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Abstract
A key component of model-based reinforcement
learning (RL) is a dynamics model that predicts
the outcomes of actions. Errors in this predictive
model can degrade the performance of model-
based controllers, and complex Markov decision
processes (MDPs) can present exceptionally dif-
ficult prediction problems. To mitigate this is-
sue, we propose predictable MDP abstraction
(PMA): instead of training a predictive model on
the original MDP, we train a model on a trans-
formed MDP with a learned action space that
only permits predictable, easy-to-model actions,
while covering the original state-action space as
much as possible. As a result, model learning
becomes easier and more accurate, which allows
robust, stable model-based planning or model-
based RL. This transformation is learned in an
unsupervised manner, before any task is speci-
fied by the user. Downstream tasks can then be
solved with model-based control in a zero-shot
fashion, without additional environment interac-
tions. We theoretically analyze PMA and empiri-
cally demonstrate that PMA leads to significant
improvements over prior unsupervised model-
based RL approaches in a range of benchmark en-
vironments. Our code and videos are available at
https://seohong.me/projects/pma/

1. Introduction
The basic building block of model-based reinforcement
learning (RL) algorithms is a predictive model p̂(s′|s,a),
typically one that predicts the next state conditioned on the
previous state and action in the given Markov decision pro-
cess (MDP). By employing predictive models with planning
or RL, previous model-based approaches have been shown
to be effective in solving a variety of complex problems,
ranging from robotics (Wu et al., 2022) to games (Schrit-
twieser et al., 2020), in a sample-efficient manner.
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Figure 1. In the original Ant environment, some actions lead to un-
predictable behaviors that are difficult to accurately model2, which
makes the learned dynamics model susceptible to catastrophic
model exploitation. In our transformed predictable MDP, every
transition is easy to model and predictable, which enables robust,
stable model-based learning.

However, even small errors in a predictive model can cause
a model-based RL algorithm to underperform, sometimes
catastrophically (Hasselt et al., 2019; Jafferjee et al., 2020).
This phenomenon, referred to as model exploitation, hap-
pens when a controller or policy exploits these errors, pick-
ing actions that the model erroneously predicts should lead
to good outcomes. This issue is further exacerbated with
long-horizon model rollouts, which accumulate prediction
errors over time, or in complex MDPs, where accurately
modeling all transitions is challenging. Previous approaches
often try to address model exploitation by estimating model
uncertainty (Chua et al., 2018) or only using the model for
short rollouts (Buckman et al., 2018; Janner et al., 2019).

We take a different perspective on model-based RL to tackle
this challenge: instead of training a predictive model on
the original MDP, we apply model-based RL on top of an
abstracted, simplified MDP. Namely, we first abstract the
MDP into a simpler learned MDP with a transformed latent
action space by restricting unpredictable actions, and then
build the predictive model on this simplified MDP. Here, the
transformed MDP is designed to be predictable in the sense
that every transition in the new MDP is easy to model, while
covering the original state-action space as much as possible.
As a result, there is little room for catastrophic model ex-
ploitation compared to the original, possibly complex MDP,
allowing robust model-based planning and RL. We illustrate
an example of predictable MDP transformation in Figure 1.

We design a practical algorithm for learning predictable
MDP abstractions in the setting of unsupervised model-

2Even though the Ant environment is completely deterministic,
it is very difficult to accurately model all the possible transitions
due to its complex, contact-rich dynamics (see Section 7.3).
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based RL, where the abstraction is learned in advance with-
out any user-defined task or reward function. After un-
supervised training, the learned MDP abstraction can be
used to solve multiple different downstream tasks with a
model-based controller in a zero-shot fashion, without any
environment interactions or additional model training.

The desiderata of unsupervised predictable MDP abstraction
are threefold. First, the latent actions in the transformed
MDP should lead to predictable state transitions. Second,
different latent actions should lead to different outcomes.
Third, the transitions in the latent MDP should cover the
original state-action space as much as possible. In this paper,
we formulate these desiderata into an information-theoretic
objective and propose a practical method to optimize it.

To summarize, our main contribution in this paper is to intro-
duce a novel perspective on model-based RL by proposing
predictable MDP abstraction (PMA) as an unsupervised
model-based RL method, which abstracts the MDP by trans-
forming the action space to minimize model errors. PMA
can be combined with any existing model-based planning or
RL method to solve downstream tasks in a zero-shot man-
ner. We theoretically analyze PMA and discuss when our
approach can be beneficial compared to classic model-based
RL. Finally, we empirically confirm that PMA combined
with model-based RL can robustly solve a variety of tasks
in seven diverse robotics environments, significantly outper-
forming previous unsupervised model-based approaches.

2. Related Work
Model-based reinforcement learning. Model-based RL
(MBRL) involves using a predictive model that estimates
the outcomes of actions in a given environment. Previous
model-based approaches utilize such learned models to max-
imize the reward via planning (Hernandaz & Arkun, 1990;
Draeger et al., 1995; Deisenroth & Rasmussen, 2011; Lenz
et al., 2015; Ebert et al., 2018; Chua et al., 2018; Hafner
et al., 2019; Nagabandi et al., 2019), reinforcement learning
(Heess et al., 2015; Feinberg et al., 2018; Buckman et al.,
2018; Janner et al., 2019; Hafner et al., 2020; Nguyen et al.,
2021), or both (Argenson & Dulac-Arnold, 2021; Sikchi
et al., 2022; Hansen et al., 2022). Erroneous predictive mod-
els can yield deleterious effects on policy learning, which
is known as the model exploitation problem (Ross & Bag-
nell, 2012; Janner et al., 2019; Kidambi et al., 2020; Kang
et al., 2022). To avoid making suboptimal decisions based
on incorrect models, prior works either restrict the horizon
length of model rollouts (Janner et al., 2019) or employ
various uncertainty estimation techniques, such as Gaus-
sian processes (Rasmussen & Kuss, 2003; Deisenroth &
Rasmussen, 2011) or model ensembles (Rajeswaran et al.,
2017; Clavera et al., 2018; Kurutach et al., 2018; Chua et al.,
2018; Nagabandi et al., 2019; Yu et al., 2020; Kidambi et al.,
2020). Our work is orthogonal and complementary to these

model-based RL algorithms. We propose an action repre-
sentation learning method that abstracts the MDP into one
that is more predictable, thus making model learning easier,
which can be employed in combination with a variety of
existing model-based RL methods.

Predictable behavior learning. Our main idea conceptu-
ally relates to prior work on predictable behavior learning.
One such work is RPC (Eysenbach et al., 2021), which
encourages the agent to produce predictable behaviors by
minimizing model errors. SMiRL (Berseth et al., 2021) and
IC2 (Rhinehart et al., 2021) actively seek stable behaviors by
reducing uncertainty. While these methods incentivize the
agent to behave in predictable ways or visit familiar states,
they do not aim to provide a model-based RL method, in-
stead utilizing the predictability bonus either for intrinsic
motivation (Berseth et al., 2021; Rhinehart et al., 2021) or
to improve robustness (Eysenbach et al., 2021). In con-
trast, we show that optimizing for predictability can lead to
significantly more effective model-based RL performance.

MDP abstraction and hierarchical RL. MDP abstraction
deals with the problem of building simplified MDPs that
usually have simpler state or action spaces to make RL more
tractable. State abstraction (Li et al., 2006; Watter et al.,
2015; Ha & Schmidhuber, 2018; Gelada et al., 2019; Castro,
2019; Hafner et al., 2020) focuses on having a compact state
representation to facilitate learning. Temporal abstraction
and hierarchical RL (Sutton et al., 1999; Stolle & Precup,
2002; Bacon et al., 2017; Vezhnevets et al., 2017; Machado
et al., 2017; Nachum et al., 2018; Eysenbach et al., 2019;
Wulfmeier et al., 2021; Salter et al., 2022) aim to learn tem-
porally extended behaviors to reduce high-level decision
steps. Different from these previous approaches, we explore
a lossy approach to MDP abstraction where the action space
is transformed into one that only permits more predictable
transitions, thus facilitating more effective model-based re-
inforcement learning.

Unsupervised reinforcement learning. The goal of un-
supervised RL is to acquire primitives, models, or other
objects that are useful for downstream tasks through unsu-
pervised interaction with the environment. The process of
learning a predictable MDP abstraction with our method
corresponds to an unsupervised RL procedure. Prior unsu-
pervised RL methods have used intrinsic rewards for maxi-
mizing state entropy (Lee et al., 2019; Yarats et al., 2021;
Liu & Abbeel, 2021), detecting novel states (Pathak et al.,
2017; Burda et al., 2019; Pathak et al., 2019), learning di-
verse goal-condition policies (Pong et al., 2020; Mendonca
et al., 2021), or acquiring temporally extended skills (Gregor
et al., 2016; Eysenbach et al., 2019; Sharma et al., 2020; Xie
et al., 2020; Strouse et al., 2022; Park et al., 2022; Laskin
et al., 2022). Notably, several unsupervised model-based
approaches (Shyam et al., 2019; Sekar et al., 2020; Rajeswar
et al., 2022) have shown that predictive models trained via

2



Predictable MDP Abstraction for Unsupervised Model-Based RL

unsupervised exploration help solve downstream tasks ef-
ficiently. However, these methods only focus on finding
novel transitions (i.e., maximizing coverage), without con-
sidering their predictability. Maximizing coverage without
accounting for predictability can lead to model errors, which
in turn lead to model exploitation, as shown by Shyam et al.
(2019) as well as in our experiments. Our method is also
closely related to DADS (Sharma et al., 2020), an unsu-
pervised skill discovery method that uses a similar mutual
information (MI) objective to ours. However, the main fo-
cus of our work is different from DADS: while the goal
of DADS is to acquire a set of temporally extended skills,
analogously to other works on skill discovery, our focus is
instead on transforming the action space into one that only
permits predictable actions without temporal abstraction,
maximally covering the transitions in the original MDP. We
both theoretically and empirically show that this leads to
significantly better performance in a variety of model-based
RL frameworks.

3. Preliminaries and Problem Statement
We consider an MDP without a reward function, also re-
ferred to as a controlled Markov process (CMP), M :=
(S,A, µ, p), where S denotes the state space, A denotes the
action space, µ ∈ P(S) denotes the initial state distribu-
tion, and p : S × A → P(S) denotes the state transition
distribution. We also consider a set of N downstream tasks
T = {T0, T1, . . . , TN−1}, where each task corresponds to
a reward function ri : S ×A → R for i ∈ [N ]. [N ] denotes
the set of {0, 1, . . . , N − 1}. We denote the supremum of
the absolute rewards as R = sups∈S,a∈A,i∈[N ] |ri(s,a)|
and the discount factor as γ.

Problem statement. In this work, we tackle the problem of
unsupervised model-based RL, which consists of two phases.
In the first unsupervised training phase, we aim to build a
predictive model in a given CMP without knowing the tasks.
In the subsequent testing phase, we are given multiple task
rewards in the same environment and aim to solve them only
using the learned model without additional training; i.e., in
a zero-shot manner. Hence, the goal is to build a model that
best captures the environment so that we can later robustly
employ the model to solve diverse tasks.

4. Predictable MDP Abstraction (PMA)
Model-based RL methods typically learn a model p̂(s′|s,a).
However, naı̈vely modeling all possible transitions is error-
prone in complex environments, and subsequent control
methods (planning or policy optimization) can exploit these
errors, leading to overoptimistic model-based estimates of
policy returns and ultimately in poor performance. Previ-
ous works generally try to resolve this by restricting model
usage (Buckman et al., 2018; Janner et al., 2019) or better
estimating uncertainty (Chua et al., 2018).

Predictable
actions

Unpredictable
actions

Action
decoder

Latent action space Original action space

Figure 2. The action decoder reparameterizes the action space to
only permit predictable transitions.

Figure 3. Architecture of PMA during unsupervised training. The
exploration policy πe(z|s) selects a latent action, which is decoded
into the original action space by the action decoder πz(a|s,z).
The latent model p̂z(s′|s,z) predicts outcomes in the latent MDP.

Different from previous approaches, our solution in this
work is to transform the original MDP into a predictable
latent MDP, in which every transition is predictable. Here,
“predictable” also means that it is easy to model. Formally,
we define the unpredictability of an MDPM as the mini-
mum possible average model error ϵ with respect to a model
class F , a state-action distribution d, and a discrepancy
measure D:

ϵ = inf
f∈F

E(s,a)∼d(s,a)[D(p(·|s,a)∥f(·|s,a))]. (1)

Intuitively, this measures the irreducible model error (i.e.,
aleatoric uncertainty) of the environment given the capacity
of the model class F . We note that even in a completely
deterministic environment, there may exist an irreducible
model error if the model class F has a finite capacity (e.g.,
(512, 512)-sized neural networks) and the environment dy-
namics are complex.

After transforming the original MDP into a simplified latent
MDP, we solve downstream tasks on top of the latent MDP
with model-based RL. Since the latent MDP is trained to
be maximally predictable, there is little room for model
exploitation compared to the original environment. We
can thus later robustly employ the learned latent predictive
model to solve downstream tasks with a model-based control
method.

4.1. Architecture
The main idea of PMA is to restrict the original action space
in a lossy manner so that it only permits predictable tran-
sitions. Formally, we transform the original MDPM into
a predictable latent MDP defined asMP := (S,Z, µ, pz)
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with the original state space S, the latent action space Z ,
and the latent transition dynamics pz : S × Z → P(S).
PMA has three learnable components: an action decoder,
a latent predictive model, and an exploration policy. The
action decoder policy πz(a|s, z) decodes latent actions into
the original action space, effectively reparameterizing the
action space in a lossy manner (Figure 2). The latent pre-
dictive model p̂z(s′|s, z) predicts the next state in the latent
MDP, which is jointly trained with the action decoder to
make the learned MDP as predictable as possible. Finally,
the exploration policy πe(z|s) selects z’s to train the PMA’s
components during the unsupervised training phase, maxi-
mizing the coverage in the original state space. We illustrate
the components of PMA in Figure 3.

When building a latent predictive model p̂z(s′|s, z;θ), we
derive our objective from a Bayesian perspective, integrat-
ing an information-theoretic representation learning goal
with information gain on the posterior over the parame-
ters θ. This naturally leads to the emergence of both an
information-seeking exploration objective and an MI-based
representation learning method for the latent action space.

After unsupervised training, once we get a reward function
in the testing phase, we replace the exploration policy with
a task policy π(z|s), which aims to select latent actions
to solve the downstream task on top of our action decoder
and predictive model. This task policy can either be derived
based on a planner, or it could itself be learned via RL inside
the learned model, as we will describe in Section 5. Both
approaches operate in zero shot, in the sense that they do
not require any additional environment interaction beyond
the unsupervised phase.

4.2. Objective
We now state the three desiderata of our unsupervised
predictable MDP abstraction: (i) The latent transitions
pz(s

′|s, z) in the predictable MDP should be as predictable
as possible (i.e., minimize aleatoric uncertainty). (ii) The
outcomes of latent actions should be as different as possible
from one another (i.e., maximize action diversity to preserve
as much of the expressivity of the original MDP as possible).
(iii) The transitions in the predictable MDP should cover
the original transitions as much as possible (i.e., encourage
exploration by minimizing epistemic uncertainty). These
three goals can be summarized into the following concise
information-theoretic objective:

max
πz,πe

I(S′; (Z,Θ)|D), (2)

where D denotes the random variable (RV) of the entire
training dataset up to and including the current state S,
(S,Z,S′) denotes the RVs of (s, z, s′) tuples from the
policies, and Θ denotes the RV of the parameters of the
latent predictive model p̂z(s′|s, z;θ). Intuitively, this ob-
jective requires learning a latent action space, represented by

πz , as well as an exploration policy πe in this latent action
space, such that at each transition the resulting next state is
easy to predict from the latent action and the model parame-
ters. The inclusion of model parameters may seem like an
unusual choice, but it leads naturally to an information gain
exploration scheme that maximizes state coverage.

Equation (2) can be decomposed as follows, revealing three
terms that directly map onto our desiderata:

I(S′; (Z,Θ)|D) (3)
=I(S′;Z|D) + I(S′;Θ|D,Z) (4)
=I(S′;Z|S) + I(S′;Θ|D,Z) (5)
=−H(S′|S,Z)︸ ︷︷ ︸

(i) predictability

+H(S′|S)︸ ︷︷ ︸
(ii) diversity

+H(Θ|D,Z)−H(Θ|D,Z,S′)︸ ︷︷ ︸
(iii) information gain

. (6)

The first term in Equation (6) maximizes predictability by re-
ducing the entropy of the next state distribution pz(s

′|s, z),
making the latent MDP maximally predictable. The second
term increases the entropy of the marginalized next state
distribution, effectively making the resulting states from
different z’s different from one another. The third term
minimizes epistemic uncertainty by maximizing informa-
tion gain, the reduction in the uncertainty of the predictive
model’s parameters after knowing S′.

With the objective in Equation (2) as an intrinsic reward,
we can optimize both the action decoder policy and explo-
ration policy with RL. As a result, they will learn to produce
the optimal z’s and a’s that in the long-term lead to maxi-
mal coverage of the original state space, while making the
resulting latent MDP as predictable as possible. Also, we si-
multaneously train the latent predictive model p̂z(s′|s, z;θ)
so that we can later use it for planning in the latent MDP.

4.3. Practical Implementation
We now describe a practical method to optimize our main
objective in Equation (2). Since it is generally intractable
to exactly estimate mutual information or information gain,
we make use of several approximations.

Estimating I(S′;Z|S). First, for the first two terms in
Equation (6), we employ a variational lower-bound approxi-
mation as follows (Barber & Agakov, 2003):

I(S′;Z|S) = −H(S′|S,Z) +H(S′|S) (7)
≥ E[log p̂z(s′|s, z;ϕ)− log pz(s

′|s)] (8)

≈ E[log p̂z(s′|s, z;ϕ)− log
1

L

L∑
i=1

p̂z(s
′|s, zi;ϕ︸ ︷︷ ︸

:=remp(s,z,s′)

)], (9)

where p̂z(s
′|s, z;ϕ) is a variational lower-bound (VLB) of

pz(s
′|s, z). Also, we approximate the intractable marginal
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entropy term H(S′|S) with L random samples of z’s from
the latent action space (Sharma et al., 2020). These approx-
imations provide us with a tractable intrinsic reward that
can be optimized with RL. Here, we note that the second
term in Equation (9) is a biased estimator for log pz(s′|s),
since it is estimating an expectation inside the log with
samples, but we found this approach to still work well in
practice, and indeed multiple prior works have also explored
such a biased estimator for mutual information objectives in
RL (Sharma et al., 2020; Kim et al., 2021). Exploring unbi-
ased lower bounds (Poole et al., 2019) for this MI objective
is an interesting direction for future work.

Estimating information gain. Next, we need to estimate
the information gain term in Equation (6). This term could
be approximated directly using prior methods that propose
exploration via information gain, e.g., using a variational
approximation (Houthooft et al., 2016). In our implementa-
tion, however, we use a more heuristic approximation that
we found to be simpler to implement based on ensemble
disagreement, motivated by prior works (Shyam et al., 2019;
Ball et al., 2020; Sekar et al., 2020; Strouse et al., 2022).
Namely, we first approximate the model posterior with an
ensemble of E predictive models, {p̂z(s′|s, z;θi)}i∈[E]

with p(θ|D) = 1
E

∑
i δ(θ − θi). Each component mod-

els the transitions as conditional Gaussian with the mean
given by a neural network and a unit diagonal covariance,
s′ ∼ N (µ(s, z;θi), I). We then use the variance of the
ensemble means with a coefficient β,

E[β · Tr[Vi[µ(s, z;θi)]]︸ ︷︷ ︸
:=rdis(s,z,s′)

], (10)

as a simple (though crude) estimator for information gain
I(S′;Θ|D,Z). We provide a detailed justification in Ap-
pendix C. Intuitively, Equation (10) encourages the agent to
explore states that have not been previously visited, where
the ensemble predictions do not agree with one another.

Training PMA. With these approximations, we use
remp(s, z, s

′) + rdis(s, z, s
′) as an intrinsic reward for the

action decoder πz(a|s, z). For the exploration policy
πe(z|s), if we assume the action decoder is optimal, we can
use H(Z|S) + rdis(s, z, s

′) as an intrinsic reward. This
can be optimized with any maximum entropy RL method.
However, in practice, we find that it is sufficient in our
experiments to simply use a maximum entropy policy
πe(·|s) = Unif(Z) since our action decoder also maximizes
rdis(s, z, s

′). Finally, we fit our VLB predictive model
p̂z(s

′|s, z;ϕ) and ensemble models {p̂z(s′|s, z;θi)} us-
ing the (s, z, s′) tuples sampled from our policies. We
describe the full training procedure of PMA in Appendix F
and Algorithm 1.

4.4. Connections to Prior Work
PMA’s objective is related to several prior works in un-
supervised RL. For example, if we set β = 0 and
πe(zt|st) = zt−1 for t ≥ 1, we recover DADS (Sharma
et al., 2020), a previous unsupervised skill discovery
method. Also, if we set πz(a|s, z) = z, PMA becomes
similar to prior unsupervised model-based approaches using
disagreement-based intrinsic rewards (Shyam et al., 2019;
Sekar et al., 2020). However, these methods either do not
aim to cover the state-action space or do not consider pre-
dictability, which makes them suboptimal or unstable. In
Section 7, we empirically compare PMA with these prior
approaches and demonstrate that our full objective makes
a substantial improvement over them. Additionally, we
theoretically compare PMA with DADS in Appendix E.

5. Model-Based Learning with PMA
After completing the unsupervised training of PMA, we can
employ the learned latent predictive model to optimize a
reward function with model-based planning or RL. In this
section, we present several ways to utilize our predictable
MDP to solve downstream tasks in a zero-shot manner.

5.1. Model-Based Learning with PMA
After training the model, PMA can be combined with any
existing model-based planning or RL method. Specifically,
we can apply any off-the-shelf model-based RL method
on top of the latent action space Z and the learned latent
dynamics model p̂z(s′|s, z) to maximize downstream task
rewards, where we use the mean of the ensemble model
outputs as the latent dynamics model. By planning over
the latent action space, we can effectively prevent model
exploitation as hard-to-predict actions are filtered out.

In our experiments, we study two possible instantiations of
model-based learning: one based on model-predictive con-
trol, and one based on approximate dynamic programming
(i.e., actor-critic RL), where the learned model is used as a
“simulator” without additional environment samples. Note
that both variants solve the new task in “zero shot,” in the
sense that they do not require any additional collection of
real transitions in the environment.

Model predictive path integral (MPPI). MPPI (Williams
et al., 2016) is a sampling-based zeroth-order planning al-
gorithm that optimizes a short-horizon sequence of (latent)
actions at each time step, executes the first action in the
sequence, and then replans. We refer to Appendix F.2 and
Algorithm 2 for the full training procedure.

Model-based policy optimization (MBPO). MBPO (Jan-
ner et al., 2019) is a Dyna-style model-based RL algorithm
that trains a model-free RL method on top of truncated
model-based rollouts starting from intermediate environ-
ment states. In our zero-shot setting, we train the task pol-
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icy only using purely model-based rollouts, whose starting
states are sampled from the restored replay buffer from unsu-
pervised training. We refer to Appendix F.3 and Algorithm 3
for the full training procedure.

5.2. Addressing Distributional Shift
Using a fixed, pre-trained model for model-based control is
inherently vulnerable to distributional shift as the test-time
controller might find some “adversarial” z values that make
the agent state out of distribution. This issue applies to our
zero-shot setting as well, even though every transition in
our latent MDP is trained to be predictable. As such, we
explicitly penalize the agent for visiting out-of-distribution
states, following prior offline model-based RL methods
(Yu et al., 2020; Kidambi et al., 2020), which also deals
with the same issue. As we already have an ensemble of
latent predictive models, we use the following maximum
disagreement between ensemble models (Kidambi et al.,
2020) as a penalty with a coefficient λ:

u(s, z) = −λ · max
i,j∈[E]

∥µ(s, z;θi)− µ(s, z;θj)∥2. (11)

During task-specific planning or RL, we add this penalty to
the task reward, similarly to MOPO (Yu et al., 2020).

6. Theoretical Results
Predictable MDP abstraction is a lossy procedure. In this
section, we theoretically analyze the degree to which this
lossiness influences the performance of a policy in the ab-
stracted MDP, and provide practical insights on when PMA
can be useful compared to classic model-based RL. All
formal definitions and proofs can be found in Appendix D.

6.1. PMA Performance Bound
We first state the performance bound of PMA. Formally, for
the original MDPM = (S,A, µ, p, r), we define the MDP
with a learned dynamics model p̂ as M̂ = (S,A, µ, p̂, r),
where we assume that p̂ is trained on the dataset D col-
lected by πD. For our predictable latent MDP MP =
(S,Z, µ, pz, r), we similarly define M̂P = (S,Z, µ, p̂z, r),
DP , and πDP

. For a policy π(a|s) in the original MDP, we
define its corresponding latent policy that best mimics the
original one as πϕ∗

z (z|s), and its induced next-state distribu-
tion as pϕ

∗

z (s′|s,a) (please see Appendix D for the formal
definitions). We now state our performance bound of PMA
with a learned latent dynamics model as follows:
Theorem 6.1. If the abstraction loss, the model error, and
the policy difference are bounded as follows:

E(s,a)∼dπ(s,a)[DTV(p(·|s,a)∥pϕ
∗

z (·|s,a))] ≤ ϵa,

E(s,z)∼d
πDP (s,z)[DTV(pz(·|s, z)∥p̂z(·|s, z))] ≤ ϵ′m,

Es∼d
πDP (s)[DTV(π

ϕ∗

z (·|s)∥πDP
(·|s))] ≤ ϵ′π,

the performance difference of π between the original
MDP and the predictable latent model-based MDP can

Original MDP

Model-based MDP

Predictable MDP

Predictable model-based MDP

Figure 4. Performance bound between four MDPs. When ϵm ≫
ϵa + ϵ′m, PMA provides a tighter bound than classic MBRL.

be bounded as:

|JM(π)− JM̂P
(πϕ∗

z )| ≤ R

(1− γ)2
(2γϵa + 4ϵ′π + 2γϵ′m).

(12)

Intuitively, PMA’s performance bound consists of the fol-
lowing three factors: (i) the degree to which we lose from
the lossy action decoder (ϵa), (ii) the model error in the
latent predictive model (ϵ′m), and (iii) the distributional shift
between the data-collecting policy and the task policy (ϵ′π).
Hence, the bound becomes tighter if we have better state-
action coverage and lower model errors, which is precisely
what PMA aims to achieve (Equation (6)).

6.2. When Should We Use PMA over Classic MBRL?
To gain practical insights into PMA, we theoretically com-
pare PMA with classic model-based RL. We first present the
performance bound of classic MBRL (Janner et al., 2019):

Theorem 6.2. If the model error and the policy difference
are bounded as follows:

E(s,a)∼dπD (s,a)[DTV(p(·|s,a)∥p̂(·|s,a))] ≤ ϵm,

Es∼dπD (s)[DTV(π(·|s)∥πD(·|s))] ≤ ϵπ,

the performance difference of π betweenM and M̂ can be
bounded as:

|JM(π)− JM̂(π)| ≤ R

(1− γ)2
(4ϵπ + 2γϵm). (13)

By comparing Equation (12) and Equation (13), we can see
that PMA leads to a tighter bound when 4ϵπ + 2γϵm >
2γϵa + 4ϵ′π + 2γϵ′m (Figure 4). Intuitively, this condition
corresponds to ϵm ≫ ϵa + ϵ′m, if we assume that the data
collection policies in both cases have a similar divergence
from the desired policy π. This indicates that when the re-
duction in the model error by having predictable transitions
outweighs the abstraction loss, PMA can be more beneficial
than classic MBRL.

When can PMA be practically useful? PMA is useful
when the optimal policies for the tasks mainly consist of
predictable transitions so that we can reduce the model error
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Figure 5. Comparison of periodic zero-shot planning (MPPI combined with the MOPO penalty) performances among unsupervised
model-based RL methods. PMA demonstrates the best performance in most tasks, especially in Ant and Walker2d.

ϵ′m while maintaining a small ϵa (the average abstraction
loss over the transition distribution of the optimal policies
of our interest). For instance, in real-world driving scenar-
ios, we can achieve most of our driving purposes without
modeling (and even by actively avoiding) unpredictable be-
haviors like breaking the car in diverse ways, which makes
PMA beneficial. Similar arguments can be applied to many
robotics environments, as we empirically demonstrate in
Section 7. On the other hand, we could imagine MDPs
where optimal behavior requires intentionally visiting un-
predictable regions of the state space, in which case PMA
could be suboptimal.

7. Experiments
In our experiments, we study the performance of PMA as
an unsupervised model-learning algorithm for downstream
zero-shot model-based RL, and analyze the degree to which
PMA can learn more predictable models that enable longer-
horizon simulated rollouts. In particular, we aim to answer
the following questions: (i) Does PMA lead to better zero-
shot task performances in diverse tasks? (ii) Does PMA
enable robust longer-horizon planning, without suffering
from model exploitation? (iii) Does PMA learn more pre-
dictable models?

Experimental setup. Since PMA does not require access
to the task reward during the model training process, we
focus our comparisons on other unsupervised model-based
RL methods that operate under similar assumptions: a pre-
training phase with interactive access to the MDP but not its
reward function, followed by a zero-shot evaluation phase.
Previous unsupervised model-based approaches (Shyam
et al., 2019; Pathak et al., 2019; Sekar et al., 2020; Rajeswar
et al., 2022) typically pre-train a classic dynamics model of
the form p̂(s′|s,a) using data gathered by some exploration
policy. We consider three of them as our baselines: classic
models (CMs) p̂(s′|s,a) trained with (i) random actions
(“Random”), (ii) ensemble disagreement-based exploration
(“Disagreement”) (Pathak et al., 2019), which was previ-
ously proposed as an unsupervised data collection scheme
for model learning in several works (Shyam et al., 2019;

Sekar et al., 2020; Rajeswar et al., 2022), and (iii) random
network distillation (“RND”) (Burda et al., 2019), another
data collection method considered by Rajeswar et al. (2022).
We also compare to DADS (Sharma et al., 2020), a previ-
ous unsupervised skill discovery method that also learns a
latent action dynamics model p̂z(s′|s, z) but aims to find
compact, temporally extended behaviors, rather than con-
verting the original MDP into a more predictable one. For
the benchmark, we test PMA and the four previous methods
on seven MuJoCo robotics environments (Todorov et al.,
2012; Brockman et al., 2016) with 13 diverse tasks. We
note that, in our experiments, we always use an ensemble
disagreement penalty (MOPO penalty, Section 5.2) individ-
ually tuned for every method, task, and controller, to ensure
fair comparisons. Every experiment is run with 8 random
seeds and we present 95% confidence intervals in the plots.

7.1. Model-Based Planning with PMA
In order to examine whether PMA leads to better planning
performance, we first evaluate the models learned by PMA
and each of the prior approaches using zero-shot planning
for a downstream task. PMA and DADS use latent mod-
els p̂z(s

′|s, z), while the other methods all use “classic”
models of the form p̂(s′|s,a), and differ only in their un-
supervised data collection strategy. We perform the com-
parison on seven MuJoCo environments (HalfCheetah, Ant,
Hopper, Walker2d, InvertedPendulum (“IP”), InvertedDou-
blePendulum (“IDP”), and Reacher) with 13 tasks. During
unsupervised training of these methods, we periodically run
MPPI planning (Section 5.1) combined with the MOPO
penalty on the downstream tasks (these trials are not used
for model training, which is completely unaware of the
task reward), and report its results in Figure 5. The re-
sults show that PMA achieves the best performance in most
tasks. Especially, PMA is the only successful unsupervised
model-based method in Ant, whose complex, contact-rich
dynamics make it difficult for classic models to succeed be-
cause erroneous model predictions often result in the agent
flipping over. PMA successfully solves the tasks since our
predictable abstraction effectively prevents such errors.
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Figure 6. Comparison of unsupervised model-based RL methods
using MBPO combined with the MOPO penalty. PMA mostly
outperforms the prior approaches often by large margins.
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Figure 7. Performances of SAC combined with the MOPO penalty
trained on purely model-based full-length rollouts. Dotted boxes
indicate predicted returns and solid boxes indicate true returns.
While classic models suffer from model exploitation in this long-
horizon setting, as indicated by the drop from the predicted return
to the actual return, PMA suffers a modest drop from the predicted
return, and performs significantly better.

7.2. Model-Based RL with PMA
While the planning method used in the previous section
uses the learned models with short-horizon MPC, we can
better evaluate the capacity of the PMA model and the base-
lines to make faithful long-horizon predictions by using
them with a long-horizon model-free RL procedure, essen-
tially treating the model as a “simulator.” We study two
approaches in this section. The first is based on MBPO
(Janner et al., 2019), which we describe in Section 5.1. The
second approach is SAC (Haarnoja et al., 2018a) on top of
full-length model-based rollouts, which in some sense is the
most literal way to use the learned model as a “simulator”
of the true environment. This second approach requires
significantly longer model-based rollouts (up to 200 time
steps), and though it performs worse in practice, it provides
a much more stringent test of the models’ ability to make
long-horizon predictions without excessive error accumula-
tion. In both evaluation schemes, we use the MOPO penalty
to prevent distributional shifts.

Figure 6 and Figure 7 present the results with MBPO and
SAC, respectively. In both settings, PMA mostly outper-
forms prior model-based approaches, suggesting that PMA
is capable of making reliable long-horizon predictions. Also,
by comparing the Hopper and Walker2d performances of
Figure 5 and Figure 6, we find that classic models fail with
MPPI and require a complex controller like MBPO to suc-
ceed, whereas PMA with a simple planner can achieve simi-
lar results to MBPO owing to its predictable dynamics. In
the full-length SAC plots in Figure 7, we compare the mod-

(a) Model errors of various methods (b) Model errors of various network sizes
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Figure 9. MPPI performance comparison between PMA and clas-
sic models trained with the data collected by PMA. While
HalfCheetah does not benefit from action reparameterization, hav-
ing a separate latent action space is crucial in the other environ-
ments.

els’ predicted returns and the actual returns. We find that
the drops from PMA’s predicted returns to actual returns
are generally modest, which indicates that our predictable
abstraction effectively prevents model exploitation. DADS
similarly shows small performance differences as it also re-
stricts actions, but the absolute performance of DADS falls
significantly behind PMA due to its limited coverage of the
state-action space. On the other hand, classic models tend
to be erroneously optimistic about the returns because of
the complex dynamics, suffering from model exploitation.

7.3. Analysis
Can model errors be reduced by simply increasing the
model size? We first compare the average mean squared
errors of predicted (normalized) states of the five methods
in HalfCheetah and Ant, and report the results in Figure 8a.
In both environments, PMA exhibits the lowest model error,
as it is trained to be maximally predictable. To examine
whether this degree of error can be achieved by simply
increasing the size of a classic model p̂(s′|s,a), we train
classic models with random actions using four different
model sizes, ranging from two 256-sized hidden layers to
two 2048-sized ones. Figure 8b shows the results, which
suggest that there are virtually irreducible model errors even
in deterministic environments due to their complex, contact-
rich dynamics. On the other hand, PMA seeks to model
not the entire MDP but only the “predictable” parts of the
action space, which reduces model errors and thus makes it
amenable to model-based learning.
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Data restriction vs. action reparameterization. PMA
serves both (i) data restriction by not selecting unpredictable
actions and (ii) action reparameterization by having a sep-
arate latent action space. To dissect these two effects, we
additionally consider a classic model p̂(s′|s,a) trained with
the same data used to train PMA. We compare the periodic
MPPI performances of this setting and PMA in Figure 9.
The results suggest that while data restriction, in combi-
nation with the MOPO penalty, is sufficient in HalfChee-
tah, having a separate latent action space is crucial in the
other “unstable” environments with early termination or ir-
reversible states (e.g., flipping over in Ant). This is because
while the MOPO penalty at test time only prevents short-
term deviations from the data distribution, PMA trained with
RL considers long-term predictability, which effectively pre-
vents selecting seemingly benign actions that could eventu-
ally cause the agent to lose balance (which corresponds to
unpredictable behavior).

We refer to our project page and Appendix A for qualitative
results and Appendix B for an ablation study.

8. Conclusion
We presented predictable MDP abstraction (PMA) as an un-
supervised model-based method that builds a latent MDP by
reparameterizing the action space to only allow predictable
actions. We formulated its objective with information theory
and theoretically analyzed the suboptimality induced by the
lossy training scheme. Empirically, we confirmed that PMA
enables robust model-based learning, exhibiting significant
performance improvements over prior approaches.

Limitations. One limitation of PMA is that it is a lossy
procedure. While we empirically demonstrated that its im-
proved predictability outweighs the limitations imposed by
the restriction of the action space in our experiments, PMA
might be suboptimal in tasks that require unpredictable or
highly complex behaviors, such those as discussed in Sec-
tion 6.2, and in general it may be difficult to guarantee that
the abstractions learned by PMA are good for every down-
stream task (though such guarantees are likely difficult to
provide for any method). Also, PMA requires tuning the co-
efficient β to maintain a balance between predictability and
the state-action space coverage. Nonetheless, we believe
that methods that aim to specifically model the predictable
parts of an MDP hold a lot of promise for future model-
based RL methods. Future work could explore hybridizing
such techniques with model-free approaches for handling
the “unpredictable” parts, further study effective data col-
lection strategies or methods that can utilize previously col-
lected offline data, and examine how such approaches could
be scaled up to more complex and high-dimensional ob-
servation spaces, where training directly for predictability
could lead to even more significant gains in performance.
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cover and learn: unsupervised discovery of state-covering
skills. In International Conference on Machine Learning
(ICML), 2020.

Castro, P. S. Scalable methods for computing state similarity
in deterministic markov decision processes. In AAAI
Conference on Artificial Intelligence (AAAI), 2019.

Chua, K., Calandra, R., McAllister, R., and Levine, S. Deep
reinforcement learning in a handful of trials using proba-
bilistic dynamics models. In Neural Information Process-
ing Systems (NeurIPS), 2018.

Clavera, I., Rothfuss, J., Schulman, J., Fujita, Y., Asfour,
T., and Abbeel, P. Model-based reinforcement learning
via meta-policy optimization. In Conference on Robot
Learning (CoRL), 2018.

Deisenroth, M. P. and Rasmussen, C. E. Pilco: A model-
based and data-efficient approach to policy search. In
International Conference on Machine Learning (ICML),
2011.

Draeger, A., Engell, S., and Ranke, H. D. Model predictive
control using neural networks. IEEE Control Systems
Magazine, 15:61–66, 1995.

Ebert, F., Finn, C., Dasari, S., Xie, A., Lee, A. X., and
Levine, S. Visual foresight: Model-based deep reinforce-
ment learning for vision-based robotic control. ArXiv,
abs/1812.00568, 2018.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity
is all you need: Learning skills without a reward function.
In International Conference on Learning Representations
(ICLR), 2019.

Eysenbach, B., Salakhutdinov, R., and Levine, S. Robust
predictable control. In Neural Information Processing
Systems (NeurIPS), 2021.

Feinberg, V., Wan, A., Stoica, I., Jordan, M. I., Gonzalez,
J. E., and Levine, S. Model-based value expansion for effi-
cient model-free reinforcement learning. In International
Conference on Machine Learning (ICML), 2018.

Gelada, C., Kumar, S., Buckman, J., Nachum, O., and Belle-
mare, M. G. Deepmdp: Learning continuous latent space
models for representation learning. In International Con-
ference on Machine Learning (ICML), 2019.

Gregor, K., Rezende, D. J., and Wierstra, D. Variational
intrinsic control. ArXiv, abs/1611.07507, 2016.

Ha, D. and Schmidhuber, J. Recurrent world models facili-
tate policy evolution. In Neural Information Processing
Systems (NeurIPS), 2018.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
Conference on Machine Learning (ICML), 2018a.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S.,
Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P., and
Levine, S. Soft actor-critic algorithms and applications.
ArXiv, abs/1812.05905, 2018b.

Hafner, D., Lillicrap, T. P., Fischer, I. S., Villegas, R., Ha,
D. R., Lee, H., and Davidson, J. Learning latent dynamics
for planning from pixels. In International Conference on
Machine Learning (ICML), 2019.

Hafner, D., Lillicrap, T. P., Ba, J., and Norouzi, M. Dream
to control: Learning behaviors by latent imagination. In
International Conference on Learning Representations
(ICLR), 2020.

Hansen, N., Wang, X., and Su, H. Temporal difference
learning for model predictive control. In International
Conference on Machine Learning (ICML), 2022.

Hasselt, H. V., Hessel, M., and Aslanides, J. When to use
parametric models in reinforcement learning? In Neural
Information Processing Systems (NeurIPS), 2019.

Heess, N. M. O., Wayne, G., Silver, D., Lillicrap, T. P., Erez,
T., and Tassa, Y. Learning continuous control policies
by stochastic value gradients. In Neural Information
Processing Systems (NeurIPS), 2015.

Hernandaz, E. P. S. and Arkun, Y. Neural network model-
ing and an extended dmc algorithm to control nonlinear
systems. In American Control Conference, 1990.

Houthooft, R., Chen, X., Duan, Y., Schulman, J., Turck,
F. D., and Abbeel, P. Vime: Variational information max-
imizing exploration. In Neural Information Processing
Systems (NeurIPS), 2016.

Jafferjee, T., Imani, E., Talvitie, E. J., White, M., and Bowl-
ing, M. Hallucinating value: A pitfall of dyna-style
planning with imperfect environment models. ArXiv,
abs/2006.04363, 2020.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to trust
your model: Model-based policy optimization. In Neural
Information Processing Systems (NeurIPS), 2019.

Kang, K., Gradu, P., Choi, J. J., Janner, M., Tomlin, C. J.,
and Levine, S. Lyapunov density models: Constraining
distribution shift in learning-based control. In Interna-
tional Conference on Machine Learning (ICML), 2022.

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims,
T. Morel : Model-based offline reinforcement learning. In
Neural Information Processing Systems (NeurIPS), 2020.

10



Predictable MDP Abstraction for Unsupervised Model-Based RL

Kim, J., Park, S., and Kim, G. Unsupervised skill discovery
with bottleneck option learning. In International Confer-
ence on Machine Learning (ICML), 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations (ICLR), 2015.

Kurutach, T., Clavera, I., Duan, Y., Tamar, A., and Abbeel,
P. Model-ensemble trust-region policy optimization. In
International Conference on Learning Representations
(ICLR), 2018.

Laskin, M., Liu, H., Peng, X. B., Yarats, D., Rajeswaran,
A., and Abbeel, P. Unsupervised reinforcement learning
with contrastive intrinsic control. In Neural Information
Processing Systems (NeurIPS), 2022.

Lee, L., Eysenbach, B., Parisotto, E., Xing, E. P., Levine,
S., and Salakhutdinov, R. Efficient exploration via state
marginal matching. ArXiv, abs/1906.05274, 2019.

Lenz, I., Knepper, R. A., and Saxena, A. Deepmpc: Learn-
ing deep latent features for model predictive control. In
Robotics: Science and Systems (RSS), 2015.

Li, L., Walsh, T. J., and Littman, M. L. Towards a unified
theory of state abstraction for mdps. In International
Symposium on Artificial Intelligence and Mathematics,
2006.

Liu, H. and Abbeel, P. Behavior from the void: Unsuper-
vised active pre-training. In Neural Information Process-
ing Systems (NeurIPS), 2021.

Lu, K., Grover, A., Abbeel, P., and Mordatch, I. Reset-free
lifelong learning with skill-space planning. In Interna-
tional Conference on Learning Representations (ICLR),
2021.

Machado, M. C., Bellemare, M. G., and Bowling, M. A
laplacian framework for option discovery in reinforce-
ment learning. In International Conference on Machine
Learning (ICML), 2017.

Mendonca, R., Rybkin, O., Daniilidis, K., Hafner, D.,
and Pathak, D. Discovering and achieving goals via
world models. In Neural Information Processing Systems
(NeurIPS), 2021.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. Data-
efficient hierarchical reinforcement learning. In Neural
Information Processing Systems (NeurIPS), 2018.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. Near-
optimal representation learning for hierarchical reinforce-
ment learning. In International Conference on Learning
Representations (ICLR), 2019.

Nagabandi, A., Konolige, K., Levine, S., and Kumar, V.
Deep dynamics models for learning dexterous manipula-
tion. In Conference on Robot Learning (CoRL), 2019.

Nguyen, T. D., Shu, R., Pham, T., Bui, H. H., and Ermon,
S. Temporal predictive coding for model-based planning
in latent space. In International Conference on Machine
Learning (ICML), 2021.

Park, S., Choi, J., Kim, J., Lee, H., and Kim, G. Lipschitz-
constrained unsupervised skill discovery. In International
Conference on Learning Representations (ICLR), 2022.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In International Conference on Machine Learning
(ICML), 2017.

Pathak, D., Gandhi, D., and Gupta, A. K. Self-supervised ex-
ploration via disagreement. In International Conference
on Machine Learning (ICML), 2019.

Pong, V. H., Dalal, M., Lin, S., Nair, A., Bahl, S., and
Levine, S. Skew-Fit: State-covering self-supervised re-
inforcement learning. In International Conference on
Machine Learning (ICML), 2020.

Poole, B., Ozair, S., van den Oord, A., Alemi, A. A., and
Tucker, G. On variational bounds of mutual informa-
tion. In International Conference on Machine Learning
(ICML), 2019.

Rajeswar, S., Mazzaglia, P., Verbelen, T., Pich’e, A., Dhoedt,
B., Courville, A. C., and Lacoste, A. Unsupervised model-
based pre-training for data-efficient control from pixels.
ArXiv, abs/2209.12016, 2022.

Rajeswaran, A., Ghotra, S., Levine, S., and Ravindran, B.
Epopt: Learning robust neural network policies using
model ensembles. In International Conference on Learn-
ing Representations (ICLR), 2017.

Rasmussen, C. E. and Kuss, M. Gaussian processes in
reinforcement learning. In Neural Information Processing
Systems (NeurIPS), 2003.

Rhinehart, N., Wang, J., Berseth, G., Co-Reyes, J. D.,
Hafner, D., Finn, C., and Levine, S. Information is power:
Intrinsic control via information capture. In Neural Infor-
mation Processing Systems (NeurIPS), 2021.

Ross, S. and Bagnell, J. A. Agnostic system identification
for model-based reinforcement learning. In International
Conference on Machine Learning (ICML), 2012.

Salter, S., Wulfmeier, M., Tirumala, D., Heess, N. M. O.,
Riedmiller, M. A., Hadsell, R., and Rao, D. Mo2: Model-
based offline options. In Conference on Lifelong Learning
Agents (CoLLAs), 2022.

11



Predictable MDP Abstraction for Unsupervised Model-Based RL

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., Lillicrap, T., and Silver, D. Mastering
Atari, Go, Chess and Shogi by planning with a learned
model. Nature, 588 7839:604–609, 2020.

Sekar, R., Rybkin, O., Daniilidis, K., Abbeel, P., Hafner, D.,
and Pathak, D. Planning to explore via self-supervised
world models. In International Conference on Machine
Learning (ICML), 2020.

Sharma, A., Gu, S., Levine, S., Kumar, V., and Hausman,
K. Dynamics-aware unsupervised discovery of skills. In
International Conference on Learning Representations
(ICLR), 2020.
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Figure 10. Examples of PMA. PMA prevents unpredictable, chaotic actions so that every transition in the latent MDP is maximally
predictable. Videos are available at https://seohong.me/projects/pma/.
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Figure 11. Ablation study of the disagreement bonus (“IG”) during unsupervised training and disagreement penalty (“Pen.”) during
planning. The disagreement penalty generally stabilizes training, and the disagreement bonus improves performance.

A. Examples of PMA
To illustrate the difference between original MDPs and the corresponding predictable MDPs, we present qualitiative
examples of PMA in Figure 10. In Ant and HalfCheetah, our predictable MDP only allows actions that are easy to
model yet diverse enough to solve downstream tasks, preventing unpredictable behaviors such as chaotic flipping. In
InvertedPendulum, we find that most of the learned latent actions move the agent in different directions while maintaining
balance, even without early termination, in order to make the transitions maximally predictable. Videos are available at
https://seohong.me/projects/pma/.

B. Ablation study
To evaluate the relative importance of each component of PMA, we ablate the information gain (disagreement bonus)
term during unsupervised training and the disagreement penalty during periodic MPPI planning, and report performances
in Figure 11. While there are small performance differences between the settings in HalfCheetah, these components
improve and stabilize the performances in the other more complex environments by encouraging exploration and preventing
distributional shifts.

C. Approximating Information Gain with Ensemble Disagreement
In this section, we provide a justification for our use of ensemble disagreement as a way to approximate the information gain
term I(S′;Θ|D,Z) in Equation (6). First, let the random variable Ŝ′ ∼ p̂z(·|S,Z;Θ) denote the predicted state under a
model with parameters Θ. Since S′ → Θ→ Ŝ′ forms a Markov chain conditioned on D and Z in our Bayesian setting,
we get the following lower bound by the data processing inequality:

I(S′;Θ|D,Z) ≥ I(S′; Ŝ′|D,Z) (14)

= H(Ŝ′|D,Z)−H(Ŝ′|D,Z,S′). (15)

Now, we approximate the model posterior with an ensemble of E predictive models, {p̂z(s′|s, z;θi)}i∈[E] with p(θ|D) =
1
E

∑
i δ(θ − θi), where each model is represented as a conditional Gaussian with the mean given by a neural network and

a unit diagonal covariance, s′ ∼ N (µ(s, z;θi), I). The terms in Equation (15) measure the uncertainty in the predicted
next state before and after observing the outcome S′, respectively. Yet, it is still intractable because there is no closed-form
formulation for the differential entropy of a mixture of Gaussian distributions. Hence, we further simplify these terms as
follows. First, we assume that the second term in Equation (15) has a negligible effect on the objective, which roughly
corresponds to assuming a low training error (i.e., if we know the value of S′ and we update the models, they should agree
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on Ŝ′, or at least have similar error). This assumption might not hold in heteroskedastic environments but is otherwise very
convenient. Next, we empirically substitute the first term in Equation (15) with the variance of the ensemble means with a
coefficient β, E[β · Tr[Vi[µ(s, z;θi)]]], based on the fact that they both are correlated to the uncertainty in Ŝ′ (Sekar et al.,
2020): if the predictions of the ensemble models are very different from one another (i.e., the variance is large), the marginal
entropy of Ŝ′ will also be large, and vice versa. As a result, we get our approximation in Equation (10). We also refer to
prior works (Shyam et al., 2019; Sekar et al., 2020; Ball et al., 2020; Strouse et al., 2022) for similar connections between
ensemble disagreement and information gain.

D. Theoretical Results
D.1. Technical Lemmas

For an MDPM := (S,A, µ, p, r)3 and a policy π, we first define the discounted state and state-action distributions, and
state the bellman flow constraint lemma.

Definition D.1. (Discounted state distribution) dπ(s) := (1− γ)
∑∞

t=0 γ
tP (st = s|µ, p, π).

Definition D.2. (Discounted state-action distribution) dπ(s,a) := π(a|s)dπ(s).
Lemma D.3. (Bellman flow constraint)

dπ(s) = (1− γ)µ(s) + γ
∑

s−∈S,a−∈A

p(s|s−,a−)dπ(s−,a−). (16)

Proof.

dπ(s) = (1− γ)(P (s0 = s) + γP (s1 = s) + γ2P (s2 = s) + · · · ) (17)
= (1− γ)µ(s) + γ(1− γ)(P (s1 = s) + γP (s2 = s) + · · · ) (18)

= (1− γ)µ(s) + γ(1− γ)
∑

s−,a−

p(s|s−,a−)(P (s0 = s−,a0 = a−) + γP (s1 = s−,a1 = a−) + · · · ) (19)

= (1− γ)µ(s) + γ
∑

s−,a−

p(s|s−,a−)dπ(s−,a−). (20)

Now, we consider two MDPs with different transition dynamics,M1 := (S,A, r, µ, p1) andM2 := (S,A, r, µ, p2), and
two policies, π1 and π2. We denote the expected return of π as JM(π) := 1

1−γE(s,a)∼dπ(s,a)[r(s,a)] and the maximum
reward as R := maxs∈S,a∈A r(s,a). We can bound their performance difference as follows.

Lemma D.4. If the total variation distances of the dynamics and the policies are bounded as

E(s,a)∼d
π1
1 (s,a)[DTV(p1(·|s,a)∥p2(·|s,a))] ≤ ϵm, (21)

Es∼d
π1
1 (s)[DTV(π1(·|s)∥π2(·|s))] ≤ ϵπ, (22)

their performance difference satisfies the following inequality:

|JM1
(π1)− JM2

(π2)| ≤
R

(1− γ)2
(2γϵm + 2ϵπ). (23)

3In our theoretical analyses, we assume that the state and action spaces are finite for simplicity.
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Proof. We first bound the difference in their discounted state-action distributions.∑
s∈S,a∈A

|dπ1
1 (s,a)− dπ2

2 (s,a)| (24)

=
∑

s∈S,a∈A
|π1(a|s)dπ1

1 (s)− π2(a|s)dπ2
2 (s)| (25)

≤
∑

s∈S,a∈A
|π1(a|s)dπ1

1 (s)− π2(a|s)dπ1
1 (s)|+

∑
s∈S,a∈A

|π2(a|s)dπ1
1 (s)− π2(a|s)dπ2

2 (s)| (26)

=
∑
s∈S

dπ1
1 (s)

∑
a∈A
|π1(a|s)− π2(a|s)|+

∑
s∈S
|dπ1

1 (s)− dπ2
2 (s)| (27)

≤
∑
s∈S
|dπ1

1 (s)− dπ2
2 (s)|+ 2ϵπ (28)

= γ
∑
s∈S

∣∣∣∣∣∣
∑

s−∈S,a−∈A

(
p1(s|s−,a−)dπ1

1 (s−,a−)− p2(s|s−,a−)dπ2
2 (s−,a−)

)∣∣∣∣∣∣+ 2ϵπ (29)

≤ γ
∑

s−∈S,a−∈A,s∈S

∣∣p1(s|s−,a−)dπ1
1 (s−,a−)− p2(s|s−,a−)dπ2

2 (s−,a−)
∣∣+ 2ϵπ (30)

≤ γ
∑

s−∈S,a−∈A,s∈S

∣∣p1(s|s−,a−)dπ1
1 (s−,a−)− p2(s|s−,a−)dπ1

1 (s−,a−)
∣∣

+ γ
∑

s−∈S,a−∈A,s∈S

∣∣p2(s|s−,a−)dπ1
1 (s−,a−)− p2(s|s−,a−)dπ2

2 (s−,a−)
∣∣+ 2ϵπ (31)

= γ
∑

s−∈S,a−∈A

dπ1
1 (s−,a−)

∑
s∈S

∣∣p1(s|s−,a−)− p2(s|s−,a−)
∣∣

+ γ
∑

s−∈S,a−∈A

∣∣dπ1
1 (s−,a−)− dπ2

2 (s−,a−)
∣∣+ 2ϵπ (32)

≤ 2γϵm + 2ϵπ + γ
∑

s−∈S,a−∈A

∣∣dπ1
1 (s−,a−)− dπ2

2 (s−,a−)
∣∣ (33)

= 2γϵm + 2ϵπ + γ
∑

s∈S,a∈A
|dπ1

1 (s,a)− dπ2
2 (s,a)| , (34)

which implies ∑
s∈S,a∈A

|dπ1
1 (s,a)− dπ2

2 (s,a)| ≤ 1

1− γ
(2γϵm + 2ϵπ), (35)

where we use Lemma D.3 in Equation (29). Hence, we obtain

|JM1
(π1)− JM2

(π2)| =
1

1− γ

∣∣∣∣∣∣
∑

s∈S,a∈A
(dπ1

1 (s,a)− dπ2
2 (s,a))r(s,a)

∣∣∣∣∣∣ (36)

≤ R

1− γ

∑
s∈S,a∈A

|dπ1
1 (s,a)− dπ2

2 (s,a)| (37)

≤ R

(1− γ)2
(2γϵm + 2ϵπ). (38)

Equation (23) is the same bound as Lemma B.3 in Janner et al. (2019), but we use a milder assumption in Equation (22),
which only assumes that the expectation (not the maximum) of the total variation distance between the policies is bounded.
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D.2. MBRL Performance Bound

We first present the performance bound of a policy π in the original MDPM = (S,A, µ, p, r) and its model-based MDP
(Janner et al., 2019). We denote the model-based MDP with a learned predictive model p̂ as M̂ = (S,A, µ, p̂, r). We
assume that the model p̂ is trained on a dataset D, which is collected by a data-collecting policy πD.
Theorem D.5. For any policy π, if the total variation distances between (i) the true dynamics p and the learned model p̂
and (ii) the policy π and the data-collection policy πD are bounded as

E(s,a)∼dπD (s,a)[DTV(p(·|s,a)∥p̂(·|s,a))] ≤ ϵm, (39)
Es∼dπD (s)[DTV(π(·|s)∥πD(·|s))] ≤ ϵπ, (40)

the performance difference of π betweenM and M̂ satisfies the following inequality:

|JM(π)− JM̂(π)| ≤ R

(1− γ)2
(4ϵπ + 2γϵm). (41)

Proof. From Lemma D.4, we get

|JM(π)− JM̂(π)| ≤ |JM(π)− JM(πD)|+ |JM(πD) + JM̂(π)| (42)

≤ R

(1− γ)2
(2ϵπ) +

R

(1− γ)2
(2ϵπ + 2γϵm) (43)

=
R

(1− γ)2
(4ϵπ + 2γϵm). (44)

D.3. PMA Performance Bound

We provide the performance bound of our predictable MDP abstraction. We denote our predictable latent MDP as
MP := (S,Z, µ, pz, r) with the latent action space Z and the reward function r(s, z) =

∑
a πz(a|s, z)r(s,a), and its

model-based MDP as M̂P := (S,Z, µ, p̂z, r). We assume that the model p̂z is trained on a dataset DP collected by a
data-collecting policy πDP

in the latent MDP.

For the performance bound of a policy π(a|s) between the original MDP and the predictable model-based MDP, we
independently tackle the performance losses caused by (i) MDP abstraction and (ii) model learning. For the first part, we
take a similar approach to Nachum et al. (2019); Ajay et al. (2021). For any s ∈ S, a ∈ A, and a probability distribution
ϕ : S ×A → P(Z), we define the following state distribution in S ×A → P(S):

pϕz (·|s,a) :=
∑
z

ϕ(z|s,a)pz(·|s, z). (45)

Also, we define the optimal z distribution that best mimics the original transition distribution:

ϕ∗(·|s,a) := argmin
ϕ∈S×A→P(Z)

DTV(p(·|s,a)∥pϕz (·|s,a)). (46)

For a policy π in the original MDP, we define its corresponding optimal latent policy as follows:

πϕ∗

z (·|s) :=
∑
a∈A

π(a|s)ϕ∗(·|s,a). (47)

Intuitively, this policy produces latent action distributions that mimic the next state distributions of π as closely as possible.
Now, we state the performance bound of π between the original MDP and the predictable latent MDP.
Lemma D.6. For any policy π, if the total variation distance between the original transition dynamics and the optimal
latent dynamics is bounded as

E(s,a)∼dπ(s,a)[DTV(p(·|s,a)∥pϕ
∗

z (·|s,a))] ≤ ϵa, (48)

the performance difference between the original MDP and the predictable latent MDP satisfies the following inequality:

|JM(π)− JMP
(πϕ∗

z )| ≤ 2Rγϵa
(1− γ)2

. (49)
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Proof. The next state distribution of πϕ∗

z at state s ∈ S in the latent MDP can be written as follows:

pz(·|s) =
∑
z∈Z

πϕ∗

z (z|s)pz(·|s, z) (50)

=
∑
z∈Z

∑
a∈A

π(a|s)ϕ∗(z|s,a)pz(·|s, z) (51)

=
∑
a∈A

π(a|s)
∑
z∈Z

ϕ∗(z|s,a)pz(·|s, z) (52)

=
∑
a∈A

π(a|s)pϕ∗

z (·|s,a). (53)

Hence, JMP
(πϕ∗

z ) is equal to JMϕ∗ (π), whereMϕ∗
is defined as (S,A, µ, pϕ∗

z , r). Then, Equation (49) follows from
Lemma D.4.

Next, we bound the performance difference of πϕ∗

z between the latent MDP and latent model-based MDP.
Lemma D.7. If the total variation distances between (i) the true dynamics pz and the learned model p̂z and (ii) the policy
πϕ∗

z and the data-collection policy πDP
are bounded as

E(s,z)∼d
πDP (s,z)[DTV(pz(·|s, z)∥p̂z(·|s, z))] ≤ ϵ′m, (54)

Es∼d
πDP (s)[DTV(π

ϕ∗

z (·|s)∥πDP
(·|s))] ≤ ϵ′π, (55)

the performance difference of πϕ∗

z betweenMP and M̂P satisfies the following inequality:

|JMP
(πϕ∗

z )− JM̂P
(πϕ∗

z )| ≤ R

(1− γ)2
(4ϵ′π + 2γϵ′m). (56)

Proof. The proof is the same as Theorem D.5.

Now, we get the following performance bound of PMA:
Theorem D.8. (PMA performance bound) If the abstraction loss, the model error, and the policy difference are bounded as
follows:

E(s,a)∼dπ(s,a)[DTV(p(·|s,a)∥pϕ
∗

z (·|s,a))] ≤ ϵa, (57)
E(s,z)∼d

πDP (s,z)[DTV(pz(·|s, z)∥p̂z(·|s, z))] ≤ ϵ′m, (58)

Es∼d
πDP (s)[DTV(π

ϕ∗

z (·|s)∥πDP
(·|s))] ≤ ϵ′π, (59)

the performance difference of π between the original MDP and the predictable latent model-based MDP is bounded as:

|JM(π)− JM̂P
(πϕ∗

z )| ≤ R

(1− γ)2
(2γϵa + 4ϵ′π + 2γϵ′m). (60)

Proof. From Lemma D.6 and Lemma D.7, we obtain

|JM(π)− JM̂P
(πϕ∗

z )| ≤ |JM(π)− JMP
(πϕ∗

z )|+ |JMP
(πϕ∗

z )− JM̂P
(πϕ∗

z )| (61)

≤ R

(1− γ)2
(2γϵa) +

R

(1− γ)2
(4ϵ′π + 2γϵ′m) (62)

=
R

(1− γ)2
(2γϵa + 4ϵ′π + 2γϵ′m). (63)

E. Theoretical Comparison between PMA and DADS
In this section, we theoretically compare the objectives of PMA and DADS in terms of mutual information maximization,
entropy approximation, and state coverage.
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Figure 12. An example of the trajectories
of a DADS policy (Z = 4).

Mutual information maximization. We first compare the mutual information
(MI) term I(S′;Z|S) in the objectives of PMA and DADS. Here, we ignore the
information gain term of PMA, i.e., β = 0, which we will discuss later. Also, in
order to simplify the analysis of information-theoretic objectives, we assume that
the latent action space Z is discrete, i.e. Z = [Z]. With these assumptions, the
difference between PMA and DADS mainly lies in the exploration policy, πe(z|s).
While DADS first samples a latent action z at the beginning of each rollout
(πe(·|s0) = Unif(Z)) and persists it throughout the entire episode (πe(zt =
zt−1|st) = 1), PMA always uses a uniform random policy (πe(·|s) = Unif(Z))
because we have assumed β = 0.

We first consider the following upper bound of the MI objective, I(S′;Z|S),

max
πe,πz

I(S′;Z|S) = max
πe,πz

H(Z|S)−H(Z|S,S′) (64)

≤ max
πe,πz

H(Z|S). (65)

Equation (65) achieves its maximum of logZ when pπe,πz (z|s) is a uniform
random distribution, where pπe,πz (s, z) is the state-latent action distribution from
the policies. PMA uses πe(·|s) = Unif(Z), which precisely corresponds to this optimal condition. On the other hand,
DADS’s distribution can be rewritten as

pπe,πz (z|s) = pπe,πz (s|z)pπe,πz (z)

pπe,πz (s)
∝ pπe,πz (s|z)

pπe,πz (s)
. (66)

Unlike PMA, this does not necessarily correspond to a uniform distribution. For example, at the red dot state in Figure 12,
we can see that pπe,πz (s|z) is nonzero for the corresponding latent action but is zero for the other latent actions. This could
make DADS suboptimal in terms of MI maximization.

Entropy approximation. A similar difference can be found in the approximation of the marginal entropy term H(S′|S).
Both PMA and DADS use the following approximation:

H(S′|S) = E [− log pπe,πz (s′|s)] (67)

= E
[
− log

∫
pπe,πz (z|s)pπe,πz (s′|s, z)dz

]
(68)

≈ E
[
− log

∫
u(z)pπe,πz (s′|s, z)dz

]
(69)

≈ E

[
− log

(
1

L

L∑
i=1

pπe,πz (s′|s, zi)
)]

, (70)

where it approximates pπe,πz (z|s) to a uniform distribution u(z), and zi’s are sampled from u(·). While this approximation
may not be accurate in DADS due to the same reason above, PMA satisfies pπe,πz (z|s) = u(z), making the approximation
in the log exact.

State coverage. Another difference between PMA and DADS is the presence of the information gain term in the PMA
objective. This is because the MI term alone does not necessarily cover the state space since MI is invariant to any invertible
transformations of the input random variables, i.e., I(X;Y ) = I(f(X); g(Y )) for any random variables X and Y , and
invertible functions f and g. As a result, MI can be fully maximized with limited state coverage and does not necessarily
encourage exploration (Campos Camúñez et al., 2020; Strouse et al., 2022; Park et al., 2022), which necessitates another
term for maximizing the state-action coverage in PMA.

F. Training Procedures

F.1. PMA Training Procedure

PMA is trained with SAC (Haarnoja et al., 2018b). We describe several additional training details of PMA.

18



Predictable MDP Abstraction for Unsupervised Model-Based RL

Algorithm 1 Predictable MDP Abstraction (PMA)

1: Initialize action decoder πz(a|s, z), VLB predictive model p̂z(s′|s, z;ϕ), ensemble predictive models {p̂z(s′|s, z;θi)},
(optional) exploration policy πe(z|s), on-policy stochastic buffer DS , on-policy deterministic buffer DD, replay buffer
D

2: for i← 1 to (# epochs) do
3: for j ← 1 to (# steps per epoch)/2 do
4: Sample latent action z ∼ πe(z|s)
5: Sample action a ∼ πz(a|s, z)
6: Add transition (s, z,a, s′) to DS , D
7: end for
8: for j ← 1 to (# steps per epoch)/2 do
9: Sample latent action z ∼ πe(z|s)

10: Compute deterministic action a = E[πz(·|s, z)]
11: Add transition (s, z,a, s′) to DD

12: end for
13: Fit VLB predictive model using mini-batches from DS

14: Fit ensemble predictive models using mini-batches from DD

15: Train action decoder with r(s, z,a, s′) = log p̂z(s
′|s, z;ϕ)− log 1

L

∑L
i=1 p̂z(s

′|s, zi;ϕ) + β · Tr[Vi[µ(s, z;θi)]]
with SAC using mini-batches from D

16: (Optional) Train exploration policy πe with SAC using mini-batches from DS

17: Clear on-policy buffers DS , DD

18: end for

Replay buffer. Since we jointly train both the action decoder and the model, we need to be careful about using old,
off-policy samples to train the components of PMA. While we can use old samples to train the action decoder πz(a|s, z) as
long as we recompute the intrinsic reward (because SAC is an off-policy algorithm), we cannot use old samples to train the
predictive models or the exploration policy πe(z|s). Hence, we use a replay buffer only for the action decoder, and train the
other components with on-policy data.

Sampling strategy. PMA has two different kinds of predictive models: the VLB predictive model p̂z(s′|s, z;ϕ) to
approximate I(S′;Z|S), and an ensemble of E models {p̂z(s′|s, z;θi)} to approximate I(S′;Θ|D,Z). While one may
just simply use the mean of the ensemble outputs for the VLB predictive model, we find that it is helpful to train them
separately with different sampling strategies. Specifically, we train the VLB predictive model with stochastic trajectories
and the ensemble models with deterministic trajectories. Since we always use deterministic actions from the pre-trained
action decoder during the test time, it is beneficial to have a latent predictive model trained from such deterministic actions.
As such, at each epoch, we sample a half of the epoch transitions using deterministic actions to train the ensemble models
and the other half using stochastic actions to train the other components. At test time, we use the mean of the ensemble
model’s outputs for model-based planning or model-based RL.

We summarize the full training procedure of PMA in Algorithm 1.

F.2. MPPI Training Procedure

MPPI (Williams et al., 2016) is a zeroth-order planning algorithm based on model predictive control (Testud et al., 1978),
which finds an optimal action sequence via iterative refinement of randomly sampled actions. Specifically, at step t, MPPI
aims to find the optimal (latent) action sequence (zt, zt+1, . . . ,zt+H−1) of length H via M iterations of refinement. At
each iteration, MPPI samples N action sequences from a Gaussian distribution, z(i)

t:t+H−1 ∼ N (µt:t+H−1,Σ) for i ∈ [N ],
where µt:t+H−1 is the current mean parameter and Σ is a fixed diagonal covariance matrix. It then computes the sum of
the predicted rewards {R(i) :=

∑t+H−1
j=t r̂

(i)
j } using the predicted states from the latent predictive model p̂z(s′|s, z), and

updates the mean parameter as follows:

µt:t+H−1 ←
∑

i∈[N ] e
αR(i)

z
(i)
t:t+H−1∑

i∈[N ] e
αR(i)

, (71)
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Algorithm 2 MPPI with PMA

1: Initialize mean parameter µ0:T−1

2: for t← 0 to T − 1 do
3: for m← 0 to M − 1 do
4: Sample N latent action sequences z(i)

t:t+H−1 ∼ N (µt:t+H−1,Σ) for i ∈ [N ]

5: Compute sum of predicted rewards {R(i) :=
∑t+H−1

j=t r̂
(i)
j } using predicted states from latent predictive model

p̂z(s
′|s, z)

6: Update µt:t+H−1 using Equation (71)
7: end for
8: Perform single action at = E[πz(·|st, zt)] with zt = µt and get st+1 from environment
9: end for

Algorithm 3 MBPO with PMA

1: Initialize task policy π(z|s), frozen replay buffer Dfrozen, replay buffer D
2: for i← 1 to (# epochs) do
3: d← TRUE
4: for j ← 1 to (# steps per epoch) do
5: if d = TRUE then
6: Sample s from either µ(·) with a probability of P or Dfrozen with a probability of (1− P )
7: end if
8: Sample latent action z ∼ π(z|s)
9: Predict next state s′ = E[p̂z(·|s, z)]

10: Compute predicted reward r and predicted termination d using s and s′

11: if (current horizon length) ≥ H then
12: d← TRUE
13: end if
14: Add transition (s, z, r, s′) to D
15: end for
16: Train task policy with SAC using mini-batches from D
17: end for
18: for i← 1 to (# evaluation rollouts) do
19: while not termination do
20: Compute latent action z = E[π(·|s)]
21: Compute action a = E[πz(·|s, s)]
22: Get r and s′ from environment
23: end while
24: end for

where α is a temperature hyperparameter. After M iterations of refinement, the agent performs only the first latent action and
repeats this process to find the next optimal sequence (zt+1, zt+2, . . . ,zt+H). We summarize the full training procedure of
MPPI in Algorithm 2.

F.3. MBPO Training Procedure

MBPO (Janner et al., 2019) is a Dyna-style (Sutton, 1991) model-based RL algorithm, which trains a model-free RL method
on top of truncated model-based rollouts starting from intermediate environment states. In our zero-shot setting, MBPO uses
the restored replay buffer from unsupervised training to sample starting states. Specifically, at each epoch, MBPO generates
multiple model-based truncated trajectories (s0,a0, r0, s1,a1, r1, . . . , sH−1,aH−1, rH−1) of length H using the learned
predictive model, where s0 is sampled either from the true initial state distribution µ(·) with a probability of P or from
the restored replay buffer Dfrozen with a probability of (1− P ). It then updates the task policy π(z|s) using the collected
trajectories with SAC (Haarnoja et al., 2018a), and repeats this process. Note that the restored replay buffer is only used to
provide starting states. Also, if we set P to 1 and H to the original horizon length T , MBPO corresponds to vanilla SAC
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trained purely on model-based transitions. After completing the training of MBPO, we measure the performance by testing
the learned task policy in the true environment. We summarize the full training procedure of MBPO in Algorithm 3.

G. Implementation Details
We implement PMA on top of the publicly released codebase of LiSP (Lu et al., 2021). We release our implementation at
the following repository: https://github.com/seohongpark/PMA. We run our experiments on an internal cluster
consisting of A5000 or similar GPUs. Each run in our experiments takes no more than two days.

G.1. Environments

For our benchmark, we use seven MuJoCo robotics environments from OpenAI Gym (Todorov et al., 2012; Brockman
et al., 2016): HalfCheetah, Ant, Hopper, Walker2d, InvertedPendulum, InvertedDoublePendulum, and Reacher. We mostly
follow the environment configurations used in Sharma et al. (2020). We use an episode length of 200 for all environments.
For HalfCheetah, Ant, Hopper, and Walker2d, we exclude the global coordinates from the input to the policy. For Hopper
and Walker2d, we use an action repeat of 5 to have similar discretization time scales to the other environments. Regarding
early termination, we follow the original environment configurations: Ant, Hopper, Walker2d, InvertedPendulum, and
InvertedDoublePendulum have early termination conditions, while HalfCheetah and Reacher do not.

G.2. Tasks

We describe the reward functions of our 13 tasks. We mostly follow the reward scheme of the original task of each
environment. For the environments with early termination, the agent additionally receives a reward of 1 at every step.

HalfCheetah Forward: The reward is the x-velocity of the agent.

HalfCheetah Backward: The reward is the negative of the x-velocity of the agent.

Ant East: The reward is the x-velocity of the agent.

Ant North: The reward is the y-velocity of the agent.

Hopper Forward: The reward is the x-velocity of the agent.

Hopper Hop: The reward is the maximum of 0 and the z-velocity of the agent.

Walker2d Forward: The reward is the x-velocity of the agent.

Walker2d Backward: The reward is the negative of the x-velocity of the agent.

InvertedPendulum Stay: The reward is the negative of the square of the x-position of the agent.

InvertedPendulum Forward: The reward is the x-velocity of the agent.

InvertedDoublePendulum Stay: The reward is the negative of the square of the x-position of the agent.

InvertedDoublePendulum Forward: The reward is the x-velocity of the agent.

Reacher Reach: The reward is the negative of the Euclidean distance between the target position and the fingertip.

G.3. Hyperparameters

We present the hyperparameters used in our experiments in Tables 1 to 3. For the MPPI results in Figure 5, we in-
dividually tune the MOPO penalty λ for each method and task (Table 2), where we consider λ ∈ {0, 1, 5, 20, 50}.
For the MBPO results in Figure 6, we individually tune the MOPO penalty λ, the rollout horizon length H , and
the reset probability P for each method and task (Table 3), where we consider λ ∈ {0, 1, 5, 20, 50} and (H,P ) ∈
{(1, 0), (5, 0), (15, 0), (15, 0.5), (50, 0), (50, 0.5), (200, 1)}. We use (H,P ) = (200, 1) for the SAC results in Figure 7.
When training MBPO in Ant, we additionally apply max(0, ·) to the penalty-augmented reward to prevent the agent from
preferring early termination to avoid negative rewards.
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Table 1. Hyperparameters.

Hyperparameter Value

# epochs 10000
# environment steps per epoch 4000
# gradient steps per epoch 64 (policy), 32 (model), 1 (RND network)
Episode length T 200
Minibatch size 256
Discount factor γ 0.995
Replay buffer size 100000
# hidden layers 2
# hidden units per layer 512
Nonlinearity ReLU
Optimizer Adam (Kingma & Ba, 2015)
Learning rate 3× 10−4

Target network smoothing coefficient τ 0.995
Ensemble size 5
Reward scale 10
Latent action dimensionality |Z| |A|
PMA, DADS # samples for entropy approximation L 100
PMA ensemble variance scale β 5 (Walker2d), 50 (Hopper), 0.03 (Otherwise)
CM (Disag.) ensemble variance scale β 0.3 (Walker2d), 1 (HalfCheetah, Ant), 3 (Hopper), 10 (Otherwise)
MPPI horizon length H 15
MPPI population size N 256
MPPI # iterations M 10
MPPI temperature α 1
MPPI variance Σ I

Table 2. MOPO λ for the MPPI results (Figure 5).

Task PMA DADS CM (Rand.) CM (Disag.) CM (RND)

HalfCheetah Forward 1 1 1 1 1
HalfCheetah Backward 1 1 1 1 1
Ant East 20 20 20 20 20
Ant North 20 20 20 20 20
Hopper Forward 5 5 1 5 5
Hopper Hop 1 1 5 5 5
Walker2d Forward 1 1 1 1 1
Walker2d Backward 1 1 1 1 1
InvertedPendulum Stay 1 1 1 1 1
InvertedPendulum Forward 5 5 5 5 5
InvertedDoublePendulum Stay 0 5 5 5 5
InvertedDoublePendulum Forward 5 5 1 5 1
Reacher Reach 0 0 0 0 0
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Table 3. (MOPO λ, MBPO H , MBPO P ) for the MBPO results (Figure 6).

Task PMA DADS CM (Rand.) CM (Disag.) CM (RND)

HalfCheetah Forward (1, 15, 0.5) (1, 15, 0.5) (1, 15, 0.5) (1, 15, 0.5) (1, 15, 0.5)
Ant East (50, 15, 0.5) (10, 15, 0.5) (50, 15, 0.5) (10, 15, 0.5) (50, 15, 0.5)
Hopper Forward (1, 200, 1) (1, 200, 1) (1, 200, 1) (1, 50, 0.5) (1, 15, 0.5)
Walker2d Forward (1, 50, 0) (1, 50, 0) (1, 15, 0) (1, 50, 0) (1, 15, 0)
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