
4r+4

)
.

Lastly, by the triangle inequality, the submultiplicativity of the operator norm, Lemma D.1, Lemma D.3, and (31),∥∥∥∥∥1− α
α

U1/2 1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1λ(I − PDp)f0

∥∥∥∥∥
Hk

≤

∥∥∥∥∥1− α
α

V 1/2 1

m

m∑
i=1

(αLk,Xi + (1− α)Lk,Xp + λI)−1λ(I − PDp)f0

∥∥∥∥∥
Hk

≤
√
λ

α
‖(I − PDp)f0‖Hk .

Therefore,

‖SDp(g∗ − f0)‖2 ≤
1

m

m∑
i=1

Λ1
i +

√
λ

1− α‖(I − PDp)f0‖Hk + α

(
1

m

m∑
i=1

Λ1
i +

√
λ

1− α‖(I − PDp)f0‖Hk + Λ +
1

m

m∑
i=1

Λi

)

+ ‖A−1
1 ‖

(
Λ +

1

m

m∑
i=1

Λi + Λ0 +
1

m

m∑
i=1

Λ0
i +

1

1− α · λ
r+1/2Qp‖g0‖Hk +

√
λ

α
· ‖(I − PDp)f0‖Hk

)
.

(40)

By Lemma D.9,

E

[
1

m

m∑
i=1

Λ1
i + α

(
1

m

m∑
i=1

Λ1
i + Λ +

1

m

m∑
i=1

Λi

)]
= O

(
(mN)−

2r+1
4r+4

)
. (41)

From (34), we have

E

[
(1 + α) ·

√
λ

1− α
‖(I − PDp)f0‖Hk

]
= O

(
(mN)−

2r+1
4r+4

)
.

By Lemma D.13, (37), (38), and (39),

E

[
‖A−11 ‖

(
Λ +

1

m

m∑
i=1

Λi + Λ0 +
1

m

m∑
i=1

Λ0
i +

1

1− α
· λr+1/2Qp‖g0‖Hk

)]
= O

(
(mN)−

2r+1
4r+4

)
. (42)

Since ‖Lk‖ ≤ κ2 and ‖Lk,X‖ ≤ κ2 for any X , by Lemma D.5, Lemma D.1, the triangle inequality, and the submultiplica-
tivity of the operator norm, we obtain

‖A−11 ‖ ≤
1

m

m∑
i=1

∥∥(Lk,Xi + λI)−1(αLk,Xi + (1− α)Lk,Xp + λI)
∥∥ ≤ λ+ κ2

λ
.

Thus,

‖A−11 ‖ ·
√
λ

α
· ‖(I − PDp)f0‖Hk ≤

√
λ

α
·
(

1 +
κ2

λ

)
‖f0‖Hk (43)

almost surely. By Lemma C.13 and Lemma D.12,

E

[
‖A−11 ‖ ·

√
λ

α
· ‖(I − PDp)f0‖Hk

]
≤
√
λ

α
·
(

1 +
κ2

λ

)
‖f0‖Hk · 4 exp

(
− 1

4(κ2 + 1)B

)
+O

(√
λ

α
· λrp

)
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where

B =
1 + logN (λp)

λpNp
+

√
1 + logN (λp)

λpNp

and λp = 1/N1−ε
p which satisfies N (λp) ≥ N (1/

√
Np) ≥ 1. Note that√

1 + logN (λp)

λpNp
≤ 1

N
ε/4
p

√
log(eκ2Np)

N
ε/2
p

.

Thus,

B ≤ 1

N
ε/4
p

√
log(eκ2Np)

N
ε/2
p

(
1 +

√
log(eκ2Np)

N
ε/2
p

)
.

Since

g(x) =

√
log(eκ2x)

xε/2

(
1 +

√
log(eκ2x)

xε/2

)
is continuous on [1,∞) and vanishes at∞, g(x) ≤ C(κ, r, ε) for some C(κ, r, ε) > 0. Then

B ≤ C(κ, r, ε)N−ε/4p .

Since 0 < B ≤ C(κ, r, ε) and

h(x) =
1

xβ
exp

(
− 1

4(κ2 + 1)x

)
is continuous on (0, C(κ, r, ε)] and vanishes at 0+,

1

Bβ
exp

(
− 1

4(κ2 + 1)B

)
≤ C ′(κ, r, ε, β)

for some C ′(κ, r, ε, β) > 0. Hence,

√
λ

α
·
(

1 +
κ2

λ

)
exp

(
− 1

4(κ2 + 1)B

)
≤
√
λ

α
·
(

1 +
κ2

λ

)
B6/ε 1

B6/ε
exp

(
− 1

4(κ2 + 1)B

)
≤ (1 + κ2)

1

α
√
λ
N−3/2p C(κ, r, ε)6/ε · C ′(κ, r, 6/ε) = O

(
(mN)−

2r+1
4r+4

)
. (44)

On the other hand, from N
r(1−ε)
p ≥ (mN)

r
2r+2m,

O

(√
λ

α
·Nr(−1+ε)

p

)
= O

(
(mN)−

2r+1
4r+4

)
.

This completes the proof of Theorem 5.5.

Theorem C.15. Let g∗ = T∞h0 for any h0 ∈ Hk and g∗i be a local kernel ridge regressor of client i trained by the local
dataset Di and the public dataset Dp(x) with the predictions of g∗, i.e.,

g∗i = (αLk,Xi + (1− α)Lk,Xp + λI)−1(αS>Diyi + (1− α)Lk,Xpg
∗).

Under the same assumption of Theorem C.14, with α = 1/m and λ = (mN)−
1

2r+2 ,

E‖ιρx(g∗i − f0)‖L2
ρx

= O
(

(mN)−
2r+1
4r+4

)
.
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Proof of Theorem C.15. We use the same notation as in the proof of Theorem C.14. Since g∗ is not independent of Dp(x),
we cannot directly apply Corollary B.2. By Corollary B.1, we have

E‖ιρx(g∗i − f0)‖L2
ρx
≤ 9

(
1 +

2
√

2κ2

λ

(
α√
N1

+
1− α√
N2

))(
2ακ(M + γ)√

λN1

+ λ
1
2+r‖g0‖Hk

)
+ (1− α)1/2E

[
‖(Lk + λI)1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1/2‖‖L1/2

k,Xp
(g∗ − f0)‖Hk

]
.

First,

9

(
1 +

2
√

2κ2

λ

(
α√
N1

+
1− α√
N2

))(
2ακ(M + γ)√

λN1

+ λ
1
2+r‖g0‖Hk

)
= O

(
(mN)−

2r+1
4r+4

)
.

By Lemma D.1, Lemma D.4, the triangle inequality, and the submultiplicativity of the operator norm,

‖(Lk + λI)1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1/2‖ ≤
(

1 +
α

λ
‖Lk,Xi − Lk‖+

1− α
λ
‖Lk,Xp − Lk‖

)1/2

.

By Lemma D.7, with confidence at least 1− δ(
1 +

α

λ
‖Lk,Xi − Lk‖+

1− α
λ
‖Lk,Xp − Lk‖

)1/2

≤

(
1 +

2
√

2κ2

λ

(
α√
N

+
1− α√
Np

))1/2

(log(4/δ))1/4

where δ ∈ (0, 1) and hence

‖(Lk + λI)1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1/2‖ ≤ O(1)(log(4/δ))1/4 ≤ O(1) log(4/δ). (45)

Recall ‖L1/2
k,Xp

(g∗ − f0)‖Hk = ‖SDp(g∗ − f0)‖2 from (10) and its bound in (40). By Lemma D.9, Lemma D.13, (33), and
(35),

E

[
‖(Lk + λI)1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1/2‖

(
1

m

m∑
i=1

Λ1
i + α

(
1

m

m∑
i=1

Λ1
i + Λ +

1

m

m∑
i=1

Λi

))]
= O

(
(mN)

− 2r+1
4r+4

)
.

By Lemma D.13, (37), (38), and (39),

E

[
‖(Lk + λI)1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1/2‖‖A−1

1 ‖

(
Λ +

1

m

m∑
i=1

Λi + Λ0 +
1

m

m∑
i=1

Λ0
i +

1

1− αλ
1
2
+rQp‖g0‖Hk

)]
= O

(
(mN)−

2r+1
4r+4

)
.

Note that there is a trivial bound

‖(Lk + λI)1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1/2‖ ≤
(
λ+ κ2

λ

)1/2

.

By (45), Lemma C.13, and Lemma D.12,

E

[
‖(Lk + λI)1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1/2‖ · (1 + α) ·

√
λ

1− α
‖(I − PDp)f0‖Hk

]

≤ (1 + α)
√
λ

1− α
·
(

1 +
κ2

λ

)1/2

‖f0‖Hk · 4 exp

(
− 1

4(κ2 + 1)B

)
+O

(√
λ ·Nr(−1+ε)

p

)
.

By (37), (43), Lemma C.13, and Lemma D.13,

E

[
‖(Lk + λI)1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1/2‖‖A−11 ‖ ·

√
λ

α
· ‖(I − PDp)f0‖Hk

]

≤
√
λ

α
·
(

1 +
κ2

λ

)3/2

‖f0‖Hk · 4 exp

(
− 1

4(κ2 + 1)B

)
+O

(√
λ

α
·Nr(−1+ε)

p

)
.
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Using the similar argument as in the derivation of the bound (44),

E

[
‖(Lk + λI)1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1/2‖ · (1 + α) ·

√
λ

1− α
‖(I − PDp)f0‖Hk

]
= O

(
(mN)−

2r+1
4r+4

)
and

E

[
‖(Lk + λI)1/2(αLk,Xi + (1− α)Lk,Xp + λI)−1/2‖‖A−11 ‖ ·

√
λ

α
· ‖(I − PDp)f0‖Hk

]
= O

(
(mN)−

2r+1
4r+4

)
.

From (40),
E‖ιρx(g∗i − f0)‖L2

ρx
= O

(
(mN)−

2r+1
4r+4

)
.

C.7. Algorithm on KRR with Iterative De-regularized Ensemble Distillation Participated by Partial Clients in
Federated Learning Setting

We provide an algorithm (Algorithm 3) on kernel ridge regression with iterative de-regularized ensemble distillation
participated by partial clients in federated learning. At each communication round, we select a fixed number of clients that
predict the unlabeled public dataset and train using their local datasets and the public dataset with the updated consensus
obtained by stochastic approximation. We denote the number of selected clients in each communication round as C.

C.8. Proof of Corollary 5.6

Here, we assume that D and Dp(x) are given. Define a sequence of independent random operators {T pt0}t0∈N where random
operator T pt0 : Hk → Hk is defined as

T pt0g =
∑
i∈Ct0

1

C
(αLk,Xi + (1− α)Lk,Xp + λI)−1(αS>Diyi + (1− α)S>Dp(SDp(Lk,Xp + λI)−1S>Dp)−1SDpg)

=
∑
i∈Ct0

1

C
(αLk,Xi + (1− α)Lk,Xp + λI)−1(αS>Diyi + (1− α)(Lk,Xp + λP⊥Dp(x))g)

for each t0 ∈ N where {Ct0}t0∈N is defined in Algorithm 3. We also define T̄ pt0 : RNp → RNp as

T̄ pt0v =
∑
i∈Ct0

1

C
(SDp(Lk,Xp + λI)−1S>Dp)−1/2SDp(αLk,Xi + (1− α)Lk,Xp + λI)−1·

(αS>Diyi + (1− α)S>Dp(SDp(Lk,Xp + λ0I)−1S>Dp)−1/2v)

for each t0 ∈ N.

We prove Corollary 5.6 in a general setting.

Theorem C.16. Assume λ0 = λ, KXp,Xp is invertible, and the number of selected clients in each communication round C
is fixed, i.e., C =

∑m
i=1 1{i∈Ct0} for any t0 = 1, · · · , t. We also assume that {γt0}tt0=1 ∈ [0, 1]t is fixed,

∞∑
t0=1

γt0 =∞,
∞∑
t0=1

γ2t0 <∞, (46)

{Ct0}∞t0=1 is independent, and
P(j ∈ Ct0) = pj

for any j ∈ {1, · · · ,m} and t0 = 1, · · · . Then the prediction ỹp on Dp(x) after infinitely many iterations in Algorithm 3
converges to SDp ĝ

∗ almost surely where ĝ∗ = T̂∞h0 for any h0 ∈ Hk and

T̂ g =

m∑
i=1

pi∑m
j=1 pj

(αLk,Xi + (1− α)Lk,Xp + λI)−1(αS>Diyi + (1− α)S>Dp(SDp(Lk,Xp + λI)−1S>Dp)−1SDpg).
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Algorithm 3 KRR with iterative De-regularized Ensemble Distillation Participated by Partial Clients in FL

1: Input: hyperparameters α ∈ (0, 1), λ > 0, λ0 ≥ 0, t ∈ N, C ∈ {1, · · · ,m} and {γt0}tt0=1 ∈ [0, 1]t such that γ1 = 1
2: Output: Trained model fj , j = 1, · · · ,m
3: Pretrain: For j = 1, · · · ,m, client j trains its model fj using the loss function

argmin
h∈Hk

1

N

N∑
i=1

(h(xij)− yij)2 + λ‖h‖2Hk .

4: Each client downloads the unlabeled public dataset Dp(x).
5: for t0 = 1, · · · , t do
6: Determine a set of clients Ct0 whose size is C to participate the ensemble at time t0.
7: For j ∈ Ct0 , client j predicts on Dp(x) and uploads the prediction ỹjp to server.
8: The server computes an updated consensus

ỹp = (1− γt0) · ỹp,old + γt0 ·
1

C
∑
j∈Ct0

ỹjp.

9: The server stores ỹp,old = ỹp.
10: if t0 6= t then
11: The server applies the de-regularization trick to ỹp:

ỹp = (SDp(Lk,Xp + λ0I)−1S>Dp)−1ỹp.

12: end if
13: Each client in Ct0 downloads the ensemble prediction ỹp.
14: For j ∈ Ct0 , client j updates its model fj using the loss function

argmin
h∈Hk

α · 1

N

N∑
i=1

(h(xij)− yij)2 + (1− α) · 1

Np

Np∑
i=1

(h(xip)− (ỹp)
i)2 + λ‖h‖2Hk .

15: end for

Proof. Define ¯̂
T : RNp → RNp as

¯̂
Tv =

m∑
i=1

pi∑m
j=1 pj

(SDp(Lk,Xp + λI)−1S>Dp)−1/2SDp(αLk,Xi + (1− α)Lk,Xp + λI)−1

(αS>Diyi + (1− α)S>Dp(SDp(Lk,Xp + λI)−1S>Dp)−1/2v).

Note that

C =

m∑
j=1

1{j∈Ct0} ⇒ C = E

 m∑
j=1

1{j∈Ct0}

 =

m∑
j=1

P(j ∈ Ct0) =

m∑
j=1

pj

by taking the expectation. Define an operator Si : RNp → RNp by

Siv = (SDp(Lk,Xp + λI)−1S>Dp)−1/2SDp(αLk,Xi + (1− α)Lk,Xp + λI)−1·

(αS>Diyi + (1− α)S>Dp(SDp(Lk,Xp + λ0I)−1S>Dp)−1/2v).

Then

ET̄ pt0v = E

∑
i∈Ct0

1

C
Siv

 = E

[
m∑
i=1

1{i∈Ct0}
1

C
Siv

]
=

1

C

m∑
i=1

E
[
1{i∈Ct0}Siv

]
=

1∑m
j=1 pj

m∑
i=1

piSiv =
¯̂
Tv.
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Observe that

(SDp(Lk,Xp + λI)−1S>Dp)−1/2 = ((KXp,Xp +NpλI)−1KXp,Xp)−1/2 = (I +NpλK
−1
Xp,Xp

)1/2. (47)

We also claim that

SDp(αLk,Xi + (1− α)Lk,Xp + λI)−1(1− α)S>Dp

=

(
KXp,Xp −KXp,Xi

(
KXi,Xi +

N

α
λI

)−1

KXi,Xp

)(
KXp,Xp +

Np
1− αλI −KXp,Xi

(
KXi,Xi +

N

α
λI

)−1

KXi,Xp

)−1

=

(
I +

Np
1− αλ

(
KXp,Xp −KXp,Xi

(
KXi,Xi +

N

α
λI

)−1

KXi,Xp

)−1)−1

. (48)

To show this, note that

(αLk,Xi + (1− α)Lk,Xp + λI)−1(1− α)S>Dp =
[
k>Xi k>Xp

]
(λI +DKXi∪Xp,Xi∪Xp)−1D

[
0
·

]
=
[
k>Xi k>Xp

]
(λD−1 +KXi∪Xp,Xi∪Xp)−1

[
0
·

]
where D = diag(α/N, · · · , α/N︸ ︷︷ ︸

N

, (1− α)/Np, · · · , (1− α)/Np︸ ︷︷ ︸
Np

) which follows from (12). Then

SDp(αLk,Xi + (1− α)Lk,Xp + λI)−1(1− α)S>Dp =
[
KXp,Xi KXp,Xp

] [KXi,Xi + N1
α
λI KXi,Xp

KXp,Xi KXp,Xp + N2
1−αλI

]−1 [
0
·

]
.

From the formula[
A B
C D

]−1
=

[
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
,

we have

SDp(αLk,Xi + (1− α)Lk,Xp + λI)−1(1− α)S>Dp

=
[
KXp,Xi KXp,Xp

] [∗ −(KXi,Xi + N1
α
λI)−1KXi,Xp(KXp,Xp + N2

1−αλI −KXp,Xi(KXi,Xi + N1
α
λI)−1KXi,Xp)−1

∗ (KXp,Xp + N2
1−αλI −KXp,Xi(KXi,Xi + N1

α
λI)−1KXi,Xp)−1

] [
0
·

]
which gives the formula (48). Since

I +
Np

1− α
λ

(
KXp,Xp −KXp,Xi

(
KXi,Xi +

N

α
λI

)−1
KXi,Xp

)−1
> I +NpλK

−1
Xp,Xp

,

by (47), (48), Lemma D.2, and the triangle inequality, ¯̂
T is a η-contraction where η ∈ (0, 1). Set ut0 as

(SDp(Lk,Xp + λI)−1S>Dp)−1/2(ỹp)t0

where (ỹp)t0 is the updated consensus before applying the de-regularization at the t0-th iteration in Algorithm 3. Then

ut0+1 = (1− γt0+1)ut0 + γt0+1T̄
p
t0+1ut0 = (1− γt0+1)ut0 + γt0+1

(
¯̂
Tut0 +

(
T̄ pt0+1ut0 −

¯̂
Tut0

))
.

Note that

E
[
T̄ pt0+1ut0 −

¯̂
Tut0 | Ft0

]
= E

[
T̄ pt0+1ut0 −

¯̂
Tut0 | ut0

]
= 0 (49)

where Ft0 is an σ-algebra generated from u1, · · · ,ut0 , T̄
p
1 , · · · , T̄

p
t0 , γ1, · · · , γt0 and γt0+1 since T̄ pt0+1 is independent of

Ft0 . Since the number of possible realizations of T̄ pt0+1 is finite, there exists B > 0 such that

‖T̄ pt0+1 −
¯̂
T‖ ≤ B
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almost surely. Therefore,

E

[∥∥∥T̄ pt0+1ut0 −
¯̂
Tut0

∥∥∥2
Hk
| Ft0

]
= E

[∥∥∥T̄ pt0+1ut0 −
¯̂
Tut0

∥∥∥2
Hk
| ut0

]
≤ E

[∥∥∥T̄ pt0+1 −
¯̂
T
∥∥∥2 ‖ut0‖2Hk | ut0]

≤ E
[
B2 ‖ut0‖

2
Hk | ut0

]
= B2 ‖ut0‖

2
Hk . (50)

From (46), (49), and (50), by Proposition 4.4 in Bertsekas & Tsitsiklis (1996), (SDp(Lk,Xp + λI)−1S>Dp)−1/2ỹp converges

to a unique fixed point of ¯̂
T . Therefore,

(SDp(Lk,Xp + λI)−1S>Dp)−1/2ỹp =
¯̂
T∞∗ = (SDp(Lk,Xp + λI)−1S>Dp)−1/2SDp T̂

∞∗

= (SDp(Lk,Xp + λI)−1S>Dp)−1/2SDp ĝ
∗.

Note that T̂∞∗ = ĝ∗ can be shown using a similar argument as in the first part in Appendix C.6.

D. Auxiliary Lemmas
We provide the useful properties of operators.

Lemma D.1. Let A be a bounded linear operator on a seperable Hilbert space H. If A is compact, self-adjoint, and
positive, then

‖(A+ λI)−rAs‖ ≤ 1/λr−s

for any r ≥ s ≥ 0 and λ > 0.

Proof. Since A is compact, self-adjoint, and positive, we can set eigenvalues {µi}∞i=1 of A and their corresponding
eigenfunctions {φi}∞i=1 satisfying µi ↓ 0 and {φi}∞i=1 is an orthonormal basis ofH by the spectral theorem (Conway, 2019).
For any φ =

∑∞
i=1 aiφi ∈ H such that ‖φ‖2 =

∑∞
i=1 a

2
i = 1, we have

‖(A+ λI)−rAsφ‖2 =

∥∥∥∥∥
∞∑
i=1

aiµ
s
i

(µi + λ)r
φi

∥∥∥∥∥
2

=

∞∑
i=1

(
aiµ

s
i

(µi + λ)r

)2

=

∞∑
i=1

a2i

(
µi

µi + λ

)2s

· 1

(µi + λ)2(r−s)

≤ 1

λ2(r−s)

∞∑
i=1

a2i =
1

λ2(r−s)

which implies

‖(A+ λI)−rAs‖ = sup
‖φ‖=1

‖(A+ λI)−rAsφ‖ ≤ 1

λr−s
.

Lemma D.2. Let A and B be bounded positive self-adjoint linear operators on a seperable Hilbert spaceH. We assume B
is invertible. Then A ≤ B implies

‖A1/2B−1/2‖2 = ‖A1/2B−1A1/2‖ ≤ 1.

If we further assume A is compact, then A < B implies

‖A1/2B−1/2‖2 = ‖A1/2B−1A1/2‖ < 1.

Proof. We first assumeA ≤ B. Since 0 ≤ B−1/2AB−1/2 ≤ I , we have ‖B−1/2AB−1/2‖ ≤ 1 by the definition of positive
operator. Then, we obtain

1 ≥ ‖B−1/2AB−1/2‖ = ‖(B−1/2A1/2)(B−1/2A1/2)>‖ = ‖(B−1/2A1/2)>(B−1/2A1/2)‖ = ‖A1/2B−1A1/2‖.

We now assume A is compact. By Proposition 4.2(c) of chapter 2 in Conway (2019), B−1/2AB−1/2 is compact. Using
0 ≤ B−1/2AB−1/2 < I and the fact that B−1/2AB−1/2 is compact and self-adjoint yields ‖B−1/2AB−1/2‖ < 1 since
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if ‖B−1/2AB−1/2‖ = 1 then B−1/2AB−1/2 has an eigenvalue 1 by Lemma 5.9 of chapter 2 in Conway (2019) which
contradicts B−1/2AB−1/2 < I . Therefore,

1 > ‖B−1/2AB−1/2‖ = ‖A1/2B−1A1/2‖.

The following lemma is similar to Proposition 5 in Rudi et al. (2015).

Lemma D.3. LetH be a seperable Hilbert space and X : H → H and Y : H → H be two bounded linear operators. If
Y >Y −X>X is positive, then

‖Xf‖H ≤ ‖Y f‖H

for any f ∈ H.

Proof. Let f ∈ H. Then

‖Y f‖2H = 〈Y f, Y f〉H = 〈Y >Y f, f〉H ≥ 〈X>Xf, f〉H = 〈Xf,Xf〉H = ‖Xf‖2H

since 〈(Y >Y −X>X)f, f〉H ≥ 0.

Recall Cordes’ inequality. Refer to Fujii et al. (1993) for its proof.

Lemma D.4. Let A,B be two bounded positive linear operators on a seperable Hilbert space. Then

‖AsBs‖ ≤ ‖AB‖s

for any s ∈ [0, 1].

The following lemma is fundamental but useful.

Lemma D.5. Let A and B be two bounded positive self-adjoint linear operators on a seperable Hilbert space. Then
‖A1/2B−1A1/2‖ ≤ ‖B−1A‖ when B is invertible.

Proof. Since A and B are self-adjoint, ‖A1/2B−1A1/2‖ = ‖B−1/2A1/2‖2. By Lemma D.4, ‖B−1/2A1/2‖2 ≤ ‖B−1A‖.

Lemma D.6. Let A,B and C be bounded positive self-adjoint linear operators on a seperable Hilbert spaceH such that
0 ≤ A ≤ B < C. We further assume A1/2 is compact. Then

‖A1/2C−1A1/2(I −A1/2C−1A1/2)−1‖ ≤ ‖B1/2C−1B1/2(I −B1/2C−1B1/2)−1‖.

Proof. Note that for any operator V such that ‖V ‖ < 1, σp(V V >) \ {0} = σp(V
>V ) \ {0} where σp denotes the point

spectrum of a given operator. Then

σp((I − V V >)−1 − I) \ {0} = σp((I − V >V )−1 − I) \ {0}. (51)

Since A1/2 is compact, A1/2C−1A1/2(I −A1/2C−1A1/2)−1 is also compact by Proposition 4.2(c) of chapter 2 in Conway
(2019). From the fact that A1/2C−1A1/2(I −A1/2C−1A1/2)−1 is compact, self-adjoint, and positive, we have

‖A1/2C−1A1/2(I −A1/2C−1A1/2)−1‖ = σmax(A1/2C−1A1/2(I −A1/2C−1A1/2)−1)

by Lemma 5.9 of chapter 2 in Conway (2019) where σmax denotes the largest eigenvalue of a given (self-adjoint positive)
operator. Using (51),

σmax(A1/2C−1A1/2(I −A1/2C−1A1/2)−1) = σmax((I −A1/2C−1A1/2)−1 − I) = σmax((I − C−1/2AC−1/2)−1 − I)

= σmax(C−1/2AC−1/2(I − C−1/2AC−1/2)−1).
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Since A ≤ B,

C−1/2AC−1/2 ≤ C−1/2BC−1/2 ⇒ (I − C−1/2AC−1/2) ≥ (I − C−1/2BC−1/2)

⇒ (I − C−1/2AC−1/2)−1 ≤ (I − C−1/2BC−1/2)−1

⇒ (I − C−1/2AC−1/2)−1 − I ≤ (I − C−1/2BC−1/2)−1 − I.

Also,

C−1/2AC−1/2 ≥ 0 ⇒ (I − C−1/2AC−1/2) ≤ I
⇒ (I − C−1/2AC−1/2)−1 ≥ I
⇒ (I − C−1/2AC−1/2)−1 − I ≥ 0.

Therefore,
0 < σmax((I − C−1/2AC−1/2)−1 − I) ≤ σmax((I − C−1/2BC−1/2)−1 − I).

Using the fact that

σmax((I − C−1/2BC−1/2)−1 − I) = σmax((I −B1/2C−1B1/2)−1 − I)

= σmax(B1/2C−1B1/2(I −B1/2C−1B1/2)−1)

≤ ‖B1/2C−1B1/2(I −B1/2C−1B1/2)−1‖

completes the proof of Lemma D.6.

By using concentration inequalities (Rudi et al., 2015; Chatalic et al., 2022), we can derive the following useful lemmas
(Caponnetto & De Vito, 2007; Yao et al., 2007; Rudi et al., 2015; Lin et al., 2020a).

Lemma D.7. Let X = {x1, · · · ,xN0} whose data points are independently drawn from ρx. Then, with our notation,

(a)

‖Lk,X − Lk‖ ≤ ‖Lk,X − Lk‖HS ≤
2
√

2κ2√
N0

(log(2/δ))1/2

with confidence at least 1− δ where δ ∈ (0, 1) and ‖ · ‖HS is the Hilbert-Schmidt norm;

(b) if 0 < λ ≤ 1 and N (λ) ≥ 1,

‖(Lk + λI)−1/2(Lk − Lk,X)(Lk + λI)−1/2‖ ≤ 2(κ2 + 1) ·

1 + logN (λ)

λN0
+

√
1 + logN (λ)

λN0

 log(4/δ)

with confidence at least 1− δ where δ ∈ (0, 1);

(c) if 0 < λ ≤ 1 and N (λ) ≥ 1,

‖(Lk + λI)1/2(Lk,X + λI)−1/2‖ = ‖(Lk + λI)1/2(Lk,X + λI)−1(Lk + λI)1/2‖1/2 ≤
√

2

with confidence at least 1− δ where

4 exp

− 1

4(κ2 + 1)
·

1 + logN (λ)

λN0
+

√
1 + logN (λ)

λN0

−1
 ≤ δ < 1.

Lemma D.8. Let D = {(x1, y1), · · · , (xN0 , yN0)} whose data points are independently drawn from ρx,y. Then, with our
notation,

‖S>Dy − Lk,D(x)f0‖Hk ≤
2κM

N0
log(2/δ) +

√
2κ2γ2

N0
log(2/δ) ≤ 2κ(M + γ)√

N0

log(2/δ)

with confidence at least 1− δ where δ ∈ (0, 1).
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The following lemmas are useful to compute the expectation using a PAC bound.

Lemma D.9. Let A be a non-negative random variable such that A ≤ B(log(a/δ))q with confidence at least 1− δ for any
δ ∈ (0, 1) where B > 0 is a constant, a ≥ 1, and q > 0. Then

EA ≤ Γ(q + 1)aB.

Proof. Note that

P (A > t) ≤ a exp

(
−
(
t

B

)1/q
)

for any t > 0. Thus,

EA =

∫ ∞
0

P (A > t) dt ≤
∫ ∞
0

a exp

(
−
(
t

B

)1/q
)
dt

=

∫ ∞
0

aBqsq−1 exp(−s) ds = Γ(q + 1)aB.

Lemma D.10. Let A be a non-negative random variable such that

(a) A ≤ B(log(a/δ))q with confidence at least 1− δ for any δ ∈ (0, 1);

(b) A ≤ B̃(log(a/δ))q with confidence at least 1− δ for any δ ∈ (δ0, 1)

where B > 0 and B̃ > 0 are constants, a ≥ 1, q ∈ N, and δ0 ∈ (0, 1). Then

EA ≤ Γ(q + 1)aB̃ + aBqδ0 exp

−( B̃
B

)1/q
 q−1∑

i=0

q!

i!

( B̃
B

)1/q

log(a/δ0)

i

.

Proof. Note that

P (A > t) ≤ a exp

(
−
(
t

B

)1/q
)

for any t > 0 and

P (A > t) ≤ a exp

(
−
(
t

B̃

)1/q
)

for any 0 < t < B̃(log(a/δ0))q . Set t0 = B̃(log(a/δ0))q . Then,

EA =

∫ ∞
0

P (A > t) dt ≤
∫ t0

0

a exp

(
−
(
t

B̃

)1/q
)
dt+

∫ ∞
t0

a exp

(
−
(
t

B

)1/q
)
dt

≤
∫ ∞
0

a exp

(
−
(
t

B̃

)1/q
)
dt+

∫ ∞
t0

a exp

(
−
(
t

B

)1/q
)
dt

≤ Γ(q + 1)aB̃ +

∫ ∞
t0

a exp

(
−
(
t

B

)1/q
)
dt
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by the proof of Lemma D.9. Also,∫ ∞
t0

a exp

(
−
(
t

B

)1/q
)
dt = aBq

∫ ∞
(B̃/B)1/q log(a/δ0)

uq−1 exp(−u) du

= aBq

[
−
q−1∑
i=0

q!

i!
uie−u

]∞
(B̃/B)1/q log(a/δ0)

= aBqδ0 exp

−( B̃
B

)1/q
 q−1∑

i=0

q!

i!

( B̃
B

)1/q

log(a/δ0)

i

.

Remark D.11. If δ0 ≥ 1, then we only have A ≤ B(log(a/δ))q with confidence at least 1− δ for any δ ∈ (0, 1) in Lemma
D.10. Then,

EA ≤ Γ(q + 1)aB ≤ Γ(q + 1)aBδ0

by Lemma D.9. Combining this result and Lemma D.10, we have

EA ≤ Γ(q + 1)aB̃ + aBqδ0

exp

−( B̃
B

)1/q
 q−1∑

i=0

q!

i!

( B̃
B

)1/q

log(a/δ0)

i

+ Γ(q)


even if we only assume δ0 > 0 instead of δ0 ∈ (0, 1) in Lemma D.10.

Sometimes Lemma D.10 is complicated, so we provide another lemma.

Lemma D.12. Let A be a non-negative random variable such that A ≤ B̃(log(a/δ))q with confidence at least 1− δ for
any δ ∈ (δ0, 1) and A ≤ B almost surely where B > 0 and B̃ > 0 are constants, a ≥ 1 and q > 0. Then

EA ≤ Γ(q + 1)aB̃ +Bδ0.

Proof. Since

P (A > t) ≤ a exp

(
−
(
t

B̃

)1/q
)

for any 0 < t < B̃(log(a/δ0))q ,

EA = P(A ≤ B̃(log(a/δ0))q)E[A|A ≤ B̃(log(a/δ0))q] + P(A > B̃(log(a/δ0))q)E[A|A > B̃(log(a/δ0))q]

≤
∫ ∞
0

P(A ≤ B̃(log(a/δ0))q)P(A > t|A ≤ B̃(log(a/δ0))q) dt+ δ0B

≤
∫ B̃(log(a/δ0))

q

0

P(A > t) dt+ δ0B

≤
∫ B̃(log(a/δ0))

q

0

a exp

(
−
(
t

B̃

)1/q
)
dt+ δ0B

≤
∫ ∞
0

a exp

(
−
(
t

B̃

)1/q
)
dt+ δ0B

= Γ(q + 1)aB̃ +Bδ0.

Note that if δ0 ≥ 1 then EA ≤ Bδ0 is trivial. Thus, it also holds for δ0 ≥ 1.

Lastly, we introduce a lemma to deal with multiplications of random variables whose PAC bounds are given.
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Lemma D.13. If Ã1 ≤ O(a(m,N))(log(a1/δ))
q1 with confidence at least 1−δ and Ã2 ≤ O(b(m,N))(log(a2/δ))

q2 with
confidence at least 1 − δ where δ ∈ (0, 1), a1, a2 ≥ 1 and q1, q2 > 0, then Ã1Ã2 ≤ O(a(m,N)b(m,N))(log(a3/δ))

q3

with confidence at least 1− 2δ for some a3 ≥ 1 and q3 > 0.

Proof. It directly follows from the fact that

Ã1Ã2 ≤ O(a(m,N))O(b(m,N))(log(2a1/δ))
q1(log(2a2/δ))

q2 ≤ O(a(m,N)b(m,N))(log max(2a1, 2a2)/δ)q1+q2

with confidence at least 1− 2δ where δ ∈ ( 1
2 , 1).

E. Experiment Details
E.1. Dataset Description Details

The generating procedure of the synthetic datasets is as follows: (i) the inputs are independently drawn from the uniform
distribution on [0, 1]d with d = 1 for Dataset 1 and Dataset 2 and with d = 3 for Dataset 3; (ii) the corresponding outputs are
generated from y = gi(x) + ε for Dataset i (i = 1, 2, 3) where ε is the independent noise that follows the normal distribution
with mean 0 and variance 0.442 and gi are given by

g1(x) = min(x, 1− x)

for Dataset 1,

g2(x) =
2

3
+

2

3
x− 4

15
x2.5

for Dataset 2, and
g3(x) = (1− ‖x‖2)6(35‖x‖22 + 18‖x‖2 + 3)1{‖x‖≤1}

for Dataset 3. We use the kernel
k1(x, x′) = 1 + min(x, x′)

for Dataset 1 and Dataset 2 and

k2(x,x′) = (1− ‖x− x′‖2)4(4‖x− x′‖2 + 1)1{‖x−x′‖2≤1}

for Dataset 3. Note that we do not give any noise for test datasets. We know that g1 ∈ Hk1 and g3 ∈ Hk2 (Lin et al., 2020a).
Since g̃2(x) =

√
x ∈ L2

ρx ,∫ 1

0

g̃2(x)k1(x, t) dρx(x) =

∫ t

0

(1 + x)
√
x dx+

∫ 1

t

(1 + t)
√
x dx = g2(t)

holds. From this fact, we can easily see that g2 ∈ Hk1 and g2 = L
1/2
k1
ĝ2 for some ĝ2 ∈ Hk1 . The generating procedure of

MNIST is described in (Cui et al., 2021). We use the RBF kernel

k3(x,x′) = exp

(
− 1

2× 104
‖x− x′‖2

)
for MNIST.

E.2. Simulation Details

We conduct experiments with the local datasets of sizes N = 10 and N = 20. We also set the number of clients
m ∈ {10, 20, 30, 40, 50, 100} for N = 10 (except MNIST; for MNIST we set m ∈ {10, 20, 30, 40, 50} when N = 10) and
m ∈ {10, 20, 30, 40, 50} for N = 20. Assume there is an unlabeled public dataset of size (m − 1)N . For the iterative
ensemble distillation algorithm, set the total communication round t = 200 for convergence. We use the fixed distillation
hyperparameter α = 1/m but conduct the hyperparemeter tuning for λ > 0 using the grid search. In the test phase, we use a
test dataset of size 1000 whose data points are generated from the procedure explained in Appendix E.1. We compute the
averaged MSE (Mean Squared Error) over the local models to evaluate the performance. We simulate at least 100 times for
each case and then average the results.
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(a) Dataset 1 with N = 20
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(b) Dataset 2 with N = 20
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(c) Dataset 3 with N = 20
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(d) MNIST with N = 20

Figure 3. Comparison between the performance of the one-shot ensemble distillation algorithm (one-shot ED), the iterative ensemble
distillation algorithm without the de-regularization (IED w/o deregularization), the iterative ensemble distillation algorithm with the
de-regularization (IED w/ deregularization), and the central training. We set N = 20 and conduct the experiments with various m.

E.3. Additional Experimental Results

Performance Comparison with N = 20. We visualize the comparison results on the performance of the one-shot ensem-
ble distillation algorithm, the iterative ensemble distillation algorithm without the de-regularization, the iterative ensemble
distillation algorithm with the de-regularization trick, and the central training with N = 20 and m ∈ {10, 20, 30, 40, 50}
in Figure 3. It has a similar pattern to the cases with N = 10 which are summarized in Figure 2. The one-shot ensemble
distillation algorithm performs much better than the standalone models. However, it has worse performance on Dataset 3
and MNIST compared with the iterative ensemble distillation algorithms and the central training. The ensemble distillation
algorithm without the de-regularization is slightly worse than the ensemble distillation algorithm with the de-regularization
and the central training, but the performance gap is not significant for N = 20. In all settings, the iterative ensemble
distillation algorithm has a similar performance as the central training in the expected risk sense.

Performance Comparison with FedMD (Li & Wang, 2019). We compare our proposed algorithm with FedMD (Li
& Wang, 2019) on Dataset 3 and MNIST. FedMD is a representative KD based FL algorithm using neural networks. In
the experiments, we consider the unlabeled public dataset version of FedMD (which is used as a baseline in Zhang et al.
(2021)). We use a 3 hidden layer fully connected neural network and LeNet5 (LeCun et al., 1998) for FedMD. The result is
summarized in Figure 4.

We first note that the training strategy for neural networks (such as model architecture and hyperparameters) is good enough
because the central training performance of the neural networks is better than that of KRR. However, in both of Dataset
3 and MNIST, FedMD does not achieve the central training performance and the performance difference is significant as
well. On the other hand, the iterative ensemble distillation algorithm with the de-regularization achieves almost the same
performance as the central training with KRR. Moreover, FedMD performs worse than the iterative ensemble distillation
algorithm with the de-regularization.

Effect of Public Dataset Size. We provide additional experimental results on the effectiveness of the unlabeled public
dataset size Np. Figure 5 visualizes the effect of Np on the performance of the one-shot ensemble distillation algorithm and
the iterative ensemble distillation algorithm (with the de-regularization). We conduct the experiments with N = 10 and
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(a) IED w/ deregularization, Dataset 3
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(b) FedMD, Dataset 3
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(c) IED w/ deregularization, MNIST
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(d) FedMD, MNIST

Figure 4. Comparison between the performance of the iterative ensemble distillation algorithm with the de-regularization (IED w/
deregularization) and FedMD (Li & Wang, 2019). We set N = 10 and conduct the experiments with various m.

various Np ∈ {0.2(m − 1)N, 0.5(m − 1)N, (m − 1)N, 1.5(m − 1)N} on the three synthetic datasets. On Dataset 2, it
seems that Np = 0.2(m− 1)N is enough to achieve the performance of the central training for both the one-shot ensemble
distillation and the iterative ensemble distillation. We also observe that the one-shot ensemble distillation does not have
an advantage from having more public data points. For iterative ensemble distillation, too small public dataset size (e.g.,
Np = 0.2(m− 1)N ) results in worse performance but it is not so effective when the public dataset size is sufficiently large
(e.g., Np ≥ (m− 1)N ).

Effect of Client Selection Strategy. We also provide experimental results on the effect of client selection strategy. We
conduct the experiments to analyze the effect of the number of selected clients at each communication round and the
stochastic approximation weights. We also conduct the experiments to measure the performance of Algorithm 3 with a
client selection strategy and to compare it with Algorithm 2.

Figure 6 visualizes the effect of the number of selected clients at each communication round (denoted by C in Algorithm
3) and the stochastic approximation weights (denoted by {γt0}∞t0=1 in Algorithm 3). We set N = 10 and m = 50 in all
experiments. The experiment details are as follows. We generate Dataset 3 using the procedure explained in Appendix E.1.
Then, we find the convergent consensus y∗p using Algorithm 2 with sufficiently many iterations. We conduct Algorithm 3
with various C and {γt0}∞t0=1, and then measure the squared distance between y∗p and ỹp which is derived from Algorithm 3.

As illustrated in Figure 6(a), if we use only one client at each communication round (e.g., asynchronous setting), the speed of
the convergence is quite slow in our setting. However, it is enough to consider only 20% of the clients at each communication
round to achieve almost the same convergence speed as considering all clients at each communication round in Algorithm 3.

To validate the effect of {γt0}∞t0=1, we set

γt0 =
1

tq0
(52)

where q ≥ 0. To satisfy the condition (46), q should be larger than 0.5. We conduct Algorithm 3 with various q ∈
{0, 0.3, 0.501, 0.7}. Figure 6(b) shows that smaller q (slow decay) makes a decrement of the squared distance larger in
the early stage of training. However, it also shows that the consensus prediction ỹp does not converge to y∗p if q ≤ 0.5.
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(a) One-shot, Dataset 1
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(b) One-shot, Dataset 2
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(c) One-shot, Dataset 3
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(d) Iterative, Dataset 1
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(e) Iterative, Dataset 2
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(f) Iterative, Dataset 3

Figure 5. The effect of the public dataset size for the one-shot ensemble distillation algorithm and the iterative ensemble distillation
algorithm. We conduct the experiments with N = 10 and Np ∈ {0.2(m − 1)N, 0.5(m − 1)N, (m − 1)N, 1.5(m − 1)N}. Set
p = Np/(m− 1)N , e.g., p = 1.0 indicates Np = (m− 1)N .

In particular, the squared distance between y∗p and ỹp is large when q = 0 (i.e., do not memorize the previous consensus
ỹp,old). This means that only using a new consensus is inappropriate when we use a client selection strategy. When q = 0.3,
the squared distance between y∗p and ỹp does not go to zero but it is quite small. On the other hand, a large q guarantees the
convergence of ỹp to y∗p but the convergence speed is slow.

Lastly, we measure the performance of Algorithm 3. Figure 7 visualizes the performance of Algorithm 3 with different
iterations t ∈ {200, 1000, 2000, 5000, 10000, 20000} on Dataset 1, Dataset 2, and Dataset 3. As in Figure 7, Algorithm 3
achieves the same performance as Algorithm 2 (with 200 iterations) after 5000 iterations on all of the three datasets.
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(b) Effect of {γt0}∞t0=1 (Iterations 20000)
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(c) Effect of {γt0}∞t0=1 (Iterations 50000)

Figure 6. The effect of the number of selected clients at each communication round (C) and the stochastic approximation weights
({γt0}∞t0=1) in Algorithm 3. We set γt0 = 1/tq0 where q ∈ {0, 0.3, 0.501, 0.7}. We set N = 10 and m = 50 and use Dataset 3 in all
experiments. y-axis indicates the squared distance between ỹp in Algorithm 3 and the convergent consensus y∗p. We set q = 0.501 in (a)
and C = 10 in (b) and (c).
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(a) Performance on Dataset 1
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(b) Performance on Dataset 2
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(c) Performance on Dataset 3

Figure 7. Performance of Algorithm 3 with different t ∈ {200, 1000, 2000, 5000, 10000, 20000} on the three datasets. The dashed line
indicates the performance of Algorithm 2 with 200 iterations. We set N = 10, m = 50, q = 0.501 and C = 10 in all experiments where
γt0 = 1/tq0.
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