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Abstract
One of the key capabilities of intelligent agents
is the ability to discover useful skills without ex-
ternal supervision. However, the current unsuper-
vised skill discovery methods are often limited
to acquiring simple, easy-to-learn skills due to
the lack of incentives to discover more complex,
challenging behaviors. We introduce a novel unsu-
pervised skill discovery method, Controllability-
aware Skill Discovery (CSD), which actively
seeks complex, hard-to-control skills without su-
pervision. The key component of CSD is a
controllability-aware distance function, which as-
signs larger values to state transitions that are
harder to achieve with the current skills. Com-
bined with distance-maximizing skill discovery,
CSD progressively learns more challenging skills
over the course of training as our jointly trained
distance function reduces rewards for easy-to-
achieve skills. Our experimental results in six
robotic manipulation and locomotion environ-
ments demonstrate that CSD can discover diverse
complex skills including object manipulation and
locomotion skills with no supervision, signifi-
cantly outperforming prior unsupervised skill dis-
covery methods. Videos and code are available at
https://seohong.me/projects/csd/

1. Introduction
Humans are capable of autonomously learning skills, rang-
ing from basic muscle control to complex acrobatic behav-
iors, which can be later combined to achieve highly complex
tasks. Can machines similarly discover useful skills with-
out any external supervision? Recently, many unsupervised
skill discovery methods have been proposed to discover di-
verse behaviors in the absence of extrinsic rewards (Gregor
et al., 2016; Eysenbach et al., 2019; Sharma et al., 2020;
Achiam et al., 2018; Campos Camúñez et al., 2020; Hansen
et al., 2020; Kim et al., 2021; Liu & Abbeel, 2021a; Park
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Figure 1. Object trajectories and gripper trajectories of 2-D con-
tinuous skills discovered by three unsupervised skill discovery
methods, CSD (ours), LSD (Park et al., 2022), and DIAYN (Ey-
senbach et al., 2019), in the FetchPush environment. Trajectories
with different colors represent different skills. While previous
methods focus only on maneuvering the gripper, CSD discovers
object manipulation skills in the absence of supervision.

et al., 2022; Laskin et al., 2022). These methods have also
demonstrated efficient downstream reinforcement learning
(RL) either by fine-tuning (Laskin et al., 2021; 2022) or
sequentially combining (Eysenbach et al., 2019; Sharma
et al., 2020; Park et al., 2022) the discovered skills.

However, in complex environments, current unsupervised
skill discovery methods are often limited to discovering
only simple, easy-to-learn skills. For example, as illustrated
in Figure 1, previous approaches (LSD and DIAYN) only
learn to gain control of the agent’s own ‘body’ (i.e., the
gripper and joint angles), completely ignoring the object in
the Fetch environment. This is because learning difficult
skills, such as interacting with the object, has no incentive
for them compared to learning easy skills. In other words,
their objectives can be fully optimized with simple skills.

To mitigate this issue, prior approaches incorporate human
supervision, such as limiting the agent’s focus to specific
dimensions of the state space of interest (Eysenbach et al.,
2019; Sharma et al., 2020; Park et al., 2022; Adeniji et al.,
2022). However, this not only requires manual feature en-
gineering but also significantly limits the diversity of skills.
On the other hand, we humans consistently challenge our-
selves to learn more complex skills after mastering simple
skills in an autonomous manner.

Inspired by this, we propose a novel unsupervised skill
discovery method, Controllability-aware Skill Discovery
(CSD), which explicitly seeks complex, hard-to-learn be-
haviors that are potentially more useful for solving down-
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stream tasks. Our key idea is to train a controllability-aware
distance function based on the current skill repertoire and
combine it with distance-maximizing skill discovery. Specif-
ically, we train the controllability-aware distance function to
assign larger values to harder-to-achieve state transitions and
smaller values to easier-to-achieve transitions with the cur-
rent skills. Since CSD aims to maximize this controllability-
aware distance, it autonomously learns increasingly complex
skills over the course of training. We highlight that, to the
best of our knowledge, CSD is the first unsupervised skill
discovery method that demonstrates diverse object manipu-
lation skills in the Fetch environment without any external
supervision or manual feature engineering (e.g., limiting the
focus only to the object).

To summarize, the main contribution of this work is to pro-
pose CSD, a novel unsupervised skill discovery method
built upon the notion of controllability. We also formu-
late a general distance-maximizing skill discovery approach
to incorporate our controllability-aware distance function
with skill discovery. We empirically demonstrate that CSD
discovers various complex behaviors, such as object manip-
ulation skills, with no supervision, outperforming previous
state-of-the-art skill discovery methods in diverse robotic
manipulation and locomotion environments.

2. Preliminaries
Unsupervised skill discovery aims at finding a potentially
useful set of skills without external rewards. Formally, we
consider a reward-free Markov decision process (MDP) de-
fined asM = (S,A, µ, p), where S andA are the state and
action spaces, respectively, µ : P(S) is the initial state dis-
tribution, and p : S ×A → P(S) is the transition dynamics
function. Each skill is defined as a skill latent vector z ∈ Z
and a skill-conditioned policy π(a|s, z) that is shared across
the skills. The skill space Z can be either discrete skills
({1, 2, . . . , D}) or continuous skills (RD).

To collect a skill trajectory (behavior), we sample a skill z
from a predefined skill prior distribution p(z) at the begin-
ning of an episode. We then roll out the skill policy π(a|s, z)
with the sampled z for the entire episode. For the skill prior,
we use a standard normal distribution for continuous skills
and a uniform distribution for discrete skills.

Throughout the paper, I(·; ·) denotes the mutual information
and H(·) denotes either the Shannon entropy or differential
entropy depending on the context. We use uppercase letters
for random variables and lowercase letters for their values
(e.g., S denotes the random variable for states s).

3. Related Work
In this section, we mainly discuss closely related prior unsu-
pervised skill discovery work based on mutual information
maximization or Euclidean distance maximization. A more

extensive literature survey on unsupervised skill discovery
and unsupervised RL can be found in Appendix A.

3.1. Mutual Information-Based Skill Discovery
Mutual information-based unsupervised skill discovery max-
imizes the mutual information (MI) between states S and
skills Z, I(S;Z), which associates different states with dif-
ferent skill latent vectors so that the behaviors from different
zs are diverse and distinguishable. Since computing exact
MI is intractable, previous MI-based methods approximate
MI in diverse ways, which can be categorized into reverse-
MI and forward-MI (Campos Camúñez et al., 2020).

First, reverse-MI approaches (Gregor et al., 2016; Eysen-
bach et al., 2019; Achiam et al., 2018; Hansen et al., 2020)
optimize MI in the form of I(S;Z) = H(Z) − H(Z|S),
where H(Z) is a constant as we assume that the skill prior
distribution p(z) is fixed. Thus, maximizing I(S;Z) corre-
sponds to minimizing H(Z|S), which can be approximated
with a variational distribution qθ(z|s). For instance, DIAYN
(Eysenbach et al., 2019) maximizes the variational lower
bound of MI as follows:

I(S;Z) = −H(Z|S) +H(Z) (1)
= Ez,s[log p(z|s)]− Ez[log p(z)] (2)
≥ Ez,s[log qθ(z|s)] + (const), (3)

where qθ(z|s) is a variational approximation of p(z|s) (Bar-
ber & Agakov, 2003). Intuitively, qθ(z|s) works as a ‘skill
discriminator’ that tries to infer the original skill z from the
state s, encouraging the skill policy to generate distinguish-
able skill trajectories for different zs (i.e., diverse skills).
Other reverse-MI methods optimize the MI objective simi-
larly but computing MI on entire trajectories (Achiam et al.,
2018) or only on final states (Gregor et al., 2016) rather than
all intermediate states, or using von Mises-Fisher distribu-
tions (Hansen et al., 2020) for the skill prior distribution
instead of Gaussian or uniform distributions.

On the other hand, forward-MI approaches (Sharma et al.,
2020; Campos Camúñez et al., 2020; Liu & Abbeel, 2021a;
Laskin et al., 2022) employ the other decomposition of MI:
I(S;Z) = H(S)−H(S|Z). This decomposition explicitly
maximizes the state entropy H(S), which helps diversify
skill trajectories in practice (Laskin et al., 2022). Forward-
MI methods minimize the H(S|Z) term with a variational
approximation (Sharma et al., 2020; Liu & Abbeel, 2021a;
Campos Camúñez et al., 2020) or a contrastive estimator
(Laskin et al., 2022). H(S) can be estimated using a particle-
based entropy estimator (Liu & Abbeel, 2021a; Laskin et al.,
2022), a state marginal matching objective (Lee et al., 2019;
Campos Camúñez et al., 2020), or sampling-based approxi-
mation (Sharma et al., 2020).

One major limitation of MI-based approaches is that opti-
mizing the MI objective does not necessarily lead to cov-

2



Controllability-Aware Unsupervised Skill Discovery

(c) LSD
(Euclidean distance)

(d) CSD (ours)
(Controllability-aware distance)

(b) Skill space mappings of LSD and the MI objective(a) Two skill sets having the same MI

Figure 2. Illustration of unsupervised skill discovery methods. (a) MI is invariant to traveled distances. (b) The MI objective simply
seeks any mapping between Z and S, while LSD finds the largest (longest) possible mapping. (c) LSD maximizes the Euclidean
traveled distance, which can lead to simple or trivial behaviors. (d) Our CSD maximizes the traveled distance with respect to our learned
controllability-aware distance function that assigns larger values to harder-to-achieve state transitions. This leads to more complex skills
that can be useful for downstream tasks.

ering a larger region in the state space. This is because
MI is invariant to traveled distances or any invertible trans-
formation (Figure 2a), i.e., I(S;Z) = I(f(S);Z) for any
invertible f (Kraskov et al., 2004). Since there is no incen-
tive for the MI objective to further explore the state space,
they often end up discovering ‘static’ skills with limited
state coverage (Gu et al., 2021; Park et al., 2022; Laskin
et al., 2022).

3.2. Euclidean Distance-Maximizing Skill Discovery
To resolve the limitation of MI-based skill discovery, Park
et al. (2022) recently proposed Lipschitz-constrained Skill
Discovery (LSD), which aims to not only establish a map-
ping between Z and S but also maximize the Euclidean
traveled distance in the state space for each skill. Specifi-
cally, LSD maximizes the state change along the direction
specified by the skill z with the following objective:

J LSD := Ez,s,s′ [(ϕ(s
′)− ϕ(s))⊤z] (4)

s.t. ∀x, y ∈ S, ∥ϕ(x)− ϕ(y)∥ ≤ ∥x− y∥, (5)

where s′ denotes the next state and ϕ : S → RD denotes
a mapping function. LSD maximizes Equation (4) with
respect to both the policy and ϕ. Intuitively, this objective
aims to align the directions of z and (ϕ(s′)− ϕ(s)) while
maximizing the length ∥ϕ(s′) − ϕ(s)∥, which leads to an
increase in the state difference ∥s′ − s∥ due to the Lips-
chitz constraint. As illustrated in Figure 2b, LSD finds the
largest possible mapping in the state space by maximizing
Euclidean traveled distances in the state space in diverse
directions, which leads to more ‘dynamic’ skills. On the
other hand, the MI objective finds any mapping between the
skill space and the state space, being agnostic to the area of
the mapped region, which often results in ‘static’ skills with
limited state coverage.

While promising, LSD is still limited in that it maximizes
Euclidean traveled distances in the state space, which of-
ten does not match the behaviors of our interests because
the Euclidean distance treats all state dimensions equally.
For example, in the Fetch environment in Figure 1, simply
diversifying the position and joint angles of the robot arm

is sufficient to achieve large Euclidean traveled distances
because both the coordinates of the object and the gripper
lie in the same Euclidean space (Figure 2c). As such, LSD
and any previous MI-based approaches mostly end up learn-
ing skills that only diversify the agent’s own internal states,
ignoring the external states (e.g., object pose).

Instead of maximizing the Euclidean distance, we propose
to maximize traveled distances with respect to a learned
controllability-aware distance function that ‘stretches’ the
axes along hard-to-control states (e.g., objects) and ‘con-
tracts’ the axes along easy-to-control states (e.g., joint an-
gles), so that maximizing traveled distances results in the
discovery of more complex, useful behaviors (Figure 2d).

3.3. Unsupervised Goal-Conditioned RL
Another line of unsupervised RL focuses on discovering
a wide range of goals and learning corresponding goal-
reaching policies, which leads to diverse learned behaviors
(Warde-Farley et al., 2019; Pong et al., 2020; Pitis et al.,
2020; Mendonca et al., 2021). On the other hand, unsuper-
vised skill discovery, including our approach, (1) focuses on
more general behaviors (e.g., running, flipping) not limited
to goal-reaching skills, whose behaviors tend to be ‘static’
(Mendonca et al., 2021; Jiang et al., 2022), and (2) aims
to learn a compact set of distinguishable skills embedded
in a low-dimensional, possibly discrete skill space, rather
than finding all possible states, making it more amenable to
hierarchical RL by providing a low-dimensional high-level
action space (i.e., skill space). While these two lines of ap-
proaches are not directly comparable, we provide empirical
comparisons and further discussion in Appendix C.

4. Controllability-Aware Skill Discovery
To discover complex, useful skills without extrinsic reward
and domain knowledge, we introduce the notion of con-
trollability1 to skill discovery – once an agent discovers

1The term controllability in this paper describes whether an
agent can manipulate hard-to-control states (e.g., external objects)
or not, different from the one used in control theory (Ogata et al.,
2010).
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easy-to-achieve skills, it continuously moves its focus to
hard-to-control states and learns more diverse and complex
skills. We implement this idea in our Controllability-aware
Skill Discovery (CSD) by combining a distance-maximizing
skill discovery approach (Section 4.1) with a jointly trained
controllability-aware distance function (Section 4.2), which
enables the agent to find increasingly complex skills over
the course of training (Section 4.3).

4.1. General Distance-Maximizing Skill Discovery
As explained in Section 3.2, Euclidean distance-maximizing
skill discovery does not necessarily maximize distances
along hard-to-control states (i.e., hard-to-achieve skills). To
discover more challenging skills, we propose to learn a skill
policy with respect to a jointly learned controllability-aware
distance function.

To this end, we first present a general Distance-maximizing
Skill Discovery approach (DSD) that can be combined with
any arbitrary distance function d(·, ·) : S×S → R+

0 . Specif-
ically, we generalize the Euclidean distance-maximizing
skill discovery (Park et al., 2022) by replacing ∥x− y∥ in
Equation (5) with d(x, y) as follows:

J DSD := Ez,s,s′ [(ϕ(s
′)− ϕ(s))⊤z] (6)

s.t. ∀x, y ∈ S, ∥ϕ(x)− ϕ(y)∥ ≤ d(x, y), (7)

where ϕ(·) : S → RD is a function that maps states into a
D-dimensional space (which has the same dimensionality
as the skill space). DSD can discover skills that maximize
the traveled distance under the given distance function d
in diverse directions by (1) aligning the directions of z
and (ϕ(s′)− ϕ(s)) and (2) maximizing its length ∥ϕ(s′)−
ϕ(s)∥, which also increases d(s, s′) due to the constraint in
Equation (7). Here, LSD can be viewed as a special case of
DSD with d(x, y) = ∥x− y∥.
When dealing with a learned distance function d, it is gen-
erally not straightforward to ensure that d is a valid distance
(pseudo-)metric, which must satisfy symmetry and the tri-
angle inequality. However, DSD has the nice property that
d in Equation (7) does not have to be a valid metric. This
is because DSD implicitly converts the original constraint
(Equation (7)) into the one with a valid pseudometric d̃. As
a result, we can use any arbitrary non-negative function d
for DSD, with the semantics being implicitly defined by
its induced pseudometric d̃. We summarize our theoretical
results as follows and the proofs are in Appendix B.1.

Theorem 4.1. Given any non-negative function d : S×S →
R+

0 , there exists a valid pseudometric d̃ : S ×S → R+
0 that

satisfies the following properties:

1. Imposing Equation (7) with d is equivalent to imposing

Equation (7) with d̃, i.e.,

∀x, y ∈ S, ∥ϕ(x)− ϕ(y)∥ ≤ d(x, y) (8)

⇐⇒ ∀x, y ∈ S, ∥ϕ(x)− ϕ(y)∥ ≤ d̃(x, y). (9)

2. d̃ is a valid pseudometric.

3. d̃ is a lower bound of d, i.e.,

∀x, y ∈ S, 0 ≤ d̃(x, y) ≤ d(x, y). (10)

Training of DSD. While LSD implements the Lipshitz con-
straint in Equation (5) using Spectral Normalization (Miy-
ato et al., 2018), similarly imposing DSD’s constraint in
Equation (7) is not straightforward because it is no longer
a Euclidean Lipschitz constraint. Hence, we optimize our
objective with dual gradient descent (Boyd et al., 2004): i.e.,
with a Lagrange multiplier λ ≥ 0, we use the following dual
objectives to train DSD:

rDSD := (ϕ(s′)− ϕ(s))⊤z, (11)

J DSD,ϕ := E[(ϕ(s′)− ϕ(s))⊤z

+ λ ·min(ϵ, d(x, y)− ∥ϕ(x)− ϕ(y)∥)], (12)

J DSD,λ := −λ · E[min(ϵ, d(x, y)− ∥ϕ(x)− ϕ(y)∥)],
(13)

where rDSD is the intrinsic reward for the policy, and J DSD,ϕ

and J DSD,λ are the objectives for ϕ and λ, respectively. x
and y are sampled from some state pair distribution pcst(x, y)
that imposes the constraint in Equation (7). ϵ > 0 is a
slack variable to avoid the gradient of λ always being non-
negative. With these objectives, we can train DSD by opti-
mizing the policy with Equation (11) as an intrinsic reward
while updating the other components with Equations (12)
and (13).

4.2. Controllability-Aware Distance Function
To guide distance-maximizing skill discovery to focus on
more challenging skills, a distance function d is required
to assign larger values to state transitions that are hard-to-
achieve with the current skills and smaller values to easy-
to-achieve transitions. d also needs to be adaptable to the
current skill policy so that the agent continuously acquires
new skills and finds increasingly difficult state transitions
over the course of training.

Among many potential distance functions, we choose a neg-
ative log-likelihood of a transition from the current skill
policy, − log p(s′|s), as a controllability-aware distance
function in this paper. Accordingly, we define the degree to
which a transition is “hard-to-achieve” as− log p(s′|s) with
respect to the current skill policy’s transition distribution.
This suits our desiderata since (1) it assigns high values
for rare transitions (i.e., low p(s′|s)) while assigns small
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values for frequently visited transitions (i.e., high p(s′|s));
(2) p(s′|s) can be approximated by training a density model
qθ(s

′|s) from policy rollouts; and (3) the density model
qθ(s

′|s) continuously adjusts to the current skill policy by
jointly training it with the skill policy. Here, while it is also
possible to employ multi-step transitions p(st+k|st) for the
distance function, we stick to the single-step version for
simplicity. We note that even though we employ single-
step log-likelihoods, DSD maximizes the sum of rewards,∑T−1

t=0 (ϕ(st+1)− ϕ(st))
⊤z = (ϕ(sT )− ϕ(s0))

⊤z for the
trajectory (s0, a0, s1, . . . , sT ), which maximizes the trav-
eled distance of the whole trajectory while maintaining the
directional alignment with z.

4.3. Controllability-Aware Skill Discovery
Now, we introduce Controllability-aware Skill Discovery
(CSD), a distance-maximizing skill discovery method with
our controllability-aware distance function. With the dis-
tance function in Section 4.2 we can rewrite the constraint
of DSD in Equation (7) as follows:

∀s, s′ ∈ S, ∥ϕ(s)− ϕ(s′)∥ ≤ dCSD(s, s′), (14)

dCSD(s, s′) ≜ (s′ − µθ(s))
⊤Σ−1

θ (s)(s′ − µθ(s)) (15)
∝ − log qθ(s

′|s) + (const), (16)

where the density model is parameterized as qθ(s
′|s) =

N (µθ(s),Σθ(s)), which is jointly trained using (s, s′) tu-
ples collected by the skill policy. We also use the same
p(s, s′) distribution from the skill policy for the dual con-
straint distribution pcst(x, y) introduced in Section 4.1 as
well. Here, we note that dCSD(·, ·) is not necessarily a valid
distance metric; however, we can still use it for the con-
straint in Equation (7) according to Theorem 4.1, because it
automatically transforms dCSD into its induced valid pseudo-
metric d̃CSD. Further discussion about its implications and
limitations can be found in Appendix B.2.

CSD has several main advantages. First, the agent actively
seeks rare state transitions and thus acquires increasingly
complex skills over the course of training, which makes
the skills discovered more useful for downstream tasks. In
contrast, LSD or previous MI-based approaches only max-
imize Euclidean distances or are even agnostic to traveled
distances, which often leads to simple or static behaviors.
Second, unlike LSD, the optimal behaviors of CSD are ag-
nostic to the semantics and scales of each dimension of the
state space; thus, CSD does not require domain knowledge
about the state space. Instead, the objective of CSD only
depends on the difficulty or sparsity of state transitions. Fi-
nally, unlike curiosity- or disagreement-based exploration
methods that only seek unseen transitions (Pathak et al.,
2017; 2019; Mendonca et al., 2021), CSD finds a balance
between covering unseen transitions and learning maximally
different skills across zs via directional alignments, which
leads to diverse yet consistent skills.

Algorithm 1 Controllability-aware Skill Discovery (CSD)

1: Initialize skill policy π(a|s, z), function ϕ(s), condi-
tional density model qθ(s′|s), Lagrange multiplier λ

2: for i← 1 to (# epochs) do
3: for j ← 1 to (# episodes per epoch) do
4: Sample skill z ∼ p(z)
5: Sample trajectory τ with π(a|s, z)
6: end for
7: Fit conditional density model qθ(s′|s) using current

trajectory samples
8: Update ϕ(s) with gradient ascent on J DSD,ϕ

9: Update λ with gradient ascent on J DSD,λ

10: Update π(a|s, z) using SAC with intrinsic reward rDSD

11: end for

CSD (ours) LSD DIAYN DADS

FetchPush

FetchSlide

FetchPick-
AndPlace

Figure 3. The object trajectories in the xy plane of randomly sam-
pled 1000 continuous skills learned by CSD, LSD, DIAYN, and
DADS in three Fetch manipulation environments without any su-
pervision. Trajectories with different colors represent different
skills. Only CSD learns to manipulate the object across all three
tasks without supervision while other methods focus only on mov-
ing the robot arm. We refer to Appendix D for the complete
qualitative results from all random seeds.

Training of CSD. We train the skill policy π(a|s, z) with
Soft Actor-Critic (SAC) (Haarnoja et al., 2018b) with Equa-
tion (11) as an intrinsic reward. We train the other compo-
nents with stochastic gradient descent. We summarize the
training procedure of CSD in Algorithm 1 and provide the
full implementation details in Appendix E.

5. Experiments
The goal of our experiments is to verify whether our
controllability-aware skill discovery method can learn com-
plex, useful skills without supervision in a variety of envi-
ronments. We test CSD on six environments across three
different domains: three Fetch manipulation environments
(FetchPush, FetchSlide, and FetckPickAndPlace) (Plappert
et al., 2018), Kitchen (Gupta et al., 2019), and two MuJoCo
locomotion environments (Ant and HalfCheetah) (Todorov
et al., 2012; Brockman et al., 2016). We mainly compare
CSD with three state-of-the-art unsupervised skill discovery
methods: LSD (Park et al., 2022), DIAYN (Eysenbach et al.,
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Figure 4. Comparison of the object state coverage and downstream task performances of skill discovery methods in three Fetch manipula-
tion environments. Only CSD learns to manipulate the object without external supervision, while the other methods mainly focus on
controlling the internal states (Figure 16) because there is little incentive for them to discover more ‘challenging’ skills.
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Figure 5. Comparison of the downstream task performances of
skill discovery methods with the oracle prior, which restricts the
input to the skill discriminators to the object xyz coordinates.

2019), and DADS (Sharma et al., 2020). They respectively
fall into the categories of Euclidean distance-maximizing
skill discovery, reverse-MI, and forward-MI (Section 3). We
also compare with disagreement-based exploration used in
unsupervised goal-conditioned RL, such as LEXA (Men-
donca et al., 2021), in Appendix C. We evaluate state cov-
erage and performance on downstream tasks to assess the
diversity and usefulness of the skills learned by each method.
For our quantitative experiments, we use 8 random seeds
and present 95% confidence intervals using error bars or
shaded areas. We refer to our project page for videos.

5.1. Fetch Manipulation
We first show (1) whether CSD can acquire object manip-
ulation skills without any supervision, (2) how useful the
learned skills are for the downstream tasks, and (3) which
component allows CSD to learn complex skills in the Fetch
manipulation environments (Plappert et al., 2018). Each
Fetch environment consists of a robot arm and an object but
has a unique configuration; e.g., FetchSlide has a slippery
table and FetchPickAndPlace has a two-fingered gripper.

We train CSD, LSD, DIAYN, and DADS on the three Fetch
environments for 80K episodes with 2-D continuous skills
(FetchPush, FetchSlide) or 3-D continuous skills (Fetch-
PickAndPlace). Note that we do not leverage human prior
knowledge on the state space (e.g., object pose); thus, all
methods are trained on the full state in this experiment.2

2We note that the Fetch experiments in the LSD paper (Park
et al., 2022) are using the ‘oracle’ prior, which enforces an agent
to only focus on the state change of the object.

0 16K 32K 48K 64K
# episodes

0.2

0.4

0.6

0.8

R
et

u
rn

0 16K 32K 48K 64K
# episodes

0.0

0.1

0.2

R
et

u
rn

0 16K 32K 48K 64K
# episodes

0.1

0.2

0.3

R
et

u
rn

0 16K 32K 48K 64K
# episodes

0.0

0.1

0.2

R
ew

ar
d

CSD

LSD

LSD + preset

LSD + norm

LSD + dual

SAC

FetchPushGoal FetchSlideGoal FetchPickAndPlaceGoal

Figure 6. Ablation study of distance-maximizing skill discovery in
three Fetch environments. This suggests that CSD’s performance
cannot be achieved by just applying simple tricks to the previous
Euclidean distance-maximizing skill discovery method.

Figure 3 illustrates the object trajectories of continuous
skills learned by skill discovery methods in the absence of
any supervision. CSD successfully learns to move the object
in diverse directions without external supervision. On the
other hand, all of the previous methods fail to learn such
skills and instead focus on diversifying the joint angles of
the robot arm itself. This is because there is no incentive
for the previous methods to focus on challenging skills such
as object manipulation, while CSD explicitly finds hard-to-
achieve state transitions.

Following the setup in Park et al. (2022), we evaluate two
quantitative metrics: the object state coverage and goal-
reaching downstream task performance. Figure 4a compares
the four skill discovery methods in terms of the object state
coverage, which is measured by the number of 0.1 × 0.1
square bins occupied by the object at least once, in the three
Fetch environments. Figure 4b shows the comparison of
the goal-reaching downstream task performances, where
we train a hierarchical controller πh(z|s, g) that sequen-
tially combines skills z for the frozen skill policy π(a|s, z)
to move the object to a goal position g. We additionally
train the vanilla SAC baseline to verify the effectiveness
of leveraging autonomously discovered skills. We refer to
Appendix E.2 for further details. On both quantitative met-
rics, CSD outperforms the prior methods by large margins,
successfully discovering diverse manipulation skills that are
useful for solving downstream tasks.

Skill discovery with the oracle prior on the state space.
While our experiments show that our approach can discover
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Figure 7. Task success rates of 16 discrete skills discovered by CSD, LSD, DIAYN, and DADS in the Kitchen environment. CSD learns
to manipulate diverse objects in the kitchen without any supervision. We refer to Appendix D for the results with 2-D continuous skills.
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Figure 8. Comparison of the downstream task performances of
skill discovery methods in the Kitchen environment.

useful manipulation skills without any human prior on the
state space, previous unsupervised skill discovery meth-
ods (Eysenbach et al., 2019; Sharma et al., 2020; Park et al.,
2022) mostly do not work without the oracle state prior,
which restricts the skill discriminator module’s input to only
the xyz coordinates of the object. To investigate how CSD
and the prior methods perform in the presence of this super-
vision, we train them with the oracle state prior. Figure 5
demonstrates that even without the oracle state prior, our
CSD is mostly comparable to the previous best method with
the oracle prior. This result demonstrates the potential of
our approach in scalability to more complex environments,
where human prior is no longer available. Moreover, with
the oracle state prior, CSD further improves its performance.
We refer to Figure 17 for the full qualitative results of CSD
and LSD with the oracle prior in FetchPickAndPlace.

Ablation study. To understand the importance of our
controllability-aware distance function in CSD, we exam-
ine whether similar results can be achieved without some
components of CSD or by just applying simple tricks to
LSD, a previous Euclidean distance-maximizing skill dis-
covery method. Specifically, we consider the following
three variants: (1) LSD + preset: LSD with a normalized
state space using the precomputed standard deviation of
each state dimension from randomly generated trajectories,
(2) LSD + norm: LSD with a normalized state space using
the moving average of the standard deviation of state differ-
ences (s′ − s), and (3) LSD + dual: LSD trained with dual
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Figure 9. Evolution of task-related distances and corresponding
task success rates. Our learned task-related distances decrease
once the agent gains control of the corresponding objects, which
makes the agent focus on other new objects consistently over the
course of training. Distance plots are smoothed over a window of
size 10 for better visualization.

gradient descent instead of spectral normalization (i.e., CSD
without our learned distance function). Figure 6 compares
the performances of these variants with CSD, LSD, and
SAC in three downstream tasks. The results show that only
CSD learns to manipulate objects, which suggests that our
controllability-aware distance function is indeed necessary
to discover such complex skills without supervision.

5.2. Kitchen Manipulation
To verify the scalability of unsupervised skill discovery in a
complex environment with diverse objects, we evaluate our
method on the Kitchen manipulation environment (Gupta
et al., 2019), which includes 13 downstream tasks in total,
such as opening a microwave, turning a light switch, moving
a kettle, and opening slide/hinge cabinet doors (Figure 8a).
We train CSD, LSD, DIAYN, and DADS with both 2-D
continuous skills and 16 discrete skills for 40K episodes
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CSD (ours) LSD DIAYN DADS

Ant

Half
Cheetah

Humanoid

Figure 10. The agent’s xy (Ant and Humanoid) or x (HalfCheetah)
trajectories of skills discovered by CSD, LSD, DIAYN, and DADS
in MuJoCo locomotion environments. Trajectories with different
colors represent different skills. We refer to Appendix D for the
complete qualitative results from all random seeds.

without any supervision. We refer to Appendix E for further
experimental details regarding the Kitchen environment.

We first measure the task success rates of the skills learned
by the four methods. After the unsupervised skill training,
we roll out the skill policy to collect 50 trajectories with 50
randomly sampled zs and measure whether each of the 13
tasks has at least one successful trajectory. The results with
16 discrete skills in Figure 7 suggest that CSD learns on
average 10 out of 13 skills, while the prior methods fail to
discover such skills (2 for LSD, 4 for DIAYN, 0 for DADS)
because they mainly focus on diversifying the robot state.
Continuous skills in Figure 14 also show similar results.

We then evaluate the downstream task performance by train-
ing a high-level controller πh(z|s, g) with the learned 2-
D continuous skills π(a|s, z) as behavioral primitives to
achieve a task specified by a 13-D one-hot vector g. The
high-level controller chooses a skill z every 10 steps until
the episode ends. The results in Figure 8b show that CSD
significantly outperforms the previous methods.

Qualitative analysis. Figure 9 illustrates how our
controllability-aware distance evolves over time and how
this leads to the discovery of diverse, complex skills, e.g.,
SlideCabinet, KettleLift, and Microwave. Over training,
we measure the task-related controllability-aware distance
v⊤Σ−1

θ (s)v for each task v using skill trajectories, where
v is the one-hot task vector corresponding to each of
the three tasks. At around 4K episodes (Figure 9a), our
controllability-aware distance encourages the agent to con-
trol the sliding cabinet with a large distance value (i.e., high
reward). Once the agent learns to manipulate the sliding
cabinet door, our controllability-aware distance for that skill
decreases, letting the agent move its focus to other harder-
to-achieve skills, e.g., lifting kettle (Figure 9b) or opening a
microwave (Figure 9c). As a result, the number of success-
ful tasks gradually increases over the course of training.
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Figure 11. Comparison of the state coverage and downstream task
performance of skills discovery methods in Ant and HalfCheetah.

5.3. MuJoCo Locomotion
To assess whether the idea of controllability-aware skill
discovery works on domains other than manipulation, we
evaluate CSD mainly on two MuJoCo locomotion envi-
ronments (Todorov et al., 2012; Brockman et al., 2016):
Ant and HalfCheetah. We additionally employ 17-DoF Hu-
manoid, the most complex environment in the benchmark,
for a qualitative comparison between CSD and LSD. In
these environments, we train skill discovery methods for
200K episodes (100K for Humanoid) with 16 discrete skills.

Figure 10 shows examples of skills discovered by each
method, which suggests that CSD leads to the largest state
coverage thanks to our controllability-aware distance func-
tion. For quantitative evaluation, we first measure the state
space coverage by counting the number of 1 × 1 bins oc-
cupied by the agent’s xy coordinates (xz coordinates for
2-D HalfCheetah) at least once. Figure 11a demonstrates
that CSD covers the largest area among the four methods.
This is because CSD’s controllability objective makes the
agent mainly focus on diversifying the global position of
the agent, which corresponds to the ‘challenging’ state tran-
sitions in these locomotion environments. We emphasize
that CSD not just learns to navigate in diverse directions
but also learns a variety of behaviors, such as rotating and
flipping in both environments (videos). We also note that
MI-based methods (DIAYN and DADS) completely fail to
diversify the agent’s location and only discover posing skills,
because the MI objective is agnostic to the distance metric,
not providing incentives to maximize traveled distances in
the state space.

We also evaluate the downstream learning performance on
four tasks: AntGoal, AntMultiGoals, HalfCheetahGoal, and
HalfCheetahHurdle, following previous works (Eysenbach
et al., 2019; Sharma et al., 2020; Kim et al., 2021; Park
et al., 2022). In AntGoal and HalfCheetahGoal, the agent
should reach a randomly sampled goal position, and in
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AntMultiGoals, the agent should follow multiple randomly
sampled goals in sequence. In HalfCheetahHurdle (Qureshi
et al., 2020), the agent should jump over as many hurdles
as possible. With downstream task rewards, we train a
high-level policy that sequentially combines the learned
skills. In Figure 11b, CSD consistently demonstrates the
best performance among the four methods, which suggests
that the skills discovered by CSD are effective not just on
locomotion tasks but also on a wide variety of tasks, such
as hurdle jumping.

6. Conclusion
In this paper, we present Controllability-aware Skill Discov-
ery (CSD), a novel unsupervised skill discovery method
that explicitly looks for hard-to-achieve skills. Specifi-
cally, we first formulate a distance-maximizing skill dis-
covery approach (DSD), which can be combined with any
arbitrary distance function. We then propose a jointly
trained controllability-aware distance function, which con-
sistently encourages the agent to discover more complex,
hard-to-achieve skills. We empirically show that the idea
of controllability-awareness enables the agent to acquire
diverse complex skills in the absence of supervision in a va-
riety of robotic manipulation and locomotion environments.

Limitations and future directions. Although the general
idea of controllability-aware skill discovery is still applica-
ble to pixel domains, e.g., in combination with representa-
tion learning techniques (Hafner et al., 2020; Srinivas et al.,
2020; Seo et al., 2022), where they will reveal both the ob-
ject and agent representations and CSD will focus on the
object representation, we did not verify the scalability of our
controllability-aware distance function to pixel-based envi-
ronments. We leave it as future work. Another limitation is
that CSD in its current form might not discover ‘slowly mov-
ing’ skills because underlying DSD prefers skills with large
state variations. We believe acquiring skills with diverse
moving speeds is another interesting future direction.
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A. Extended Related Work on Unsupervised RL
The goal of unsupervised RL is to learn useful knowledge, such as dynamics models, state representations, and behavioral
primitives, without predefined tasks so that we can later utilize them to efficiently solve downstream tasks. One line of
research focuses on gathering knowledge of the environment with pure exploration (Pathak et al., 2017; Burda et al., 2019;
Pathak et al., 2019; Sekar et al., 2020; Liu & Abbeel, 2021b; Yarats et al., 2021; Rajeswar et al., 2022). Unsupervised skill
discovery methods (Gregor et al., 2016; Co-Reyes et al., 2018; Eysenbach et al., 2019; Sharma et al., 2020; Kim et al.,
2021; Kamienny et al., 2022; Strouse et al., 2022; Park et al., 2022; Shafiullah & Pinto, 2022; Jiang et al., 2022; Zhao et al.,
2022) aim to learn a set of temporally extended useful behaviors, and our CSD falls into this category. Another line of work
focuses on discovering goals and corresponding goal-conditioned policies via pure exploration (Warde-Farley et al., 2019;
Pong et al., 2020; Pitis et al., 2020; Mendonca et al., 2021) or asymmetric/curriculum self-play (Sukhbaatar et al., 2018;
OpenAI et al., 2021; Du et al., 2022). Lastly, Touati & Ollivier (2021); Touati et al. (2022) aim to learn a set of policies that
can be instantly adapted to task reward functions given an unsupervised exploration method or an offline dataset.

B. Theoretical Results
B.1. Proof of Theorem 4.1

We assume that we are given an arbitrary non-negative function d : S × S → R+
0 . We first introduce some additional

notations. For x, y ∈ S , define ds(x, y) ≜ min(d(x, y), d(y, x)). For x, y ∈ S , let P (x, y) be the set of all finite state paths
from x to y. For a state path p = (s0, s1, . . . , st), define Ds(p) ≜

∑t−1
i=0 ds(si, si+1).

Now, for x, y ∈ S, we define the induced pseudometric d̃ : S × S → R+
0 as follows:

d̃(x, y) ≜

{
infp∈P (x,y) Ds(p) if x ̸= y

0 if x = y
. (17)

Then, the following theorems hold.

Lemma B.1. d̃ is a lower bound of d, i.e.,

∀x, y ∈ S, 0 ≤ d̃(x, y) ≤ d(x, y). (18)

Proof. If x = y, then d̃(x, y) = 0 by definition and thus 0 ≤ d̃(x, y) ≤ d(x, y) always holds. Otherwise, 0 ≤ d̃(x, y) ≤
Ds((x, y)) = ds(x, y) ≤ d(x, y) holds and this completes the proof.

Theorem B.2. For ϕ : S → RD, imposing Equation (7) with d is equivalent to imposing Equation (7) with d̃, i.e.,

∀x, y ∈ S, ∥ϕ(x)− ϕ(y)∥ ≤ d(x, y) ⇐⇒ ∀x, y ∈ S, ∥ϕ(x)− ϕ(y)∥ ≤ d̃(x, y). (19)

Proof. From Lemma B.1, we know that ∥ϕ(x)− ϕ(y)∥ ≤ d̃(x, y) implies ∥ϕ(x)− ϕ(y)∥ ≤ d(x, y). Now, we assume that
∥ϕ(x)−ϕ(y)∥ ≤ d(x, y) holds for any x, y ∈ S . First, if x = y, then ∥ϕ(x)−ϕ(y)∥ becomes 0 and thus ∥ϕ(x)−ϕ(y)∥ ≤
d̃(x, y) always holds. For x ̸= y, let us consider any state path p = (s0 = x, s1, s2, . . . , st−1, st = y) ∈ P (x, y). For any
i ∈ {0, 1, . . . , t− 1}, we have

∥ϕ(si)− ϕ(si+1)∥ ≤ d(si, si+1), (20)
∥ϕ(si+1)− ϕ(si)∥ ≤ d(si+1, si), (21)

and thus we get ∥ϕ(si)− ϕ(si+1)∥ = ∥ϕ(si+1)− ϕ(si)∥ ≤ min(d(si, si+1), d(si+1, si)) = ds(si, si+1). Now, we have
the following inequalities:

∥ϕ(s0)− ϕ(s1)∥ ≤ ds(s0, s1), (22)
∥ϕ(s1)− ϕ(s2)∥ ≤ ds(s1, s2), (23)

. . . , (24)
∥ϕ(st−1)− ϕ(st)∥ ≤ ds(st−1, st). (25)

12
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From these, we obtain ∥ϕ(x)−ϕ(y)∥ = ∥ϕ(s0)−ϕ(st)∥ ≤
∑t−1

i=0 ∥ϕ(si)−ϕ(si+1)∥ ≤
∑t−1

i=0 ds(si, si+1) = Ds(p). Then,
by taking the infimum of the right-hand side over all possible p ∈ P (x, y), we get ∥ϕ(x)− ϕ(y)∥ ≤ infp∈P (x,y) Ds(p) =

d̃(x, y) and this completes the proof.

Theorem B.3. d̃ is a valid pseudometric, i.e.,

(a) ∀x ∈ S, d̃(x, x) = 0.

(b) (Symmetry) ∀x, y ∈ S, d̃(x, y) = d̃(y, x).

(c) (Triangle inequality) ∀x, y, z ∈ S, d̃(x, y) ≤ d̃(x, z) + d̃(z, y).

Proof. (a) By definition, d̃(x, x) = 0 always holds for all x ∈ S.

(b) If x = y, then d̃(x, y) = d̃(y, x) = 0. Otherwise, with p = (s0 = x, s1, s2, . . . , st−1, st = y) ∈ P (x, y), we can prove
the symmetry of d̃ as follows:

d̃(x, y) = inf
p∈P (x,y)

Ds(p) (26)

= inf
p∈P (x,y)

t−1∑
i=0

ds(si, si+1) (27)

= inf
p∈P (x,y)

t−1∑
i=0

ds(si+1, si) (28)

= inf
p∈P (y,x)

Ds(p) (29)

= d̃(y, x). (30)

(c) If x = y, y = z, or z = x, then it can be easily seen that d̃(x, y) ≤ d̃(x, z) + d̃(z, y) always holds. Hence, we assume
that they are mutually different from each other. Then, the following inequality holds:

d̃(x, y) = inf
p∈P (x,y)

Ds(p) (31)

≤ inf
p1∈P (x,z),p2∈P (z,y)

Ds(p1) +Ds(p2) (32)

= inf
p1∈P (x,z)

Ds(p1) + inf
p2∈P (z,y)

Ds(p2) (33)

= d̃(x, z) + d̃(z, y), (34)

which completes the proof.

B.2. Implications of Theorem 4.1

Theorem 4.1 suggests that the constraint in Equation (7) implicitly transforms an arbitrary distance function d into a tighter
valid pseudometric d̃. Intuitively, this d̃(x, y) corresponds to the minimum possible (symmetrized) path distance from x to
y. Hence, if we train DSD with Equation (7), it will find long-distance transitions that cannot be equivalently achieved by
taking multiple short-distance transitions. Intuitively, in the context of CSD (Section 4.2), this implies that the agent will
find rare state transitions that cannot be bypassed by taking ‘easy’ intermediate steps, which is a desirable property.

However, there are some limitations regarding the use of our distance function dCSD (Equation (16)). First, while the DSD
constraint in Equation (7) implicitly symmetrizes the distance function by taking the minimum between d(x, y) and d(y, x),
this may not be ideal in highly asymmetric environments involving many irreversible transitions. In practice, this may
be resolved by only imposing one-sided constraints of our interest. Second, in our implementation, we only consider a
single-step transition (s, s′) and a single-step density model qθ(s′|s) as we found this simple design choice to be sufficient
for our experiments. However, in order to fully leverage the aforementioned property of the induced pseudometric, the
constraint may be imposed on any state pairs with a multi-step density model, which we leave for future work.

13



Controllability-Aware Unsupervised Skill Discovery

C
SD

Disa
gr

ee
men

t
0

50

100

150

S
ta

te
co

ve
ra

ge

C
SD

Disa
gr

ee
men

t
0

100

200

300

400

S
ta

te
co

ve
ra

ge
C
SD

Disa
gr

ee
men

t
0

50

100

150

200

S
ta

te
co

ve
ra

ge

C
SD

Disa
gr

ee
men

t
0

2

4

6

8

10

#
su

cc
es

sf
u
l
ta

sk
s

C
SD

Disa
gr

ee
men

t
0

200

400

600

S
ta

te
co

ve
ra

ge

C
SD

Disa
gr

ee
men

t
0

50

100

150

200

S
ta

te
co

ve
ra

ge
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Figure 12. Comparison of unsupervised state coverage metrics between CSD and ensemble disagreement-based exploration (Pathak et al.,
2019) in all six environments. CSD mostly outperforms disagreement-based exploration in our state coverage metrics mainly because it
actively diversifies hard-to-control states such as the object position or the agent location.

CSD Disagreement

Ant Half
Cheetah

CSD Disagreement

Figure 13. The agent’s xy (Ant) or x (HalfCheetah) trajectories of CSD and disagreement-based exploration. While CSD seeks very
consistent, directed behaviors, disagreement-based exploration only focuses on diversifying states with chaotic, random behaviors. We
provide videos illustrating this difference on our project page.

C. Comparison with Unsupervised Disagreement-Based Exploration
In this section, we discuss the difference between CSD and unsupervised goal-conditioned RL and present an empirical
comparison between them. Unsupervised goal-conditioned RL approaches, such as DISCERN (Warde-Farley et al., 2019),
Skew-Fit (Pong et al., 2020), MEGA (Pitis et al., 2020), and LEXA (Mendonca et al., 2021), learn diverse behaviors
typically by (1) running an exploration method that collects diverse ‘goal’ states g and (2) learning a goal-conditioned policy
π(a|s, g) to reach the states discovered. Hence, treating g as a |S|-dimensional skill latent vector, these approaches may be
viewed as a special type of unsupervised skill discovery.

However, the main focuses of unsupervised skill discovery are different from that of unsupervised goal-conditioned RL.
First, unsupervised skill discovery aims to discover more general skills not restricted to goal-reaching behaviors, which
tend to be static as the agent is encouraged to stay still at the goal state (Mendonca et al., 2021; Jiang et al., 2022). For
instance, our approach maximizes traveled distances, which leads to more ‘dynamic’ behaviors like consistently running in
a specific direction (Figure 10). Second, unsupervised skill discovery aims to build a compact set of skills, which could also
be discrete, rather than finding all the possible states in the given environment. For example, if we train CSD with three
discrete skills, these behaviors will be as ‘distant’ as possible from one another, being maximally distinguishable. As such,
we can have useful behaviors with a much low-dimensional skill space, making it more amenable to hierarchical RL.

Despite the difference in goals, to better illustrate the difference between them, we make an empirical comparison between
CSD and ensemble disagreement-based exploration (Pathak et al., 2019), which some previous unsupervised goal-conditioned
RL methods like LEXA (Mendonca et al., 2021) use as the exploration method. Disagreement-based exploration learns an
ensemble of E forward dynamics models {p̂i(s′|s, a)}i∈{1,2,...,E}, and uses its variance

∑|S|
k V[p̂i(·k|s, a)] as an intrinsic

reward, in order to seek unexplored transitions with high epistemic uncertainty. While unsupervised goal-condition RL
approaches additionally learn a goal-conditioned policy, we do not separately learn it since the state coverage metrics of
the exploration policy can serve as an approximate upper bound of the corresponding optimal goal-conditioned policy’s
performance.

Figure 12 presents the comparisons of unsupervised state coverage metrics between CSD and disagreement-based exploration
in all of our six environments. The results suggest that CSD mostly outperforms disagreement-based exploration in our
state coverage metrics, mainly because CSD actively diversifies hard-to-control states such as the object position or the
agent location, while the pure exploration method only focuses on finding unseen transitions. This difference is especially
prominent in Ant and HalfCheetah (Figure 13), in which CSD seeks very consistent, directed behaviors, such as moving in
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Figure 14. Task success rates of 2-D continuous skills discovered by four methods in the Kitchen environment.
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Figure 15. Extended learning curves of the SAC baseline in Fetch and Kitchen downstream tasks.

one direction, while disagreement-based exploration only focuses on diversifying states with chaotic, random behaviors. We
provide videos illustrating this difference at https://seohong.me/projects/csd/.

D. Additional Results
Additional quantitative results. Figure 14 shows the task success rates of the 2-D continuous skills learned by CSD,
LSD, DIAYN, and DADS. As in the discrete case, CSD outperforms the other methods by a significant margin. Figure 15
demonstrates extended learning curves in Fetch and Kitchen downstream tasks, where we train SAC for four times as long
as skill discovery methods. The results suggest that, while SAC alone can solve the FetchSlideGoal task with a lot more
samples, it fails at learning FetchPushGoal, FetchPickAndPlaceGoal, and Kitchen mainly because they are challenging
sparse-reward tasks. In contrast, agents can quickly learn all these tasks with temporally extended skills from CSD.

Additional qualitative results. Figures 16 and 19 illustrate the skill trajectories of all runs we use for our experiments in
Fetch manipulation and two MuJoCo locomotion environments (eight random seeds for each method in each environment).
In the Fetch environments, CSD is the only method that learns object manipulation skills without supervision (Figure 16). In
Ant and HalfCheetah, CSD not only learns locomotion skills but also discovers a variety of diverse skills, such as rotating
and flipping in both environments (Figure 19, videos). We provide the complete qualitative results in Humanoid in Figure 18.
Figure 17 shows the full results of CSD and LSD equipped with the oracle prior in FetchPickAndPlace (eight seeds each).
While CSD always learns to pick up the object, LSD discovers such skills in only three out of eight runs (Figure 17). This is
because our controllability-aware distance function consistently encourages the agent to learn more challenging picking-up
behaviors. As a result, CSD significantly outperforms LSD in downstream tasks (Figure 5).
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Object 𝑥𝑦 trajectories Gripper 𝑥𝑦𝑧 trajectories
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DIAYN

DADS

(a) FetchPush

Object 𝑥𝑦 trajectories Gripper 𝑥𝑦𝑧 trajectories

CSD

LSD

DIAYN

DADS

(b) FetchSlide

Object 𝑥𝑦 trajectories Gripper 𝑥𝑦𝑧 trajectories
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DIAYN

DADS

(c) FetchPickAndPlace

Figure 16. Complete qualitative results in three Fetch environments (eight runs for each method in each environment). We plot the skill
trajectories of the object and the gripper with different colors. CSD is the only unsupervised skill discovery method that discovers object
manipulation skills without supervision.
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CSD
(oracle)

LSD
(oracle)

Object 𝑥𝑦𝑧 trajectories

Figure 17. Complete qualitative results of CSD and LSD trained with the oracle prior in FetchPickAndPlace (eight runs for each method).
We plot the skill trajectories of the object and the gripper with different colors. Note that while LSD mostly just throws the object away,
CSD always learns to pick up the object in all eight runs.

CSD

LSD

Figure 18. Complete qualitative results in Humanoid (four runs for each method in each environment). We plot the skill xy trajectories of
the agent with different colors. We note that we train CSD and LSD for 100K episodes (which is a tenth of the number of episodes used in
the LSD paper (Park et al., 2022)).
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(a) Ant xy trajectories
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(b) HalfCheetah x trajectories

Figure 19. Complete qualitative results in Ant and HalfCheetah (eight runs for each method in each environment). We plot the skill
trajectories of the agent with different colors. We note that in both environments, CSD not only learns locomotion skills but also discovers
a variety of diverse skills, such as rotating and flipping.
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E. Implementation Details
For manipulation environments, we implement CSD on top of the publicly available codebase of MUSIC (Zhao et al., 2021).
For MuJoCo environments, we implement CSD based on the publicly available codebase of LSD (Park et al., 2022). We
mostly follow the hyperparameters used in the original implementations. Our implementation can be found in the follow-
ing repositories: https://github.com/seohongpark/CSD-manipulation (manipulation environments) and
https://github.com/seohongpark/CSD-locomotion (locomotion environments). We run our experiments
on an internal cluster with NVIDIA Tesla V100 and NVIDIA GeForce RTX 2080 Ti GPUs. Each run mostly takes a day or
less.

E.1. Environments

We adopt the same environment settings used in LSD (Park et al., 2022) for Fetch manipulation environments (FetchPush,
FetchSlide, FetchPickAndPlace) (Plappert et al., 2018) and MuJoCo locomotion environments (Ant, HalfCheetah) (Todorov
et al., 2012; Brockman et al., 2016). In Fetch environments, unlike LSD, we do not use any supervision, such as limiting the
discriminator’s input only to the object. For the Kitchen environment, we use a 7-DoF end-effector controller (Mendonca
et al., 2021) with state-based observations. We use an episode length of 200 for locomotion environments and an episode
length of 50 for manipulation environments. In locomotion environments, to ensure fair comparisons, we use preset
normalizers for all skill discovery methods as done in Park et al. (2022), but we find that CSD can still discover diverse
behaviors including locomotion skills without a normalizer.

E.2. Downstream Tasks

Fetch environments. We use the same downstream tasks in Park et al. (2022) for Fetch environments. In FetchPushGoal,
FetchSlideGoal, and FetchPickAndPlaceGoal, a goal position is randomly sampled at the beginning of each episode. If
the agent successfully places the object to the target position, a reward of 1 is given to the agent and the episode ends. We
follow the original goal sampling range and reach criterion from Plappert et al. (2018).

Kitchen environment. We consider the following 13 downstream tasks for the Kitchen environment: BottomLeftBurner,
BottomRightBurner, HingeCabinet, KettleBottomRight, KettleFall, KettleLift, KettleTopLeft, KettleTopRight, LightSwitch,
Microwave, SlideCabinet, TopLeftBurner, TopRightBurner. For the success criteria of the tasks, we mostly follow Gupta
et al. (2019); Mendonca et al. (2021) and refer to our implementation for detailed definitions. As in the Fetch tasks, the
agent gets a reward of 1 when it satisfies the success criterion of each task.

MuJoCo locomotion environments. In AntGoal, a goal’s xy position is randomly sampled from Unif([−20, 20]2), and
if the agent reaches the goal, it gets a reward of 10 and the episode ends. In AntMultiGoals, the agent should follow four
goals within 50 steps each, where goal positions are randomly sampled from Unif([−7.5, 7.5]2) centered at the current
coordinates. The agent gets a reward of 2.5 every time it reaches a goal. In HalfCheetahGoal, a goal’s x coordinate is
randomly sampled from Unif([−60, 60]), and if the agent reaches the goal, it gets a reward of 10 and the episode ends. For
these three environments, we consider the agent to have reached the goal if it enters within a radius of 3 from the goal. In
HalfCheetahHurdle, the agent gets a reward of 1 if it jumps over a hurdle, where we use the same hurdle positions from
Qureshi et al. (2020).

E.3. Training.

Skill policy. At the beginning of each episode, we sample a skill z from either a standard Gaussian distribution (for
continuous skills) or a uniform distribution (for discrete skills), and fix the skill throughout the episode. For discrete skills,
we use standard one-hot vectors for DIAYN and DADS, and zero-centered one-hot vectors for CSD and LSD, following
Park et al. (2022). For DADS, we follow the original implementation choices, such as the use of batch normalization and
fixing the output variance of the skill dynamics model. For CSD in manipulation environments, we start training the skill
policy from epoch 4000, after the initial conditional density model has stabilized. When modeling Σθ(s) of the conditional
density model, we use a diagonal covariance matrix as we found it to be practically sufficient for our experiments. Also, we
normalize the diagonal elements with their geometric mean at each state for further stability.

We present the full list of the hyperparameters used in our experiments in Tables 1 and 2, where we indicate the values
considered for our hyperparameter search with curly brackets. For the intrinsic reward coefficient, we use 50 (DADS), 500
(CSD and LSD), 1500 (DIAYN), 200 (Disagreement Fetch), or 50 (Disagreement Kitchen). For the learning rate, we use
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Table 1. Hyperparameters for manipulation environments.

Hyperparameter Value

Optimizer Adam (Kingma & Ba, 2015)
Learning rate 10−3

# training epochs 40000 (Fetch), 20000 (Kitchen)
# episodes per epoch 2
# gradient steps per episode 10
Episode length 50
Minibatch size 256
Discount factor γ 0.98
Replay buffer size 105

# hidden layers 2
# hidden units per layer 256
Nonlinearity ReLU
Target network smoothing coefficient τ 0.995
Random action probability 0.3
Action noise scale 0.2
Entropy coefficient 0.02
Intrinsic reward coefficient {5, 15, 50, 150, 500, 1500, 5000}
CSD ϵ 10−6

CSD initial λ 3000
Disagreement ensemble size 5

0.0001 for all experiments except for CSD Humanoid, for which we find 0.0003 to work better (we also test 0.0003 for
LSD Humanoid for a fair comparison, but we find the default value of 0.0001 to work better for LSD). For the reward scale,
we use 1 (LSD, DIAYN, and DADS) or 10 (CSD). For the SAC α, we use 0.003 (LSD Ant and LSD HalfCheetah), 0.03
(CSD Ant and LSD Humanoid), 0.1 (CSD HalfCheetah), 0.3 (CSD Humanoid), or auto-adjust (DIAYN and DADS).

High-level controller. After unsupervised skill discovery, we train a high-level controller πh(z|s, g) that selects skills in
a sequential manner for solving downstream tasks. We use SAC (Haarnoja et al., 2018a) for continuous skills and PPO
(Schulman et al., 2017) for discrete skills. The high-level policy selects a new skill every R steps. We mostly follow the
hyperparameters for low-level skill policies and present the specific hyperparameters used for high-level controllers in
Tables 3 and 4.

3The original LSD implementation updates the target network every epoch, not every gradient step, but we find the latter to be about
10× sample efficient in terms of the number of environment steps.
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Table 2. Hyperparameters for locomotion environments.

Hyperparameter Value

Optimizer Adam (Kingma & Ba, 2015)
Learning rate {0.0001, 0.0003}
# training epochs 20000
# episodes per epoch 5 (Humanoid), 10 (others)
# gradient steps per epoch 64 (policy), 32 (others)
Episode length 200
Minibatch size 1024
Discount factor γ 0.99
Replay buffer size 1000000 (Humanoid), 2000 (others)
# hidden layers 2
# hidden units per layer 1024 (Humanoid), 512 (others)
Nonlinearity ReLU
Target network smoothing coefficient τ 0.995
Target network update frequency every gradient step3

SAC α {0.001, 0.003, 0.01, 0.03, 0.1, 0.3, auto-adjust (Haarnoja et al., 2018b)}
Reward scale {1, 10}
CSD ϵ 10−6

CSD initial λ 3000
Disagreement ensemble size 5

Table 3. Hyperparameters for SAC downstream policies in manipulation environments.

Hyperparameter Value

# training epochs 4000 (Fetch), 8000 (Kitchen)
# episodes per epoch 16 (Fetch), 2 (Kitchen)
# gradient steps per epoch 4 (Fetch), 10 (Kitchen)
Replay buffer size 106

Skill sample frequency R 10
Skill range [−1.5, 1.5]D

Table 4. Hyperparameters for PPO downstream policies in locomotion environments.

Hyperparameter Value

Learning rate 3× 10−4

# training epochs 1000
# episodes per epoch 64
# gradient steps per episode 10
Minibatch size 256
Entropy coefficient 0.01
Skill sample frequency R 25
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